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Quantum-mechanical correlations of interacting fermions result in the emergence of exotic phases.
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model, where charges
are localized and the spin degree of freedom remains. In this regime, the occurrence of phenomena such as
resonating valence bonds, frustrated magnetism, and spin liquids is predicted. Quantum systems with
engineered Hamiltonians can be used as simulators of such spin physics to provide insights beyond the
capabilities of analytical methods and classical computers. To be useful, methods for the preparation of
intricate many-body spin states and access to relevant observables are required. Here, we show the quantum
simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array. We characterize the
energy spectrum for a Heisenberg spin chain, from which we can identify when the conditions for
homogeneous exchange couplings are met. Next, we study the multispin coherence with global exchange
oscillations in both the singlet and triplet subspace of the Heisenberg Hamiltonian. Last, we adiabatically
prepare the low-energy global singlet of the homogeneous spin chain and probe it with two-spin singlet-
triplet measurements on each nearest-neighbor pair and the correlations therein. The methods and control
presented here open new opportunities for the simulation of quantum magnetism benefiting from the
flexibility in tuning and layout of gate-defined quantum-dot arrays.
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I. INTRODUCTION

Analog quantum simulations of magnetism [1] have
been performed with a rich variety of experimental plat-
forms, ranging from ultracold atoms in optical lattices [2–7]
to trapped ions [8,9], scanning tunneling microscopy of
atoms on metallic surfaces [10], and superconducting
circuits [11]. A recent addition is the use of gate-defined
quantum dots as a platform for quantum simulation of the
Fermi-Hubbard model. The abilities to independently
control the filling of the array, the local electrochemical
potentials, and the hopping energy between sites are
complemented with methods to probe the charge configu-
ration across an array, spin states, and the electrical
susceptibility as well as transport through the system
[12]. These already enabled the observation of the tran-
sition from Coulomb blockade to collective Coulomb

blockade [13] and the observation of Nagaoka ferromag-
netism [14], a form of purely itinerant ferromagnetism
which occurs at doping with a single hole.
In the Mott-insulator regime, where all sites are occupied

by one electron, magnetism is governed by the Heisenberg
exchange interaction [15], which favors antiferromagnetic
spin alignment. Earlier studies on quantum-dot arrays in
this regime demonstrate the sequential control of exchange
couplings enabling coherent state transfer [16] and a
method to handle cross talk in simultaneous control of
exchange couplings [17]. In order to study the many-body
properties of this system, novel methods are needed for
state preparation in the presence of disorder and temper-
ature as well as for probing spin correlations. Preparation of
the Heisenberg ground state is both a useful and exciting
goal because of its potential applications such as quantum
information transfer [18–22] and quantum simulation of
magnetic phases [23–25].
In this work, we simulate the antiferromagnetic

Heisenberg spin chain in a gate-defined quadruple quantum
dot. For this purpose, we develop experimental techniques
based on energy spectroscopy and coherent oscillations of
the global spin state. These include methods for many-body
spin-state preparation and singlet-triplet correlation mea-
surements, which form a powerful probe for the charac-
terization of a many-body spin state [26]. We use these

*Corresponding author.
l.m.k.vandersypen@tudelft.nl

†These authors contributed equally to this work.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 041025 (2021)
Featured in Physics

2160-3308=21=11(4)=041025(15) 041025-1 Published by the American Physical Society

https://orcid.org/0000-0001-8454-2859
https://orcid.org/0000-0001-5140-2809
https://orcid.org/0000-0003-4346-7877
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.041025&domain=pdf&date_stamp=2021-11-04
https://doi.org/10.1103/PhysRevX.11.041025
https://doi.org/10.1103/PhysRevX.11.041025
https://doi.org/10.1103/PhysRevX.11.041025
https://doi.org/10.1103/PhysRevX.11.041025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


methods to engineer a chain with homogeneous exchange
couplings. Finally, we adiabatically prepare the low-energy
singlet eigenstate of the homogeneous Heisenberg chain
and characterize the state with single-shot singlet-triplet
readout on all nearest-neighbor pairs.

II. HEISENBERG SPIN CHAIN

The Heisenberg isotropic exchange Hamiltonian, while
giving rise to rich emergent phenomena, has a simple form:

HHeis ¼
X
hi;ji

Jij

�
S⃗i · S⃗j −

1

4

�
; ð1Þ

with Jij the exchange coupling between spins on sites i and
j, S⃗i the vector of spin operators for site i, and the
summation over nearest neighbors only. The conventional
− 1

4
offset ascertains that the two-spin triplets have zero

energy contribution in the absence of an external field. For

quantum-dot systems, the exchange coupling is typically
positive [27]; thus, neighboring spins prefer to antialign or,
more precisely, tend to form local singlets. In addition, a
Zeeman splitting can be induced with an external magnetic
field, which energetically splits spin states according to
their magnetization as

Hext ¼ gμBBext

X
i

Ŝzi ; ð2Þ

with g the Landé g factor, μB the Bohr magneton, and Bext
the external magnetic field.
The properties of a Heisenberg spin chain have theoreti-

cally been studied extensively, with as most famous result
the exact solution of the energy spectrum and eigenstates of
the homogeneous chain using the Bethe ansatz [28].
Intuitive insights can be obtained from the symmetries of
the Heisenberg Hamiltonian, due to which the Hilbert space
can be separated into subspaces, which are eigenspaces for

TABLE I. Four-spin shared eigenstates of Ŝ2 and Ŝz expressed in a basis of two-spin singlets and triplets on either the left and right or
middle and outer pair. States in the rightmost column are the same as states on the same row in the column to the left of it. The four-spin
states shown here are, in general, not eigenstates of the Heisenberg Hamiltonian, but the Hamiltonian does operate within a specific
ðS;mSÞ subspace.
State ðS;mSÞ Left- and right-pair basis Middle- and outer-pair basis

Q�� ð2;�2Þ jT�
12T

�
34i jT�

23T
�
14i

Q� ð2;�1Þ ð1= ffiffiffi
2

p ÞðjT0
12T

�
34i þ jT�

12T
0
34iÞ ð1= ffiffiffi

2
p ÞðjT0

23T
�
14i þ jT�

23T
0
14iÞ

Q0 (2,0) ð1= ffiffiffi
6

p ÞðjTþ
12T

−
34i þ jT−

12T
þ
34i þ 2jT0

12T
0
34iÞ ð1= ffiffiffi

6
p ÞðjTþ

23T
−
14i þ jT−

23T
þ
14i þ 2jT0

23T
0
14iÞ

T�
k ð1;�1Þ j2T�i ¼ ð1= ffiffiffi

2
p ÞðjT0

12T
�
34i − jT�

12T
0
34iÞ ð1= ffiffiffi

2
p ÞðjS23T�

14i þ jT�
23S14iÞ

j1T�i ¼ jT�
12S34i 1

2
ðjS23T�

14i − jT�
23S14i þ jT�

23T
0
14i − jT0

23T
�
14iÞ

j0T�i ¼ jS12T�
34i 1

2
ðjS23T�

14i − jT�
23S14i − jT�

23T
0
14i þ jT0

23T
�
14iÞ

T0
k (1,0) ð1= ffiffiffi

2
p ÞðjTþ

12T
−
34i − jT−

12T
þ
34iÞ ð1= ffiffiffi

2
p ÞðjS23T0

14i þ jT0
23S14iÞ

jT0
12S34i 1

2
ðjS23T0

14i − jT0
23S14i − jTþ

23T
−
14i þ jT−

23T
þ
14iÞ

jS12T0
34i 1

2
ðjS23T0

14i − jT0
23S14i þ jTþ

23T
−
14i − jT−

23T
þ
14iÞ

Sk (0,0) j1Si ¼ ð1= ffiffiffi
3

p ÞðjTþ
12T

−
34i þ jT−

12T
þ
34i − jT0

12T
0
34iÞ ð ffiffiffi

3
p

=2ÞjS23S14i þ ð1=2 ffiffiffi
3

p ÞðjT0
23T

0
14i − jTþ

23T
−
14i − jT−

23T
þ
14iÞ

j0Si ¼ jS12S34i 1
2
ðjS23S14i − jT0

23T
0
14i þ jTþ

23T
−
14i þ jT−

23T
þ
14iÞ

(a) (b)

FIG. 1. Device and spin-chain operation. (a) False-colored scanning electron micrograph of a device nominally identical to the one
used for the experiments. The resistance meter, indicated with Ω, shows the location of the sensing dot. Plunger gates for the dots are
colored in red and labeled with Pi, and the plunger for the sensing dot is labeled with SDP. (b) Schematic illustration of the experimental
sequence for the spin chain, consisting of five stages: initialization of local singlets or triplets, separation of singlets, manipulation of
exchange couplings and time evolution, isolation of either the left and the right pair or the middle pair by switching off specific exchange
couplings, and pairwise singlet-triplet readout.
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the total spin operator Ŝ2, with eigenvalues SðSþ 1Þ, and the
spin operator in the z direction, Ŝz, with eigenvalues
mS ∈ ½−S;…; S�. The dimensions for these subspaces can
be obtained from the Clebsch-Gordan decomposition. For
four spins, this results in two global singlet states for which
S ¼ 0, nine global triplet states for which S ¼ 1, and five
states with S ¼ 2, which form a quintuplet. The triplets are
separated into three three-dimensional subspaces and are
denoted by Tα

k, with the subspace magnetization α ∈
½−; 0;þ� and k labeling the energy level, where k ¼ 0 for
the state with lowest energy in the respective subspace.
Similarly, the singlets are denoted by Sk, and the quintuplets
by Qβ with β ∈ ½−−;−; 0;þ;þþ�.
The global spin states can be characterized in terms

of the probabilities to measure either two-spin singlets
jSiji¼ð1= ffiffiffi

2
p Þðj↑i↓ji−j↓i↑jiÞ or triplets jTþ

iji ¼ j ↑i↑ji,
jT0

iji ¼ ð1= ffiffiffi
2

p Þðj ↑i ↓ji þ j↓i ↑jiÞ, and jT−
iji ¼ j↓i↓ji,

where i and j indicate the site. The simultaneous eigen-
states of Ŝ2 and Ŝz for four-spin states can be expressed in
this pairwise singlet-triplet basis as shown in Table I.
Appendix A discusses the limitations of singlet-triplet
measurements to distinguish spin states.
Alternatively, we can characterize the Heisenberg spin

chain via its energy spectrum. Based on the symmetries of
the Hamiltonian, for four spins the global singlet states
form a two-dimensional subspace. For this subspace, the
Heisenberg Hamiltonian is

Hð0;0Þ ¼
0
@−J12 − 1

4
J23 − J34

ffiffi
3

p
4
J23ffiffi

3
p
4
J23 − 3

4
J23

1
A; ð3Þ

with basis states j0Si and j1Si from Table I. This subspace
has been proposed as a singlet-only exchange-only qubit
implementation, which offers increased coherence due to
the reduced influence of nuclear spins [29].
For the global triplet states, the three three-dimensional

subspaces are identical in terms of energy splittings.
The Heisenberg Hamiltonian for each of these triplet
subspaces is

Hð1;1Þ ¼

0
BBB@

−J12 − 1
4
J23 − 1

4
J23 − 1

2
ffiffi
2

p J23

− 1
4
J23 − 1

4
J23 − J34 − 1

2
ffiffi
2

p J23

− 1

2
ffiffi
2

p J23 − 1

2
ffiffi
2

p J23 − 1
2
J23

1
CCCA; ð4Þ

with basis j0Tþi, j1Tþi, and j2Tþi from Table I. The
quintuplet states have zero energy contribution from the
Heisenberg Hamiltonian but can be energetically split with
an external magnetic field.
The energy differences in the subspaces reveal informa-

tion about the exchange coupling strengths, and character-
istic features can be identified. For the singlet subspace, the

energy splitting is 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J12 þ 2J34 − J23Þ2 þ 3J223

p
. It fol-

lows that, given J12 ¼ J34, the energy splitting is mini-
mized when J23 ¼ J12 ¼ J34 and, thus, for homogeneous
exchange couplings. For the triplet subspace, the energy
difference between the two lowest-energy states is mini-
mized if J12 ¼ J34. If J12 ¼ J23 ¼ J34, the triplet states are
equally spaced in energy (see Appendix B for simulated
energy diagrams). These characteristic features for the
energy spectrum of the Heisenberg Hamiltonian will be
experimentally identified, but first we introduce the quan-
tum-dot device and the experimental operation.

III. DEVICE AND EXPERIMENTAL OPERATION

The prototype for the simulation of an antiferromagnetic
Heisenberg spin chain consists of a quadruple dot and a
sensing dot, which are formed in a device nominally
identical to that shown in Fig. 1(a) (see Appendix C 1 for
details). The device is based on a GaAs=AlGaAs hetero-
structure, since this is the technology in which we are able to
fabricate high-quality and well-controlled quantum-dot
arrays. The exchange couplings are induced by electron
wave function overlap, which we here control by detuning
the potentials of neighboring dots, such that one electron
shifts toward the other [30] (we note that independent
control of the exchange couplings can also be achieved
by adjusting the tunnel couplings [13,17,31]). In order to
control the detuning between one pair of dots without
affecting the detuning between other pairs, we define the
detunings εij as

0
B@

ε12

ε23

ε34

1
CA ¼

0
B@

−1 1 1 1

1 1 −1 −1
−1 −1 −1 1

1
CA
0
BBB@

ε1

ε2

ε3

ε4

1
CCCA; ð5Þ

where εi is the negative local energy offset for site i and
εij ¼ 0 at the interdot transition between charge occupations
(1111) and (0211), (1201), and (1102) for ε12, ε23, and ε34,
respectively. The εi are independently controlled using
virtual plunger gates, which are linear combinations of
thevoltages applied to the gatesPi [13] (in the figures below,
we express εij in units of mV; in Appendix C 2, we specify
the conversion factor between energy and the applied
voltage). The dependence of exchange couplings on detun-
ings can be modeled as [32]

Jij ¼
1

2

�
εij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8t2ij þ ε2ij

q �
; ð6Þ

with tij the tunnel coupling between dots i and j. In this way,
the exchange couplings can be set independently with the
detunings, and increasing detuning results in increasing
exchange strength. This method can be extended to larger
chains based on alternating the detuning directions such as
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defined in Eq. (5), which prevents unwanted charge tran-
sitions. In addition, the amount of change in chemical
potentials could, in the future, be further reduced, by
leveraging the fact that the effect of detuning on exchange
is weaker closer to the charge symmetry point.
The experimental sequence used to operate the quantum-

dot spin chain is schematically depicted in Fig. 1(b) and is
described step by step here (charge-stability diagrams and
sequence details are provided in Appendix C 1). Initially,
the quadruple dot is tuned in either the (0202) or (1102)
charge occupation. For the (0202) case, we load local
singlets in the second and fourth dots, by allowing
tunneling or cotunneling between dots and the reservoirs.
For the (1102) configuration, we load a thermal mixture of
two-spin states on the left pair, postselect for triplet loading
(see Appendix C 4), and load a singlet on dot four. Next, the
electrons are separated to obtain (1111) charge occupation.
The global spin state remains a product of local spin pairs,
because the left- and right-pair exchange remain large
compared to the hyperfine field from the nuclear spins, and
the middle-pair exchange coupling is kept small. Then,
during the manipulation stage, the exchange couplings are
diabatically or adiabatically changed by applying gate
voltage pulses with variable rise time. In this work, the
pulses are always diabatic with respect to anticrossings
between states with different magnetization. Subsequently,
the four-spin state evolves under the newly set exchange
couplings. Finally, the spin pair(s) to be measured is(are)
diabatically isolated from the other spins and measured
with single-shot singlet-triplet readout based on Pauli spin
blockade [33]. Here, either the left and right pair are
sequentially read out, while parking the other pair to avoid
capacitive cross talk [34], or the middle pair is read out.
In the remainder of this work, we focus on realizing

homogeneous exchange couplings throughout the spin
chain. In principle, this could be achieved by calibrating
the exchange couplings one at a time [17] and extrapolating
to the required tuning while compensating for cross talk.
Instead, we develop a two-step spectroscopy method from
which we identify directly when the condition of homo-
geneous exchange couplings is met.

IV. ENERGY SPECTROSCOPY

For gate-defined quantum dots, information about the
energy-level spectrum can be obtained from the degener-
acies between spin states with different magnetization. This
so-called spin funnel method has been used extensively in
quantum-dot arrays of various lengths [30,35,36]. Here, we
use the same underlying principles in a novel method for
simultaneously characterizing multiple exchange coupling
strengths in the spin chain. In addition, since the system
size is small enough to allow classical numerical compu-
tation of its energy-level spectrum, we can validate the
quantum simulator by comparing the measured energy
spectrum to the numerically computed spectrum.

For the energy spectroscopy measurements, we prepare
spin singlets on the left and right dot pairs [see Fig. 1(b)]
(i.e., we prepare in the low-energy global singlet j0Si),
diabatically pulse the exchange couplings, allow the system
to evolve for 100 ns, and read out the left and right pair. The
duration of 100 ns is chosen to allow the coherent time
evolution kick started by the pulse to largely damp out. This
measurement gives access to correlations in the singlet-
triplet occupations, PST , PTT , PTS, and PSS, where the left
(right) subindex corresponds to the left- (right-) pair out-
come. Decreased PSS indicates mixing of the low-energy
global singlet with one of the triplet or quintuplet states.
Such mixing occurs most manifestly at anticrossings
between the low-energy global singlet state and the
polarized states with mS ¼ 1, 2, induced by the gradients
of the hyperfine field and the spin-orbit interaction.
Depending on which of the other probabilities increases,
we can infer information on the nature of the polarized state
involved in that specific anticrossing.
We now examine and interpret the spectra in detail. For

the measurement shown in Fig. 2(a), the left- and right-pair
detunings during the manipulation stage are varied in the
presence of a 40 mT magnetic field. The middle-pair
detuning is kept fixed and such that the middle exchange
coupling is small compared to the outer exchange couplings;
thus, the low-energy global singlet state remains almost fully
jS12S34i, with jSiji¼ð1= ffiffiffi

2
p Þðj↑i↓ji−j↓i↑jiÞ. Figure 2(b)

shows the result of a corresponding numerical simulation,
which helps to interpret the data. The detunings for the
anticrossing between the low-energy singlet and the Tþ

1 are
either vertical, where Tþ

1 ≈ jTþ
12S34iwith jTþ

iji ¼ j ↑i↑ji, or
horizontal, where Tþ

1 ≈ jS12Tþ
34i, over a large range of

detunings. This demonstrates the independent control of
J12 and J34 with the detunings ε12 and ε34, respectively. For
higher ε12 (ε34), the horizontal (vertical) T

þ
0 line bends away

toward lower ε34 (ε12), which is a manifestation of the
capacitive coupling between the left and right pair of dots:
The singlet energy on one pair is lowered when the charge
occupation for a singlet on the other pair becomes more
(02)-like [34]. The capacitive coupling ismodeled by adding
−DJ12J34 to the diagonal matrix element for jS12S34i ¼
j0Si in Eq. (3), with D ¼ 0.015 μeV−1 a prefactor for the
interaction strength of the singlet dipoles [34,37]. At the left
and right detunings forwhich the anticrossingswithTþ

0 andTþ
1

are closest together, the condition J12 ¼ J34 ¼ EZ is reached,
with EZ the Zeeman splitting set by the magnetic field.
The coupling between the singlet state and the quintu-

plet states is of second order in the hyperfine gradients;
hence, the mixing between them is less efficient. The
corresponding lines, such as the blue line in Fig. 2(b),
are most visible when the quintuplet state energy is closest
to a triplet state energy (see the white arrow), since the
triplet states mediate the second-order coupling (see
Appendix D).
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Figure 2(d) shows the measured energy-level diagram
for which the middle-pair detuning and magnetic field are
varied. The left- and right-pair detunings are fixed, and
such that J12 ¼ J34 ¼ EZ, as identified in Fig. 2(a).
Figure 2(c) shows the corresponding numerical simulation.
As ε23 is increased, the energy splitting between T

þ
0 and Tþ

1

increases due to increased middle-pair exchange. We
experimentally reach the condition J12 ¼ J23 ¼ J34 ¼ EZ
at the middle-pair detuning for which the energy-level
spacing between Tþ

2 and Tþ
1 is equal to that for Tþ

1 and Tþ
0 ,

which is indicated by the two equal-length double arrows in
the bottom-left panel.

V. GLOBAL COHERENT OSCILLATIONS

Before we further characterize the homogeneously
coupled spin chain, we first demonstrate the coherent
nature of the coupled four-spin system. Figure 3 shows
global coherent oscillations, during which the full four-spin
system evolves, along with Fourier transforms of those
oscillations. Because of the symmetries of the Heisenberg
Hamiltonian, time evolution occurs within the subspaces of
fixed total spin and magnetization. Since we initialize in
either only local singlets or at most one local triplet, the
subspaces here consist of global singlet states or triplet
states, respectively. The insets show numerical simulations

based on time evolution under a single-band Fermi-
Hubbard model [13] without decoherence effects (see
Appendix E). We note that the condition of homogeneous
exchange couplings can be extracted from the coherent
oscillations as well.
To observe global coherent oscillations, the spin chain is

again operated as depicted in Fig. 1(b). A magnetic field of
200 mT is applied here and in the subsequent measure-
ments, to suppress leakage to states with different mag-
netization during the manipulation stage. For the data
shown in Figs. 3(a)–3(d), a triplet state is initialized on
the left pair and a singlet on the right pair. The detunings are
rapidly pulsed such that the exchange couplings diabati-
cally change and the system evolves coherently under the
Heisenberg Hamiltonian during the manipulation stage.
This evolution results in oscillations in the singlet-triplet
probabilities of the left- and right-pair readout.
Figure 3(a) shows a chevron pattern from coherent

oscillations between the global triplet states for varying
differences between the left- and right-pair detuning and
fixed middle-pair detuning. The Fourier transform of these
oscillations is shown in Fig. 3(b). In line with the discussion
in Sec. II, for fixed J23 the energy difference between the
two lowest-energy triplet states, and thus the oscillation
frequency, is minimized if J12 ¼ J34. We point out that all

(a)
(b) (d)

(c)

FIG. 2. Energy spectroscopy. Left- and right-pair correlated singlet-triplet probabilities from independent single-shot Pauli spin
blockade readout as a function of (a) left- and right-pair detunings and (d) magnetic field and middle-pair detuning. A decrease in
singlet-singlet probability and an increase in one of the other probabilities correspond to an anticrossing between the low-energy global
singlet state and a polarized state. In (d), the right axis shows the calculated Zeeman splitting taking a Landé g factor of −0.44.
(b) Numerical simulation of the left- and right-pair detuning for which the low-energy global singlet state is degenerate with a polarized
state. The parameters for the numerical simulation are obtained from separate spin funnel measurements for the left and right exchange
coupling (see Appendix C 5) and from the Fourier transform in Fig. 3(d). (c) Numerical simulation of the middle-pair detuning and
Zeeman splitting for which the low-energy global singlet state is degenerate with a polarized state. The diagram shows only the energies
for the polarized states for which the magnetic field lowers the energy. The energy of the low-energy global singlet state is set to zero as a
reference. Points in (b) and (c) with the same detunings and magnetic field are indicated with a “þ”. The legend for (c) is the same
as for (b).
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three exchanges are activated in this measurement, so all
four spins coherently evolve together.
Figure 3(c) shows global coherent oscillations in the

triplet subspace for varying middle-pair detuning and with
the left- and right-pair detuning fixed such that J12 ¼ J34,
as obtained from Figs. 3(a) and 3(b). In Fig. 3(d), the
Fourier transform of these oscillations is shown. The
middle-pair detuning for which J12 ¼ J23 ¼ J34, indicated
by the white dotted line, can be identified from this Fourier
transform as the point where the faint vertical line meets the
other more visible line. Here, the triplets with identical
magnetization are equidistant in energy (Jhom=

ffiffiffi
2

p
), thus

reaching the condition of a spin chain with homogeneous
exchange couplings, as described in Sec. II. In both the
experimental and numerical Fourier transform data shown

in Figs. 3(b) and 3(d), one frequency component is
typically much more visible than the others. This is caused
by the fact that the initial state overlaps mostly with just two
of the three eigenstates; hence, the energy difference
between these two eigenstates dominates the time
evolution.
For the measurements in Fig. 3(e), a product of singlets is

initialized, and the middle pair is read out. As described in
Sec. II, the energy splitting in the singlet subspace, given
J12 ¼ J34, is minimized when J23 ¼ J12 ¼ J34. Figure 3(f)
shows the Fourier transform of the oscillations in the singlet
subspace. The ε23 value for the frequency minimum cannot
be precisely identified due to the limited frequency reso-
lution, but an approximate identification is in agreement
with the value of ε23 corresponding to homogeneous
exchange couplings from Fig. 3(d). Also, the ratio of the
observed oscillation frequencies in the triplet and the
singlet subspace at this value of ε23 is consistent with
theory.
The observation of global coherent oscillations demon-

strates the coherent nature of the four-spin system. The
coherence is limited by hyperfine and charge noise, of
which the first can be strongly reduced by working with
(isotopically purified) silicon or germanium as host materi-
als [38]. The latter can be largely mitigated when simulat-
ing spin models at half filling (one electron per site) by
operating at a so-called sweet spot [39,40]. Magnetic field
gradients, such as due to hyperfine fields, can also induce
leakage out of the fixed total spin and magnetization
subspace. For the evolution, this can result in damping
of the oscillations toward an offset that corresponds to the
leakage state(s) [41], but this effect is strongly suppressed
when exchange couplings dominate the hyperfine fields.
The optimal visibility of the oscillations is, in general,
lower than one, because the eigenstates partially overlap
with the readout basis. The measured visibility is further
lowered by relaxation during readout (which can be
accounted for; see Appendix C 6), leakage, and partial
adiabaticity of state preparation and transition to the read-
out configuration, which are further discussed in the next
section.

VI. PROBING THE LOW-ENERGY SINGLET

We finally turn to the preparation and characterization of
the Heisenberg spin chain with homogeneous exchange
couplings. The ground state of the Heisenberg spin chain, in
the absence of an external magnetic field, is the low-energy
singlet eigenstate. For homogeneous exchange couplings,
Jij ¼ Jhom, the low-energy singlet eigenstate S0, written in
the singlet-triplet basis for the left and right pair, is

jS0i∝ ð2
ffiffiffi
3

p
þ3ÞjS12S34iþ jT0

12T
0
34i− jTþ

12T
−
34i− jT−

12T
þ
34i;
ð7Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Global coherent exchange oscillations. Coherent oscil-
lations (a),(c) within the triplet subspaces and (e) within the singlet
subspace. In (a), the difference in left- and right-pair detuning is
varied, and in (c),(e), the middle-pair detuning is varied (with
J12 ¼ J34). (b) Fourier transform of the data in (a). The frequency
minimum corresponds to J12 ¼ J34. (d) Fourier transform of the
data in (c). At J12 ¼ J23 ¼ J34 ¼ Jhom, indicated by the white
dotted line, the most visible frequency is equal to Jhom=

ffiffiffi
2

p
.

(f) Fourier transform of the data in (e). The frequency minimum
corresponds to J12 ¼ J23 ¼ J34 ¼ Jhom and is equal to

ffiffiffi
3

p
Jhom.

Insets in all panels show numerical simulations of the experiment.
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with normalization factor 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð ffiffiffi

3
p þ 2Þ

q
. Upon measure-

ment in the two-spin singlet-triplet basis for the left and right
pair, we thus have a 1

4
ð2þ ffiffiffi

3
p Þ ≈ 0.93 singlet-singlet

probability and approximately 0.07 triplet-triplet probabil-
ity. Alternatively, the same global singlet state written in a
basis given by the middle and outer pair is

jS0i¼
1ffiffiffi
2

p S14S23−
1ffiffiffi
6

p T0
14T

0
23þ

1ffiffiffi
6

p Tþ
14T

−
23þ

1ffiffiffi
6

p T−
14T

þ
23;

ð8Þ

which indicates a 50∶50 probability to measure a singlet
or a triplet on the middle pair. When quasistatic hyperfine
and charge noise is included (see Appendix E), then
numerical simulations result in probabilities of PM

S ¼0.50,
PM
T ¼ 0.50, PSS ¼ 0.91, PST ¼ 0.01, PTS ¼ 0.01, and

PTT ¼ 0.07, which indicates that the noise in the device

does not form a direct bottleneck for the quantitative
characterization of the spin-chain ground state.
Quantitative two-spin singlet-triplet characterization of

the low-energy singlet eigenstate S0 is facilitated by state
preparation that is adiabatic with respect to the exchange
couplings. Starting from singlets on the left and right pair of
dots, the detunings are slowly varied using voltage ramps to
increase the middle-pair exchange while reducing the left-
and right-pair exchange. Ideally, the singlet product state
evolves to the instantaneous low-energy singlet eigenstate
of the Hamiltonian at the manipulation stage. Conversely,
projection in the singlet-triplet basis for readout requires a
diabatic transition from the manipulation to the read-
out stage.
Figure 4(a) shows the singlet probability for the middle-

pair readout, and Fig. 4(b) shows the triplet-triplet prob-
ability for the left- and right-pair readout as a function of
ramp-in time and evolution time. As expected, we observe
oscillations with a decreasing visibility as the ramp-in time
increases, as a result of the more adiabatic character of the
state preparation. We note that, for the measurements
shown in Figs. 4(a)–4(c) during the manipulation stage,
the middle exchange J23 ≈ 175 MHz is made larger than
the outer exchanges, J12 ¼ J34 ≈ 85 MHz, in order to
increase the visibility of the oscillations, so we can best
evaluate the adiabaticity of the state preparation. For shorter
ramp-in time, the oscillations bend toward longer evolution
time, which is due to the evolution during the ramp-in; thus,
at the start of the evolution stage, the state has already
evolved further for longer ramp-in time. Figure 4(c) shows
the numerically simulated overlap with the low-energy
singlet eigenstate at the manipulation point as a function of
ramp-in time, indicating >92% overlap for 12–36 ns ramp-
in time. For longer ramp-in time, leakage to quintuplet and
triplet states starts to dominate.
We next study how to maximize the degree of diabaticity

for the readout pulses with respect to the exchange
couplings, in order to acquire the singlet-triplet probabil-
ities for the state at the end of the manipulation stage. To
increase the diabaticity given the finite rise time of the
arbitrary waveform generator, an isolation stage is added
between the manipulation stage and the readout stage for
the case where we aim to read the middle pair. In the
isolation stage, the voltages are pulsed deep into the (1201)
charge region, such that the voltage step is steeper, which
makes the pulse more diabatic.
Figure 4(d) shows the singlet and triplet probability for

the middle-pair readout as a function of ε23;iso, the middle-
pair detuning (relative to the readout position) for the
isolation stage. The state is prepared with tramp ¼ 25 ns and
with homogeneous exchange couplings at the manipulation
stage. As discussed previously, for this condition the
low-energy singlet eigenstate ideally has equal two-spin
singlet and triplet probability on the middle pair. We see in
Fig. 4(d) that the measured two-spin singlet and triplet

(a) (b)

(c) (d)

FIG. 4. Adiabaticity of state preparation and readout. (a) Singlet
probability for middle-pair readout as a function of ramp-in time
and evolution time. (b) Triplet-triplet probability for left-
and right-pair readout as a function of ramp-in time and evolution
time. Insets in (a) and (b) show numerical simulations
of the experiment. (c) Numerical simulation of the overlap,
Pgnd ¼ jhψ jS0ij2, between the state at the manipulation stage,
jψi, and the low-energy singlet eigenstate jS0i, as a function of
ramp-in time. The overlap is an indication for the success of the
state preparation. (d) Middle-pair singlet and triplet probabilities
from experiment (solid lines) and numerical simulations (dashed
lines) as a function of middle-pair detuning for the isolation
stage after the manipulation. The experimentally obtained prob-
abilities are corrected for relaxation during the readout time (see
Appendix C 6).
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probabilities gradually approach each other as ε23;iso is
made more negative, pulsing deeper in the (1201) charge
region, indicating that the isolation becomes more diabatic
in exchange couplings. Pushing ε23;iso even further, the
singlet-triplet probabilities for the middle pair pass slightly
beyond 50=50%, which we can trace back to an artifact
from the digital filter in the arbitrary waveform generator.
Specifically, we measure the detailed rising flank of the
arbitrary waveform generator, which shows an undershoot
just before the rising flank and ringing after the rising flank,
and numerically simulate its effect on the measured singlet-
triplet probabilities (see Appendix E).
Based on these findings, we set in what follows the

ramp-in time to 26 ns when aiming to adiabatically prepare
the low-energy singlet eigenstate. Numerical simulations
similar to Fig. 4(c) show that an overlap of 95.5% with the
low-energy singlet state is expected for the homogeneous
spin chain. For readout of the middle pair, the middle-pair
isolation detuning is set to ε23;iso ¼ 10 mV.
Figure 5 shows the singlet-triplet probabilities for the

spin chain as a function of middle-pair detuning (with fixed
J12 ¼ J34 ≈ 85 MHz) during the manipulation stage. The
exchange couplings are calibrated to be homogeneous at
ε23 ¼ −1.8 mV based on measurements of coherent oscil-
lations similar to Fig. 3. The exchange coupling favors two-
spin singlet formation on every pair, but, due to the
monogamy of entanglement, there cannot simultaneously
exist such singlets on overlapping pairs. Away from
homogeneous exchange couplings, we see in Fig. 5(a)
that, for increasing ε23 and, thus, increasing J23, the singlet
probability on the middle pair increases, as expected.
Conversely, in Fig. 5(b), we observe that as ε23 decreases
(J23 decreases), PSS (PTT) increases (decreases), because

the singlets on the left and right pair become energetically
increasingly favorable compared to the middle-pair singlet.
For higher ε23, also PTS and PST increase, which is caused
by leakage out of the singlet subspace, due to decreasing
energy splitting between the global singlet states and other
mS ¼ 0 states.
The experimentally measured numbers are in good

agreement with the predicted probabilities based on
Eqs. (7) and (8) and numerical simulations including noise.
Both the qualitative trend and quantitative comparison
between experiment and simulation indicate high-fidelity
preparation of the low-energy singlet eigenstate for the
homogeneously coupled spin chain and a high-fidelity
characterization method based on singlet-triplet readout
and correlations therein.

VII. CONCLUSION AND OUTLOOK

In summary, we have implemented a quantum simulation
of a quantum coherent antiferromagnetic Heisenberg spin
chain. For this purpose, we have developed energy spec-
troscopy methods to identify the condition of homogeneous
exchange couplings. Furthermore, we have devised meth-
ods to prepare the global ground state of the homogeneous
Heisenberg spin-chain Hamiltonian and to probe this state
via local measurements in the singlet-triplet basis and
correlations of such measurements. We find both qualita-
tive and quantitative agreement between experiment and
numerical simulation. Finally, coherent oscillations of the
full four-spin system indicate the coherent nature of the
system, despite the presence of hyperfine noise in the GaAs
host material.
Future quantum magnetism simulation experiments with

quantum dots may leverage the recent developments of
(isotopically purified) silicon and germanium as host
materials, due to the lower concentration of nuclear spins,
which further enhances coherence and facilitates high-
resolution spectroscopy. The demonstrated control of
exchange couplings, as facilitated by the independent
control with virtual gates, is a powerful technique for
quantum simulations in larger systems. The techniques
demonstrated here also pave the way for quantum magnet-
ism simulations in other lattice configurations, such as
square and triangular ladders for which simulations of,
respectively, resonating valence bonds and frustrated mag-
netism are now within the capabilities of gate-defined
quantum dots.

The data reported in this paper and scripts to generate the
figures are uploaded to Zenodo [42].
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APPENDIX A: LIMITATION FOR
DISTINGUISHING STATES WITH TWO-SPIN

SINGLET-TRIPLET MEASUREMENTS

The two-spin singlet and triplet projection operators are,
respectively,

PSij ¼
1

4
− S⃗i · S⃗j; ðA1Þ

PTij
¼ 1 − PSij : ðA2Þ

The global spin-raising operator Ŝþ ¼ P
i Ŝ

þ
i , with

Ŝþi ¼ Ŝxi þ iŜyi , commutes with the singlet and triplet
projection operators.
In addition, the spin-raising operator commutes with the

Heisenberg Hamiltonian

½HHeis; Ŝ
þ� ¼ 0; ðA3Þ

thus, the spin-raising and -lowering operators map between
states in the same eigenspace of the Hamiltonian.
From the commutativity, it follows that two-spin singlet-

triplet measurements cannot distinguish states in the same
eigenspace for the Heisenberg Hamiltonian, and those
states can be mapped onto one another with spin-raising
or -lowering operators.

APPENDIX B: GLOBAL TRIPLET ENERGIES

Figure 6 shows the triplet energies as a function of J12 −
J34 and as a function of J23 with J12 ¼ J34.

APPENDIX C: EXPERIMENTAL METHODS

1. Device

The quadruple quantum dot and sensing dot are formed
in a device designed for eight dots and two sensors. A
scanning electron micrograph image of the active region of
a device similar to the one used in the experiment is shown
in Fig. 1(a). The device is mounted in a dilution refriger-
ator, which results in an electron reservoir temperature of
about 100 mK (roughly 10 μeV). By applying voltages on
the electrodes on the surface, we shape the potential
landscape in a two-dimensional electron gas 90 nm below
the surface, formed in a silicon-doped GaAs=AlGaAs
heterostructure. The plunger gates, labeled Pi [red in
Fig. 1(a)] for the spin-chain dots and SDP for the sensing
dot, control the electrochemical potentials, and the barrier
gates [green in Fig. 1(a)] control the tunnel couplings
between dots or between a dot and a reservoir. When an
external magnetic field is applied, it is oriented in the plane
of the 2D electron gas.
Table II shows an overview of the pulse sequence, with

the durations and descriptions of the pulse stages.

2. Virtual gates

For the independent control of site-specific offsets [43],
the cross talk is compensated with the matrix transformation

0
BBB@

ε1

ε2

ε3

ε4

1
CCCA ¼

0
BBB@

1 0.539 0.203 0.145

0.542 1 0.538 0.223

0.181 0.5 1 0.507

0.100 0.242 0.522 1

1
CCCA

0
BBB@

P1

P2

P3

P4

1
CCCA:

ðC1Þ

The lever arms for the single-particle energy offsets are
½76; 81; 87; 84� μeVmV−1, which are obtainedwith photon-
assisted tunneling [31,44].

3. Charge-stability diagrams with sequence details

Figure 7 shows charge-stability diagrams for the nearest-
neighbor pairs in the quadruple dot. Typical pulse voltage
positions and the order of the pulse sequence are indicated.
The compensation and the parking for the readout of the
left and right pair are not displayed to preserve clarity.

4. Postselection for state preparation

Figure 8 shows single-shot results of readout directly
after initialization. The data for the readout after the
evolution stage are postselected by thresholding the signal
from the readout after initialization. The signal is also used
for background subtraction to suppress the effect of low-
frequency charge noise on the signal for the final readout.
Errors in initialization for both the singlet-singlet product
state and the triplet-singlet product state can occur because

(a) (b)

FIG. 6. Triplet energies. (a) Energies of global triplet states as a
function of J12−J34, with J23 ¼ 0.2 μeV and J12 þ J34 ¼ 2 μeV,
revealing a minimum in energy difference at J12 ¼ J34 for Tþ

0

and Tþ
1 . (b) Triplet energies as a function of J23 with J12 ¼

J34 ¼ 1 μeV, showing that at J12 ¼ J23 ¼ J34 the energy spac-
ings are equal. The legend for (b) is the same as for (a). An
external magnetic field results in an overall offset and, thus, does
not change the triplet energy differences.
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of the finite dot-reservoir tunnel rate, due to which the
target charge state (0202) and (1102), respectively, is not
occupied at the end of the initialization stage. These
errors result in the counts in the top half regions in
Figs. 8(a) and 8(b). Such errors can be reduced by
increasing the duration of the initialization stage or increas-
ing the dot-reservoir tunnel rate. Additionally, errors in the
triplet-singlet product initialization can be caused by
thermal excitations, due to which a singlet-singlet product
state in the (1102) charge occupation can be occupied,
which results in the bottom-left peak in Fig. 8(b). This error
can be reduced by increasing the magnetic field strength.

5. Separate exchange coupling measurements

Figure 9 shows separate exchange coupling measure-
ments for each of the neighboring pairs. For the spin funnel
measurements for the left and right pair, the middle
exchange coupling is set to be small. The spin funnels are
fitted with the exchange model in Eq. (6). For the middle

pair, the Fourier transform of coherent oscillations in the
triplet-subspace is used. Themodel for the Fourier transform
follows from Eq. (4) and is 1

2
ðJ23 − Jhom þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J223 þ J2hom

p
Þ,

with Jhom ¼ J12 ¼ J34 ¼ 125 MHZ, the homogeneous
exchange coupling as obtained from Fig. 3. From these
three separate fits, the tunnel couplings are extracted as 8.5,
7.5, and 11.9 μeV for the left, middle, and right pair,
respectively. These tunnel coupling values are used for
the numerical simulations of the experiment.

6. Readout with relaxation and histogram models

Single-shot readout characteristics for each of the
nearest-neighbor pairs are shown in Fig. 10. The data in
Figs. 10(b) and 10(d) are from the data for Fig. 5(a), and the
data from Fig. 10(e) is from part of the data for Fig. 2(a).
The effect on the probabilities of relaxation during the

readout is taken into account by modeling the single-shot
data with a histogram. For readout on a single pair, the
model for the histogram is described in Refs. [33,45]. For

(a) (b) (c)

FIG. 7. Charge-stability diagrams for nearest-neighbor pairs, with (a) left, (b) middle, and (c) right. Pulse positions are indicated with
small white circles and are labeled with a letter corresponding to the pulse stage in Table II. Primes are added to characters for which the
indicated voltage position is a projection, because the true position is in a different charge occupation, which is outside the respective
two-dimensional plane in the four-dimensional charge-stability space. Solid arrows represent the part of the pulse sequence for which
only one variant is used, though the operation voltage position O is varied throughout the experiments. Dashed arrows correspond to
sequences for initialization of either a singlet-singlet LSS or triplet-singlet LTS. Dotted arrows correspond to sequences for readout (and
isolation) of either the middle pair, RM (IM), or readout (and isolation) of the left pair, RL (S0L), and the right pair, RR (S0R).

TABLE II. Details on the stages for the pulse sequence with the durations and descriptions as used for the spin-chain operation. The
total duration of the pulse sequence is below 191 μs, including the compensation stage.

Stage Duration Description

Initialization (L) 100 μs Exchange electrons with the reservoir, either in the (0202) charge region for a singlet-singlet
state or in (1102) for a triplet-singlet state

Readout initial (R) 20 μs Readout of the left and the right pair (each 10 μs) for postselection and for background signal
subtraction for the final readout to correct for low-frequency charge noise

Separate (S) 2 ns Separate electrons into (1111) charge region
Ramp detunings 0–50 ns Ramp the voltages to the operation point (O)
Evolve (O) 2–100 ns Let the spin state evolve under the exchange couplings
Isolate (I=S) 2 ns Isolate the pair(s) for readout
Readout final (R) 20 μs Read out the middle pair or the left and right pair (each 10 μs)
Compensate <50 μs Discharge the capacitors in the bias tee’s
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the singlet-triplet correlation measurements, the two-
dimensional single-shot histograms are modeled with

NðxÞ ¼ Ntot

X
i;j∈½S;T�

PijnijðxÞw1w2; ðC2Þ

with Ntot the number of single-shot repetitions, Pij the
average probability for outcome ij, nij the probability
density distribution, and wi the bin widths.
The readout of the left and right pair of spins is

performed with the same sensing dot; thus, noise on the

sensor signal can induce correlations between the two
readouts. Low-frequency noise, which causes signal
differences between repetitions, is taken into account by
the subtraction of the sensor signal from the readout
directly after the initialization. Correlations in the sensor
signals due to higher-frequency noise remain, which results
in the diagonally elongated signal peaks in the two-dimen-
sional readout histogram as shown in Fig. 10(e). The effect
of the correlations is incorporated in the model for the two-
dimensional Gaussian histogram by modeling the Gaussian
peaks with rotated ellipses.
The two-dimensional Gaussian is

g2Dðx; μÞ ¼
1

2πσ1σ2
e−½aðx1−μ1Þ2þ2bðx1−μ1Þðx2−μ2Þþcðx2−μ2Þ2�;

ðC3Þ

with μ the mean coordinates and where the parameters for
the shapes of the Gaussian peaks are

a ¼ cos2 θ
2σ21

þ sin2 θ
2σ22

; b ¼ −
sin 2θ
4σ21

þ sin 2θ
4σ22

;

c ¼ sin2 θ
2σ21

þ cos2 θ
2σ22

; ðC4Þ

(a) (b)

FIG. 8. Histograms of correlated left- and right-pair readout
directly after initialization of (a) the singlet-singlet product state
and (b) the triplet-singlet product state. For both the left- and the
right-pair readout, the integration time is 8 μs, and the bin width
is [1.9, 1.9] a.u.

(a) (b) (c)

FIG. 9. Separate exchange coupling measurements. The dashed blue lines are fits to the data. (a) Spin funnel on left pair, (b) Fourier
transform of triplet-subspace coherent oscillations shown in Fig. 3(c), (c) spin funnel on right pair.

(a) (b) (c) (d) (e)

FIG. 10. Readout characteristics (a)–(c) show relaxation curves for the Pauli spin blockade readout of the left, middle, and right pair,
respectively. The corresponding T1 values are 80.9, 25.0, and 114.8 μs. (d) Histogram of middle-pair readout with 8 μs integration time
and bin width 4.375 a.u., and the counts are in thousands. (e) Histogram of correlated left- and right-pair readout. For both readouts, the
integration time is 8 μs, and the bin width is [2.0, 2.0] a.u.
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with θ the rotation angle of the ellipsoidal shape of the
Gaussian peaks, and σ1 and σ2 describe the ellipse width
and length. In the experiment, the first and second readout
signals are integrated for equal durations, which sets
θ ¼ π=4, which means that the one-dimensional histo-
grams for the left- and right-pair readout have the same
Gaussian widths. In the extreme when there are no noise
correlations, then σ1 ¼ σ2, and, in the other extreme where
the noise would be fully correlated, the histogram effec-
tively is a one-dimensional Gaussian.
The probability distributions for the correlated singlet-

triplet outcomes are

nSSðxÞ ¼ g2Dðx; μSSÞ; ðC5Þ

nSTðxÞ¼ e−αRg2Dðx;μSTÞ

þαR

Z
1

0

dze−zαRg2D(x;zðμST −μSSÞþμSS); ðC6Þ

nTSðxÞ¼ e−αLg2Dðx;μTSÞ

þαL

Z
1

0

dze−zαLg2D(x;zðμTS−μSSÞþμSS); ðC7Þ

nTTðxÞ ¼ e−ðαLþαRÞg2Dðx; μTTÞ þ e−αRαL

Z
1

0

dze−zαLg2D(x; zðμTT − μSTÞ þ μST)

þ e−αLαR

Z
1

0

dze−zαRg2D(x; zðμTT − μTSÞ þ μTS)

þ αLαR

Z
1

0

Z
1

0

dzdz0
�
e−ðzαLþz0αRÞg2D

�
x; (zðμT;L − μS;LÞ þ μS;L; z0ðμT;R − μS;RÞ þ μS;R)

��
; ðC8Þ

with αi ¼ ti=T1;i, which is the ratio between the signal
integration time ti and the relaxation time T1;i for the left
pair or the right pair. In nTT , the first term corresponds to
states which do not decay during both readouts, the second
term to states which decay during the left-pair readout but
not the right-pair readout, the third term to states which do
not during the left-pair readout but do decay during the
right-pair readout, and the last term to states which decay
during both readouts.
For the fitting procedure, first the histogram of single-

shot results for all pulse set points is fitted to obtain the
Gaussian widths and peak positions, and then the histogram
for each pulse set point is separately fitted to obtain the
probability amplitudes.

7. Automatic pulse offset calibration

The spin-chain operation of the device is automatically
recalibrated on a daily basis to correct for the effect of

irregular charge jumps. The results of the calibration
are incorporated as offsets for the pulse voltages. The
static voltage on the sensing dot plunger is sometimes
adjusted between measurements, but all other dc voltages
are left untouched to avoid introducing instabilities
of the device.
Figure 11 shows the result of the daily automatic

recalibration, which consists of five traces. These traces
are a sweep of the sensing dot plunger gate voltage and
four one-dimensional cuts through the charge-stability
space of the quadruple quantum dot. The sensing dot scan
is performed to calibrate the gate voltage for the
position on the flank of the sensing dot Coulomb
peak. The four one-dimensional cuts are performed to
locate the gate voltages corresponding to specific charge
transitions. The gate voltages for these transitions form a
reference for the voltages used in the pulsed control of the
spin chain, such that electrostatic shifts of the device are
corrected for.

(a) (b) (c) (d) (e)

FIG. 11. Automatic calibration of pulse voltage offsets. (a) Sensing dot calibration, with the red marker corresponding to the top of the
Coulomb peak, and the green marker is the half-height on the rising flank, (b) interdot transition between (0202) and (1102), (c) dot-
reservoir transition between (0202) and (1202), (d) interdot transition between (0202) and (0211), (e) dot-reservoir transition between
(0202) and (0212). The traces are not centered at the same voltages, but voltage offsets are added for each scan based on the previous
calibration.
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The analysis procedures for the Coulomb peak and the
dot-reservoir transition are based on Ref. [46], and the
interdot transition fitting is from Ref. [44]. The automatic
calibration routine takes in total approximately 30 s.
Occasionally, large charge jumps require coarse manual
tuning of the device, after which the automatic calibration
routine is used for refinement.

APPENDIX D: HYPERFINE GRADIENT
COUPLINGS

The effect of the nuclear spins in the material environ-
ment on the electron spins in the quantum dots can
effectively be described by hyperfine fields [32] as

Hhf ¼ gμB
X
i

h⃗i · S⃗i; ðD1Þ

with h⃗i the local hyperfine field for dot i. The hyperfine
term breaks the conservation of total spin and spin z
of the Heisenberg Hamiltonian and has been studied
extensively experimentally and theoretically for two-spin
systems [32,47]. For the energy spectroscopy of the four-
spin system as shown in Fig. 2, the couplings between the
singlet-subspace and the polarized states are given
by the hyperfine matrix, which in the basis
ðQþþ; Qþ; j2Tþi; j1Tþi; j0Tþi; j1Si; j0SiÞ is

0
BBBBBBBBBBBBBBBBBB@

Bz;sum

2

Bx;sum−iBy;sum

4

dB−;14þdB−;23
2

−dB−;12ffiffi
2

p −dB−;34ffiffi
2

p 0 0

Bx;sumþiBy;sum

4

Bz;sum

4

−dBz;12−dBz;34

2

dBz;12ffiffi
2

p dBz;34ffiffi
2

p 0 0
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with dBþ;ij¼dBx;ijþidBy;ij and dB−;ij ¼ dBx;ij − idBy;ij,
where dBα;ij ¼ ðBα;i − Bα;jÞ=2, and Bα;sum ¼ P

i Bα;i.
From the hyperfine matrix, it follows that, for any state

in the singlet subspace jSki, the first-order coupling
to a quintuplet is hSkjHhf jQþþi ¼ hSkjHhf jQþi ¼ 0.
The coupling between the singlet and the quintuplet(s),
as visible in the energy spectroscopy in Fig. 2, can be
explained by a second-order effect where the singlet state
couples to a triplet state, which, in turn, couples to a
quintuplet state. The second-order coupling becomes
effective only when the singlet and quintuplet state
energies are near the energy of a coupling-mediating
triplet state. This is observed in the energy spectroscopy
where the coupling of the singlet to the Qþþ state
decreases as the singlet energy differs more from the
Tþ
0 and Tþ

1 energies.
Note that the spin-orbit interaction can induce couplings

between states with different charge occupation [48,49],
which can contribute to the signal for the anticrossings in
the energy spectroscopy.

APPENDIX E: NUMERICAL SIMULATION

The time evolution simulations are based on the single-
band Fermi-Hubbard model

HFH ¼ −
X
i

ϵini þ
X
i

Ui

2
niðni − 1Þ

þ
X
ij;i≠j

Vijninj −
X
hi;ji

tijðc†i cj þ H:c:Þ;

where ϵi is the negative single-particle energy offset, ni ¼
c†i ci is the dot occupation, c

ð†Þ
i is the annihilation (creation)

operator, Ui is the on-site Coulomb repulsion, Vij is the
intersite Coulomb repulsion, and tij is the interdot tunnel
coupling. The parameter values for the simulations are
Ui ¼ 3 meV, Vi;iþ1¼0.5meV, Vi;iþ2¼ 0.1meV, Vi;iþ3 ¼
20 μeV, and ½t12; t23; t34� ¼ ½8.5; 7.5; 11.9� μeV. The tun-
nel coupling values are experimentally obtained from
fits to spin funnels for the left and right pair and from a
fit of the Fourier transform in Fig. 3(d) (see Appendix C 5).
Differences between the experimental and simulation
values for the interaction parameters are accounted for in
the simulations with offsets in the single-particle energies.
The Hamiltonian matrix for the simulation is generated
with QuTip [50]. The charge configurations used for the
simulations are (1111), (0211), (1201), (1102), and (0202).
The spin subspace which is used for the simulation in
Figs. 3(a)–3(d) is the four-spin Tþ subspace, while for
Figs. 3(e) and 3(f) the global singlet subspace is used. For
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the numerical simulations in Figs. 4 and 5, the set of states
for the simulation consists of the global singlet subspace,
and all other mS ¼ 0 states (the four-spin T0 subspace
and Q0).
For the simulation, the same sequence is followed as the

experimental sequence for the spin chain, which is shown
in Fig. 1(b) and detailed in Table II. Time evolution of the
states is computed using an in-house density matrix solver
package [51]. The simulated probabilities shown in the
figures in the main text are the probabilities at the isolation
stage after the evolution. In order to simulate the adiaba-
ticity of the experimental sequence, the voltage pulse shape
for the simulation is based on the experimental voltage
pulse shape from the arbitrary waveform generator (AWG).
The simulated shape is obtained from the Fourier transform
of the ideal pulse shapes and the subsequent inverse Fourier
transform with the experimentally measured frequency
response of the AWG. The Fourier component amplitudes
are corrected for the finite sampling rate fs ¼ 1 GHz of the
AWG by dividing with sincðf=fsÞ, where f is the fre-
quency of the Fourier component.
The effects of charge noise and quasistatic hyperfine

noise are included for the simulations in the main text,
except for Fig. 3. The quasistatic hyperfine noise is
considered by repeating the simulation and for each
repetition taking a sample from a Gaussian distribution
with a root mean square of 3.2 mT, which is experimentally
obtained from the amplitude decay of the global exchange
oscillations. The power spectral density of the charge noise
is modeled with A=fα, with A ¼ 0.26 μeV2=Hz and
α ¼ 0.79, which are obtained from a charge-noise meas-
urement. The charge noise is measured from 1 Hz to 5 kHz.
For the simulations, a charge-noise frequency range from
0.1 Hz to 100 GHz is used, where noise on a timescale
longer than a single shot of the experimental sequence is
integrated and added as quasistatic noise.
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