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Abstract

The interface between a solid and vacuum can become electronically
distinct from the bulk. This feature, encountered in the case of quan-
tum Hall effect, has a manifestation in insulators with topologically
protected metallic surface states. Non-trivial Berry curvature of the
Bloch waves or periodically driven perturbation are known to gen-
erate it. Here, by studying the angle-dependent magnetoresistance in
prismatic bismuth crystals of different shapes, we detect a robust sur-
face contribution to electric conductivity when the magnetic field is
aligned parallel to a two-dimensional boundary between the three-
dimensional crystal and vacuum. The effect is absent in antimony,
which has an identical crystal symmetry, a similar Fermi surface struc-
ture and equally ballistic carriers, but an inverted band symmetry
and a topological invariant of opposite sign. Our observation confirms
that the boundary interrupting the cyclotron orbits remains metallic
in bismuth, which is in agreement with what was predicted by Azbel
decades ago. However, the absence of the effect in antimony indicates an
intimate link between band symmetry and this boundary conductance.
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1 Introduction

Bismuth is a semimetal with an extremely low density of highly mobile carriers
of both signs [1-3]. The long Fermi wavelength of its carriers extends over
several tens of lattice parameters. Therefore, only extended defects (such as
dislocations) can decay the charge current. In crystals lacking such spatially
extended disorder, carriers become ballistic [4], and their mobility (and as we
will see below their magnetoresistance) easily exceeds any other solid hitherto
explored [5].

Recent research has shown that an extended Dirac Hamiltonian combined
to the Fermi surface structure derived by a tight binding model [6] can explain
the complex angle dependent Landau spectrum of electrons and holes [7]. The
approach successfully accounts for the total evacuation of one or two electron
pockets at strong magnetic field aligned along different axes [8]. The angle
dependent magnetoresistance and its rich structure [9] are also accessible to
semiclassical transport theory treating mobility as a tensor [9].

Open questions remain, however. The origin of the loss of rotational
threefold symmetry in presence of strong magnetic fields [9-11] is yet to be
understood. Such a ‘nematicity’ was also observed on the surface of bismuth
crystals [12], as well as in other solids [13]. In addition to ‘valley nemeticity’
[14, 15], other theoretical possibilities for its origin were proposed [16].

Another open question is the topology of the electron wave function [17,
18], its consequences for the metallic surface states in bismuth [19] and the
evolution of the latter with thickness and Sb substitutions [20]. The topology
of surface states and their status in the trivial /non-trivial dichotomy has been
a subject of ongoing debate [21-27]. A recent popular theory identifies bismuth
as a higher order topological solid with topologically protected hinge states
[23]. This hypothesis has been invoked to explain the experimental observation
of ballistic transport in micrometre-long bismuth nanowires [28].

Here, we present a study of magnetoresistance in prismatic crystals of
bismuth with ballistic carriers with unexpected consequences for both these
issues. By choosing specific crystallographic planes as faces of the prisms, we
uncover a specific contribution to electric conductivity when the magnetic
field is aligned parallel to a two-dimensional boundary between the three-
dimensional crystal and vacuum. The absence of this effect in antimony crystals
of identical shapes points the role played by the band structure topology in
tuning the edge-bulk 7 correspondence in macroscopic crystals in the high-
field limit (w.7 > 1). It confirms that the interruption of cyclotron orbits at
the boundary of a macroscopic three-dimensional crystal can generate a highly
conducting boundary state in which bulk magnetoresistance is absent [29, 30].

It is known that a periodically driven Hamiltonian can provide topological
protection 7 in the so-called Floquet systems [31-33]. In presence of quantizing
magnetic fields, cyclotron orbits interrupted at the edge may be conceived as
a periodical perturbation to the local electrons, but we are not aware of any
available theory on this.
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Our results identify the source of the loss of rotational symmetry and
apparent ‘nematicity’ [9-11] in bismuth crystals. The existence of distinct edge
states surrounding bulk states would also explain why identical bismuth tilted
crystals across a twin boundary can keep different chemical potentials at high
magnetic field [7].

2 Results

2.1 Samples, carrier mobility and orbital
magnetoresistance

The bismuth (Bi) and the antimony (Sb) crystals used in this study are listed
in table 1. The residual resistivities are remarkably low, considering the low
carrier density of these two semimetals (n = p = 3 x 1017 ecm ™3 in bismuth and
n =p=>5.5x10'" cm™3 in antimony [6]). For Bi, py = 0.18 u2 cm corresponds
to an average mobility of < pe + pp > = 1.2 x 10 em? V~-1s~!. For Sh, a
residual resistivity of pp = 0.07 pf2cm corresponds to an average mobility of
< e + pp > = 1.7 x 107 em? V=1 s These mobilities exceed those of the
samples used in previous studies of magnetoresistance on Bi [8-10] and Sb [34].

Note that the average mobility deduced from residual resistivity ignores the
fact that in presence of anisotropic Fermi pockets of electrons and holes, the
electrons and holes in different pockets and along different orientations have
different mobilities. It is safe to assume that some carriers are ballistic given
the size dependence of the residual resistivity [35].

Carrier mobility in Bi is probably the highest known in any solid. Bi crystals
with a RRR of ~ 600 were reported in old scientific literature (Supplementary
note 1 [36]). However, the high-field magnetoresistance of such samples was not
reported before. Bismuth samples subject to pulsed magnetic fields [8, 37] were
small pieces cut from larger crystals and hosted extended scattering centers
such as twin boundaries and dislocations. The presence of such disorder led to
a shorter electronic mean free path and a significantly lower magnetoresistance
compared to the crystals studied here.

The typical magnetoresistance in our crystals is shown in Fig. 1. One can
see that the 14 T magnetoresistance of the Bi sample with RRR = 683 is orders
of magnitude higher than what was observed in WTes at 60 T [5, 38]. The latter
was dubbed ‘extremely large magnetoresistance’ by many authors [39]. How-
ever, such a large non-saturating magnetoresistance was reported by Kapitza
back in 1928 [40] and is a generic feature of low-density semimetals [41].

2.2 Triangular prismatic crystals: Bi vs. Sb

Bismuth and antimony crystallize in the rhombohedral A7 crystal structure
shown in Fig. 2a. The three axes of high symmetry are known as trigonal (or
C3), binary (Cs) and bisectrix (Cq) [1, 2]. As seen in Fig. 2b, in the trigonal
plane, there are three C; and three Cy axes, which are equivalent upon 27/3
rotation. Our experiments consisted in measuring the magnetoresistance of Bi
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and Sb crystals with the electric current applied along Cs and the magnetic
field rotating in the trigonal plane. The orientation of the magnetic field is
given by 6, which is defined as the angle between the field and the C; axis.
As reported previously [9, 10], despite the constant angle between current
and field, orbital magnetoresistance varies with angle reflecting the in-plane
anisotropy of the Fermi velocity in the three electron pockets.

Our main observation is illustrated in Fig. 2c. It shows the angular depen-
dence of electrical conductivity o at a magnetic field of 12 T and 2 K in a
pair of Bi crystals tailored identically as triangular prisms. (Note that since
the Hall resistivity is negligible compared to the magnetoresistance, o  1/p).
The only difference between the two crystals was that in one case each of the
three square faces of the prism was a binary (C3) plane, while in the other
case, it was a bisectrix (C;) plane. The angle-dependent magnetoresistance is
clearly different in the two crystals. In one there are conductivity peaks each
time the field is along a bisectrix axis. In the other, there are minima (instead
of maxima) at the same field orientations.

The same experiment was performed in a pair of Sb crystals tailored in the
same way as the bismuth crystals. As one can see in the figure, no difference
is visible between the two crystals.

Thus, angle-dependent magnetoresistance depends on the choice of specific
crystal planes as faces of each prism in bismuth crystals, but not in antimony
crystals. We reproduced this observation in two other pairs of Bi crystals and
one other pair of Sb crystals.

2.3 Identifying the source of excess conductivity in
bismuth

The shape dependence of the orbital magnetoresistance sheds light on the
origin of the loss of the threefold symmetry in bismuth crystals of various
geometry [9, 10]. As reported previously [9, 10], this effect emerges only at
sufficiently low temperature and high magnetic field. Let us now consider the
amplitude of the required magnetic field.

Fig. 3 shows the change of angle-dependent conductivity with temperature
in a pair of Bi triangular prisms at two different fields, namely B = 14 T and
B = 0.2 T. The non-trivial evolution of angle-dependent magnetoconductivity
can be quantitatively described by invoking the anisotropy of the effective mass
and the evolution of scattering time and carrier density among pockets with
temperature and magnetic field. At B=0.2 T and T = 40 K, angle-dependent
magnetoconductivity displays a star-like shape. With cooling, the anisotropy is
lowered due to a partial compensation of the mass anisotropy by the emerging
anisotropy in the scattering time [4]. At B = 14 T, the anisotropy of mobility is
compensated by an anisotropy in the distribution of carriers among the three
pockets [8, 9, 42].

As can be seen in Fig. 3, at both fields, the two samples show an identical
angle-dependent conductivity at 40 K, but not at low temperature. Upon cool-
ing, additional features emerge in the first triangular prismatic crystal, which
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are absent in the second one. Now, at B = 14 T, all electrons are confined to
their lowest Landau level, but not at B = 0.2 T. This implies that the observed
shape dependence of magnetoconductivity does not require proximity to the
quantum limit Aw. ~ Er, but the passage to the high-field limit w.7 > 1.

As for the high-field limit, two relaxation times are to be distinguished.
The Dingle scattering time 7p, extracted from quantum oscillations is almost
fifty times shorter than the transport scattering rate 74, in Bi [43]. Such a
large difference between 74, and 7p has been observed in several other dilute
metals [35, 44, 45]. The semiclassical high-field limit (w.7s = 1) is satisfied
when the cyclotron radius becomes shorter than the mean free path. The
quantum high-field limit (w.7p = 1) is satisfied when the distance between
Landau levels becomes smaller than the broadening caused by temperature
and disorder. At T = 40 K, the first criterion is satisfied, but not the second
and there is no shape dependence. As the sample is cooled down, the shape
dependence and quantum oscillations emerge concomitantly (supplementary
note 2 and supplementary Fig.1 [36]). Therefore, one can safely conclude that
what matters is the w.7p =~ 1 criterion.

The angle-dependent Landau spectrum in each sample is revealed by tak-
ing the second derivative of magnetoresistance. It remains identical in the two
samples in spite of the difference in the sheer amplitude of the magnetoresis-
tance (supplementary note 3 and supplementary figure 2 [36]). This observation
implies that their bulk Fermi surface is identical and can therefore be excluded
as the origin of the shape dependence.

The origin of the additional features in the angle-dependent magnetocon-
ductivity was pinned down by studying two other samples with a square cross
section. Samples dubbed Bi-Cub-1 and Bi-Cub-2 (See table 1) were cubic sam-
ples with identical dimensions. Both had two trigonal faces, but their four
other faces were different. In Bi-Cub-2, the four other faces were two pairs of
bisectrix and binary planes. On the other hand, in Bi-Cub-1, the pairs of faces
other than trigonal were not aligned along a high-symmetry plane. They were
rotated by a finite angle (/~ 7/4) around the trigonal axis with respect to the
two crystallographic planes (See insets in Fig. 4).

Figure 4 compares the angle-dependent magnetoconductivity of four Bi
crystals with different shapes. The temperature and the magnetic field are
identical in all cases and the current is always applied along the trigonal axis
and the field is rotating in the trigonal plane. Two samples are prisms with
triangular cross sections and two are cubes as detailed above. The magnitude
of conductance is roughly similar in the four samples, which have comparable
dimensions and mobilities. The striking difference is the presence of additional
peaks in magnetoconductance and their angular locations. In all the samples,
magnetoconductivity peaks when the magnetic field is along the binary axis
(B || C3). On top of these peaks, in all the samples there is another set of
peaks, which appear when the magnetic field is parallel to a face of the sample.

In the two triangular prisms, these peaks appear with a periodicity of 7/3
and there are six of them. The difference between the two is that in one case the
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surface peaks and the binary peaks are concomitant and in the other there is a
7 /6 shift between the two sets of peaks. In prisms with a square cross section,
on the other hand, the additional peaks appear with a periodicity of 7/2 and
there are four of them. They occur each time the field is parallel to one of the
four faces. If this face happens to be parallel to the binary axis (i.e. if it is a
crystallographic bisectrix plane), than the peak is more pronounced, as shown
in Fig. 4d. One can also see that when distinct, the two types of peaks have
different angular width and slightly different amplitudes. The surface peaks
(marked by blue arrows) are typically twice wider and twice higher than the
bulk binary peaks (marked by red arrows).

This observation clearly establishes that the additional contribution to con-
ductivity emerges when the magnetic field (kept always perpendicular to the
charge current flowing along the trigonal axis) lies parallel to a two-dimensional
boundary of the three-dimensional sample. Moreover, it does not matter at all
for this boundary to be a specific crystal plane. The magnitude of the addi-
tional contribution remains the same when the boundary in question is the
binary plane, the bisectrix plane or a low-symmetry plane.

2.4 The boundary contribution and its relevant length
scales

Having demonstrated that the boundary conductivity emerges whenever the
magnetic field is parallel to one of the surfaces of a prismatic crystal, let us
now consider its evolution with magnetic field.

The relative contribution of the boundary conductance to the total con-
ductivity can be estimated by subtracting the angle-dependent conductivity
in two triangular prisms with different crystal planes as faces. This assumes
that bulk magnetoconductivity is identical in the two, which is reasonable,
but subject to caution given the slight difference in mobility, which implies a
difference in the expected magnitude of orbital magnetoresistance.

Figure 5a shows the relative change in the conductivity between sample Bi-
Tri-1la and sample Bi-Tri-2a. What is shown is the evolution of r = %
with magnetic field and the angle between field and the crystal axes. The
dimensionless r alternates between 0.2 and -0.2. Vertical red stripes show the
excess conductivity in sample 1 and vertical blue stripes show the excess con-
ductivity in sample 2. Remarkably, the width of the stripes or their color does
not vary with increasing magnetic field. The relative amplitude of the excess
boundary conductivity does not change even when the field increases by two
orders of magnitude and the amplitude of conductivity decreases by almost
four orders of magnitude.

Figure 5b shows the dependence of r on angle at B=0.2 T and B=10T.
It is striking to observe how the two curves superpose on each other, in spite
of a 50-fold change in magnetic field. Thus, the correction to conductivity
brought by the B || surface configuration both in amplitude and in angular
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dependence does not evolve with magnetic length {g = %, which changes

by a factor of 7 between the two fields.

The data presented in Fig. 5b contains another important feature. Within
an angular window of +4 degrees, we can fit each peak with a cos(gf) function
with ¢ as a free fitting parameter. The fact that a simple cosine fits the data
implies that the excess conductivity detected here is not singular, as observed
in other contexts [46]. Moreover, we find that when the surface becoming
parallel to the magnetic field was a bisectrix crystallographic plane ¢ = 20.3 +
3 and when it was a binary crystallographic plane, it was ¢ = 8.1 + 1. ¢
quantifies the sharpness of the peak, presumably caused by the anisotropy
of the relevant length scales. Now, the Fermi momentum and wavelength of
electrons is fourteen times longer along the bisectrix (C;) axis than along the
binary axis (Cz) [6]. This is a consequence of the huge (200-fold) anisotropy
of the in-plane electron mass. Therefore, the significant difference between the
angular width of the excess conductivity brings us to suspect a key role played
by the Fermi wavelength of electron pockets in any plausible scenario.

3 Discussion

3.1 Cyclotron orbits and the ‘static skin effect’

Decades ago, Azbel and Peschanskii put forward the concept of a static skin
effect at high magnetic fields in metals [29, 30]. This idea provides the depart-
ing point of a plausible scenario to explain our observation. In the semiclassical
picture, the magnetic field bends the electron trajectory. When the cyclotron
radius is shorter than the mean free path of carriers, there is a large magne-
toresistance. In semi-metals, this magnetoresistance does not saturate even in
the high-field limit. Now, at the surface of the sample, the cyclotron orbits are
interrupted and what matters is the scattering of the carriers by the edge. If
their collision results in a specular reflection then the conductivity at the edge
is much higher. As a result, most of the current will flow near the boundaries of
the sample where orbital magnetoresistance is absent. This phenomenon was
dubbed ’static skin effect’ in analogy with the skin effect in metals. The lat-
ter refers to the fact that the density of an alternating current (AC) is largest
near the surface of the conductor and decreases exponentially with increasing
depth. Note, however, that the conductivity profile in the ’static’ version of
the skin effect has a completely different origin.

The large magnetoresistance of bismuth can be understood in the semi-
classical picture of cyclotron orbits shrinking with increasing magnetic field
(Fig. 6a). When the magnetic field is parallel to a surface, within a thickness
of the order of cyclotron radius, electrons can conduct much better than in the
bulk and generate a sizeable contribution to the total conductivity (Fig. 6b).

However, this semi-classical scenario fails to explain two key observations.
The first is the fact that, as we saw above, the amplitude of the effect is
unchanged when the magnetic field is changed by a factor of 50 (See Fig. 5).
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This is puzzling in the ‘static skin effect’ scenario where the distribution of
current depends on the ratio of the cyclotron radius and the effective sam-
ple thickness [30]. As illustrated in Fig. 6¢, increasing the magnetic field will
reduce the width of the cyclotron edge and will enhance the difference in the
conductivity of the bulk wvs. edge. One may argue that these two tendencies
may approximately cancel out generating an additional conductivity which
does not vary much with the amplitude of the field. However, a perfect can-
cellation would be mysterious given the difference in the evolution of the the
magnetoresistance and the cyclotron radius. Additionally, how to explain the
indifference of the angular width of the peak to the magnitude of the magnetic
field? The observation implies that the current profile has remained the same
despite a fifty-fold shrink in the size of the cyclotron radius.

The second observation is the absence of this phenomenon in Sb. One may
be tempted to invoke a possible difference in surface rugosity. However, there
is no evidence for such a difference. In addition, it is unlikely for a quantitative
difference in surface quality to totally erase the effect and make the outcome
qualitatively different.

The contrast between Bi and Sb can be traced to a fundamental feature of
their electronic properties involving the symmetry of their band structure.

3.2 Band inversion and topological invariants: Bi vs. Sb

The third-neighbor tight binding model conceived by Liu and Allen [6] gives a
successful account of the electronic band structure of bulk bismuth and anti-
mony, as documented by numerous experiments. The model quantifies hopping
energies between first, second and third neighbours with unprimed (V'), primed
(V") and double-primed (V") parameters, respectively. The crystal lattice has
two sublattices, i.e., the unit cell includes two atoms. The third neighbor of the
original atom is the closest neighbor on the same sublattice and both atoms
reside in the same monolayer. The three first and the second neighbor atoms
belong to a different sublattice and lie in other monolayers above and below the
original atom (See Fig. 2a). The 14 adjustable parameters of the model were
chosen to give the best agreement with experiment. An additional parameter
was spin-orbit coupling (SOC), A, which was taken to be 0.6 eV for Sb and 1.5
eV for Bi. This model gives a reasonable account of the Fermi surface pockets
of electrons and holes and the direct and the indirect gaps of Bi and Sb [6].
In 2007, Bi;_,Sbh, alloys were identified as the first bulk topological insu-
lators [17, 18, 47], based on an important difference between Sb and Bi band
symmetries. The starting point of this identification was the band inversion
at the high-symmetry L-point in the bulk Brillouin zone, found in this tight
binding model, as well as in previous works [48, 49]. The symmetry of the wave
function at the L-point can be classified into symmetric (L) and antisym-
metric (L,) with respect to space inversion, where the eigenvalues of parity
operator are +1 for Ly and —1 for L,. As one can see in panels a and b of
Fig. 7, in bismuth the conduction band at the L-point is symmetric and the
valence band is antisymmetric, while the inverse is true in the case of antimony.
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There are 8 high-symmetry (one I, one T', three X and three L) points in
the Brillouin zone (Fig. 7c). They remain invariant under inversion and time
reversal operators. At I'-, T- and X-points, there is no difference in parity
invariants between Sb and Bi. On the other hand, there is one for the L-
points. Kane and collaborators argued that the difference in parity invariants
at the L-points leads to a Zs topological invariant dichotomy between the two
systems. As a result, at zero magnetic field, topology of the system is trivial
in Bi and non-trivial in Sb [18].

Let us briefly discuss what drives this band inversion. Both Bi and Sb
crystallize in the A7 rhombohedral crystal structure, which can be assimilated
to an assembly of two distorted FCC sub-lattices. As seen in Table 2, there is
a significant difference between tight-binding parameters of Bi and Sb. V,,,, is
the hopping energy of sigma bonding of p-orbitals of the first neighbours and
Vz;po' is the same quantity for second neighbors. One can see that their relative
difference is much larger in Sb than in Bi [6]. As a consequence, the Peierls
gap is larger in Sb than in Bi. The larger gap hinders the band crossing and
the reversal of Ls/L, hierarchy.

In a conventional Peierls transition, the energy of the symmetric band
is lower than that of the antisymmetric band [50, 51]. (An intuitive picture
of this hierarchy is sketched in the next subsection.) This is exactly what
happens in Sb. However, the SOC can alter this energy hierarchy. In Fig. 7d
and 7e, we plot the energies of the conduction and valence bands at the L-
point for Bi and Sb as a function of the magnitude of SOC using the Liu-Allen
model. The conduction and valence bands of Sb are hardly affected and the
energy hierarchy is unchanged by the SOC. On the other hand, the hierarchy
is inverted by the SOC for Bi. This hierarchy alternation happens only in Bi,
because the band gap (i.e., the lattice distortion) is much smaller and the SOC
is larger than in Sb. Actually, the bands of Sb would be inverted if the SOC
were unrealistically large (~ 20 eV).

Interestingly, the Ly and L, bands are distinguished by the parity inversion
[18, 52].

3.3 Parity and symmetry of the wave functions

The gap opening at the L-point originates from the Peierls distortion [3, 53].
The real-space image of the wave functions of conduction and valence bands
are depicted in Fig. 8 [50, 51]. Peierls distortion can be understood as a dimer-
ization, where the lattice is distorted to generate pairs as seen in Fig. 8a. (Each
dimer corresponds to a unit cell of Bi or Sb. Two atoms in the dimers are the
first nearest neighbor with each other (Fig. 2a). There are three Peierls chains
crossing at each atom in the rhombohedral structure.) The wave functions of a
single dimer are given in terms of the bonding and anti-bonding orbitals. The
wave function of the symmetric band (¢s) is given by the periodic array of
bonding orbitals, whereas the wave function of the anti-symmetric band (¢,)
is given by that of anti-bonding orbitals (Fig. 8b). It is clear from Fig. 8b that,
in absence of dimerization, the energy of ¥, is degenerate with that of ¥,. (If
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one removes the dashed boxes from Fig. 8b, one finds that the two wave func-
tions are equivalent in an infinite system.) Dimerization lowers the energy of
s compared to 1., because the energy of bonding orbitals should be lower
than that of anti-bonding orbitals. The magnitude of the energy gap between
s and 1, is determined by the degree of dimerization, which is roughly given
by the difference between the intra- and inter-dimer hopping, i.e., the differ-
ence between V,,, and Vépg. It is evident from Fig. 8b that 14 is symmetric
and 1), is anti-symmetric for the space inversion, where the inversion center of
the crystal locates at the bond center in the dimer.

Now, let us consider the reflection of cyclotron orbits at the boundary
with these wave functions. We only consider specular reflection normal to the
surface for the sake of simplicity. (Although the incidence angle is not restricted
to be normal in general, normal reflection is expected to play a major role.)
By the normal reflection, the wave vector of electrons changes as k to —k,
which corresponds to the parity operation P. The parity operation results in
Py = +1ps and Pip, = —1,[18, 48, 49]. The sign of the anti-symmetric wave
function is changed by the reflection at the boundary (Fig. 8) only for v,.
Therefore, naively, one expects a qualitative difference in boundary reflection
between s and 1,. Further theoretical investigations are required to shed
light on this subject.

3.4 Electron topology at the cyclotron edge

The static skin effect picture [29, 30] is a semiclassical approach which does not
take into account the phase of the electrons’ wave function. The interruption
of cyclotron orbits was framed in a specular-diffusive dichotomy. If the reflec-
tion is perfectly specular, momentum is conserved and there is an additional
contribution to conductivity. The effect will weaken if the reflection becomes
partially diffusive. However, reflected electron waves can interfere with incom-
ing waves. The electronic Fabry interferometers employed in two-dimensional
electron gases [54] are an eloquent demonstration of this fact.

In a quantum treatment of the interruption of the cyclotron orbits by sam-
ple boundaries, it is crucial to consider the fate of the electron wave function
and its phase following a mirror transformation. As we saw above, quasi-
particles residing in the electron pockets have opposite symmetries in Bi and
in Sb. The symmetric conduction band of bismuth, in contrast to the antisym-
metric band of Sb, allows a constructive interference upon a mirror reflection
at the boundary. However, it remains to be seen how this difference survives
in presence of quantizing magnetic field.

Even in the simple isotropic case, large-index Landau wave functions have a
non-trivial angular distribution in real space [55], which is to be affected by the
zero-field anisotropy of the Fermi momentum. The anisotropic cyclotron orbits
of Bi surface states have recently become accessible to experiment, thanks to
scanning tunneling microscopy studies [12].
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It is tempting to draw an analogy between the present context and Floquet
systems in which topological protection is provided by a periodic perturba-
tion [31-33]. At zero magnetic field, the electronic surface states of a solid
are distinct from bulk states by the abrupt interruption of the lattice. There
is another distinction, which emerges at high magnetic field. The surface
states are periodically disturbed by cyclotron orbits of the bulk. This leads
to a spatio-temporal discrete translation symmetry [56, 57]. An edge atom
at a given position and time is not instantaneously equivalent to its neigh-
bor. One of the two may be perturbed by an electron from the bulk in
its cyclotron orbit, in contrast to the other. On the other hand, the two
atoms remain equivalent if the temporal periodicity is taken in to account. In
other words, the discrete symmetries of space and time become intertwined:
(r, t) = (F+a, t+ Z—f) Future studies will tell if this analogy plays any role in
explaining our observation.

One of the motivations of the present study, was the theoretical proposal
that bismuth is a higher-order non-trivial topological system [23]. This was put
forward to explain the origin of ballistic transport in Bi nanowires detected
by superconducting proximity studies [28]. Note that the boundary ballistic
transport detected in our experiment is two-dimensional and does not appear
to arise from one-dimensional channels expected in the case of topologically
protected hinge states [23].

In conclusion, we found that in bulk crystals of bismuth, there is a robust
contribution to conductance when the magnetic field is aligned parallel to a
two-dimensional boundary of the sample. The absence of this effect in anti-
mony implies that the difference in symmetry of the conduction band has a
significant outcome.

A satisfactory explanation of our results is missing and remains a challenge
for theory. While the ‘static skin effect’ explains the existence of boundary
conductance in a macroscopic crystal, it fails to explain its absence in antimony
as well as the robust behavior of the conducting channel in presence of strong
magnetic fields. We note that the semi-classical ‘static skin effect’ has not
yet been formulated in a quantum-mechanical frame incorporating the known
contrast between the parity of the Bloch waves in Bi and in Sb at the L-point.
We argued that the latter may affect reflection at the crystal boundaries. To
the best of our knowledge, this has not yet been addressed by theory.

Our result has implications for several puzzling observations previously
reported in bismuth. The loss of threefold symmetry in transport measure-
ments [9, 10] finds a natural explanation. It may also be invoked to explain the
loss of symmetry seen by thermodynamic probes [11]. The anomaly caused by
the evacuation of a Landau level is a van Hove singularity with a cut-off due
to disorder and finite size. The latter correlates with the shape of the sample.
This would imply that the finite size cut-off of the van-Hove singularity may
be different for different field orientations. Thermodynamic measurements on
samples with different shapes and different sizes will be instructive to check
this. Finally, our observation may indicate that boundaries of a bismuth crystal
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in presence of magnetic field provide a topological barrier. This would pro-
vide a possible solution to the puzzle of distinct chemical potentials between
twinned crystals of bismuth [7].

4 Methods

Bi and Sb crystals were commercially obtained through MaTecK GmbH, which
oriented and cut them to the desired shape and dimensions. The sample sur-
face was not polished and did not go through any other specific treatment.
The experiments were performed in two different locations (Ewha University
and ESPCI) and with two different set-ups. A home-made set-up was used in
Ewha University and a Quantum Design PPMS was used in ESPCI Paris. In
both cases resistivity was measured with a standard 4-wire configuration and
electrical contacts were made with silver paste. In order to ensure the homo-
geneity of charge flow, current electrodes were applied to a thick layer of silver
paste (Dupont 4929N) covering most of the end surfaces of the prism except
for a small circular area in the center. Then a small island of silver paste was
created in the center and voltage electrodes were placed on it. At Ewha Uni-
versity, magnetoresistance was measured with an AC method with a typical
current of 100 pA at frequencies between 13 Hz and 17 Hz. For resistivity
measurements as a function of temperature, a DC method was used with a
typical current of 1 mA. In Paris, measurements were performed using cur-
rents between 1 mA and 5 mA and the standard AC method of the PPMS
(50 Hz square wave excitation).

5 Data availability

All data generating the plots presented of this study can be obtained from the
corresponding author upon request.
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Sample cross section  Face orientation RRR  pp (nf2cm)
Bi-Tri-1a triangle Cao 323 400
Bi-Tri-2a triangle Cy 485 270
Bi-Tri-1b triangle Co 576 220
Bi-Tri-2b triangle Cq 518 190
Bi-Cub-1 square low symmetry 393 260
Bi-Cub-2 square C1/C2 683 180
Sb-Tri-1 triangle Co 3260 7.1
Sb-Tri-2 triangle Cy 3270 8.7

Table 1 Details of the samples used in this study. All cross sections were equilateral.
Samples with the same type of cross section had identical dimensions (triangle: 4 x 4 x 4
mm?3, square: (5 mm)?). The face orientation refers to the crystallographic plane of the faces
parallel to the orientation of the current which was always along the C3 axis, i.e., in Bi-
Tri-1a, the C2 crystal axis is perpendicular to the three rectangular faces of the triangular
prism. (See the insets of Figure 4 for the visualisation of the four types of geometry).

Parameter Bi Sb
di(A) 3.5120  3.3427
d2(A) 3.0624  2.9024
u 0.2341  0.2336
a 57° 19" 57° 14
Vppo (eV)  1.854 2.342
Vipo (€V)  1.396 1.418
ppr (€V)  -0.600  -0.582
Vipr (€V)  -0.344  -0.393
V/V' (o) 1.33 1.65
V/V!(n) 1.74 1.48
A (eV) 1.5 0.6

Table 2 A comparison of bismuth and antimony. The nearest-neighbor distance, d;, and
the second nearest neighbor distance, dz2, in Bi and Sb. They are longer in Bi where atoms
are larger. But, the relative distance between the two sub-lattices, p and the rhombohedral
angle, a are almost the same. On the other hand, the tight-binding parameters in Sb and
in Bi are different [6].
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1040 - Bi(py = 180 nQ cm) ]
Sb (P, = 8.7 nQ cm) ;

10° e —
0,1 1 10
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Fig. 1 Amplitude of magnetoresistance: The resistivity increases by 7 to 8 orders
of magnitude upon applying a magnetic field of 14 T along a C; axis. In Bi, a down-
ward deviation from B2 behavior at high magnetic field is visible. For Bi-Cub-2, p(B = 14
T)/p(B = 0) = 1.4 x 108 and for Sb-Tri-2, p(B = 14 T)/p(B = 0) = 2.2 x 107.
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Fig. 2 Crystal structure, triangular prisms and angle-dependent magnetocon-
ductance: a) Left: Rhombohedral crystal structure of bismuth and antimony. C1, C2 and
C3 refer to bisectrix, binary and trigonal axes. Note that all atoms are not shown and
d1 > d2. Right: Projection to the trigonal plane. The central atom is surrounded by its first
(in green), second (in blue) and third (in yellow) neighbors. Atoms with bold black rings
belong to the same sub-lattice. b) Experimental configuration for measuring angle-dependent
magnetoresistance. The current electrodes were made large enough to cover most of the sur-
face and the voltage electrodes were small circles. c) Angle-dependent magnetoconductivity
in two triangular prism-shaped crystals which are identical in shape, but whose faces are
tilted by 30 degrees. In Bi (left), the low-temperature angle-dependent magnetoresistance is
dissimilar in the two samples, but in Sb (right), they remain identical. Fine features in the
angle-dependent conductivity of Sb are caused by evacuation of Landau levels upon rotation.
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Fig. 3 The emergence of shape dependence with cooling: The evolution of angle
dependent magnetoresistance with cooling for B = 14 T (top panels) and for B = 0.2 T
(bottom panels). Note the emergence of a difference at low temperatures in both cases.
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Fig. 4 Angle-dependent conductivity peaks in samples with different shapes:
Angle-dependent conductivity at T = 2 K and B = 12 T in four different Bi samples a)
Triangular prism Tri-1b; b) Triangular prism Tri-2b; ¢) cubic sample Cub-1; d) cubic sample
Cub-2 (See tablel). In all cases, conductivity peaks when the field is along a binary axis (red
arrows) and when the field is parallel to a face of the polygon (blue arrows). This implies
that the shape dependence is caused by an excess of conductance arising when the magnetic
field is aligned with a flat boundary between the sample and vacuum.
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Fig. 5 Field and angle dependence of the excess boundary conductance: a) Color

plot of U#lfgfj at T' = 1.55 K. Measurements were simultaneously performed for both
samples in a fixed magnetic field at intervals of 0.1 T between 0 and 14 T. Values of T#1 42

op1tops
were calculated at each pair of angle and field values and put into a matrix of 721 x 141
dimensions. A commercial software (Origin from OriginLab Corp.) was used to generate the
color contour map. Red and blue stripes represent the excess and the deficit of conductivity.

b) Angle dependence of % at B=02T and at B = 10 T. The relative deficit

and excess conductivity caused by field-boundary alignment does not change significantly
in spite of three orders of magnitude change in the amplitude of bulk magnetoconductance.
The angle dependence also remains roughly identical for B = 0.2 T and B = 10 T. Insets in
panel b show cos(gf) fits to the data over a narrow angular window (see text).
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Fig. 6 Static skin effect: a) When w.7 > 1, bulk carriers whirl along cyclotron orbits
numerous times without being scattered. This yields a semi-classical account of the large
orbital magnetoresistance in compensated semimetals with ballistic carriers like Bi. The
cyclotron orbits are interrupted at the edge of the sample (in green). When reflections are
specular, magnetoresistance is cancelled in this region. b) In this semiclassical picture, the
excess of conductance when the field is parallel to a surface arises thanks to additional
conduction along dissipation-free edges. ¢) In a larger magnetic field, the cyclotron edge is
narrower and the difference between bulk and boundary conductivities is larger. Therefore,
the conductivity profile is expected to evolve with increasing magnetic field. It is sketched
for two different possibilities: i) the conductivity inside the cyclotron edge does not evolve
with depth (solid black line), and ii) hybridization leads to a smooth variation across the
cyclotron edge (red dashed line). Experimentally, the relative conductivity excess does not
change above 0.2 T.
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Fig. 7 Band inversion due to spin-orbit coupling: Band structure of a) Bi and b)
Sb. In Bi, the gap between conduction and valence bands at the L-point is small and the
hierarchy between them is inverted from the ordinary hierarchy under the Peierls transition.
The upper band is the symmetric Ls and the lower is the anti-symmetric Lq. ¢) The Brillouin
zone and its high-symmetry points. d), e) Energies of Ls and L, as a function of the
magnitude of SOC for Bi and Sb. The effective A for Bi and Sb yielding the best fit to
experiment are mentioned in table 2. The energy hierarchy Ls/L, is altered by SOC in
Bi, whereas it is not in Sb. All these calculations were carried out by using the Liu-Allen’s
tight-binding model [6].
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Fig. 8 Wave functions of electrons with the Peierls distortion: a) The wave function
in the unit cell (dimer) can be expressed in terms of bonding and anti-bonding molecular
orbits. The white and black circles express the sign of the wave functions. The dots express
the positions of nodes in the wave function. b) The symmetric (¢)s) and anti-symmetric (1q)
wave functions can be expressed in terms of bonding and anti-bonding as well. ¢) The sign
of 1 is inverted by the parity operation (k — —k), while that of 15 is unchanged. It is
thus naively expected that the 1), is strongly disturbed around the boundary by the normal
reflection. d) Illustration of the parity operation in the cyclotron edge. In the antisymmetric
case, there is a 7 phase shift between incoming and reflected cyclotron orbits interrupted by
the boundary.
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