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We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics
of photon fields strongly interacting with matter. The basic unit of the proposed molecular quantum
simulator can be realized by a simple dimer of a spin 1/2 and a spin S transition metal ion, solely
controlled by microwave pulses. The spin S ion is exploited to encode the photon field in a flexible
architecture, which enables the digital simulation of a wide range of spin-boson models much more
efficiently than by using a multi-qubit register. The effectiveness of our proposal is demonstrated by
numerical simulations using realistic molecular parameters, whose prerequisites delineating possible
chemical approaches are also discussed.

I. INTRODUCTION

In the last few years, quantum computers have
emerged as a disruptive technology that promises to solve
a large class of problems much more efficiently than any
classical machine. The first noisy quantum processors [1]
are already available and enable the implementation of
non-trivial algorithms targeted to specific tasks [2–5]. In
particular, thanks to their intrinsically quantum logic [6],
they could be used already in the short term to simulate
the dynamics of classically intractable quantum systems.
Understanding the behavior of matter at the nano-scale
is a fundamental step to design new molecules, mate-
rials and devices. However, the “wonderful problem”
of quantum simulation “doesn’t look so easy” [7]. In
fact, many examples of interest for Physics and Chem-
istry, such as atoms interacting with light or with thermal
baths, are intrinsically difficult to be modeled on current
qubit-based architectures [8].

In this respect, Chemistry offers the change of
perspective which could overcome the aforementioned
difficulties. Indeed, molecular spin systems charac-
terized by a sizeable number of accessible levels can
be used to encode multi-level logical units (qudits).
Each molecular qudit could replace several distinct
qubits in various algorithms [9], thus greatly simplifying
manipulations of the register. Magnetic molecules are
the ideal playground to implement this alternative
architecture. Indeed, they are characterized by long
coherence times [10–16], which can be even enhanced by
chemically designing the molecular structure [17, 18] or
targeting protected transitions [19, 20]. Moreover, the
spin state of these systems can be easily manipulated
by microwave or radio-frequency pulses [21], thus im-
plementing single- and two-qubit gates in permanently
coupled [22–24] or scalable architectures, for which dif-
ferent ways of switching the qubit-qubit interaction were
proposed [25–28]. Recently, the idea of exploiting the
additional levels typical of these systems for quantum
error correction has been put forward [21, 29, 30].

In these works, a multi-level molecule is used to en-
code a protected qubit within a single object, in place
of the many qubits required by standard block-codes [31].

Here we show how the qudit nature of magnetic
molecules could simplify the practical implementation
of important quantum simulation algorithms. We focus,
in particular, on the simulation of light-matter inter-
action processes in the ultra-strong coupling regime, a
problem that does not generally allow for a perturbative
treatment and is therefore hard to be solved on a
classical computer. This class of models, which are of
crucial importance for many fundamental investigations
ranging from cavity quantum electrodynamics to pho-
tochemistry [32, 33], have mostly been tackled so far
with analog [34–36] or digital-analog [37, 38] simulation
strategies. The necessity to describe radiation modes
(characterized in principle by infinitely many degrees
of freedom) represents a major challenge for digital
approaches. Standard encodings, designed for multi-
qubit architectures [39], either employ an exponentially
large Hilbert space (using a number of qubits equal to
the number of simulated photons [40]) or reduce the
number of qubits at the price of non-local qubit-qubit
interactions and hence complex quantum circuits [39, 41].

Conversely, here we reduce both the hardware over-
head and the complexity of manipulations by mapping
each photon mode to a single spin S qudit. Thanks to
the power of coordination chemistry, different qudits can
be linked together and, e.g., to spin 1/2 units encoding
two-level atoms [42–45], in non-trivial molecular geome-
tries. This, together with the capability of manipulating
the state of the hardware by resonant and semi/resonant
microwave pulses, would allow us to digitally simulate
the atom-photon dynamics involving multi-mode fields
and/or multiple atoms [40, 46].
In particular, we show that very simple molecules con-
sisting of dimers of transition metal ions (a spin 1/2 and
a spin S ≥ 3/2) can be used to efficiently simulate atom-
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photon interactions in a non-trivial range of parameters
up to strong and ultra-strong coupling [32, 33]. The
same approach can be extended to simulate, e.g., lattice
gauge models involving many field excitations [41], by
exploiting the remarkable capabilities of coordination
chemistry in synthesizing multi-center molecules with
very large total spin [44].
In the following, we design the sequence of pulses
allowing us (i) to determine the ground state of the
simulated system using the variational quantum eigen-
solver algorithm (VQE) [3, 47–49] and (ii) to follow
the time evolution of the system prepared in an out-of-
equilibrium initial state. The remarkable performance
of the proposed hardware is demonstrated by numerical
simulations with parameters corresponding to existing
coordination compounds [12, 20, 50–54], including the
effect of decoherence and the full sequence of pulses
needed to implement the algorithms. These results make
the here-proposed molecular quantum simulator very
promising and pave the way to forthcoming proof-of-
principle experiments. We finally note that such qudit
encoding can be easily extended to any other boson
field, thus allowing one to simulate along the same lines
many other important models, ranging from phonon
vibrations [55–57], possibly interacting with spins [58],
to lattice gauge theories [41] and complex quantum
optical setups [59].

II. RESULTS

A. Molecular Quantum Simulator

The proposed molecular hardware for quantum sim-
ulation is sketched in Fig. 1 (left part). It is a dimer
consisting of a spin S1 ≥ 3/2 qudit that we exploit to en-
code the boson field, and an effective s2 = 1/2, described
by the following Hamiltonian:

H0 = g1zµBBSz1 + g2zµBBsz2 +DS2
z1 +

∑
α

JαS1αs2α.

(1)
Here, the first two terms represent the Zeeman inter-
action of the two spins with an external magnetic field
B applied along z axis and µB is the Bohr magneton.
The third term is the zero-field splitting on the qudit
(important to make all qudits transitions spectroscop-
ically distinguishable) and the last one models an ex-
change or dipolar interaction between the two ions. To
reduce our assumptions, we consider in the following ax-
ially anisotropic (Jz = −2Jx,y) coupling, modeling a
dipole-dipole interaction between the two centers. Dif-
ferent forms of the spin-spin interaction or of the single-
ion anisotropy do not hinder the implementation of our
scheme. The only requirement concerns the hierarchy of
interactions: the transverse component of the spin-spin
coupling must be much smaller than the difference be-

tween the excitation energies of the two spins S1 and s2.
This condition guarantees that the eigenstates of Hamil-
tonian 1 are practically factorized products of the states
of the two spins, and can thus be labeled by Sz1 and sz2
eigenvalues: |ψm1m2〉 ≈ |m1〉|m2〉.
These requirements are easily fulfilled in coordination
compounds containing a spin 1/2 ion coupled to a spin
S1 transition metal ion. The latter provides the ideal
qudit for the proposed architecture. As shown below,
the relatively small number of levels of these qudits
(d = 2S1 + 1 ≤ 6) is already sufficient to simulate light-
matter interaction from strong to ultra-strong coupling
regimes. In addition, transition metal ion complexes with
quenched orbital angular momentum ensure significantly
long coherence times [12, 17, 20, 50, 54], important to
achieve a good simulation. We consider, in particular,
two paradigmatic cases: CrIII and FeIII ions in distorted
octahedral environment, yielding 3d3 and 3d5 electronic
configurations with a single electron per orbital and thus
S = 3/2 and 5/2, respectively [52, 53]. Due to the practi-
cally complete quenching of the orbital angular momen-
tum, the spectroscopic tensor g is isotropic and close to
the free electron value, while single ion anisotropy is typ-
ically in the ∼ 0.2 − 0.3 cm−1 range [52, 53]. As an
illustrative example, in the simulations reported below
we use D = 0.24 − 0.30 cm−1 and g = 1.98 for CrIII, as
in [17, 20] and D = −0.30 cm−1 and g = 2.00 for FeIII,
as reported e.g. in Ref. [50, 60]. [61]
These single-ion qudits can be weakly coupled through
bond or through space to a spin 1/2 ion, such as CuII

in distorted octahedral ligand cage [12, 52, 53], typically
characterized by g ∼ 2.1− 2.3 and in some cases also by
remarkable coherence times [12]. In the following we as-
sume g2z = 2.3, significantly different from g1z = 1.98−2
to ensure factorization of the system wave-function. For
the dipolar interaction we assume Jx,y = 0.008 cm−1,
which corresponds to a dipolar coupling (in the point
dipole approximation) between ions at a distance ∼ 6 Å.
A more extensive discussion on possible physical imple-
mentations is provided in Sec. III.
These parameters, combined with a static field of ∼
0.3 − 0.5 T ensure that ∆m1,2 = ±1 transitions needed
to manipulate the state of the system fall within the 20
GHz range typically explored in coplanar microwave res-
onators [62, 63].

Having described in detail the molecular hardware, we
now switch our attention to the target model, object of
our simulation, and on how to map it onto the hardware.
The target Hamiltonian is the Rabi model [64–66]:

HS = ωaσz + Ωa†a+ 2Gσx(a+ a†) (2)

Here σz and σx are the usual spin 1/2 operators, while
a† (a) are bosonic creation (annihilation) operators,
[a, a†] = 1, G is the atom-photon coupling, Ω (ωa) is the
photon (atom) excitation energy, and we have assumed
~ = 1. Hamiltonian (Eq. 2) describes the interaction be-
tween a radiation field and a two level system, such as an
atom or a spin 1/2 particle. It has recently attracted a



3

𝑆1 𝑠2
𝐽

Programmable molecular
quantum hardware

Output: 
dynamics of interacting

spin-photon systems

Quantum 
simulation

+1/2

−1/2

+3/2

−3/2
𝑆𝑥1

𝑆𝑧1

2

1

3

0

𝑛

𝑎†

⋮

FIG. 1. Scheme of the molecular quantum simulator. Left:
hardware setup, consisting of a qudit spin S1 coupled by ex-
change interaction J to a spin s2 = 1/2. Right: target spin-
photon model. In the bottom part of the figure we quali-
tatively sketch also the mapping between the qudit, with all
the transitions made energetically distinguishable by the com-
bined effect of Zeeman and zero-field splitting interactions,
and the boson field.

great interest in the context of quantum computing, with
efforts devoted to achieve the strong coupling between
superconducting qubits or spin systems and quantized
photons within wave-guide resonators [67, 68]. Behind
its apparent simplicity, our target model can reveal in-
teresting Physics and non-trivial behaviors associated to
ultra or deep strong coupling regimes [33], in which light
and matter strongly mix together and exchange excita-
tions without conserving energy [32]. Such a regime can
also give insights into fundamental principles of lattice
gauge theories [69]. We fix in the following ωa = Ω/2
and study the model for increasing values of the G/Ω
ratio, the threshold for the ultra-strong coupling regime
usually being G/Ω & 0.25.
The molecular processor described by Hamiltonian 1 can
be used to compute ground state properties and to mimic
the dynamics of the target Hamiltonian 2. To achieve
this, we first need to encode the boson field into the spin
qudit. Notice that a very good approximation can be
obtained by truncating the boson field to a relatively
small number of levels. Hence, the d = 2S1 + 1 levels
of the qudit are sufficient to encode the radiation field
with negligible error, by truncating the radiation field to
a maximum number nM = 2S1 of bosons. The mapping
between Sz1 eigenvalues and number of bosons (n = a†a)
is shown in the bottom part of Fig. 1. In parallel, the
two-state atom appearing in the Rabi Hamiltonian can
be directly encoded on the hardware spin 1/2 degrees of
freedom.

Complete control of the hardware is achieved via mi-
crowave pulses resonant (or semi-resonant) with specific
excitations of the spin 1/2 or of the qudit. In particu-
lar, ∆m2 = ±1 transitions allow us to rotate the state
of the qubit, while ∆m1 = ±1 pulses are used to excite

the qudit. Moreover, the spin-qudit interaction enables
conditioned (entangling) operations.

B. Variational quantum eigensolver

The starting point to derive many important proper-
ties of the examined systems is the determination of its
ground state wave-function. This task can be achieved
using the variational quantum eigensolver (VQE) ap-
proach [3, 47–49]. This is a hybrid quantum-classical al-
gorithm, particularly resilient to noise and therefore well
suited for near term quantum processors. It exploits the
fact that the energy expectation value is minimum for
the ground state of the system. The quantum hardware
is used to generate an approximation of the ground state
(also known as trial wavefunction or variational ansatz)
for the target model, which depends on a set of free pa-
rameters θi, and to evaluate the energy expectation value.
Minimization of the evaluated energy by a classical sub-
routine allows us to explore the parameter space until
convergence to the system ground state. It is worth notic-
ing that this method is typically much less demanding,
compared to the digital simulation of real time evolution,
in terms of the complexity and length of the required se-
quences of quantum operations to be implemented.

Here we demonstrate an implementation of the VQE
on the proposed qudit architecture applied to the tar-
get Rabi Hamiltonian, Eq. (2). We construct the trial
wavefunction by designing some basic quantum opera-
tions achieved in practice via external control microwave
pulses. In particular, as shown in Fig. 2a, we assume a
(S1, s2) = (3/2, 1/2) hardware platform and we combine
pulses resonant with transitions of s2 (green arrows), im-
plementing rotations of the qubit, with ∆m1 = ±1 pulses
on the S1 = 3/2 spin (black). To introduce entanglement
in the approximate ground state, the operations on the
S1 = 3/2 spin are actually conditioned by the state of the
spin 1/2, i.e. we rotate each pair of qudit levels by ±θi
depending on the sign of m2 (see Fig. 2a). In total, the
ansatz contains only 4 free parameters, and can be imple-
mented with a sequence of microwave pulses that can be
as fast as ' 100−200 ns. We also mention that such vari-
ational structure, which can be natively realized on our
proposed qudit architecture, is closely related to the so-
called polaron ansatz, which was recently implemented
on superconducting quantum hardware [40] through non-
trivial decompositions into elementary qubit operations.

In this demonstration, we combine a classical opti-
mization routine, namely the Nelder-Mead simplex al-
gorithm [70], with numerical simulations of the unitary
transformations corresponding to every choice of the vari-
ational parameters. In fact, each sequence of microwave
pulses can be seen as the series of quantum operations
reported in the inset of Fig. 2b. Here the black thick
(green narrow) line represents the qudit (qubit). Con-
ditioned qubit-qudit operations are depicted with black
boxes, while single qubit rotations are shown in green, in
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FIG. 2. Qudit-based VQE for the Rabi model. (a) Sequence of pulses for the implementation of the ground state approximation.
On the left, we report the (approximate) values m1 and m2 for the hardware eigenstates, and on the right the corresponding
photon numbers. (b) Minimization of the Hamiltonian expectation value for G/Ω = 0.6. Data points converging to the
value marked by the blue dashed line are obtained simulating a realistic hardware with T2 = 10 µs. The red dashed line
marks the optimal value achieved in the absence of errors and decoherence. The inset represents schematically the set of
quantum operations which are used to approximate the ground state, including Rx,y(δ) = e−iδsx,y2 rotations on the spin 1/2
and conditioned ∆m = ±1 pulses on the spin S1 = 3/2. The variational parameters are indicated as θi, while we assume an
initial state with zero photons and a de-excited atom. (c) Ground state energy and (inset) corresponding average number of
photons and atom excitations. Dashed lines represent ideal values with no approximations, solid lines are the exact results
obtained by Hamiltonian diagonalization after truncating the photonic Hilbert space to d = 4 levels, dotted lines are numerical

VQE results with no errors or dechoherence and diamonds are simulations of the real device. Each expectation value E(~θ) can
be measured by inducing ∆m1,2 = ±1 transitions with appropriate microwave pulses. Hardware parameters are g1 = 1.98,
g2 = 2.3, D = 0.24 cm−1, Jx,y = 0.008 cm−1, B = 0.4 T.

direct correspondence with Fig. 2a.

Simulations are performed according to a realistic
hardware setup, including all the required external con-
trol pulses and molecular parameters discussed above.
The effect of a finite spin coherence time T2 is included
by simulating the dynamics of the hardware density ma-

trix ρ according to the Lindblad master equation [71]

dρ

dt
= −i[H0 +H1(t), ρ]

+
1

T2

(
2Sz1ρSz1 − S2

z1ρ− ρS2
z1

)
+

1

T2

(
2sz2ρsz2 − ρ/2

)
(3)

where time dependent H1 term in the Hamiltonian in-
dicates the presence of external oscillating control fields.
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For simplicity, we assume the same value for the T2 for
both spins in the hardware.

In Fig. 2c, we report results of the VQE algorithm sim-
ulated by assuming a realistic value of the spin coherence
time (10 µs, symbols), compared with exact values (lines)
for both the ground state energy and some ground state
properties of interest. Notice that, over a wide range
of G/Ω values, the proposed ansatz achieves very good
approximations of the exact ground state. The limiting
factor is essentially the expressibility of the trial wave-
function, i.e. the fact that by using the set of operations
reported in Fig. 2a we may not achieve the exact form
of the true ground state. This limitation can in principle
be overcome by repeating the same basic parametrized
structure more than once. It is worth noting that a fi-
nite coherence time, similarly to small imperfections in
the practical realization of quantum gates, only mini-
mally affects the final results. In fact, consistently with
the underlying variational principle, noisy ground state
energy estimates sometimes converge to values slightly
larger than the exact ones.

C. Digital quantum simulation of strong
light-matter interaction

After investigating ground state properties, we now
move on to show how the proposed molecular qudit-based
processor can be used to simulate the dynamics of the
Rabi model. The digital quantum simulation of the tar-
get Hamiltonian HS requires to implement the transfor-
mation:

|ψ(0)〉 −→ |ψ(t)〉 = e−iHSt|ψ(0)〉. (4)

This can be approximated to the
product of unitary terms e−iHSt ≈
(e−iωaσzt/Ne−iΩaa

†at/Ne−i2Gσx(a+a†)t/N )N by dividing
the transformation into small time steps t/N , according
to the Suzuki-Trotter decomposition. Each unitary step
is then implemented by a sequence of micro-wave pulses.
For instance, the effect of the diagonal operator a†a
is obtained by pulses semi-resonant with ∆m1 = ±1
transitions [72], while the term σx(a + a†) is simulated
by resonant ∆m1 = ±1 transitions conditioned by the
state of the qubit and essentially correspond to the
similar ones employed in the VQE above.

In Fig. 3 we show the digital quantum simulation of
the Rabi model, Eq. (2), realized with the spin qudit
encoding described above and for increasingly challeng-
ing choices of the G/Ω ratio. Large G/Ω values intro-
duce peculiar features in the dynamics of the target sys-
tem: the rotating wave approximation fails and the total
number of excitations is not conserved. This non-trivial
behavior emerges in our simulations below, where we re-
port the time evolution of the average number of photons
〈nphotons〉 in the radiation mode and of the atom popu-
lation 〈σz〉, assuming an initial vacuum state with zero
photons and the atom in its ground state. This vacuum

state (with no excitations) would not be subject to any
evolution for small G/Ω ratios. Hence, oscillations in
〈nphotons〉 and 〈σz〉 are a direct signature of the ultra-
strong coupling regime. In all panels, we compare the
reference curves, computed via exact matrix exponenti-
ation, with numerical simulations of a realistic hardware
obtained again by integrating Eq. (3). A quantitative
assessment of the overall quality of the results can be
obtained by computing the fidelity F =

√
〈ψid|ρ|ψid〉

between the hardware output ρ and the ideal result ψid
of a digital quantum simulation algorithm realized with
the same number of Suzuki-Trotter time steps and the
same size of the bosonic Hilbert space. The latter can be
obtained by with standard matrix algebra.

In the first example, Fig. 3a-b, we show the results of
the quantum simulation of the target Hamiltonian HS
with G/Ω = 0.25 realized with N = 4 (for t ≤ 5) and
N = 6 (for t > 5) Suzuki-Trotter steps. Here, the hard-
ware setup is composed of a spin S1 = 3/2, encoding a
d = 4 photonic space, and a spin s2 = 1/2 represent-
ing the atomic degrees of freedom. The longest pulse
sequence requires 1.7 µs, resulting in large average fideli-
ties: F ' 0.984 for T2 = 50 µs and F ' 0.951 for T2 = 10
µs.

Increasing values of the target G/Ω ratio, Fig 3c-f,
yield larger oscillations in the average number of photons
and atom populations. To capture these features we
need, on the one hand to increase the number of digital
steps (N), on the other hand to enlarge the bosonic
space (nM ). This last step is fundamental to correctly
capture the system dynamics at significant G/Ω, as
clearly shown in panels (g-h), where we compare the
time evolution obtained by truncating the number of
photons to 3 or 5, for G/Ω = 0.7. Indeed, by slightly
increasing nM , we practically obtain the exact dynamics
(continuous line). Given nM = 2S1, on the synthetic
side, this simply translates in changing the qudit spin
from 3/2 to 5/2.
Conversely, increasing N (and hence the length of
our manipulations) requires larger T2 or faster pulses,
e.g. by engineering the molecular spectrum to better
resolve all transitions. In this respect, the large degree
of chemical flexibility represents a valuable resource.
In particular, it is helpful to replace the s2 = 1/2
with a spin s2 = 1 system. A promising candidate
ion is for example NiII, for which coherence times in
the regime of microseconds were reported [54]. While
only two consecutive levels, e.g. m2 = 0, 1, are used for
the actual encoding of the target model, the presence
of an additional zero-field splitting term D′s2

z2 in the
hardware Hamiltonian greatly improves the frequency
resolution of the relevant transitions, thus allowing for
larger operation fidelities with reasonably fast control
pulses. For NiII, D′ can be in the 0.1 − 1 cm−1 range
(in octahedral ligand field) [52, 53]. In Fig. 3c-d we
report a digital simulation for G/Ω = 0.5, obtained
with N = 7 on a (S1, s2) = (3/2, 1) model hardware.
Here, the pulse sequences last approximately 0.9 µs
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FIG. 3. Digital quantum simulation of the Rabi model on a qudit architecture. In panels (a)-(f) the solid lines are numerical
results taking into account the same digital approximation and space truncation errors to which the hardware sequences are
subject, but without decoherence or imperfections in the quantum operations. The data points represent hardware simulations
from which we obtain the average number of photons and atom population as 〈nphotons〉 = 〈Sz1〉+ S1 and 〈σz〉 = 〈sz2〉. (a-b)
G/Ω = 0.25 simulated with S1 = 3/2, s2 = 1/2, g1 = 1.98, g2 = 2.3, D = 0.24 cm−1, B = 0.4 T. (c-d) G/Ω = 0.5 simulated
with S1 = 3/2, s2 = 1, g1 = 1.98, g2 = 2.18, D = −D′ = 0.24 cm−1, B = 0.2 T. (e-f) G/Ω = 0.7 simulated with S1 = 5/2,
s2 = 1, g1 = 2, g2 = 2.18, D ' −0.30 cm−1, D′ = −0.24 cm−1, B = 0.08 T. (g-h) Exact time evolution (N = ∞) for
G/Ω = 0.7, showing the effect of the truncation to a maximum of nM = 2S1 photons. In all hardware simulations, we assume
Jx,y = 0.008 cm−1.

on average, resulting in average fidelities F ≥ 0.92
also for T2 = 10 µs. Finally, we achieve in Fig. 3e-f a
digital simulation well above the ultra-strong coupling
threshold (G/Ω = 0.7, N = 8) with a model hardware
(S1, s2) = (5/2, 1) (i.e. with a bosonic space truncated
at d = 6). More demanding pulse sequences are required
in this case, with an average duration of ∼ 1.6 µs and
average fidelity around F ' 0.84 for the shortest T2.

III. POSSIBLE PHYSICAL
IMPLEMENTATIONS

Let us now explore potential realizations of molecu-
lar qudits displaying a set of properties consistent with
the ones employed in our calculations. In many cases,
we refer to chemical building blocks already discussed or

characterized in the literature.

To identify a suitable molecular platform, we need to
combine requirements on the different units discussed
in the previous sections. As already illustrated, a pro-
totypical hardware could consist of a dimer of transi-
tion metal ions, respectively with spins S1 ≥ 3/2 and
s2 ≥ 1/2. In order to ensure factorization of the two-ion
wave-function, the two ions should be weakly interact-
ing through space or through bond and characterized by
g factors significantly different along a given direction.
Single-ion anisotropy on both S1 and s2 (if the latter is
≥ 1) could for example help to better resolve different
transitions.
Such single constraints do not appear so stringent. For
instance, CrIII and CuII have sufficiently different g val-
ues gCr = 1.98, gCu = 2.10 − 2.3 to allow factorization
of the wavefunction. At the same time, the individual
spin’s resonance frequencies are both accessible in the
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same resonator. D values in the order of the tenth of
cm−1 characterize ions that have half filled valence or-
bitals, like MnII, FeIII, or GdIII, as well as half-filled t2g

orbitals in octahedral ligand field, such as CrIII. It must
be said that in this case the rhombicity and principal
directions of the magnetic anisotropy are difficult to pre-
dict and control synthetically, but they are not crucial
for the feasibility of our scheme.
More demanding is the control of the interaction between
the spin qubit and the qudit. Dipolar interactions can be
easily computed and controlled. The required strength,
ca 0.01 cm−1, is associated to a distance of about 6 Å.
Such a relatively short distance inside a molecular ar-
chitecture is compatible with compact linkers like ox-
alate, cyanide, azide etc. These bridging ligands are
very efficient in transmitting also exchange interactions,
and thus unsuitable for single spin addressing. The op-
timal choice falls on very weak exchange interactions
that are expected to be almost ubiquitous when the two
spin centers are embedded in the same molecular scaf-
fold. However, such weak interactions (of the same order
of inter-molecular ones) have been poorly characterized
through standard magnetometry techniques in concen-
trated solids or ab initio calculations. An elucidating ex-
ample of the wide range of achievable interactions is the
case of condensed CuII porphyrin complexes. Complexes
with conjugated macrocyclic ligands have been attract-
ing increasing interest for the relatively long and robust
coherence combined with semiconducting properties and
convenient processability [13, 73–75]. Electron–electron
double resonance has been recently used to investigate
the spin-spin interactions in edge-fused coplanar CuII

dimers and in meso–meso singly linked dimers [76]. In
the latter, the Cu-porphyrin rings are mutually orthog-
onal and exchange interaction fully suppressed, signif-
icantly smaller than the dipolar interaction, estimated
to be 0.0028 cm−1. On the contrary, the planarity im-
posed by the triple link between the two units boosts
the antiferromagnetic exchange interaction to J = −2.64
cm−1. The difficulty to predict the actual spin-spin inter-
action (based on ab-initio calculations or simple geomet-
rical considerations) does not hinder the implementation
of our scheme. Indeed, once the complex has been char-
acterized, it is possible to tune the external field in order
to ensure factorization of the wave-function. This could
require to adapt the experimental setup to work at larger
frequencies than commercial resonators, as demonstrated
for instance in Ref. [63], where superconducting coplanar
resonators operating up to 50 GHz were reported. These
superconducting resonators could also employ high-Tc su-
perconductors to support large magnetic fields [77].
The choice of the linkers between the two magnetic ions
should also fulfil other constraints. In particular, we need
to control the decoherence of the system. A coherence
time T2 of 10 µs at low temperatures is often observed for
S = 1/2 transition metal ions, especially if the first coor-
dination sphere is nuclear spin free, e.g. oxygen, sulphur,
or carbon donor atoms, and if total or partial deutera-

tion of the ligand is affordable. This requires to eliminate
nitrogen from the first coordination sphere and aliphatic
CHn groups in the molecular scaffold, thus reducing the
available library of molecular candidates.
We should finally remind that an efficient operation of
the simulator requires that the qudit-qubit pairs are well
isolated, still retaining a control over the molecular ori-
entation. An isostructural diamagnetic matrix is thus
mandatory. While this is usually accessible for single
qubits, in the case of a two-spins architecture the co-
crystallization of the para- and dia-magnetic molecules
must occur without metal scrambling. This can be easily
avoided using inert d3/d6 ions, as in the case of CrIII and
low spin CoIII. Metal scrambling is however much more
common for labile d1/d9 ions, such as CuII, requiring the
use of polydentate linkers in the design of the molecular
architecture.

IV. DISCUSSION AND CONCLUSIONS

Summarizing, we have shown that magnetic molecules
are very promising quantum simulators for complex phys-
ical systems, in particular for target Hamiltonians involv-
ing bosonic variables representing e.g. radiation fields.
The many degrees of freedom present in this class of
target Hamiltonians make their simulation with a multi-
qubit register very demanding, both in terms of number
of qubits and sequence of operations. In contrast, the
multi-level structure typical of magnetic molecules allow
us to encode a boson into a single spin qudit, thus greatly
simplifying the architecture of the register and its manip-
ulation. The latter can be achieved solely by sequences
of microwave pulses, resonant with specific transitions.
As an example, we have reported both ground state cal-
culations, performed with the VQE algorithm, and the
digital quantum simulation of real time evolution for the
Rabi model up to the ultra-strong coupling regime. In
all cases, the outcomes obtained by considering realistic
hardware parameters are in very good quantitative agree-
ment with exact predictions.
These results pave the way to proof-of-principle exper-
iments demonstrating the effectiveness of our proposal.
The scheme is flexible and allows one to simulate a wide
range of interesting models, thanks to the chemical tun-
ability of the proposed hardware. Indeed, although we
have focused here on very simple single ions, much larger
S1 can be obtained by exploiting the total spin ground
multiplet of multi-nuclear complexes with tailored inter-
actions [44, 78]. With larger S1, one could for example in-
clude more photons in the simulations, thus enabling the
treatment of more exotic regimes such as the deep strong
coupling for light-matter interactions [79] or fundamental
models such as lattice gauge theories [41, 80, 81]. The
latter require a large number of boson modes and exci-
tations for a detailed description in arbitrary dimension,
thus representing a challenging task for both classical de-
vices and near time qubit-based architectures [41]. Ad-
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ditionally, models involving multiple two-level atoms or
boson modes [46] can be simulated by chemically engi-
neering the structures in order to link together several
qudit and/or qubits [42, 43].

In conclusion, it is worth stressing that a synthetic ef-
fort to achieve the conditions highlighted in this work
would place molecular nanomagnets among the most
promising platforms for the realization of effective quan-
tum simulators.

ACKNOWLEDGEMENTS

We thank P. Santini for useful discussions. This work
has received funding from the European Union’s Hori-
zon 2020 research and innovation programme through
FET-OPEN grant 862893 FATMOLS and QUANTERA
project SUMO (co-funded by Italian Ministry of Univer-
sity and Research).

[1] J. Preskill, Quantum 2, 79 (2018).
[2] A. Chiesa, F. Tacchino, M. Grossi, P. Santini, I. Taver-

nelli, D. Gerace, and S. Carretta, Nature Phys. 15, 455
(2019).

[3] A. Kandala, A. Mezzacapo, K. Temme, M. Takita,
M. Brink, J. M. Chow, and J. M. Gambetta, Nature
549, 242–246 (2017).

[4] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, Nature
567, 209 (2019).

[5] F. Arute and et al., Nature 574, 505 (2019).
[6] F. Tacchino, A. Chiesa, S. Carretta, and D. Gerace, Adv.

Quantum Technol. , 1900052 (2019).
[7] R. P. Feynmann, Int. J. Theor. Phys. 21, 467 (1982).
[8] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and

R. Laflamme, Phys. Rev. A 65, 042323 (2002).
[9] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein,

T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien,
A. Gilchrist, and A. G. White, Nature Phys. 5, 134
(2009).

[10] M. J. Graham, J. M. Zadrozny, M. Shiddiq, J. S. Ander-
son, M. S. Fataftah, S. Hill, and D. E. Freedman, J. Am.
Chem. Soc. 136, 7623 (2014).

[11] J. M. Zadrozny, J. Niklas, O. G. Poluektov, and D. E.
Freedman, ACS Cent. Sci. 1, 488 (2015).

[12] K. Bader, D. Dengler, S. Lenz, B. Endeward, S.-D. Jiang,
P. Neugebauer, and J. van Slageren, Nat. Commun 5,
5304 (2014).

[13] M. Atzori, L. Tesi, E. Morra, M. Chiesa, L. Sorace, and
R. Sessoli, J. Am. Chem. Soc. 138, 2154 (2016).

[14] M. Atzori, E. Morra, L. Tesi, A. Albino, M. Chiesa, L. So-
race, and R. Sessoli, J. Am. Chem. Soc. 138, 11234
(2016).

[15] M. Atzori, L. Tesi, S. Benci, A. Lunghi, R. Righini,
A. Taschin, R. Torre, L. Sorace, and R. Sessoli, J. Am.
Chem. Soc. 139, 4338 (2017).

[16] M. Atzori, S. Benci, E. Morra, L. Tesi, M. Chiesa,
R. Torre, L. Sorace, and R. Sessoli, Inorg. Chem. 57,
731 (2018).

[17] C. J. Wedge, G. A. Timco, E. T. Spielberg, R. E. George,
F. Tuna, S. Rigby, E. J. L. McInnes, R. E. P.Winpenny,
S. J. Blundell, and A. Ardavan, Phys. Rev. Lett. 108,
107204 (2012).

[18] C.-J. Yu, M. J. Graham, J. M. Zadrozny, J. Niklas, M. D.
Krzyaniak, M. R. Wasielewski, O. G. Poluektov, and
D. E. Freedman, J. Am. Chem. Soc. 138, 14678 (2016).

[19] M. Shiddiq, D. Komijani, Y. Duan, A. Gaita-Ariño,
E. Coronado, and S. Hill, Nature 531, 348 (2016).

[20] M. Fataftah, J. M. Zadrozny, S. C. Coste, M. J. Graham,
D. M. Rogers, and D. E. Freedman, J. Am. Chem. Soc.
138, 1344 (2016).

[21] R. Hussain, G. Allodi, A. Chiesa, E. Garlatti, D. Mitcov,
A. Konstantatos, K. Pedersen, R. D. Renzi, S. Piligkos,
and S. Carretta, J. Am. Chem. Soc. 140, 9814 (2018).

[22] F. Luis, A. Repollés, M. J. Mart́ınez-Pérez, D. Aguilá,
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