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Observations of electron-hole asymmetry in transport through graphene devices at high magnetic
field challenge prevalent models of the graphene quantum Hall effect. Here, we study this asymmetry
both in conventional magnetotransport and in scanning gate microscopy maps measured in an
encapsulated graphene constriction. We reveal that the presence of upstream modes and local doping
in the vicinity of electrical contacts leads to a totally different picture of topological breakdown for
electrons and holes, explaining the observed asymmetry.

Injecting and collecting charges in two-dimensional
electronic systems (2DESs) through ohmic contacts look
like easy tasks, with most models describing contacts as
smooth extensions of the 2DES. However, in the quan-
tum Hall (QH) regime, the topic is far from trivial as
charge carriers flow in different topologically-protected
quantum Hall edge channels (QHECs). Indeed, good
coupling of these channels with the contacts involve no
backscattering of incoming QHECs and perfect equili-
bration in the injection of carriers in the different outgo-
ing QHECs. Fulfilling these two criteria proves difficult
because of the complex interface between the metallic
contacts and the 2DES [1–3].

In the graphene QH regime, the situation is even more
cumbersome, for two reasons at least. First, state-of-
the-art QH devices rely on graphene encapsulation in
hexagonal boron nitride (hBN) and on one-dimensional
line-contacts obtained by depositing metal on the flanks
of the device [4]. Such abrupt metal-graphene contact
was shown to potentially destroy electron-hole symme-
try [5]. Second, different experimental results indicate
that upstream (i.e. counterpropagating) QHECs can
flow along device edges [6–8]. The most common expla-
nation ascribes their coexistence to an inhomogeneous
screening of the back gate potential, related to fringing
fields, leading to charge carriers accumulation at device
borders [9].

Thanks to scanning gate microscopy (SGM), topolog-
ical breakdown of the QH effect has recently been shown
to originate from the coupling of up- and downstream
QHECs along the very same edge in this material [7, 8].
In particular, we showed that the coupling is achieved
through the localized states of antidots located along
the edges [8]. Importantly, the latter SGM experiments
have essentially focused on hole-type charge carriers and
evidences for the same mechanisms for electron-type
charge carriers remain elusive.

In this letter, we combine transport and SGM
with tight-binding simulations to study the topological
breakdown of graphene QHECs in the case of electrons

and holes. Our results reveal that contacts lead to a
different spatial configuration of upstream QHECs for
both types of charge carriers. This asymmetry is at
the origin of distinct mechanisms causing a topological
breakdown on the electron and hole sides.

The studied sample, depicted in Fig. 1a, consists in a
monolayer of graphene encapsulated between two hBN
flakes [10]. The longitudinal resistance Rxx is measured
via line contacts made of gold deposited on a thin ad-
hesion layer of chromium [4]. Inherently to this con-
tact layout, they overlap the heterostructure. Charge
carrier density is varied using a back gate voltage Vbg
and a magnetic field B is applied perpendicularly to the
graphene plane. We furthermore use a sharp metallic
SGM tip, biased at a voltage Vtip to change locally the
charge carrier density.

A fan diagram is presented in Fig. 1b. The white
stripes correspond to vanishing Rxx and indicate that
QHECs are topologically protected, so that charge carri-
ers backscattering is forbidden. At low positive Vbg and
above B = 4 T, Rxx exhibits extremely large and irreg-
ular fluctuations. Such an asymmetric and perturbed
behavior has already been reported in [11] and is rel-
atively common in the case of encapsulated graphene
devices. In order to stand at the verge of this regime,
we limit our measurements to B = 4 T in the remainder
of this paper. Rxx as a function of Vbg is shown in Fig.
2a for this value of magnetic field.

SGM maps, obtained by recording Rxx as a function
of the tip position, reveal precious information on the
origin of the coupling between QHECs. The tip per-
turbation locally tunes the coupling and, hence, the
backscattering between QHECs [7, 8, 12–15]. In turn,
this leads to concentric fringes of Rxx (local maxima or
minima) in the SGM map, centered on the spot where
the coupling occurs. As shown in Fig. 2b, SGM con-
trasts is located along edges for holes. It is coherent
with former studies that ascribed these signatures to the
presence of upstream QHECs, coupled with the down-
stream modes flowing along the same edge [7, 8]. For
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FIG. 1. (a) Artist view of the experimental setup. (b) Rxx

map as a function of Vbg and B. The blue lines indicate the
positions of the filling factors ν = ±(4n+ 2).

electrons, however, SGM contrast is centered only in the
constriction region, as indicated with SGM fringes with
higher Rxx in Fig. 2c and with spots of lower Rxx in Fig.
2d. Contrary to the hole case, no contrast is found cen-
tered on the edges of the device. It is noteworthy that
similar signatures have been found in SGM experiments
on classical semiconductor-based 2DESs [12, 13], where
there is no upstream QHEC. In these systems, topologi-
cal breakdown was assigned to the presence of an antidot
located in the vicinity of the constriction and coupling
the QHECs running at the opposite device edges.

As a first hypothesis to account for electron-hole
asymmetry, one could speculate that upstream QHECs
only exist for holes. Impurities and defects along the
borders could in this case favor holes accumulation and
induce such charge asymmetry, as proposed by Mar-
guerite et al. [7] (referred to hereafter as the “impurity
model”). While our data can not undoubtedly discard
this scenario, the impurity model alone fails to yield a
full picture of QHECs in graphene in regards to other
experimental results reported in the literature [6] (see
supplemental materials). On the other hand the main-
stream theory, namely the inhomogeneous screening of
the backgate potential (the fringing field model), pre-
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FIG. 2. (a) Rxx as a funcion of Vbg at B = 4 T (white
dotted line in Fig. 1b). The blue dashed lines indicate the
positions of the filling factors ν = ±(4n + 2). (b-d) SGM
maps obtained in the vicinity of the constriction for holes (b)
and electrons (c,d). The scan area is depicted in Fig. 1a with
a red rectangle for (b,c) and with a dark blue one for (d). The
Vbg values are indicated with arrows in (a) and Vtip = 0.5 V
in (b,c) and 1.5 V in (d). For holes, SGM contrast appears
centered on the sample edge (purple arrow) as well as in the
center of the constriction whereas it is located exclusively at
the center of the constriction for electrons (green arrows).

dicts the emergence of upstream QHECs both for holes
and electrons, and consequently an apparent charge
symmetry. In the following, we show that electron-hole
asymmetry can also be explained in the fringing field
model framework.

In the model that we develop hereafter, we assume
that charge carriers accumulate along the edges in the
same way on the electron and hole sides. The bend-
ing of energy bands leads in both cases to the pres-
ence of upstream QHECs. In this scenario, electron-hole
asymmetry originates from the contacts. In particular,
the difference of work-function between graphene and
chromium, forming the adhesion layer of contacts, yields
a hole-type doping below the metallic regions overlap-
ping the stack illustrated in Fig. 3a. The work-function-
induced difference of the potential (see supplemental
materials) can be approximated by [16, 17]

∆φ =

√
1 + 2αe|WCr −WG| − 1

α
, (1)

where WCr = 4.5 eV [18] and WG = 4.48 eV [16] are the
work-functions of chromium and graphene respectively
and α = 2e2thBN/(εhBNπ~2v2F ) with thBN ∼ 20 nm the
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vertical distance between graphene and the overlapping
metal, 2 < εhBN < 4 the hBN permittivity and vF ∼ 106

m/s the Fermi velocity of graphene. With these data,
we find 0.006 < ∆φ < 0.008 eV. As a result, charge
carrier density is larger below the overlapping metal,
with respect to the bulk, when the bulk is doped with
holes, whereas it is smaller for an electron-doped bulk.
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FIG. 3. (a) Side view of the device (schematic) in the vicinity
of one of the contacts. (b,c) Top view of one of the sample
corner, around the contact. Due to the increase of charge
carrier density at the device borders, upstream QHECs run
along the edges (clockwise in blue and counterclockwise in
red). If the contacts dope graphene with holes, the inner
(clockwise) QHEC for holes circumvent the contact area (b)
whereas the inner (counterclockwise) QHEC for electrons
is merged with the nearest external (clockwise) QHEC (c).
(d-g) Evolution of the potential (thick line) and the three
first Landau levels (LLs) along the black dashed lines in (b)
and (c). QHECs appear where LLs cross the Fermi energy
(red dashed line). (h,i) Absolute value of the onsite poten-
tial landscape |U | used for the tight-binding simulations for
holes with Vbg = −2.4 V (h) and electrons with Vbg = 2.4
V (i). The semi-infinite leads in the simulated system are
depicted in red. (j,k) Current density maps obtained from
tight-binding calculations for holes (j) and electrons (k).

In the QH regime, this modulation of charge carrier

density has an important influence on the QHECs spa-
tial configuration in the vicinity of the contacts, which
differs for holes and electrons, as illustrated in Figs.
3b,c. In this schematic, upstream QHECs flow along
the edges where one of the bent Landau levels crosses
twice the Fermi energy, as shown in Fig. 3d for holes and
3f for electrons. However, this picture is no longer valid
around and below the contacts pads, i.e., in the doped
orange-shaded region in Fig. 3b-c. For holes, the inner
(clockwise) QHEC circumvent the contact zone, due to
the increase of holes density (Fig. 3e). For electrons, the
lower charge density close to the contacts (Fig. 3g) leads
to the merging of the inner (counterclockwise) with the
closest clockwise QHECs (Fig. 3c). These QHECs are
therefore perfectly equilibrated.

Based on this model, we performed tight-binding sim-
ulations, using the KWANT package [19]. Maps of the
absolute value of the on-site potential around the con-
tacts are shown in Fig. 3h for holes and in Fig. 3i
for electrons. They feature an increase of charge car-
rier density along the edges, proportional to the bulk
density (see supplemental materials), in addition to a
constant positive offset energy ∆E = 0.007 eV (Eq.
(1)) around the contacts. The resulting current den-
sity maps are presented in Figs. 3j,k. The QHECs are
visible in lighter tones and match the qualitative picture
of Figs. 3b,c.

We now consider the entire sample to examine the
consequences of these different QHECs spatial configu-
rations at the contacts for holes and electrons, and the
relationship with the experimental data of Fig. 2. For
holes (left side of Fig. 4), it appears that the inner
QHEC (blue) forms a closed loop, as illustrated in Fig.
4a. In the absence of coupling with the outer QHECs
(red), this loop is topologically equivalent to a localized
state in QH theory since it is not directly coupled with
contacts and should not influence transport. The ef-
fective filling factor of the system is therefore given by
the region outside the loop (here ν = −6, in light pur-
ple). To observe the topological breakdown of QHECs,
holes running along one of the sample edges should be
backscattered to the opposite edge. This can only be
achieved by coupling the upstream QHEC loop both on
the upper and lower sides of the sample, for example at
locations pinpointed by concentric black circles in Fig.
4a. The SGM contrast highlighted along the sample
edge in Fig. 2b is therefore the signature of one of the
two coupling spots between upstream QHECs. In par-
ticular, the coupling is achieved through an antidot, as
depicted in Fig. 4c [8]. By introducing these antidots in
the simulated potential landscape, with Gaussian func-
tions centered close to the edges (see the potential map
in Fig. 4e), we correctly capture the mechanism lead-
ing to holes backscattering. Fig. 4g shows a simulated
current density map where propagating QHECs are not
coupled through the antidots. This is in stark contrast
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(c) For holes, SGM signatures along the edges in Fig. 2b are
caused by the coupling between upstream QHECs occurs
via an antidot located close to the constriction. (d) For
electrons, coupling between opposite border QHECs via an
antidot. (e,f) Potential landscapes of the simulated systems,
with colors corresponding to the absolute value of the onsite
potential landscape |U |, with the same parameters as in Figs.
3h,i. (g-j) Current density maps obtained for holes with
Vbg = −4.8 V (g), −3.8 V (i) and electrons with Vbg = 6.4
V (h), 7.8 V (j) as indicated with arrows in Fig. 5a.

with Fig. 4i where coupling is achieved at a slightly dif-
ferent value of Vbg (calculated from EF ), so that holes
flow through the inner QHEC loop, connecting both
edges.

For electrons (right side of Fig. 4), the equilibrated
QHECs form loops running along the edges, as illus-
trated in Fig. 4b. Contrary to holes, the effective filling

factor of the system is given by the bulk (here ν = 2,
in dark green), as for conventional semiconductor-based
2DEGs. The topological breakdown of QHECs can only
be achieved by coupling the upstream QHECs of the
upper and lower sides of the sample, which can only
happen in the vicinity of the constriction, as illustrated
with concentric black circles in Fig. 4b. Electrons run-
ning along one of the edges (in a QHEC loop) can then
be backscattered to the opposite side of the device. The
SGM contrast highlighted at the center of the constric-
tion in Figs. 2c-d is therefore the consequence of the
coupling between the opposite QHECs loops through
an antidot located at the center of the constriction, as
depicted in Fig. 4d [12]. Simulations support this pic-
ture, when introducing an antidot at the center of the
constriction (Fig. 4f). Fig. 4h depicts a current density
map where QHECs loops are visible along the edges but
the absence of coupling with the opposite edge prevents
backscattering. When coupling is active (at different
Vbg, as in Fig. 4j), electrons flow from one edge to the
other through the central antidot and can be backscat-
tered.
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FIG. 5. (a) Simulated Rxx (plain line) and Gxy (dotted line)
as a function of Vbg for a magnetic field B = 4 T. (b) Spatial
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in (a). (c) Spatial evolution of the potential (thick line) and
of the three first Landau levels (LLs) along the black dashed
lines in (b). (d) Current density maps obtained from tight-
binding calculations for Vbg = 4.8 V, as indicated with a red
line in (a).

The simulated Rxx and Gxy curves as a function of
Vbg, obtained in this system, are presented in Fig. 5a
for holes (purple) and electrons (green). When Rxx is
zero, Gxy exhibits the expected plateaus for graphene at
4(n+1/2)e2/h. Non-zeroRxx, accompanied by the tran-
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sition between two Hall plateaus, indicates the coupling
between the opposite device edges (as shown in Fig. 4)
and the non-zero probability for charge carriers to be
back-scattered. A striking feature of the curve is the
presence of large Rxx fluctuations on the electron side,
similarly to the experimental data presented in Fig. 2a.
These fluctuations originate from extra QHECs running
below the contacts, inducing a direct backscattering of
charge carriers in the contact area (Figs. 5b,c). This
mechanism prevents a proper equilibration between the
propagating QHECs and the contacts. In addition, cur-
rent injection is strongly hampered in this situation,
preventing proper determination of Rxx. Parasitic dop-
ing below the contacts therefore explains measurements
artifacts such as the large variation of resistance even
towards negative values reported here (Fig. 2a) as well
as in previous experiments [11].

In summary, we have highlighted that line contacts,
used for state-of-the-art encapsulated graphene samples,
can lead to different spatial configurations of the up-
stream QHECs on the electron and hole sides. This
yields distinct mechanisms at the origin of the QH topo-
logical breakdown for both charge carriers types. For
holes, the breakdown occurs by coupling the upstream
QHECs through antidots located at the device edges
whereas for electrons, all the QHECs running along
the same edge are equilibrated and the breakdown oc-
curs through the bulk, similar to conventional semi-
conductor 2DEGs. This interpretation is in full agree-
ment with microwave impedance microscopy results,
where the QH topological breakdown was shown to coin-
cide either with a conducting bulk, either with conduct-
ing edges, depending on the charge carriers type [6]. Our
conclusions pinpoint the importance of considering the
influence of contacts when designing two-dimensional
materials-based samples, in particular when these con-
tacts are to be coupled with topologically protected edge
channels.
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Contacts and upstream modes explain electron-hole
asymmetry in graphene quantum Hall regime

- Supplemental materials -
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S1 Experimental setup

The studied sample consists in a monolayer of graphene, encapsulated between two 20 nm-thick
hBN flakes, in which a 250 nm-wide constriction geometry has been lithographically-defined [1],
as depicted in Fig. 1a of the manuscript. It is anchored to the mixing chamber of a dilution
fridge whose base temperature is ∼ 100 mK. A magnetic field B is applied perpendicularly to
the graphene plane. Current is injected and voltage is measured via line contacts made of gold
deposited on a thin adhesion layer of chromium [2]. Inherently to this contact layout, they overlap
the heterostructure over an area of∼ 1× 0.2 µm2, as pictured in Fig. 1a of the manuscript. The four
contacts allow to measure the longitudinal resistance Rxx using the standard lock-in technique at
77 Hz. The global charge carrier density in graphene is varied by applying a voltage Vbg on the
silicon back-gate separated from the sample by a 300 nm-thick SiO2 layer. We furthermore use
a sharp metallic SGM tip, biased at a voltage Vtip, and scanning at a distance of 70 nm from the
graphene plane, to change locally the charge carrier density.

S2 Quantum Hall regime at low magnetic field

In Fig. 2a of the manuscript and Fig. S1, we present the longitudinal resistance Rxx as a function of
the back gate voltage Vbg (converted in filling factor ν in Fig. S1), recorded at a magnetic field B = 4
T. In this data at relatively low B, the topological protection of quantum Hall channels (QHECs)
appears to be poor, since Rxx exhibits minima at the filling factors ν = ±4(n + 1/2) but does not
fall to zero as expected in the quantum Hall (QH) regime. It must be compared to measurements
performed at higher magnetic field (see the Fan diagram in Fig. 1b of the manuscript and the
curve for B = 12 T in Fig. S1), where Rxx falls to zero, or is close to zero, around ν = ±4(n + 1/2),
indicating a stronger topological protection of QHECs.
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Figure S1: Longitudinal resistance Rxx as a function of the filling factor ν for a magnetic field of 4 T (light
gray) and 12 T (dark gray) and a temperature of 100 mK. The values of ν = ±4(n + 1/2) at integer n are
indicated with red dashed lines.

To understand the poor topological protection of QHECs at B = 4 T, one must note that the
width of the QHECs decreases when the magnetic field increases. Indeed, the typical width of
the wavefunction associated to a QHEC is given by the magnetic length lB =

√
h̄/eB [3]. Since

both up- and downstream QHECs flow along the same edge in graphene, they can overlap at
low magnetic field while they are kept away from each other at higher field, as illustrated in Fig.
S2a. However, an overlap of the counterpropagating QHECs does not mean they are coupled.
The equilibration of these channels requires the presence of impurities between them, allowing a
transfer of charge carriers from down- to upstream modes [4]. These impurities are at the origin of
the antidots revealed with the SGM measurements presented in the manuscript, whose associated
localized QHECs also have a varying overlap with propagating QHECs. To conclude, the absence
of zero resistance states at 4 T around ν = ±4(n+ 1/2) in Fig. S1 can be explained by the proximity
of the counterpropagating QHECs combined with the presence of impurities located between
these channels.

S3 More about the impurity model

In the manuscript, we evoke a first hypothesis to explain the difference of behavior between holes
and electrons observed in Figs. 2b-d. In that framework, impurities accumulated along the edges
induce a hole doping at the borders of the sample. Considering this mechanism alone, upstream
QHECs would therefore only exist on the hole side. We have named this scenario ”the impurity
model”. Signatures of such impurities, affecting the structure of QHECs, have been reported
in two recent papers [5, 6]. Here, we summarize their findings and we discuss why the upstream
QHECs can not be explained solely in the impurity model framework. We furthermore shed a new
light on those results by analyzing them in the scope of our model, presented in the manuscript.

Recently, Marguerite et al. [5] evoked the possible presence of impurities doping the graphene
edges with holes. They came to this conclusion on the basis of ingenious transport measurements,
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Figure S2: Width of up- and downstream QHECs at B = 4 and 12 T. (a) KWANT simulation of the LDOS
as a function of the distance y from the graphene edge. The LDOS associated to downstream (upstream)
QHECs is presented in light red (blue) for B = 4 T and in dark red (blue) for B = 12 T. (b,c) Potential as
a function of the distance y from the graphene edge (thick line) used to simulate the LDOS of (a) and the
three first Landau levels (n = 0, 1, 2) for B = 12 T (b) and B = 4 T (c). The potential has been qualitatively
designed to induce an increase of the charge carriers density at the edges proportional to the bulk density
by a factor η = 0.69 (a factor 0.3 between edge and bulk onsite parameters, as detailed in section S6).
Upstream modes (blue dots) arise when the Fermi energy (red dashed-dotted line) crosses one of the bent
Landau level. Downstream modes (orange dots) appear due the infinitely sharp confinement potential at
the graphene edge.

both in the electrons and hole sides, while varying the voltage of top plunger gates intended to
locally change the charge carriers density at the sample edges (Extended Data Figs. 5 and 7 in [5]).
Coupled to SGM measurements, their data revealed the signature of a holes accumulation along
the edges while the sample’s bulk was doped with electrons. As a consequence, the increase of
hole density at the edges (and the resulting upstream QHECs) would not solely originate from an
inhomogeneous screening of the back gate potential (fringing field model) but should also be due
to the presence of impurities located at the sample edges (impurity model).

The possibility of charge carriers accumulated along the edges has also been raised by Cui
et al. to explain some asymmetries between electrons and holes in their microwave impedance
microscopy (MIM) data [6]. In particular, they observed that Gxy plateaus do not necessarily co-
incide with an insulating bulk in graphene (imaged in MIM). Depending on the device, the offset
between transport and MIM signatures can be visible for holes and not for electrons, or conversely
(see the supplemental Figs. S5 to S7 in [6]). Nevertheless, the offset is always proportional to the
back gate voltage Vbg which indicates that the increase of charge carriers at the edges is also pro-
portional by a factor η to Vbg. This proportionality is coherent with the fringing field model but
the electron-hole asymmetry of the parameter η remains to be explained. For this purpose, they
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assume that unipolar states, associated to impurities located near the edges, hold some of the
accumulated charges and decrease the accumulation profile. Their results therefore suggest an
interplay between both the fringing field and the impurity models.

Based on our results, we have proposed another scenario to explain the electron-hole asymme-
try observed by Cui et al., only considering the fringing field model (i.e. upstream QHECs exist for
both charge carriers types). In the manuscript, we explain that metallic contacts induce a doping
in the sample that modifies the structure of QHECs. If graphene is doped with holes below the
contacts, an offset between the Gxy plateaus and the insulating bulk is expected. Indeed, as dis-
cussed in Fig. 4 of the manuscript, the breakdown of the QHECs topological protection occurs by
coupling up- and downstream modes and is independent from the bulk state. For the electrons,
however, Gxy plateaus coincide with an insulating bulk since backscattering should occur through
the bulk. The inverse is expected if graphene is doped with electrons below the contacts. Our
model is therefore coherent with the observations of Cui et al.

S4 Upstream modes with contacts modeled by ideal leads

As explained at the end of section S3, the doping induced by contacts is a crucial ingredient to get
a good picture of the QHECs spatial structure on the hole side, both for the fringing fields and for
the impurity model. In this section, we compare a case where contacts are ideal (i.e., no contact-
induced doped region) with the case discussed in the manuscript, where contacts dope graphene
with holes. We compare both cases in Fig. S3 and we show that ideal contacts should lead to
peculiar features in the transport measurements, in contradiction with experimental observations.

We start by showing in Figs. S3a-d the spatial structure of QHECs in the case of ideal contacts.
The four schematics represent different configurations along the transition between ν = −2 and
ν = −6. Schematic curves of the longitudinal resistance Rxx and the Hall conductance Gxy for this
transition are shown in Fig. S3m. We now discuss the different configurations:

• In Fig. S3a, one downstream QHEC flow along the edges, since the Fermi energy crosses
only the n = 0 Landau level (LL) in Fig. S3e. The filling factor in the insulating bulk is
ν = −2 and Gxy = −2e2/h, while Rxx = 0.

• In Fig. S3b, both a down- and upstream QHEC appear along the edges, because the Fermi
energy starts to cross the n = −1 LL. In this situation, the down- and upstream QHECs
are close to each other so they can easily be coupled, leading to holes backscattering. Rxx is
therefore not zero as shown in Fig. S3m while |Gxy| increases due to the emergence of new
conduction channels.

• In Fig. S3c, the distance between the down- and upstream QHECs increases by changing the
position of the Fermi energy in Fig. S3g. The backscattering between the counterpropagating
QHECs is suppressed and Rxx falls back to zero in Fig. S3m. However, Gxy = −10e2/h
since the downstream QHECs contribute for −6e2/h (red arrow) and the upstream QHEC
contributes for −4e2/h (blue arrow).

• In Fig. S3d, the upstream QHEC is even farther away from the edges (or simply disappears
for a lower edge accumulation than that of Fig. S3h). So, it does not enter the contacts
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Figure S3: Illustration of the QHECs spatial structure at the transition between ν = −2 and ν = −6 for
two models of contacts. (a-d) Downstream (red) and upstream (blue) QHECs in the case of ideal contacts,
smoothly connected with the sample. (e-h) Potential profile (thick line) along the edges and the three first
Landau levels (n = 0 to n = −2, in thin lines). QHECs appears where the Fermi energy (red dashed
line) cross the Landau levels. (i-l) Similar schematics as (a-d) for line contacts. Graphene is p-doped in
the region located below the metallic contact. (m,n) Schematic evolution of longitudinal resistance Rxx and
Hall conductance Gxy as a function of Vbg in the case of the ideal contacts (m) and in the case of the line
contacts (n).

anymore. The filling factor of the insulating bulk is ν = −6 and Gxy = −6e2/h since only
the downstream QHECs contribute to the Hall conductance. In Fig. S3m, Rxx therefore goes
through a second peak at the transition between the two Gxy plateaus, and then goes back to
zero at more negative Vbg, when the upstream QHEC is no longer coupled to contacts.

Obviously, the Gxy = −10e2/h plateau described in Fig. S3m is not observed in experiments
reported in the literature. It then appears that the upstream QHEC does not act as a conduction
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channel between the contacts, so that it does not contribute to Gxy. This is indeed the case of the
model presented in the manuscript and in Figs. S3i-l where the doping induced by the contact
prevents their coupling with the upstream QHEC. The corresponding Rxx and Gxy curves are
shown in Fig. S3n. In this situation, the transition between the −2e2/h and −6e2/h, accompanied
by a non zero Rxx, occurs upon the appearance of the upstream QHEC, in Fig. S3j. Indeed, the
coupling between QHECs is made possible and charge carriers can be transmitted from one side
of the sample to the other, as discussed in Fig. 4a,i of the manuscript. This behavior is more
consistent with the experimental observations.

S5 Doping induced by the contacts

In the manuscript, we explain that the spatial structure of QHECs can be modified due to the
doping induced in graphene by the overlapping metal in the vicinity of line contacts. We have
quantified this doping by computing the change of potential ∆φ below the contacts thanks to Eq.
1 of the manuscript. This equation is based on the workfunctions of graphene and chromium
determined experimentally. From this equation, we find a value ∆φ = 0.007 eV.

However, Eq. 1 certainly fails to give a precise value of ∆φ. Indeed, the values of the work-
functions taken from the literature (especially that of chromium, less studied) depend on the ex-
perimental method. For instance, the chromium workfunction has been measured in [7] by evap-
orating the metal on a clean doped GaAs surface. However, there is no guarantee that it would
remain the same if measured with a graphene device.

Performing ab-initio simulations is another way to assess chromium workfunction, as done
in [8, 9] for other metals. For chromium, nevertheless, the task is far from being trivial. Indeed,
chromium presents different crystal orientations whose workfunctions are different, as studied
more extensively for other metals [10, 11]. It is therefore difficult to know the relative weight of
each crystalline phase in the final workfunction value.

A last consideration concerns the fact that impurities can be trapped between hBN and the
metallic layer of the contacts during the fabrication process. It can also influence the accumulation
of charge carriers density (either holes or electrons) below the contacts. In the framework devel-
oped in the manuscript, it can explain the asymmetry between holes and electrons observed by
Cui et al. [6] and discussed in section S3.

S6 Tight-binding simulations

As indicated in the manuscript, simulations were performed in the tight-binding framework using
the KWANT package [12]. The simulated system has been built from a honeycomb lattice to
capture the electronic properties of graphene. In order to decrease the computation time, a scaling
s has been applied on the lattice parameter a and the hopping parameter t as

ascaled = a× s and tscaled = t/s (1)

These two relations keep the ratio EF/kF = 3at/2 unchanged so that graphene electronic proper-
ties are kept the same [13]. Here, the scaling factor is s = 10.

The magnetic field B has been introduced by changing the hopping parameter t as

t −→ t exp
(
−j

e
h

B(xi − xj)
yi + yj

2

)
(2)
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where xi, yi are the coordinates of the ith atom of the system.
The system geometry consists in a bow tie shaped geometry with a constriction width of 300

nm (see Fig. 4 of the manuscript), similar to the real device. An increase of charge carriers density
has been qualitatively defined along the edges to account for the inhomogeneous screening of the
back gate voltage observed experimentally. This increase is proportional to the bulk density by a
factor1 η = 0.69 and has a width, take from the edges, of about 75 nm, as depicted in Figs. S2b,c.

Three antidots have been introduced with variations of the onsite potential following a Gaus-
sian function, as illustrated in Figs. 4e,f of the manuscript. The radius of these Gaussian functions
is 40 nm and their amplitude is -0.02 eV, so that all induce an decrease of holes density (or increase
of electrons density). Two antidots are located along the edges, to induce the backscattering dis-
cussed in Fig. 4i of the manuscript. The third one is located at the middle of the constriction, to
induce the backscattering shown in Fig. 4j of the manuscript.

In Figs. 4e-j of the manuscript, the measurement leads used to compute Rxx and Gxy are much
thinner than the injection leads located at the left and right bottom corners of the system, used
to inject and collect current (modeled by plane waves in Kwant). The reason is that one must
prevent current to leave the sample through the measurement leads when computing the local
current density maps presented in Figs. 4g-j of the manuscript, to correctly capture the trajectories
of charge carriers. These leads are therefore chosen thin enough to prevent plane waves to enter
or leave them. However, the width of the measurement leads does not affect the calculation of Rxx
(Fig. 5a of the manuscript). Indeed, it is possible to compute Rxx by imposing a zero current in the
three measurement leads, while all the current enters and leaves the system by the two injection
leads. We have confirmed this by computing Rxx for different widths of the measurement leads.
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