
ar
X

iv
:2

10
3.

07
87

4v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

1 
A

pr
 2

02
1

NUCLEAR AND ELECTRONIC COHERENCE IN SUPERFLUID HELIUM

Yu.M. Poluektov∗

National Science Center “Kharkov Institute of Physics and Technology”,

1, Akademicheskaya St., 61108 Kharkov, Ukraine

A semi-phenomenological model of a many-particle system of 4He atoms is proposed, in which
a helium atom is considered as a complex consisting of a nucleus and a bound pair of electrons in
the singlet state. At zero temperature, there are two Bose-Einstein condensates of particles with
opposite charges, namely, a condensate of positively charged nuclei and a condensate of negatively
charged electron pairs. It is shown that in such a system there exist two excitation branches:
sound and optical. On the basis of this model an interpretation of experiments on the study of the
electrical activity of superfluid helium is proposed. The frequency at which the resonant absorption
of a microwave radiation is observed is interpreted as a gap in the optical branch. It is shown that
the distribution of the electric potential in a standing wave in a resonator is similar to that observed
experimentally.
Key words: helium atom, boson, sound and optical vibrations, superfluidity, electrical activity,
Bose-Einstein condensate, coherent state
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I. INTRODUCTION

In the experiments of Rybalko [1–7] with superfluid helium, there were registered effects which demonstrate an
increased electrical activity of this neutral medium. The activity manifests itself both at low frequencies in sound and
torsion experiments [1,2] and at high frequencies in the interaction with a microwave radiation [3–7]. In one group
of effects, the electrical oscillations were observed under fluctuations of temperature T [1] and under oscillations of
the difference of the superfluid and normal velocities w = vs − vn [2]. In experiments of another type, the resonant
absorption of a microwave radiation was found [3–7] at a frequency close to 180 GHz. These results were mainly
confirmed in later experiments [8–12].
Until now there have been carried out a significant number of theoretical works where attempts have been made to

explain the observed effects. However, it seems unlikely that such effects can be explained while remaining within the
framework of the traditional theory of superfluidity, where the internal structure of atoms is not taken into account.
The internal structure was taken into account in theoretical works [13,14], in which particles were considered as
hydrogen-like atoms. In this work, we propose a semi-phenomenological model of a superfluid system of particles
whose structure is closer to the real structure of the helium atom.
Before experiments in which the electrical activity was discovered, in the theoretical study of the superfluid prop-

erties of liquid helium atoms were usually considered as structureless particles with zero spin. At zero temperature,
a system of N atoms obeying the Bose statistics is described by the wave function Ψ(r1, r2, . . . , rN ) being symmetric
with respect to the permutations of position vectors rj . In a low-density system, when all particles are in the same
state, the total wave function can be represented as a product of identical functions ψ(r1)ψ(r2) . . . ψ(rN ) character-
izing the state of an individual particle in the condensate. The function ψ(r) obeys the well-known Gross-Pitaevskii
equation [15,16]. Such state is coherent [13]. For dense systems the structure of the symmetric wave function proves
to be more complex, and in this case an important role is also played by pair correlations and correlations of a larger
number of particles [17,18]. In this work we will not touch upon the question of the role of higher correlations. Thus,
in contrast to the model of an ideal Bose gas where the condensate particles actually fall out of consideration, when
taking into account the interparticle interaction the condensate particles are described by some effective complex wave
function ψ(r). We will call the condensate of interacting particles as the coherent Bose-Einstein condensate. The
concept of the superfluid component of He II as a superposition of oppositely charged coherent boson condensates –
nuclear and electron – was considered in work [19], where the cause of generation of an electric field was associated
with the acceleration of electrons and nuclei which have very different masses.
A helium atom consists of a nucleus (alpha particle) with zero spin and a pair of electrons. In the ground state the

spins of electrons are directed oppositely, so that the total spin of a pair is zero (parahelium). A pair of electrons in
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such a singlet state is a very strong formation. In order to transfer a pair of electrons from the singlet state to the
triplet state with the total spin equal to unity (orthohelium), an energy of 19.8 eV should be spent, and the energy of
the first excited state of parahelium is 20.6 eV higher than that of the ground state. This makes it possible to consider
a pair of electrons in the ground state of the helium atom as a single object resembling a Cooper pair localized near a
nucleus. On this basis, in the proposed model the helium atom will be considered as a complex consisting of a spinless
nucleus with charge 2|e| and a particle with zero spin and charge −2|e|.
When taking into account the internal structure of the atom, both nuclei and pairs of bound electrons pass into the

condensate. Thus, this model considers a neutral system of two Bose-Einstein condensates of nuclei and electron pairs
with opposite charges. The fluctuations of the densities of the number of particles in condensates are accompanied
by the fluctuations of the densities of charge, current and electric potential. This article studies small oscillations
of such a system of two condensates and shows that there exist two branches of elementary excitations – the sound
branch and the optical branch. It is also shown that the distribution of the electric potential in a standing wave in a
resonator coincides with the distribution observed in the experiment [20].
Based on the analysis of the proposed model, it was concluded that the electrical effects observed in superfluid

helium are a consequence of the perturbation of its coherent system determining the value of the superfluid density.
There are three parameters that lead to a change in the superfluid density: temperature, superfluid flow and pressure.
Estimates show that the largest perturbation of the coherent system is induced by the temperature fluctuations. A
somewhat smaller effect is caused by the fluctuations of the superfluid flow. The least influence on the coherent system
is exerted by the pressure fluctuations.

II. DYNAMICAL EQUATIONS OF THE COHERENT SYSTEM OF NUCLEI AND ELECTRON PAIRS

In the secondary quantization representation, the system of nuclei will be described by the field operator ψα(r, t)
and the system of pairs of bound electrons by the field operator ψe(r, t). These operators obey the usual commutation
relations

[

ψα(r, t), ψ
+
α (r

′, t)
]

= δ(r− r′),
[

ψα(r, t), ψα(r
′, t)

]

= 0,
[

ψe(r, t), ψ
+
e (r

′, t)
]

= δ(r− r′),
[

ψe(r, t), ψe(r
′, t)

]

= 0
(1)

and commute with each other. The Hamiltonian has the form H = HK +HI +HE , where

HK = −
∫

dr

{

ψ+
α (r)

[

~
2

2M
∆+ µα

]

ψα(r) + ψ+
e (r)

[

~
2

2m
∆+ µe

]

ψe(r)

}

, (2)

HI =
1

2

∫

drdr′
{

ψ+
α (r)ψ

+
α (r

′)Uαα(|r− r′|)ψα(r
′)ψα(r)+

+ψ+
e (r)ψ

+
e (r

′)Uee(|r− r′|)ψe(r
′)ψe(r)+

+2ψ+
α (r)ψ

+
α (r)Uαe(|r− r′|)ψe(r

′)ψe(r
′)
}

,

(3)

HE =

∫

dr

{

|e|
[

ψ+
α (r)ψα(r)− ψ+

e (r)ψe(r)
]

ϕ(r) +

(

∇ϕ(r)
)2

8π

}

. (4)

Here M,m are the effective masses of a nucleus and an electron pair, e is the electron charge. Note that the effective
masses in a many-particle system of interacting particles do not have to coincide with the mass of a helium nucleus
Mα and the mass of a pair of free electrons 2me, but they are phenomenological parameters. For definiteness we will
assume that M > m. The electric field is taken into account in the nonrelativistic approximation through the scalar
potential ϕ(r). For simplicity, in the following we choose the interaction potentials in the delta-like form:

Uαα(|r− r′|) ≡ gαδ(r− r′), Uee(|r − r′|) ≡ geδ(r− r′), Uαe(|r− r′|) ≡ gαeδ(r− r′).

We assume that gα > 0, ge > 0, gαe < 0. The operators of the number of nuclei and the number of electron pairs,
respectively, are

Nα =

∫

drψ+
α (r)ψα(r), Ne =

∫

drψ+
e (r)ψe(r). (5)

In the Heisenberg representation, the operators depend on time and obey the equations of motion

i~
∂ψα(r, t)

∂t
=

[

ψα(r, t), H
]

, i~
∂ψe(r, t)

∂t
=

[

ψe(r, t), H
]

. (6)
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Using the formulas (1) – (4), we obtain an explicit form of equations for the field operators. In accordance with the
fact that at temperatures close to zero most Bose particles are in a single state, by analogy to the Gross-Pitaevskii
approach [15,16] one can neglect the commutation properties of the operators and consider them as ordinary functions.
As a result, we obtain the equations

i~
∂ψα

∂t
= −

(

~
2

2M
∆+ µα + |e|ϕ

)

ψα + gα|ψα|2ψα + gαe|ψe|2ψα, (7)

i~
∂ψe

∂t
= −

(

~
2

2m
∆+ µe − |e|ϕ

)

ψe + ge|ψe|2ψe + gαe|ψα|2ψe. (8)

Equating to zero the variation of the energy with respect to the scalar potential, we arrive at the Poisson equation

∆ϕ = −8π|e|
(

|ψα|2 − |ψe|2
)

. (9)

The chemical potentials entering into (7), (8) can be expressed in terms of the equilibrium density of the number of
nuclei and electron pairs n0 = |ψα0|2 = |ψe0|2:

µα = (gα + gαe)n0, µe = (ge + gαe)n0. (10)

The flux densities of the number of nuclei and electron pairs are given by the formulas

jα =
i~

2M

(

ψα∇ψ∗

α − ψ∗

α∇ψα

)

, je =
i~

2m

(

ψe∇ψ∗

e − ψ∗

e∇ψe

)

, (11)

and the current densities of positive and negative charges: jαch = 2|e|jα, jech = −2|e|je. Thus, the equations (7) – (10)
describe the dynamics of the coherent system of nuclei and electron pairs and the electric potential in such a system.

III. SMALL OSCILLATIONS OF THE COHERENT SYSTEM OF NUCLEI AND ELECTRON PAIRS

Let us consider small oscillations in the spatially homogeneous coherent system of nuclei and electron pairs in the
absence of a stationary flux, writing down complex functions in the form

ψα =
√
n0 + δψα, ψe =

√
n0 + δψe. (12)

In the following, instead of the complex quantities δψα, δψe, it will be more convenient to use the real functions

δΨα = δψα + δψ∗

α, δΦα = i
(

δψα − δψ∗

α

)

,

δΨe = δψe + δψ∗

e , δΦe = i
(

δψe − δψ∗

e

)

.
(13)

The fluctuations of the density of the number of nuclei δnα, the density of the number of electron pairs δne, the
density of mass δρm and charge δρch, as well as the fluctuations of the flux densities in terms of the quantities (13)
are given by the expressions

δnα =
√
n0 δΨα, δne =

√
n0 δΨe,

δρm =
√
n0

(

MαδΨα + 2meδΨe

)

, δρch = 2|e|√n0

(

δΨα − δΨe

)

,

δjα = −~
√
n0

2M
∇δΦα, δje = −~

√
n0

2m
∇δΦe, δjch = 2|e|

(

δjα − δje
)

.

(14)

The linearized system of equations (7) – (9) for the real variables (13) has the form

~
∂δΦα

∂t
= − ~

2

2M
∆δΦα + 2gαn0δΨα + 2gαen0δΨe + 2|e|√n0 ϕ, (15)

~
∂δΨα

∂t
=

~
2

2M
∆δΦα, (16)

~
∂δΦe

∂t
= − ~

2

2m
∆δΦe + 2gen0δΨe + 2gαen0δΨα − 2|e|√n0 ϕ, (17)

~
∂δΨe

∂t
=

~
2

2m
∆δΦe, (18)

∆ϕ = −8π|e|√n0

(

δΨα − δΨe

)

. (19)
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This system of five equations is equivalent to the system of two equations for the functions δΨα and δΨe:

∂2δΨα

∂t2
= − ~

2

4M2
∆2δΨα +

gαn0

M
∆δΨα +

gαen0

M
∆δΨe − ω2

αδΨα + ω2
αδΨe, (20)

∂2δΨe

∂t2
= − ~

2

4m2
∆2δΨe +

gen0

m
∆δΨe +

gαen0

m
∆δΨα + ω2

eδΨα − ω2
eδΨe. (21)

Here the plasma frequencies for nuclei ωα and electron pairs ωe are determined by the relations

ω2
α =

8πe2n0

M
, ω2

e =
8πe2n0

m
. (22)

Assuming the dependencies of the quantities δΨα and δΨe on coordinates and time in the form exp i(ωt − kr), we
find from (20) and (21) the dispersion equation

ω4 − 2Bω2 + C = 0, (23)

where

2B = ω2
α + ω2

e +
(gα
M

+
ge
m

)

n0k
2 +

(

1

4M2
+

1

4m2

)

~
2k4,

C =

[

ω2
α

(ge + gαe)

m
+ ω2

e

(gα + gαe)

M

]

n0k
2 +

[

~
2

(

ω2
α

4m2
+

ω2
e

4M2

)

+

(

gαge − g2αe
)

mM
n2
0

]

k4+

+
( gα
4Mm2

+
ge

4mM2

)

n0~
2k6 +

~
4k8

16M2m2
.

(24)

Thus, there are two branches of excitations

ω2
± = B ±

√

B2 − C, (25)

which are shown in Fig. 1. In the short-wavelength limit, these branches transform into the dispersion laws of free
nuclei and electron pairs

ω+ =
~k2

2m
, ω− =

~k2

2M
. (26)

0 1
0

1

2

3

4

~

~
2

1

 

 

k

+

Figure 1: The sound (1) and optical (2) branches of excitations in the system with two oppositely charged coherent Bose-Einstein

condensates. Here ω̃ ≡ ω/ω0, k̃ ≡ k/k0, ω
2
0 ≡ ω2

α + ω2
e , k

2
0 ≡ 2Mm√

M2+m2

ω0

~
, γ ≡ m/M = 0.1.
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These limiting relations seem reasonable, but it is physically correct to consider the dispersion relations in the limit
of long waves. In this case

ω2
± =

1

2

[

ω2
α + ω2

e +
(gα
M

+
ge
m

)

n0k
2
]

± 1

2

{

[

ω2
α + ω2

e +
(gα
M

+
ge
m

)

n0k
2
]2

− 4
(

gαge − g2αe
)

n2
0k

4

mM

}1/2

. (27)

In the system of two neutral condensates, at e = 0, we have two sound branches ω2
± = c20±k

2, where

c20± =
n0

2





(gα
M

+
ge
m

)

±

√

(gα
M

+
ge
m

)2

− 4
(

gαge − g2αe
)

mM



. (28)

In the case of charged condensates we are interested in, there is a single sound branch ω− = ck, where the velocity
is determined by the formula

c2 =
n0(gα + ge + 2gαe)

(m+M)
. (29)

For stability of the system, the interaction constants must satisfy the condition gα+ge+2gαe > 0. The second branch
is optical ω2

+ = ω2
α + ω2

e + αk2, where

α =
n0

(

ω2
α + ω2

e

)

[

gα
M
ω2
α +

ge
m
ω2
e − gαe

(

ω2
α

m
+
ω2
e

M

)]

=
n0

(M +m)

(

gα
m

M
+ ge

M

m
− 2gαe

)

. (30)

The gap in the spectrum ω0 is determined by the relation

ω2
0 = ω2

α + ω2
e =

8πn0e
2

M∗

, (31)

where M∗ = mM
/

(m +M) is the reduced mass. When deriving formulas (29), (30) from the more general formula
(27), it was assumed a fulfillment of the condition

k2 <
(m+M)2

mM

e2

|gi|
, i = (α, e, αe). (32)

The proposed model can pretend to provide quantitative estimates only in the case of low-density systems, whereas
liquid helium is not such one. Nevertheless, it is of interest to estimate the value of the reduced mass, assuming that
the formula (31) remains valid in this case and the frequency f0 = ω0/2π coincides with the resonant frequency of 180
GHz observed in experiments [3–7]. At the density n0 = 1022 cm−3, it turns out that the reduced mass is four orders
of magnitude greater than the mass of a helium atom: M∗ ∝ 104MHe. Note that earlier it was drawn attention to the
possibility of the existence of a gap in the energy spectrum of superfluid Bose systems due to pair correlations in works
[13,17,18,21]. The calculation of absorption of a microwave radiation at the resonant frequency can be performed in
a similar way as in [22].

The fluctuations of the number of pairs δn
(−)
e and nuclei δn

(−)
α in the sound wave are linked by the relation

δn(−)
e =

[

1− k2

8πe2

(

geM − gαm+ gαe(M −m)
)

(M +m)

]

δn(−)
α . (33)

According to (14), the fluctuations of the mass density and charge density in the sound wave are given by the formulas

δρ(−)
m =

[

Mα + 2me −me
k2

4πe2

(

geM − gαm+ gαe(M −m)
)

(M +m)

]

δn(−)
α , (34)

δρ
(−)
ch =

k2

4π|e|

(

geM − gαm+ gαe(M −m)
)

(M +m)
δn(−)

α . (35)

From (34) and (35) there follows the relation between the fluctuations of charge and mass densities

δρ
(−)
ch =

k2

4π|e|

(

geM − gαm+ gαe(M −m)
)

MHe(M +m)
δρ(−)

m , (36)
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where MHe ≡Mα + 2me is the mass of a helium atom 4He. As we can see, at k → 0 also δρ
(−)
ch → 0, so that with an

increase in the length of the sound wave the charge fluctuation in it decreases in comparison to the density fluctuation.
It should be noted, however, that the wavelength cannot exceed the characteristic size of the system, so that always
k ≥ 1/L. This is essential, as will be seen below, when considering oscillations in a resonator. Let us also give the
relation between the current density fluctuation and the mass density fluctuation:

δj
(−)
ch =

~ |e|
MHe

(

1

m
− 1

M

)

∇δρ(−)
m . (37)

For the optical branch, the fluctuations of the number of pairs δn
(+)
e and nuclei δn

(+)
α are linked by the relation

δn(+)
e = −M

m

[

1 +
k2

8πe2

(

geM − gαm+ gαe(M −m)
)

(M +m)

]

δn(+)
α . (38)

According to (14), the oscillations of the mass and charge densities in the optical branch are determined by the
formulas

δρ(+)
m =

[

Mα − 2
me

m
M − meM

m

k2

4πe2

(

geM − gαm+ gαe(M −m)
)

(M +m)

]

δn(+)
α , (39)

δρ
(+)
ch = 2

|e|
m

[

(M +m) +
k2

8π|e|
M

(

geM − gαm+ gαe(M −m)
)

(M +m)

]

δn(+)
α . (40)

From (39) and (40) it follows that in this case the relation between the fluctuations of charge and mass densities is
given by the formula

δρ
(+)
ch =

2 |e|(M +m)

(mMα − 2meM)

[

1 +
k2

8π|e|
M

(

geM − gαm+ gαe(M −m)
)

(M +m)2

]

δρ(+)
m . (41)

In the limit k → 0, the ratio of the amplitudes of oscillations of charge and mass densities remains constant. The
current density fluctuation and the mass density fluctuation are linked by the relation

δj
(+)
ch = −~ |e|

(

M
m + m

M

)

(mMα − 2meM)
∇δρ(+)

m . (42)

Although this work does not consider the states with stationary flows, we note that since electron pairs compensate
for the charge of nuclei, stationary flux densities of the number of nuclei and pairs should be the same and the
stationary electric current density should be zero in this case.

IV. LOW FREQUENCY OSCILLATIONS IN A CAPACITOR

In the experiment [1], there were studied the standing waves of the second sound and the potential oscillations in a
resonator filled with superfluid helium. Let us consider, within the framework of the proposed model, the oscillations
in a capacitor the plates of which are perpendicular to the x-axis and located at the points x = ±L/2. Taking into
account that the flows of particles in the direction perpendicular to the plates should vanish on the plates themselves,
we find that the fluctuations of the densities of nuclei and pairs are given by the formulas

δnα = nα sinωnt sinknx, δne = ne sinωnt sinknx, (43)

where ωn = ckn, kn = π(2n+1)/L, and the velocity c is determined by the formula (29). Assuming that the potential
on the right plate at x = L/2 is equal to zero and the surface charges on the capacitor plates are absent, so that the
normal component of the electric field vanishes on the plates, we find from the equation (19) the potential distribution

δϕ(x, t) =
ϕm

2

[

(−1)n − sinknx
]

sinωnt, (44)

where ϕm ≡ −2
(

geM − gαm+ gαe(M −m)
)

|e|(M +m)
nα. The potential distribution for the cases when one n = 0 and three

n = 1 half-waves fit along the resonator length is shown in Fig. 2. These distributions coincide with those obtained
experimentally in [20].
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Figure 2: The potential distribution in the capacitor at the moment t =

L

2c
: (1) one n = 0, (2) three n = 1 half-waves fit along

the resonator length.

V. DISCUSSION

In the semi-phenomenological model of helium superfluidity proposed in this article, atoms are considered as
complexes consisting of a nucleus and a bound pair of electrons in the singlet state. Since this model contains
two systems of oppositely charged particles obeying the Bose statistics, there are also two coherent Bose-Einstein
condensates. In dynamic processes the local fluctuations of the number of electron pairs and nuclei lead to the
fluctuations of the densities of electric charge, current and potential. The model is formulated for zero temperature
and under the assumption that the system is rarefied, and therefore cannot pretend to give a quantitative description of
the effects observed in superfluid helium, like indeed any other model if it does not contain a set of a sufficient number
of adjustable parameters. Nevertheless, it allows to qualitatively understand the cause of the observed electrical
phenomena, which consists in the perturbation of the coherent system of nuclei and electron pairs. In liquid helium
the coherence emerges below the lambda-transition temperature. A consequence of the emergence of the coherent
Bose-Einstein condensate is the appearance of a new characteristic of the system – the superfluid density. Thus, in
liquid superfluid helium the coherent subsystem of atoms forms the superfluid density, which depends on temperature
T , pressure p and the difference of the superfluid and normal velocities w = vn − vs, so that ρs = ρs(p, T, w

2). As
we can see, the oscillations of the superfluid density, and consequently of the coherent subsystem, in helium can arise
under the influence of the fluctuations of temperature, pressure and the velocity difference. The intensity of such
oscillations of the coherent subsystem can be characterized by the dimensionless parameters

Ap =
p

ρs

(

∂ρs
∂p

)

T,w

, AT =
T

ρs

(

∂ρs
∂T

)

p,w

, Aw =
u22
ρs

(

∂ρs
∂w2

)

T,p

, (45)

where u2 is the velocity of the second sound. Let us estimate the magnitude of these coefficients. Using the data
given in the appendix of the book [23], we find that at T = 1.4K the coefficient AT ≈ −0.54. With an increase in
temperature, this coefficient increases in absolute magnitude, reaching at T = 2K the value AT ≈ −7.3. In this case,
of course, ρs decreases.
Let us also estimate the magnitude of the coefficient Aw that determines the influence of the oscillations of the

superfluid flow on the perturbation of the coherent system of helium. The derivative of the superfluid density is
expressed in terms of the derivatives of the total ρ and normal ρn densities: ∂ρs/∂w

2 = ∂ρ/∂w2 − ∂ρn/∂w
2. The

first term can be estimated using the thermodynamic relation [24]

∂ρ

∂w2
=
ρ2

2

∂

∂p

(

ρn
ρ

)

. (46)

The dependence of the normal density on w2 is found from formulas given in § 3 of [24]. As a result, we get

∂ρs
∂w2

≈ −0.85 ·10−9 g·s2/cm5.

This estimate is consistent with the experimental estimate given in the appendix of the book [23] ρ−1
∣

∣∂ρn
/

∂w2
∣

∣ <

6 ·10−8 s2/cm2. Taking into account the value of the second-sound velocity u2 = 2 ·103 cm/s, we get Aw ≈ −2.5 ·10−2.
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And if we take the maximum possible value ρ−1
∣

∣∂ρn
/

∂w2
∣

∣ = 6 ·10−8 s2/cm2 according to the experimental data,
then we get Aw ≈ −0.25. As seen, the electrical effects caused by the fluctuations of w = vn − vs are close to those
generated by the temperature fluctuations. The electrical effects caused by the fluctuations of the velocity difference
were observed in the experiment with a torsion oscillator [2].
An estimate of the coefficient that determines the effect of pressure on the coherent subsystem at saturated vapor

pressure gives Ap ≈ 10−5. Pressure has the least effect on the coherent subsystem, so that the electrical effects should
be much less pronounced in experiments with the first sound. However, as the pressure increases the coefficient Ap

also increases. So, at pressure of 5 atm it has an order of magnitude Ap ≈ 10−2. Note that in [25] the observation of
the electric effect in the first sound wave was reported, although this effect was not observed in other works.

VI. CONCLUSION

The article proposes a qualitative interpretation of the electrical effects observed in superfluid helium [1–12,20,25],
based on the analysis of the model which assumes the existence of two oppositely charged coherent Bose-Einstein
condensates – those of atomic nuclei and singlet electron pairs. In this approach the electron pairs are considered as
delocalized, so that in nonstationary processes there exists a probability of a pair transition from atom to atom and,
therefore, the possibility of the local breaking of electroneutrality, which thus leads to the appearance of the internal
electric field. It is shown that there are two branches of elementary excitations – sound and optical.
The observed electrical activity in superfluid helium is explained by the disturbance due to external factors of its

coherent system manifesting itself in the existence of the superfluid density. Estimates show that the strongest effect
on the coherent system is exerted by the fluctuations of temperature, then follow the fluctuations of superfluid flow,
and the weakest effect is due to the fluctuations of pressure. The frequency at which the resonant absorption of a
microwave radiation is observed [3–7] is interpreted as a gap in the optical branch of the spectrum. The oscillations
in a resonator are considered and it is shown that the distribution of the electric potential in the standing wave is
consistent with experiment [20].
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