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Ammann-Beenker lattice is a two-dimensional quasicrystal with eight-fold symmetry, which can
be described as a projection of a cut from a four-dimensional simple cubic lattice. We consider the
vertex tight-binding model on this lattice and investigate the strictly localized states at the center of
the spectrum. We use a numerical method based on the generation of finite lattices around a given
perpendicular space point and QR decomposition of the Hamiltonian to count the strictly localized
states. We apply this method to count the frequency of localized states in lattices of up to 100 000
sites. We obtain an orthogonal set of compact localized states by diagonalizing the position operator
projected onto the manifold spanned by the zero energy states. We identify twenty localized state
types and calculate their exact frequencies through their perpendicular space images. Unlike the
Penrose lattice, all the localized state types are eight-fold symmetric around an eight edge vertex,
and all vertex types can support localized states. The total frequency of these twenty types gives a
lower bound of fLS = 30796− 21776

√
2 ' 0.08547 for the fraction of strictly localized states in the

spectrum. This value is in agreement with the numerical calculation and very close to the recently
conjectured exact fraction of localized states fEx = 3/2−

√
2 ' 0.08579.

I. INTRODUCTION

The theory of elementary excitations in crystalline
solids relies on the periodicity of the lattice through
Bloch’s theorem. Lattice periodicity is combined with
the point group symmetries of the crystal, and the recip-
rocal space description of the system reflects the orienta-
tional order in the system. The discovery of quasicrystals
that have sharp X-ray spectra [1] with rotational sym-
metries impossible for a periodic system showed the link
between orientational order and periodicity can be sev-
ered even in the absence of randomness. Alloys which
have this non-periodic but rotationally symmetric qua-
sicrystalline order can be routinely synthesised [2], and
smaller-scale quasiperiodic order is recently engineered
in synthetic surfaces[3], photonic [4], polaritonic [5] and
cold atom systems[6, 7].

The structural properties of quasicrystals are gener-
ally well understood[8]. However, there is no counterpart
to Bloch’s theorem, and the structural description does
not easily translate into a theory of elementary excita-
tions. Major questions, such as the localization proper-
ties of the eigenstates or the measure of the density of
states, remain unanswered even for the simplified mod-
els. The progress in one-dimensional models such as the
Fibonacci chain [9–11] have shown that the physics of
elementary excitations in quasicrystals is extremely rich.
The density of states has multifractal properties [12], and
even the basic definitions of localization have to be reex-
amined due to the neither localized nor extended eigen-
states [13]. Most of the results obtained in one dimen-
sion rely on techniques such as transfer matrix meth-
ods which cannot be applied in higher dimensions. Two
and three-dimensional results on elementary excitation
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spectra have been mostly restricted to numerical calcu-
lations. In some cases, particular eigenstates have been
identified[13–16], but a general description and labeling
of eigenstates has not been found. Understanding the
properties of even a subset of the spectrum is valuable in
the absence of a general description.

Early numerical studies on the tight-binding model[17,
18] on the two-dimensional quasicrystal Penrose lattice
have identified an abundance of eigenstates at the center
of the spectrum. Kohmoto and Sutherland [14] showed
that there is a set of degenerate states exactly at zero
energy, giving a delta function peak in the density of
states. These states have non-zero density only on a fi-
nite number of lattice sites and are called strictly local-
ized states. Six independent types of these states were
identified for the Penrose lattice vertex model [15]. Sim-
ilar states have been identified in the presence of gauge
fields, called Aharonov-Bohm cages[19], and in some flat
band models with non-trivial topology [20]. These states
lie strictly at zero energy for bipartite lattices [21] and
would be at the Fermi energy for the critically impor-
tant case of half-filling [22–24]. For a periodic crystal,
such strictly localized states can exist only if confined to
a unit cell. It is not clear if strictly localized states are a
general feature of quasicrystalline models or appear only
for a specific subset. We refer to strictly localized states
as localized states (LS) throughout, which should not be
confused with the exponentially decaying localized states.

In a recent paper [25], we used the perpendicular space
description of the Penrose lattice to investigate the LS
identified in Ref.[15]. This method provides an easy way
to label and count the LS once their real space structure is
known. While the first identification of these states relied
on the presence of ‘closed strings’ of three edge vertices
in the Penrose Lattice, subsequent work [26] has shown
that these states exist even in local isomorphism classes
without closed strings. The presence of LS for another
quasicrystal lattice, the octagonal Ammann-Beenker lat-
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tice (ABL), has also been reported [27]. In a recent paper
[23] Koga has identified 12 types of LS in the ABL and
has conjectured that an infinite sequence of LS types with
decreasing frequencies exist in this system. The total fre-

quency of LS is calculated as fEx = (
√
2−1)2
2 = 3/2−

√
2

Based on extrapolation from exact diagonalization of fi-
nite lattices obtained by deflation.

We have two aims in this paper. First, we outline a
numerical method to identify and count LS. Counting is
based on identifying the null space of the Hamiltonian,
which can be efficiently made through QR decomposition
[28]. We have been able to count LS frequencies for lat-
tices containing up to 100 000 sites. Diagonalization of
the position operator projected onto the null space of the
Hamiltonian provides an easy method to form compact
LS. Second, we use this method to identify 20 indepen-
dent types of LS for the ABL and count their frequencies
through perpendicular space projections. This counting
gives us an exact lower bound for the frequency of LS
fLS = 30796 − 21776

√
2 ' 8.547%. Our numerical re-

sults for the largest lattice sizes are close to this analyti-
cal result, and both results are in agreement with Ref.[23]
exact frequency.

In the next section, we introduce the ABL, its perpen-
dicular space image, and define the vertex tight-binding
model on it. Section III introduces the numerical meth-
ods used to generate the ABL and count the LS. Numeri-
cal calculations for both the Penrose lattice and ABL are
given in this section, while the next Section IV contains
the twenty independent types of LS for the ABL and
their properties. A comparison of our results for the two
lattices as well as general properties of the LS concludes
the paper in Section V.

II. AMMANN-BEENKER LATTICE AND THE
VERTEX MODEL

Quasicrystals can be described as projections of sec-
tions of higher dimensional periodic lattices. While al-
ternative methods exist, cut and project construction re-
tains information regarding the projected out dimensions
[29]. The projected out dimensions form the so-called
perpendicular space of the quasicrystal, which has been
instrumental in understanding the x-ray spectra[30, 31]
as well as the elementary excitation properties [16, 32–
34]. Penrose lattice, the most widely studied qua-
sicrystal model, can be obtained as the projection of
a five-dimensional cubic lattice to two dimensions [35].
With this projection, the perpendicular space is three-
dimensional; however, it reduces to four parallel two-
dimensional pentagons rather than filling a volume [36].
In a recent paper[25], we used the images of LS in these
four pentagons to count and label the LS in the Penrose
lattice.

In this paper, we concentrate on the Ammann-Beenker
lattice (ABL), a quasicrystal with eight-fold rotational
symmetry [37, 38]. Two tiles are used to construct the

ABL, a square and a rhombus with a π/4 angle. Fol-
lowing Beenker, we define the ABL by projection from a
four-dimensional cubic lattice. Let ûi with i = 0, 1, 2, 3
define mutually orthogonal unit vectors, ûi · ûj = δi,j
spanning the four-dimensional space

~r4 = x0û0 + x1û1 + x2û2 + x3û3, (1)

with xi ∈ R. This space can be partitioned into 4-cubes
ki− 1 < xi < ki with ki ∈ Z, and each cube is associated
with a point in the four dimensional cubic lattice

~k = k0û0 + k1û1 + k2û2 + k3û3. (2)

An alternative set of vectors which span the same space
can be given. Defining η = ei

π
4 , and

~c1 =

3∑
m=0

< (ηm) ûm = û0 +
1√
2
û1 −

1√
2
û3, (3)

~c2 =

3∑
m=0

= (ηm) ûm = û2 +
1√
2
û1 +

1√
2
û3,

~c3 =

3∑
m=0

< ((−η)m) ûm = û0 −
1√
2
û1 +

1√
2
û3,

~c4 =

3∑
m=0

= ((−η)m) ûm = û2 −
1√
2
û1 −

1√
2
û3.

This set is mutually orthogonal yet not normalized, ~ci ·
~cj = 2δi,j .

Only a subset of the points in the four dimensional
cubic lattice are projected to two dimensions. We define
a real vector ~γ and a plane with the equations

(~r4 − ~γ) · ~c3 = 0, (4)

(~r4 − ~γ) · ~c4 = 0.

If the open cube corresponding to 4 dimensional lattice

point ~k has an intersection with this plane, then we ex-
press it in the new basis:

~k =
xR
2
~c1 +

yR
2
~c2 +

x⊥ − ~γ · ~c3
2

~c3 +
y⊥ − ~γ · ~c4

2
~c4. (5)

The expansion coefficients xR, yR define the real space
position of a point belonging to the ABL, forming the
projection part of the cut-and-project construction. We
can define two orthogonal unit vectors î, ĵ spanning the
real space, and the projected real space point is at the
coordinates

~rR = xR î+ yRĵ =

3∑
m=0

kmêm, (6)

where the four star vectors of the ABL are:

ê0 = î, ê1 =
1√
2

(̂i+ ĵ), ê2 = ĵ, ê3 =
1√
2

(−î+ ĵ). (7)
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In real space two points of the ABL are connected by ±êi,
thus all bonds lie along one of the star vectors. Similarly
the star vectors can be viewed as the projections of the
four dimensional unit vectors ûi onto the real space.

It is also useful to consider the projected out coor-

dinates of the point ~k which satisfies the condition 4.
This process defines the perpendicular space projection
~R⊥ = x⊥î⊥ + y⊥ĵ⊥ where

x⊥ =
(
~k + ~γ

)
· ~c3, y⊥ =

(
~k + ~γ

)
· ~c4, (8)

and î⊥, ĵ⊥ are two orthogonal unit vectors spanning the
perpendicular space. Thus any point belonging to the
ABL has both a real space position, and a perpendic-
ular space position, corresponding to projection of the
cut from the four dimensional lattice into two orthogonal
planes.

The condition that the open cube corresponding to ~k
has an intersection with the plane defined by Eq.4 con-
strains the perpendicular space position to lie in an oc-
tagon of side length one. As the projection mapping is
linear and

√
2 is irrational, the octagon is densely and

uniformly filled with projected points. While all points
belonging to ABL have a perpendicular space image in-
side this octagon, not all points inside the octagon cor-
respond to a point in the ABL. We also require ~γ to be
chosen so that the intersection with the open cubes and
the plane is unambiguous , i.e., the lattice is not singular
[38].

A finite section of the ABL is displayed in Fig.1, and
the corresponding perpendicular space image is in Fig.2.
A point in the ABL can have between 3 and 8 nearest
neighbors, all of them connected along the star vector di-
rections. Consider the point denoted by the (red) circle in
both figures. This point can have at most eight neighbors
in the directions ±êm. A translation by êm in real space
corresponds to a translation by ûm in the four dimen-
sional cubic lattice. The definitions of the ~c basis Eq(3)
show that a translation by ûm corresponds to translation
by (−1)mêm in perpendicular space. When we consider
the eight possible points reached from the perpendicular
space position of the point denoted by the (red) circle
perpendicular, we see that only four of them lie in the
octagon V . Hence this point has only four nearest neigh-
bors. The smaller sections within V identify regions for
vertices with a different number of edges, and following
Beenker [38] we call a point with n edges a T (9−n) ver-
tex. For example, T1 vertices with eight neighbors have
perpendicular space images that lie within the small oc-
tagon at the center of V .

The mapping between the four-dimensional cubic lat-
tice and the perpendicular space is linear, and the fact
that

√
2 is irrational guarantees that no two points in the

ABL have the same perpendicular space image. Hence,
areas in perpendicular space can be used to measure fre-
quencies of vertices in the ABL. For example, T1 vertices
with 8 edges have perpendicular space images inside an
octagon of width

√
2−1 at the center of V , which itself is

FIG. 1. A finite section of the ABL. All bonds are parallel to
the four star vectors in Eq.7. The perpendicular space images
of the five marked points are given in Fig. 2

V

FIG. 2. Perpendicular space images of all the points in ABL
lie within the octagon V shown in the figure. The regions
inside V separate perpendicular space images of vertices with
a different number of edges. The perpendicular space images
of the four points marked in Fig.1 are shown. Notice that
vertex marked with a circle has only four nearest neighbors
in real space because only four out of the eight points reached
by star vectors from its perpendicular space image lie in V .
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an octagon of width
√

2+1. The frequency of T1 vertices
is then

fT1 =

(√
2− 1

)2(√
2 + 1

)2 = 17− 12
√

2 ' 0.02943. (9)

We now define a tight binding hopping Hamiltonian on
the ABL, using a single state at each vertex and uniform
hopping to nearest neighbor sites,

H = −
∑
<i,j>

|~Ri〉〈~Rj |, (10)

with |~Ri〉 denoting the Wannier wavefunction which is

localized at the ABL point ~Ri and the sum is carried out
over all edges in the ABL.

All the tiles forming the ABL are quadrilaterals; hence,
the ABL vertices can be separated into two sublattices so
that a vertex in one sublattice has nearest neighbors only
in the other sublattice. Due to this bipartite symmetry,
the spectrum of Eq.10 is symmetric around zero energy.

If |Ψ1〉 =
∑
i Ψi|~Ri〉 is an eigenstate with energy E, then

reversing the sign of the wavefunction in one of the sub-

lattices creates |Ψ2〉 =
∑
i(−1)σiΨi|~Ri〉 with σi = {0, 1}

the sublattice index of site i. By applying H|Ψ2〉, we see
that energy −E also belongs to the spectrum.

In this paper, we are interested in LS which have zero
energy. Still, bipartite symmetry can be used to require
the LS to have support only on one of the sublattices. If a
state |Ψ1〉 with zero energy has non-zero density in both
sublattices |Ψ2〉 as constructed above, will be indepen-
dent of |Ψ1〉. In this case two new LS |Ψ±〉 = |Ψ1〉±|Ψ2〉
can be constructed which are localized to only one sublat-
tice. In the next section, we detail the numerical method
we use to obtain and investigate the LS.

III. NUMERICAL METHOD

The spectrum of the Hamiltonian Eq.10 and similar
tight-binding models on quasicrystals have been investi-
gated by several methods [22, 27, 39–47]. Generation of
finite lattices through inflation of a small set of tiles or
their construction using the dual grid method are used
to form Hamiltonians consisting of tens of thousands of
sites. However, diagonalization of a finite system with
open boundaries yields eigenstates that may depend on
edges’ presence. An alternative route to observe bulk be-
havior uses quasicrystal approximants, periodic lattices
with large unit cells approximating quasicrystal symme-
tries [48]. In this case, both the eigenstates’ depen-
dence on quasimomentum and their scaling behavior with
changing unit cell size give useful information.

As we aim to investigate LS, which have zero density
outside a certain radius, we opt to use finite lattices with
open boundary conditions. We generate these lattices
starting from a single point defined to be the origin in
real space, but we also specify its perpendicular space

coordinate. The first neighbors of this lattice point can
be generated following the algorithm outlined in Fig.2,
i.e. by deciding if the perpendicular space images of pos-
sible neighbors lie in the octagon V . Repeating the same
process for the first neighbors generates the second neigh-
bors, and the process can be extended up to the desired
depth. We call such a finite section of the lattice the
D-deep neighborhood of the central point.

As an example we display the 3-deep neighborhood
of the point with perpendicular space coordinates x⊥ =
1, y⊥ = 1

2 in Fig.3. The perpendicular space images of all
the vertices in this neighborhood are displayed in Fig.4.
The perpendicular space image offers a simple way to
count the frequency of occurrence of this finite configu-
ration of sites in the infinite ABL. As long as the initial
point’s perpendicular space coordinate lies in the shaded
triangle shown in Fig.4, all the points in the 3-deep neigh-
borhood will have perpendicular space images inside the
octagon V . As soon as the initial point’s perpendicular
space coordinates go outside the triangle, at least one
point will either change its vertex type or cease to exist.
Thus, the frequency of this particular neighborhood can
be found by the ratio of the triangle area to the area of
V .

FIG. 3. The 3-deep neighborhood of the point marked by the
black circle. First neighbors (red squares) and third neighbors
(green triangles) form one sublattice, while the second neigh-
bors (blue diamonds) and the central point form the other
sublattice. The perpendicular space images of all the points
are marked with the same symbols in Fig.4.

The first step in judging the computational burden
of finding the LS in a neighborhood is estimating the
number of sites in the D-deep neighborhood. While the
exact number of sites will depend on the perpendicular
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V

FIG. 4. Perpendicular space images of all the points shown
in Fig.3. If the perpendicular space position of the initial
point is moved within the marked triangle, all the points in
the 3-deep neighborhood move without changing their type.
The ratio of this triangle area to the area of the octagon V
gives the frequency of this exact neighborhood appearing in
the infinite ABL.

space coordinates of the starting point, the overall uni-
formity of the ABL ensures that the variation remains
small for large D. Consider the largest distance one can
cover in the x-direction by hopping across D bonds in
the ABL. While choosing all D bonds to be oriented
along ê0 would give a distance of D, more than two sub-
sequent hops in the same direction would take the per-
pendicular space image of the point outside of V . Thus
such a series of connected same direction bonds do not
appear in the ABL. One has to maximize the function
R = î · (n0ê0 +n1ê1 +n3ê3), not only with the constraint

D = n0+n1+n3 but also with î ·(n0ê0−n1ê1−n3ê3) ' 0
so that the perpendicular space image remains close
to the initial position. An estimate can be obtained
by regarding the last condition as an equality, giving
n1 = n3 = n0√

2
thus n0 = (

√
2 − 1)D. The estimated

radius of the neighborhood is then R = 2(
√

2−1)D. The
approximate area covered by the neighborhood A = πR2

will contain A/2 squares and A/
√

2 rhombuses. Except
for tiles on the boundary, every tile contributes two edges,
and each edge connects two vertices. Combining these
with the average number of edges for a vertex, which is
10− 4

√
2 for the ABL, we obtain

Nsites '
4
(
3
√

2− 1
)
π

17
D2, (11)

for the number of sites in a D-deep neighborhood. In

Fig.5, we compare this estimate with the number of sites
obtained by the numerical generation of the lattice. The
difference in the number of sites for different starting
points is too small to observe on this scale, and we can
say that generally, 200-deep neighborhoods would con-
tain about 100 000 sites.

Although it is a finite section of the ABL, a D-deep
neighborhood is uniquely suited to the LS calculation.
The only sites that have missing bonds because of the
edge are Dth neighbors of the initial point. Thus, all of
the edge sites belong to the same sublattice. The diag-
onalization of the Hamiltonian on this finite lattice will
result in a manifold of zero energy states, some of which
exist due to the edge’s presence. However, bipartite sym-
metry allows us to constrain the LS to only one sublat-
tice. Once this operation is carried out, the zero energy
states localized on the sublattice including the (D− 1)th

neighbors are guaranteed to be LS states of the infinite
ABL. As an example, consider a 9-deep neighborhood of
a given initial point. Take a state with zero energy found
by numerical diagonalization of the Hamiltonian. In gen-
eral, it will have an amplitude on both the odd neigh-
bor sublattice (first-third-..-ninth) and the even neighbor
sublattice (initial point-second neighbors...-eighth neigh-
bors). Due to the bipartite symmetry, if we take the
amplitudes on the odd sublattice to be zero, we still have
an eigenstate that is defined only on the even sublattice.
Such a state will also be a LS of the infinite ABL, as all
the nearest neighbors of the 8th neighbor sites are already
present in the finite Hamiltonian. While this finite-size
calculation would miss the LS of the infinite ABL that
cross the edge, it is guaranteed to find all the LS which lie
entirely within the defined neighborhood. Thus, we ex-
pect that large neighborhoods to provide numerical lower
bounds for the number of LS in the ABL.

20 40 60 80 100 120 140 160 180 200

Neighborhood depth
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FIG. 5. The number of sites in the D-deep neighborhood of
an ABL point as a function of neighborhood depth. Numer-
ical calculation (black dots) is in good agreement with the
estimate Eq.11 (red dashed line). While the exact number of
neighbors depends on the initial point’s perpendicular space
position, the variation is too small to resolve at this scale.
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The Hamiltonian for a D-deep neighborhood can be ex-
pressed as a sparse matrix of size Nsites. Finding all the
eigenvalues is necessary to be able to describe the prop-
erties of the full spectrum. However, such a calculation
suffers from three shortcomings for our purpose. First
is the presence of unwanted edge states, unavoidable for
a finite lattice. The second problem is that eigenval-
ues’ numerical accuracy may make it hard to decide if an
eigenstate has exactly zero energy. Finally, finding the
full spectrum creates unnecessary computational cost if
one is only interested in zero energy eigenvalues. Typi-
cally matrix diagonalization scales with O(N3

sites) which
constrains system size the tight-binding calculations for
quasicrystals.

Instead of finding the spectrum, we speed up the cal-
culation of the LS by focusing on finding the null space
of the Hamiltonian and by taking advantage of the bi-
partite symmetry. Let’s consider a D-deep neighborhood
of an initial point which has Neven sites in the sublattice
containing the initial point and Nodd sites in the other
sublattice. The Hamiltonian will be Nsites × Nsites ma-
trix when expressed in the site |~R〉 basis with Nsites =
Neven + Nodd. By reorganizing the rows and columns
so that odd and even sublattice sites form blocks, the
Hamiltonian matrix takes the form

H =

[
0 C
CT 0

]
. (12)

Here C is a sparse Neven × Nodd matrix and CT is its
transpose. LS in the odd (even) sublattice form the null
space of the C (CT ). If the neighborhood depth D is even,
we are interested in the LS in the odd sublattice; thus,
the null space of C.

Calculation of the null space size of C can be accom-
plished by a number of numerical methods. We choose
QR decomposition in which the matrix C is expressed as
the multiplication of two matrices

C = QR (13)

whereQ is a unitary matrix andR is right triangular [28].
The number of zeros on the diagonal of R gives the size
of the null space. We use sparse QR decomposition as
implemented in MATLAB to calculate the null space size.
The sparsity of C speeds up the calculation immensely,
for a depth of D = 200 with Neven = 47339 and Nodd =
46942 the vectors forming the null space is calculated in
t ' 30s on a laptop computer with an Intel i5 processor.

We estimate the LS fraction from the result of the D-
deep neighborhood calculation as follows. First, assume
that D is even. We construct the Hamiltonian in the form
of Eq.12, and count the number of odd sublattice sites
Nodd. We calculate the size of the null space of C call the
number of LS defined on the odd sublattice NLS

odd. We
repeat the same process for depth D − 1, for which the
Hamiltonian can be obtained trivially by truncating the
Hamiltonian of neighborhood D. Now we are interested
in the LS on the even sublattice, which are obtained by

QR decomposition of the truncated CT . This calculation
gives us Neven and NLS

even. Then our estimate for the LS
fraction is

fLS '
NLS
even +NLS

odd

Neven +Nodd
. (14)

In Fig. 6 we show the LS fraction for fifteen different
starting points as a function of neighborhood depth. The
initial point’s perpendicular space position does not cause
large variations once the depth becomes larger than 50.
The LS fraction increases as the boundary effects get
smaller. As our method finds all the LS that stay within
the calculated neighborhood, it is natural to expect that
the fraction to increase as the boundary region becomes
smaller compared to the bulk region. The average for
fifteen different starting points gives fLS = 0.0838 at
depth 200. In the next section, we calculate an analytical
lower bound for the LS fraction as

fLS = 30796− 21776
√

2 ' 0.08547. (15)

The agreement between the two lower bounds shows that
we are unlikely to miss an LS type with more than 0.1%
frequency. Both of these values are quite close to the
recent[23] conjectured exact frequency fEx = 3/2−

√
2 '

0.08579.
As a test of our numerical method, we repeat the same

calculation for the Penrose lattice. The analytical lower
bound for LS fraction for the Penrose lattice is 81− 50τ ,
with τ = (1 +

√
5)/2 [15, 22]. We show the numeri-

cally calculated fraction in Fig.7 for ten distinct starting
points. The agreement between the analytical limit and
our numerical calculation is similar for both the ABL and
the Penrose lattice.

The QR decomposition we use to count the LS also
provides states that span the null space. As these states
are degenerate, any linear combination of them is still a
LS. The typical result of the numerical calculation is an
eigenstate distributed over a large section of the neigh-
borhood. However, a better understanding of the zero-
energy manifold can be obtained by defining types of LS.
By definition, any LS has finite support. Thus, Conway’s
theorem ensures that there are infinitely many copies of
the same LS related by translations. Following Ref.[15],
we define all these copies as belonging to the same LS
type. While any LS can be defined as a new LS type,
the aim is to find a finite set of LS types independent
from each other, spanning the whole manifold of zero en-
ergy states. For the Penrose Lattice, six LS types were
identified with these properties [15, 22, 25].

In general, a more compact LS type will have a higher
frequency and will span a larger portion of the LS mani-
fold. Thus, it is desirable to identify linear combinations
of LS which have a small number of sites in their support.
Previously, an optimization algorithm has been used to
find states with high inverse participation ratios [26]. In-
stead of focusing on a single LS, we use a method that
was first proposed for the calculation of maximally lo-
calized Wannier functions in a lattice [49]. The position
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FIG. 6. The numerically calculated LS frequency compared
with the analytical lower bound Eq15 and the conjectured ex-
act frequency [23] which are almost indistinguishable at this
scale. The LS frequency is estimated with Eq.14 for a finite
neighborhood. The perpendicular space coordinates for the
initial point of the neighborhood is randomly selected. Data
for 15 different initial points are shown with (blue) dots. The
red line shows the variation with depth for a single starting
point. The LS frequency is expected to approach the exact
frequency from below as the edge effects become less pro-
nounced in larger neighborhoods.
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FIG. 7. The LS fraction for the Penrose Lattice calculated for
ten different starting points (blue dots), compared with the
analytical lower bound from Ref.[15]. The calculated fractions
for one starting point are connected by red lines to display the
variation for a single starting point. There are 100735 sites
in a neighborhood of depth 205.

operators X̂, Ŷ are trivially defined by their action on

the states |~Ri〉 defined at each site. We first define a
projection operator

P̂LS =
∑
|ΨLS〉〈ΨLS |, (16)

where the sum is over all the LS found by our numeri-
cal calculation. Now we can define a projected position
operator

X̂LS = P̂LSX̂P̂LS . (17)

The eigenstates of the projected position operator are
as compact as possible in the x̂ direction given the con-
straint that they are built up of functions within the LS
manifold. This diagonalization is efficiently calculated
as the projected position operator for any D-deep neigh-
borhood can be represented by a matrix with the same
dimension as the Hamiltonian’s null space. In our cal-
culation, the diagonalization of X̂LS results in a block
diagonal form, as there are various LS that are related
by a translation along the y direction. Thus, we follow
by defining the ŶLS operator in a similar manner and di-
agonalize it within degenerate the blocks to localize the
LS in both directions. As a result of this process, we find
a set of twenty LS types which are investigated in the
next section.

IV. TYPES AND FREQUENCIES OF
LOCALIZED STATES

The previous section’s numerical method allows us to
identify twenty LS types. In each case, the numerically
obtained wavefunction can easily be verified without wor-
rying about the accuracy of the energy eigenvalue, as
the amplitudes of an LS can be taken as integers. We
display the wavefunctions of types A to F in Figs.8-13
and the remaining fourteen types in the appendix. Once
the wavefunction is determined in real space, we use the
perpendicular space image of its support to calculate its
exact frequency. We display the perpendicular space al-
lowed regions for each LS next to its real space form.

The existence of LS in the ABL was apparent in nu-
merical studies of the spectrum.[27]. The most abundant
LS, which we call type-A and type-B, are immediately
obvious by comparison with the LS of the Penrose lat-
tice. However, we find significant differences between the
LS of the Penrose lattice and ABL when all of the zero-
energy manifold is investigated.

For the Penrose lattice, four out of the six types of LS
break the five-fold rotational symmetry. While five-fold
symmetry can be restored with a redefinition of the LS
types, breaking of the symmetry results in more compact
LS, which yields LS types with higher frequency. All
twenty LS types of the ABL we identify below have eight-
fold symmetric densities around a T1 eight edge vertex.
The LS found from our numerical calculations always had
support which encircles at least one eight edge vertex.
While the eight-fold symmetry can be reduced by linear
combinations of the LS types we give below, this does
not decrease but rather increases the number of sites in
the support.

The support of LS for the Penrose lattice excluded
some vertex types [25]. Local connectivity ruled out spe-
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TABLE I. Properties of the 20 LS types for the ABL. The LS support is either on the sublattice σ containing the central T1
vertex (0) or the other (1) sublattice. The LS requires a neighborhood depth, shown in the Depth column, around the central
vertex to exist. Each LS has a density that is eight-fold symmetric around the central vertex. However, the wavefunction either
stays the same or is multiplied by -1 under a π/4 rotation as listed in the C8 column. The width of the allowed perpendicular
space octagon, as well as resulting frequency, is also listed.

Type σ Depth C8 W⊥ fLS fLS '
A 1 2 -1 √

2− 1
(
√

2− 1)4 =
2.9437 10−2

B 0 3 -1 17− 12
√

2
C 1 6 +1

5.0506 10−3D 1 6 -1 (
√

2− 1)2 = (
√

2− 1)6 =

E 0 7 -1 3− 2
√

2 99− 70
√

2
F 0 7 +1
G 1 12 -1

8.6655 10−4

H 0 13 -1

I 1 14 +1 (
√

2− 1)3 = (
√

2− 1)8 =

J 1 14 -1 −7 + 5
√

2 577− 408
√

2
K 0 17 -1
L 0 17 +1
M 1 30 +1

1.4868 10−4

N 1 30 -1
O 0 31 +1

P 0 31 -1 (
√

2− 1)4 = (
√

2− 1)10 =

Q 1 34 +1 17− 12
√

2 3363− 2378
√

2
R 1 34 -1
S 0 41 -1
T 0 41 +1

cific regions of the perpendicular space, resulting in for-
bidden sites. For the ABL, we find that every type of ver-
tex, from T6 with three neighbors to T1 with eight neigh-
bors, can support an LS. While the vertices with a smaller
number of edges are more likely to harbor LS, even eight-
edge and seven-edge vertices have LS, as shown in types
G and L. We have not been able to exclude any regions in
perpendicular space as forbidden sites using the methods
developed for the Penrose lattice.

We count the frequency of any type of LS by identify-
ing the allowed region for one of the vertices in the LS’s
support. Due to the eight-fold symmetry of all our LS
types, the allowed areas are always octagons. The ratio
of the area of an allowed octagon to the area of V gives
the LS frequency. In table I we give a summary of the
properties of the LS types, together with their frequen-
cies.

The most abundant LS are the type-A and type-B
which are found around each T1 vertex as given in Fig.8
and Fig.9. Both have eight next-nearest neighbor sites
arranged on a ring around a T1 vertex with the wave-
function alternating in sign. Types A and B need 2 and
3 deep neighborhoods to exist around the central T1 ver-
tex, which does not put any further constraints on that
vertex’s perpendicular space position. Thus a Type-A LS
can be uniquely labeled by a perpendicular space vector
|TA,~r⊥〉 where ~r⊥ lies in a octagon of width

√
2−1. The

frequency of both types is equal to the frequency of T1
vertices

f1 = (
√

2− 1)4 = 17− 12
√

2 ' 2.9437 10−2. (18)

Types A and B are independent of each other as one
is defined only on three edge vertices while the other’s
support consists of four edge vertices.

The next set of LS are formed by types C,D,E, and F.
All of which have the same size perpendicular space oc-
tagons as allowed regions, and corresponding frequencies

f2 = (
√

2− 1)6 = 99− 70
√

2 ' 5.0506 10−3. (19)

The real space configuration and their allowed areas in
perpendicular space are given in Figs.10,11,12,13.These
four types have allowed regions outside what was covered
by types A and B, consequently, they are independent of
these types. Among each other, types C to F are not only
independent but orthogonal. Types C and D do not over-
lap with E and F in perpendicular space. Types C and
F have wavefunctions that are unchanged under a π/4
rotation, while types D and E acquire a −1 sign under
the same rotation, which establishes mutual orthogonal-
ity. These states’ support contains 3, 4, 5, and 6 edge
sites, but not 7 or 8 edge sites.

The next set of LS has 6 types all of which have the
frequency

f3 = (
√

2− 1)8 = 577− 408
√

2 ' 8.665510−4, (20)

and their real and perpendicular configurations are given
in Figs. 15,16,17,18,19,20. Independence of each type
from others can be established by investigating the
unique perpendicular space regions covered by each type,
as well as their symmetry under rotation. For example
type-G has 8-edge vertices in its support, and type-L has
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+1

-1

+1
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V

FIG. 8. Type-A LS wavefunction and corresponding perpen-
dicular space allowed regions for eight points in the support.
The perpendicular space allowed regions are colored based
on the sign of the wavefunction (red for positive, blue for
negative) here and in all subsequent figures. All type-A LS
support consists of 3 edge vertices. The outermost vertices
are the nearest neighbors of the support of Type-A wavefunc-
tion. The perpendicular space position of the central point
determines what other bonds are connected to these outer-
most vertices.

7-edge vertices making them independent from all other
types.

Finally we identify 8 more LS types with the frequency

f4 = (
√

2− 1)10 = 3363− 2378
√

2 ' 1.486810−4, (21)

which are displayed in the appendix. The sum of the
frequencies of these 20 LS give us a lower bound

fLS ≥ 30796− 21776
√

2 ' 0.08547. (22)

In a recent paper[23] Koga has used deflation of the

+1

-1+1

-1

+1

-1 +1

-1

V

FIG. 9. Type-B LS wavefunction and corresponding allowed
regions in perpendicular space. Type-B wavefunction is non-
zero only on T5 vertices; there is never overlap with a type-A
state.

neighborhood around a T1 vertex to obtain larger struc-
tures with up to ∼ 109 vertices. By systematically count-
ing the appearance of smaller structures within the larger
lattices and exact diagonalization of the Hamiltonian he
was able to identify new LS appearing at each deflation.
The numerical structure for the first 7 deflations fit a
pattern of m(m + 1) independent LS types for the mth

deflation of the lattice. Our results which are obtained
for general neighborhoods rather than a symmetric lat-
tice around a T1 vertex display a similar pattern.

Based on the patterns observed in table I, we can con-
jecture that there are infinitely many independent LS
types in the ABL which are organized into generations.
At the mth generation there are 2m LS types. The al-
lowed perpendicular space region for the each one of these
2m LS types is an octagon of width (

√
2 − 1)m, corre-
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FIG. 10. Type-C LS wavefunction and perpendicular space
allowed regions. Although type-C support also consists of
T6 vertices like type-A, no vertex appears in the support of
both type-A and type-C, as can be seen by comparing the
two types’ perpendicular space images. Regions previously
uncovered by other types in perpendicular space can be used
to establish independence.

sponding to a frequency of fm = (
√

2 − 1)2m+2. Each
generation has equal number of LS in both sublattices.
If the generation index m is even, LS in each sublattice
have m/2 types with wavefunctions which are symmet-
ric under π/8 rotation and m/2 types which are anti-
symmetric. For odd m, (m + 1)/2 of the LS in a sub-
lattice have eigenvalue −1 under eight-fold rotation, and
(m − 1)/2 have eigenvalue +1. If this pattern holds for
every generation then the total frequency of LS is

fEx =

∞∑
m=1

2mfm = 3/2−
√

2, (23)

as found in [23].

+1

-1

-1

+1

-1
+1

+1
-1

+1

-1

-1

+1

-1
+1

+1
-1

-2

+2

-2

+2

-2

+2

-2

+2

V

FIG. 11. Type-D LS wavefunction and perpendicular space
allowed regions. Type-D is the first LS type that has support
on 5-edge vertices, thus independent from previous types. Al-
though type-C and type-D share 16 overlapping sites, their
overlap is zero as one is even and the other is odd under π/4
rotation.

Another interesting property of the LS of the ABL are
their almost uniform density. Unlike the Penrose lattice
LS types, all the twenty LS types have wavefunctions
made from only±1 and±2. Furthermore if we relax the 8
fold rotation symmetry we can find a basis of independent
LS which have entirely uniform density on their support.

We can compare this value with the results of the nu-
merical calculation as given in Fig.6, and see that numer-
ical calculation approaches the analytical values from be-
low as the neighborhood depth is increased. Our numer-
ical method cannot count the LS which cross the bound-
ary of the finite lattice we are using. Thus the deviation
from the exact result should be essentially a boundary
effect. We expect the numerically calculated frequency
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FIG. 12. Type-E LS wavefunction and perpendicular space
allowed regions. Independence of Type-E from the previous
LS types is established by noticing that its support contains
six edge vertices.

to approach the exact result with 1/R decay as a func-
tion of the radius R of the neighborhood. More precisely
we can estimate the number of a specific LS type which
cross the boundary of the neighborhood as follows. If a
LS type has frequency fx and a support with radius rx
the approximate number of LS of this type crossing the
boundary would be Nmiss ' fx2πRrx. Hence the nu-
merically estimated frequency would be lower than the
exact frequency by fest ' fexact − fx rxR . This estimate
assumes that the LS type is uniformly distributed over
the lattice, this assumption is violated for the Penrose
lattice which has natural boundaries for LS in the form
of strings. We observe that there are large deviations in
the numerical estimate for the Penrose lattice in Fig.7
which is a consequence of strings crossing the boundary.
For the ABL, a 1/R fit is consistent with the exact result

-1

-1-1

-1
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-1

-1

-1-1

-1
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+2

+2

+2

+2

+2

+2
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FIG. 13. Type-F LS wavefunction and perpendicular space
allowed regions. Type-F has 5-edge vertices which are not
in the support of any previous types. Although it shares a
significant amount of allowed regions with type-E, rotational
symmetry proves these types’ orthogonality. While they are
independent, type-F and type-A need not be orthogonal, as
can be seen by overlapping allowed areas of three edge ver-
tices.

being equal to the values given above. However, the fits
are not restrictive enough to rule out a missing frequency
of the order of 0.1%.

V. CONCLUSION

Motivated by the recent interest in the realization of
quasicrystalline symmetry in engineered quantum sys-
tems, such as the eight-fold quasicrystal potential for cold
atoms [6], we investigated the strictly localized states of
the Ammann-Beenker lattice in the tight-binding limit.
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FIG. 14. Allowed regions for all the LS superimposed. Most
of the area inside V is covered with at least one LS allowed
region. All vertex types can appear in the LS support. How-
ever, none of the regions corresponding to a particular vertex
type is wholly covered. Especially the eight edge vertices close
to the center of V form the largest uncovered area.

We constructed finite lattices made up of all sites that
can be reached from a given lattice point with a fixed
number of hops to the nearest neighbors. This construc-
tion was efficiently carried out by considering the perpen-
dicular space images of lattice points. Combining this
neighborhood with bipartite symmetry enables the iden-
tification of LS without the inclusion of any edge states.
We calculated the null space of the Hamiltonian using a
numerical method based on a sparse matrix QR decom-
position algorithm. This method allowed us to count the
number of LS in lattices of up to 100 000 sites. Our nu-
merical result indicates fLS ' 0.08338 for the frequency
of LS.

We investigated the LS’s general structure by calcu-
lating the eigenstates of the position operator projected
into the zero energy manifold. As a result, we iden-

tified twenty independent LS types, all of which have
eight-fold rotational symmetry around an eight-edge vor-
tex. We calculated the frequency of each LS by identi-
fying allowed perpendicular space areas for vertices in
their support. When those areas are superimposed for
all LS as in Fig.14, one can see that most of the ver-
tices in the ABL support at least one LS and all ver-
tex types can host LS. There are areas in perpendicular
space for which neither found an LS nor could out rule
the existence of an LS. The total frequency of LS gives
fLS = 30796− 21776

√
2 ' 0.08547.

This value is very close to the recent conjecture for the
exact fraction fEx = 3/2 −

√
2, and also the numerical

results. The general organization of the LS types are
parallel with Ref.[23], and our results for the fourth gen-
eration of LS as well as the patterns observed in the first
four generations can be considered as further evidence
for this conjecture. Both the uniformity of the LS for the
ABL, and symmetry around an eightfold vertex are in
marked contrast with the LS of the Penrose lattice. The
reason for this contrast is not clear, indicating that the
connection between the definition of a vertex model on a
quasicrystalline lattice and its spectrum requires further
investigation.

We demonstrated the use of the perpendicular space
method in Ref[25] in another setting. It would be inter-
esting to see if a similar labeling method can be developed
for quasicrystal eigenstates that are not strictly localized.

Appendix: LS types in the third and fourth
generation

The fourteen types of LS in the third and fourth gener-
ation are displayed in real space below. The figures also
show the allowed regions for their vertices in perpendic-
ular space and the caption of each figure points out the
reason for the independence of the LS type.
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FIG. 23. Type-O LS wavefunction and perpendicular space allowed regions. Type-O and Type-P cover new 7-edge regions and
are both independent as they are orthogonal.

V

FIG. 24. Type-P LS wavefunction and perpendicular space allowed regions.Type-O and Type-P cover new 7-edge regions and
are both independent as they are orthogonal.
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V

FIG. 25. Type-Q LS wavefunction and perpendicular space allowed regions.Type-Q and Type-R cover new 8-edge regions and
are both independent as they are orthogonal.

V

FIG. 26. Type-R LS wavefunction and perpendicular space allowed regions.Type-Q and Type-R cover new 8-edge regions and
are both independent as they are orthogonal.
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FIG. 27. Type-S LS wavefunction and perpendicular space allowed regions.Type-S and Type-T cover new 4-edge regions
(regions furthest away from the center of V ) and are both independent as they are orthogonal.

FIG. 28. Type-T LS wavefunction and perpendicular space allowed regions. Type-S and Type-T cover new 4-edge regions
(regions furthest away from the center of V ) and are both independent as they are orthogonal.
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