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In the recent advancement in graphene heterostructures, it is possible to create a double layer
tunnel decoupled graphene system that has a strong interlayer electronic interaction. In this work,
we restrict the parameters in the low energy effective Hamiltonian using simple symmetry arguments.
Then, we study the ground state of this system in the Hartree-Fock approximation at ν1 = ν2 = 0.
In addition to the phases found in monolayer graphene, we found an existence of layer coherent
phase which breaks the layer U(1) symmetry. At non-zero Zeeman coupling strength (Ez), this
layer coherent state has a small magnetization, that vanishes when Ez tends to zero. We discuss
the bulk gapless modes using the Goldstone theorem. We also comment on the edge structure for
the layer coherent phase.

I. INTRODUCTION

After the discovery of the quantum Hall effect in two
dimensional electron gas (2DEG)1, the interest started
to build towards bilayer 2DEG’s2 (and for general sys-
tems with internal quantum number3). In the quantum
Hall regime the ground state of double layer 2DEG has
been explored theoretically2,4,5 and later experimentally6

(and the references therein). It has been observed that in
2DEG (in this case GaAs), when the interlayer distance is
small, the system at total filling fraction νT = ν1+ν2 = 1

2
(ν1, ν2 being the filling fraction of each layer) and 1
forms an incompressible QHS7–9. The individual layers
at νT = 1 and 1

2 has even denominator filling fractions

of 1
2 and 1

4 respectively which are known to be com-
pressible states. This phase is a layer coherent phase
in which the electron of one layer forms a bound state
with the holes of the other layer forming excitons and
sponteneously breaks the layer U(1) symmetry. We can
think of layer coherent states as either easy plane layer
pseudospin ferromagnet or electron-hole bound exciton6.
This arises from the conservation of particle number in
the individual layers. Developments in graphene technol-
ogy have boosted the interest in quantum Hall effect in
graphene10,11. Some recent experiments in the quantum
Hall regime in double layer graphene systems has been
found to exhibit layer coherent states12–14. Experimen-
tally it is possible to fabricate double layer graphene with
very small interlayer distance d (∼ 2nm) where d/l < 1
(l being the magnetic length)12–20 which was earlier dif-
ficult to achieve in GaAs systems. The separator be-
tween the graphene layers is made out of stacked hBN
layers. Thus by changing the number of stacked hBN lay-
ers the interlayer interaction can be tuned from weak to
strong. This induced a huge interest in the understand-
ing and testing of the double layers of graphene, Bernal-
stacked bilayer graphene12,18, twisted magic angle bilayer
graphene21 etc. There has been some theoretical22–26 and
experimental27 studies to understand the Coulomb drag
in double layer graphene in zero magnetic field. Ref. 28
predicted that at higher temperature at the zero mag-
netic field there can be a normal to superfluid transition

in double layer graphene.

In the presence of a ultra short-range (compared to
the magnetic length l) interaction, the Hamiltonian pro-
jected to the n = 0 Landau level manifold for mono-
layer graphene (MLG) has SU(2)spin ×

(
U(1)× Z2

)
valley

symmetry in the absence of a Zeeman field29. There
exists four different possible phases namely ferromag-
net (F), charge density wave (CDW), Kekulé distorted
phase (KD) and anti-ferromagnet (AF), which becomes
canted anti-ferromagnet (CAF) in presence of Zeeman
coupling30. The predicted phase transition from CAF to
F31–36 has been verified in the experiment37. This under-
standing of symmetry has been used to study the ground
state at fractional fillings as well38.

In the case of double monolayer graphene electron fill-
ings of each layer (ν1 and ν2) can be controlled indepen-
dently. For this system many interesting quantum states
have been found. Some of those states can be explained
using interlayer Jain composite fermion states4, proposed
for double layer two-dimensional electron gas13. In this
manuscript we propose the relevant symmetry in dou-
ble monolayer graphene which restricts the interacting
Hamiltonian to three parameters. Within the scope of
this letter, we restrict ourselves to understand the mean
field ground state when two layers of graphene are at
ν1 = ν2 = 0. We show that for certain values of the
parameters, the system goes into a layer coherent phase,
which has a small magnetization in presence of a Zeeman
field. Increasing the Zeeman field strength one can drive
a second order phase transition from magnetized layer
coherent phase to the ferromagnetic phase.

Here we would like to emphasize that we want to find
a low energy Hamiltonian that is restricted by symmetry.
We also focus on the translation invariant ground state
solutions of this low energy Hamiltonian in the allowed
parameter space. Our method does not talk about the
details of the microscopic model but only the low energy
effective model.

We describe our assumptions, method and findings in
a few sections. In section II we describe the assumptions
and our Hamiltonian. After that we describe the results
and the Goldstone modes in section III and IV respec-
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tively. We also have some discussion over possible lattice
models, experimental signatures in section V. Then in
section VI we summarize our findings and describe pos-
sible application of this work.

II. ASSUMPTIONS AND MODEL

We restrict our calculations to the n = 0 Landau level.
When the interaction strength is much smaller than the
cyclotron energy gap the Landau level mixing can be ig-
nored. In the strong interaction strength regime the form
of the effective theory gets dictated by the symmetry (dis-
cussed below) when we integrate out the higher Landau
levels. When the layers are far enough from each other,
we should get two MLG with no interlayer interaction.
The valley U(1) for each layer is conserved in order to
conserve the translational symmetry in each layer sepa-
rately. Here we make an additional assumption that the
global spin SU(2) symmetry can be enhanced to spin
SU(2) symmetry for each layer separately. For this to
be the symmetry of this theory we assume that inter-
layer spin-spin interaction is zero (or negligible). In the
absence of the inter layer tunneling it is justified that

the Heisenberg term (~S · ~S) will be absent. Other than
the Heisenberg a long range spin dipole-dipole interac-

tion between layers can break the spin SU(2) symmetry
in each layer to a global SU(2) symmetry. However, the
spin dipole-dipole interaction falls as r−4. As the dis-
tance between the layers is a few nanometers, we choose
to ignore this interaction. Thus under these assumptions

the only term that is allowed is the ~S · ~S on each layer
which has the spin SU(2) symmetry in each layer.

From this understanding and keeping in mind that
the number of particles in each layer is fixed we pro-
pose our symmetry of the continuum model to be (in the
absence of Zeeman coupling)

[
SU(2)spin ⊗ U(1)valley

]
for

each layer, a global (Z2)valley and
(
U(1)⊗ Z2

)
layer

for the

layers. symetry for each layer.This restricts the interact-
ing part of the Hamiltonian to only three parameters.
We can write the Hamiltonian as,

H = H0 +Hint. (1)

where H0 is the one body term coming from Zeeman
coupling such that,

H0 = −Ez
(
σz ⊗ τ0 ⊗ γ0

)
. (2)

Hint, the 2 body interaction term which obeys the
above mentioned symmetry, is given by

Hint =
πl2

A

∑
~q

k1,k2

e−iqx(k1−k2−qy)l2− q2l2

2

[
Kxy

∑
i=1,2

: ~c†k1−qy

(
σ0 ⊗ τ i ⊗ PL

)
~ck1~c

†
k2+qy

(
σ0 ⊗ τ i ⊗ PL

)
~ck2 :

+Kz : ~c†k1−qy

(
σ0 ⊗ τ3 ⊗ PL

)
~ck1~c

†
k2+qy

(
σ0 ⊗ τ3 ⊗ PL

)
~ck2 : (3)

+ Lz : ~c†k1−qy

(
σ0 ⊗ τ0 ⊗ γ3

)
~ck1~c

†
k2+qy

(
σ0 ⊗ τ0 ⊗ γ3

)
~ck2 :

]

Here ~ck =
(
ck,↑,K,1, ck,↓,K,1, ck,↑,K′,1, ck,↓,K′,1, ck,↑,K,2,

ck,↓,K,2, ck,↑,K′,2, ck,↓,K′,2

)T
presents the column vector

of fermionic annihilation operators, A is the area of the
sample, and l is the magnetic length. The index ki rep-
resents the guiding centers in the Landau gauge. We
use the convention where σi, τ i, γi represents the Pauli
matrices in spin, valley, and layer respectively. Here,

PL =
(γ0−(−1)Lγ3)

2 is the layer projection operator to
layer L. The parameters Kz and Kxy arises from the
intralayer interactions and are same as the parameters
uz and u⊥ respectively as defined by Kharitonov in the
monolayer graphene case26. The parameter Lz is a func-
tion of the distance between the layers (d) which should
go to zero as d becomes very large (disjoint MLG limit).
Here we would like to comment that we also added a ca-
pacitance term which is zero when both layers have equal
fillings39,

Hcap =
gesπl

2

A

(
ρ1(q = 0)− ρ2(q = 0)

)2
. (4)

where ρL(~q) is the Fourier transformed electron density
operator of Lth layer and ges is the coupling strength of
the capacitance term.

We define an order parameter ∆ matrix which specifies
the HF states |HF 〉,

〈HF |c†k,s,α,Lck,s,′α′,L′ |HF 〉 = δ~k,~k′∆s′α′L′,sαL. (5)

where s being the spin, α being the valley and L being
the layer index. This ∆ matrix can also be thought of as
a sum of projection operators of the four filled states at
each momemtum. The ∆ matrix completely determines
the single Slater determinant states and any order pa-
rameters e.g. electron density, magnetization etc. can be
calculated using it. We assume that the HF states pre-
serve translation symmetry i.e. the guiding centers are
a good quantum number. Hence, we drop the guiding
center label from ∆ matrix. Since the capacitance term
is a classical term, we only keep the Hartree term and
drop the Fock term. In the next section, we discuss the
∆ matrix of the different HF states.
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FIG. 1. Here we represented the Layer coherent (LC) phase.
The layers here are color coded (green lines and red lines).
As shown here the states are linear combination of different
layer indices. The corresponding states are also color coded
as blue and light red.

III. RESULTS

At ν1 = ν2 = 0 there are four occupied single parti-
cle states in the spin-valley-layer space. For Lz ≥ 0 we
find that the phase diagram is exactly the same as the
phase diagram found for MLG in Ref. 30. The energies
of the phases (defined as Egs = 〈HF |Hint|HF 〉 for the
proposed HF ground state)) depend on Lz. For these
phases, the layer U(1) is not broken and the ∆ matrix is
block diagonal in the layer index. Each of this block is a
four dimensional matrix in the space of valley and spin.
The four phases are,

1. Charge Density Wave (CDW): CDW breaks the
valley Z2 symmetry. At the zero Landau level, dif-
ferent valley indices are pinned to the sublattices.
In this phase in each layer the alternate sites (A)
in the lattice are occupied and the other sites (B)
are left unoccupied. The ∆ matrix for this phase is

∆CDW = σ0 ⊗ (τ0 + τ3)⊗ γ0, (6)

and the energy is

ECDW = 2 (Kz − LZ) . (7)

2. Kekulé Distorted (KD): This is a bond order phase
where the valley U(1) symmetry is broken. In lat-
tice limit the spontaneous breaking of the valley
U(1) symmetry leads to the translation symmetry
breaking in each layer. This phase doesn’t has any
Goldstone modes. The ∆ matrix for this phase will
be

∆KD =
1

2
σ0 ⊗ (τ0 + τ1)⊗ γ0, (8)

with energy,

EKD = 2
(
Kxy − Lz

)
. (9)

3. Ferromagnet (F): This phase breaks the spin SU(2)
symmetry in each layer. Similarly, the ∆ matrix
and energy will be

∆F =
1

2
(σ0 + σ3)⊗ τ0 ⊗ γ0 (10)

EF = −4Ez − 2
(
2Kxy +Kz + LZ

)
. (11)

4. Canted Anti-Ferromagnet (CAF): This phase
breaks the spin U(1) symmetry in each layer. The
∆ matrix is,

∆CAF =
1

2

[
sinφ

(
σ1 ⊗ τ3 ⊗ γ0

)
+ cosφ

(
σ3 ⊗ τ0 ⊗ γ0

)
+ σ0 ⊗ τ0 ⊗ γ0

]
(12)

where φ is given by

cosφ =
Ez

2|Kxy|
, (13)

with energy,

ECAF = −4Ez − 2
(
2Kxy +Kz + LZ

)
. (14)

At Ez = 0 the states becomes a pure anti-ferromagnetic
state. Increasing the Zeeman field Ez beyond 2|Kxy|
can drive a continuous phase transition from canted anti-
ferromagnetic phase to ferromagnetic phase.

FIG. 2. Here we present the Phase diagram of for Lz = −0.5
in the absence of Zeeman coupling. The phase LC Phase
appears near Kxy = Kz = 0. All the phase transitions here
are First order.

Next we come to the spacial phase of the double layer
graphene. For Lz < 0, we find there exists a layer coher-
ent phase which breaks the Layer U(1) symmetry (see 3).
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We find the layer coherent phase both in the presence and
absence of the Zeeman energy. For a non-zero Zeeman
coupling, there are two parameters (and operators which
are connected by the left over ground state symmetry)
that,

ΦL = σ1 × τ1 × γ1 (15a)

Sz =
σ3 × τ0 × γ0

2
. (15b)

FIG. 3. Here we present the Phase diagram of for Lz = −0.5
and Ez = 0.1. As we can see that the MLC phase appears and
there is a second order transition from MLC to F as marked
by the broken line.

The magnetic layer coherent phase occurs at Ez 6= 0
with 〈Sz〉 6= 0. At Ez = 0 we find 〈Sz〉 = 0, we call it
layer coherent phase (LC) (see fig. 1). We can write the
∆ matrix for the MLC phase as,

∆MLC =
1

2

[
sin θ(σ1 ⊗ τ1 ⊗ γ1)

+ cos θ(σ3 ⊗ τ0 ⊗ γ0) + σ0 ⊗ τ0 ⊗ γ0
]

(16)

with cos θ defined as,

cos θ =
2Ez∣∣2Kxy +Kz + 2Lz

∣∣ . (17)

The energy of the phase is

EMLC = −2Kxy −Kz −
4E2

z∣∣2Kxy +Kz + 2Lz
∣∣ . (18)

Here 〈ΦL〉 = 4 sin θ and 〈Sz〉 = 2 cos θ. For 2Ez ≥∣∣2Kxy +Kz + 2Lz
∣∣ with θ = 0, this ∆ will represent

a ferromagnetic ground state and for any other value
of θ the ∆ matrix represents a magnetic layer coher-
ent state (MLC). For the zero Zeeman coupling, we have
cos θ = 1⇒ 〈Sz〉 = 0, a purely layer coherent state. The
phase transition from MLC to F is a second order transi-
tion (see Fig. 3). However, similar to the AF to F phase
transition, the LC to F phase transition is a first order
transition. Thus all phase transitions are first order at
Ez = 0 (see Fig. 2). The Phase boundary between MLC
and F changes, as we change the total Zeeman couplings
at a fixed Lz. Here in Table I we represent all different
phase boundaries.

Phases Boundary equation

KD,CAF Kz = −Kxy + E2
z/Kxy

KD,CDW Kz = Kxy

F,CDW Kz = −Kxy + Ez

F,MLC Kz = −2Kxy − 2Lz − 2Ez

MLC,CDW − 3Kz
2

=

(
Lz + 2Kxy −

√
(2Lz +Kxy)2 + 3E2

z

)
CAF,MLC Kz = 2 (Kxy − Lz)

KD,MLC Kz = −3Kxy −
√

(Kxy − 2Lz)2 + 4E2
z

F,CAF Kxy = −Ez/2

TABLE I. Phase boundary equations as a function of the
parameters

IV. GOLDSTONE MODES

The Hamiltonian in the presence of Zeeman term has
five different U(1) symmetries coming from U(1)spin ⊗
U(1)valley for the two layers and a layer U(1)×Z2 symme-
try. For the layer diagonal phases, the presence of gapless
bulk Goldstone mode is known. The CDW phase has no
gapless bulk mode. In the continuum limits it seems that
KD phase breaks a continuous symmetry but as valley in-
dices are momenta, it breaks lattice symmetry. Hence in
this phase we will have no Goldstone modes. The F phase
has spin wave mode and at long wavelength, it’s gap is
proportional to the Zeeman coupling strength (Ez). As
the CAF phase breaks the spin U(1) symmetry there will
be a pair of gapless neutral modes in the bulk34.

Next we discuss the new layer coherent phase and its
bulk modes. From Eq. 16 one can easily see that the
ground state has the two leftover U(1) symmetries de-
fined by operators σ3 ⊗ τ3 ⊗ γ0 and σ3 ⊗ τ0 ⊗ γ3. These
operations can be understood as opposite spin rotations
at different valleys or different layers. In other words,
these are relative valley and layer spin twists respectively.
Thus out of five different continuous symmetries, three
are broken by the ground states giving rise to three differ-
ent Goldstone modes in the bulk. However, these modes
will be neutral as there is a charge gap in the bulk and
these excitations are similar to spin waves. We remind
the readers here that the breaking of the valley part of
the symmetry breaks the lattice C3 rotation about a site.
This happens as the n = 0 manifold the K,K′ of each
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layer maps to the A,B sublattice of each layer30. This
means we will count one extra Goldstone mode in the
continuum analysis.

V. DISCUSSION

In this manuscript, we constructed the Hamiltonian
using symmetry principles without discussing the nature
and details of the interaction at the lattice scale. The
model only assumes the lattice interactions are local and
thus their Fourier transform is a function independent of
momentum.

In principle we can reproduce the interactions in the
continuum model by projecting the microscopic Hamilto-
nian to the lowest Landau Level. We present a simplified
example which includes the onsite Hubbard interaction
(U1), nearest neighbor interlayer electron density-density
interaction (U2) and a intralayer nearest neighbor spin-
spin interaction (J),

Hlat =U1

∑
s1,s2
r,L

: ns1,r,Lns2,r,L : +U2

∑
s1,s2
r,r′

L1 6=L2

: ns1,r,L1ns2,r′,L2
:

+ J
∑
〈r,r′〉,L

: ~Sr,L · ~Sr′,L : . (19)

Here n is the fermion number operator and ~S is the local
spin operator. Though we assumed ultra-short interac-
tions, adding finite range to these interactions do not
change the symmetry of the continuum model when we
project the hamilitonian in the zero Landau level mani-
fold. We can write the relation between the continuum
parameters in Eq. 3 in terms of the parameters of Eq.
19 as Kxy ∝ −J , Kz ∝ U1 and Lz ∝ U1/2− U2.

We would like to emphasise here that the Hamilto-
nian presented here is just an example to show that
even at the simplest model at the lattice level, we can
achieve the Hamiltonian in Eq. 3. Here we are not
concerned with the values/signs of different parameters
Kxy,Kz, Lz but showing the phases that is determined
by these parameters. Modeling a generic lattice theory
with physically motivated parameters and their values is
an interesting study but out of the scope for the current
manuscript. We hope to study a lattice model of a double
layer graphene in the future.

From Eq. 16 we can see that as the states are mixture

of ~K, ~K ′ of different layers, near the edge the dispersion
will contain two pairs of particle-like bands and another
two pairs of hole-like bands due to the breaking of the
translation symmetry40. There will be a pair of counter
propagating modes only if we have identical layers near
the edge of the system. Near the edge, both the valley
U(1) symmetry and the layer U(1) will be broken gener-
ically. Thus the edge of a double layer graphene will
be gapped if the bulk is in MLC phase. As the states
are superposition of two different layers, there will be a

drag in the two terminal measurements at least for finite
temperature16. However, we know that there will be two
pair of counter propagating modes at the edge for each
layer in the F phase33,37,40. Thus by changing the Zee-
man energy with respect to the interaction energies, one
can make a transition from MLC to F. This should show
up in the two terminal conductance measurement37. It
will also be interesting to measure the lattice scale struc-
ture using both spin resolved and spin unresolved41 tun-
neling electron microscope to confirm the phase directly.

VI. SUMMARY AND OUTLOOK

Here we argued that the continuum limit of the dou-
ble layered graphene at ν1 = ν2 = 0 has a big symmetry
group that restricts the interacting part of the Hamilto-
nian severely to only three parameters at n = 0 Landau
Level. Further, we find a candidate ground state using
the HF approximation that breaks the layer U(1) sym-
metry. We also find a second order phase transition from
MLC to F as a function of Zeeman energy. We argued for
a general system, the edge of the MLC will be gapped.
This leads to the possible experiment to find two termi-
nal conductance that will change when we go from the
MLC to F.

This study is just the beginning of understanding the
double layer graphene ground state in the quantum Hall
regime. It was previously shown that the phase transition
from CAF to F connects the bulk gapless modes of the
CAF to the gapless edge modes of F34. We hope to study
the edge theory of double layer graphene in future to
answer the question of the phase transition from MLC to
F.

It has been shown that if we have finite range in-
teractions in monolayer graphene then we can have co-
existence of phases42. Similarly, in a lattice model co-
existence can also be shown by doing HF calculation
in the lattice limit43. This explains the experimental
results44, where bond order was observed using Scanning
Tunnelling Microscope. This question may also be im-
portant in double layer graphene case, as we might have
a similar coexistence. To understand that possibility one
needs to study that lattice Hamiltonian similar to the
one mentioned in Eq. 19. Furthermore, this theory can
be used to explore the phase diagrams at other filling
fractions in the parameter space of Kxy,Kz and Lz sim-
ilar to the MLG case38. There is also a surge of interest
in understanding the BCS/BEC condensation6,17,18,45 in
double layer graphene systems. As previously mentioned
this state breaks the layer U(1) symmetry just like a su-
perfluid state. At low enough temperatures these exci-
tons can form a superfluid state where the interaction
between the electron and hole can be tuned by tuning
the Lz parameter (which depends on the interlayer sep-
aration d).
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Appendix A: Details of the technique

The interacting Hamiltonian in Eq. 3 can be written in a simplified form as,

Hint =
πl2

A

∑
q,k1,k2
a,b,c,d

e−iqx(k1−k2−qy)l2− q2l2

2 Va,b,c,d : c†k1−qy,ack1,bc
†
k2+qy,c

ck2,b : (A1)

where

Va,b,c,d = Kxy

∑
i=1,2

(
σ0 ⊗ τ i ⊗ PL

)
a,b

(
σ0 ⊗ τ i ⊗ PL

)
c,d

+Kz

(
σ0 ⊗ τ3 ⊗ PL

)
a,b

(
σ0 ⊗ τ3 ⊗ PL

)
c,d

+ Lz

(
σ0 ⊗ τ0 ⊗ γ3

)
a,b

(
σ0 ⊗ τ0 ⊗ γ3

)
c,d
. (A2)

To calculate the total HF energy E = 〈HF |H0 + Hint|HF 〉 we write the average of the four-fermion term that
arises in the interacting Hamiltonian Hint as

〈HF |c†k1−qy,ack1,bc
†
k2+qy,c

ck2,d|HF 〉 = ∆b,a∆d,cδqy,0 −∆d,a∆b,cδqy,k1−k2 . (A3)

The first term gives the Hartree term and the second term is the Fock term. Using this, we can calculate the energy
from the electron-electron interaction given by Eint = 〈HF |Hint|HF 〉

Eint =
πl2

A

∑
a,b
c,d

∑
q

k1,k2

e−iqx(k1−k2−qy)l2− q2l2

2 Va,b,c,d
(
∆b,a∆d,cδqy,0 −∆d,a∆b,cδk1−qy,k2

)

=
πl2

A

∑
a,b,c,d

Va,b,c,d

∑
qx
k1,k2

e−iqx(k1−k2)l2− q2xl2

2 ∆b,a∆d,c −
∑
q,k1

e−
q2l2

2 ∆d,a∆b,c


=

1

2NΦ

∑
i

a,b,c,d

Va,b,c,d

(
N2

Φ∆b,a∆d,c −
NΦA

(2π)2

∫
q

dqe−
q2l2

2 ∆d,a∆b,c

)

=
1

2NΦ

∑
a,b,c,d

Va,b,c,d

(
N2

Φ∆b,a∆d,c −
NΦA

2πl2
∆d,a∆b,c

)
(A4a)

Eint =
NΦ

2

∑
i

a,b,c,d

Va,b,c,d
(
∆b,a∆d,c −∆d,a∆b,c

)
(A4b)

where A is the area of the system and NΦ = A/(2πl2) is the number of guiding centers in the system. Hence the
total energy of the system per guiding center is

E

NΦ
= Ez(σ3 ⊗ τ0 ⊗ γ0)ab∆b,a +

1

2

∑
a,b,c,d

Va,b,c,d
(
∆b,a∆d,c −∆d,a∆b,c

)
. (A5)
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The first term is the Zeeman contribution and the second term comes from the elecron-electron interaction.
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