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The restricted Boltzmann machine is a basic machine learning tool able, in principle, to model
the distribution of some arbitrary dataset. Its standard training procedure appears however delicate
and obscure in many respects. We bring some new insights to it by considering the situation where
the data have low intrinsic dimension, offering the possibility of an exact treatment and revealing
a fundamental failure of the standard training procedure. The reasons for this failure — like the
occurrence of first-order phase transitions during training — are clarified thanks to a Coulomb
interactions reformulation of the model. In addition a convex relaxation of the original optimization
problem is formulated thereby resulting in a unique solution, obtained in precise numerical form on
d = 1, 2 study cases, while a constrained linear regression solution can be conjectured on the basis
of an information theory argument.

Recent advances in machine learning (ML) pervade
now many other scientific domains including physics by
providing new powerful data analysis tools in addition
to traditional statistical ones. The restricted Boltzmann
machine (RBM) could be considered as one of these
when already a large spectrum of possible uses has been
proposed in physics [1–5]. Introduced more than three
decades ago [6], the RBM played an important role in
early developments of deep learning [7]. It is a special
case of generative models [8–10] that remains very popu-
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FIG. 1. Bipartite structure of the RBM (left). Hyper-
planes defined by the weight vectors and bias associated with
each hidden variable can delimit fixed density regions in input
space (right).

lar thanks to its simplicity and effectiveness when applied
to moderately high dimensional data [11–13]. It is a two-
layers undirected neural network that represents the data
in the form of a Gibbs distribution of visible and latent
variables (see Fig. 1):

p(s,σ) =
1

Z[Θ]
exp
(∑
i,j

siWijσj −
Nv∑
i=1

ηisi −
Nh∑
j=1

θjσj

)
.

(1)
The former noted s = {si, i = 1 . . . Nv} correspond to ex-
plicit representations of the data while the latter noted

σ = {σj , j = 1 . . . Nh} are there to build arbitrary depen-
dencies among the visible units. They play the role of an
interacting field among visible nodes. While many differ-
ent types of variables can be considered, we take here spin
variables si, σj ∈ {−1, 1} for definiteness. Θ = (W,η,θ)
are the parameters, W being the weight matrix, η and θ
are local field vectors called respectively visible and hid-
den biases. Each weight vector associated with a given
hidden unit and its corresponding bias defines an hy-
perplane partitioning the visible space into two regions
corresponding to the hidden unit being activated or not
(see Fig. 1). Z[Θ] is the partition function of the sys-
tem. The joint distribution between visible variables is
then obtained by summing over hidden ones. Learning
the RBM amounts to find Θ such that generated data
obtained by sampling this distribution should be statis-
tically similar to the training data. The standard method
to infer the parameters is to maximize the log-likelihood
(LL) of the model

 L[Θ] =
∑
j

〈log cosh
(∑
i

Wijsi − θj
)
〉Data

−
∑
i

ηi〈si〉Data − log
(
Z[Θ]

)
, (2)

with 〈〉Data denoting the average over training data. This
is a nontrivial optimization problem in two respects: it is
nonconvex and the loss function − L[Θ] is difficult to es-
timate because log

(
Z[Θ]

)
is not tractable. Nevertheless,

the gradient ∇Θ  L[Θ] can be written in terms of simple
response functions of the RBM. These can be estimated
approximately via Monte Carlo methods, leading to var-
ious algorithms called contrastive divergence [14] with
possible refinements [15, 16].

The similarity of the RBM with disordered spin sys-
tems has raised a lot of interest in statistical physics.
Mean-field-based training algorithms and analyses have
been proposed [17–20], a mapping with the Hopfield
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model has been found in [21], retrieval capacity has
been characterized in [22, 23] and compositional mech-
anisms analyzed in [24, 25] (see more recent references,
e.g. in [26]).

In previous works [27, 28] we studied to what ex-
tent the learning process of the RBM is reflected in the
spectral dynamics of the weight matrix: a certain num-
ber of modes, corresponding to principal modes of the
data, emerge from a Marchenko-Pastur bulk at initial-
ization and condense to build up a structured ferromag-
netic phase. Here we focus on the latter and most diffi-
cult stage and show that the two main difficulties (non-
tractability and nonconvexity) of the training can be ad-
dressed in the special case, where a flat intrinsic space of
low dimension has been identified in the first stage.

Effective theory in the ferromagnetic phase. — Let us
first disentangle the contribution of the collective modes
corresponding to the information stored from the data
(the ferromagnetic and difficult part) from the other de-
grees of freedom corresponding to the noise (the param-
agnetic and easy part). After summing over the hidden
variables in (1) the visible distribution reads

P [s|Θ] =
1

Z[Θ]
exp
[Nh∑
j=1

log cosh
( Nv∑
i=1

Wijsi−θj
)
−
∑
i

ηisi

]
(3)

As in [28] the weight matrix is expressed via its singular
value decomposition (SVD)

Wij =

min(Nv,Nh)∑
α=1

wαu
α
i v

α
j ,

with wα, uα and vα representing, respectively, the sin-
gular values and left and right singular vectors. Assume
that some modes α ∈ {1, . . . d} have condensed along
a magnetization vector denoted m = (m1, . . . ,md), i.e.
that sα = mα = O(1), with by definition

sα
def
=

1√
Nv

Nv∑
i=1

siu
α
i .

For a RBM trained on some data, d would represent their
intrinsic dimension at least locally. The corresponding
modes uαi can, in principle, be obtained directly from
the SVD of the data or emerge naturally from the linear
regime of the learning process described in [28]. These
magnetization constraints define a canonical statistical
ensemble. We look for a change of variables s −→
(m, s⊥), where the original spin variables are replaced
by a set of d continuous variables and N [m] transverse
weakly interacting spin variables. N [m] is related to the

configurational entropy per spin S[m] = N [m]
Nv

log(2) un-
der these constraints. Thanks to a large deviation ar-
gument S[m] is the Legendre transform of (see SM, Ap-

pendix A)

Φ[µ] =
1

Nv

∑
i

log cosh
(√

Nv

d∑
α=1

uαi µα

)
,

with µ[m] given implicitly by the constraints [29]

mα =
1√
Nv

Nv∑
i=1

uαi tanh
(√

Nv

d∑
β=1

uβi µβ
)
, α = 1, . . . d.

(4)
Given a condensed magnetization vector m, there re-
mains N [m] interacting degrees of freedom represented
by spin variables denoted {s⊥1 , . . . , s⊥N [m]}. With help
of this new set of visible variables the partition function
takes the form of a d-dimensional integral

Z[Θ] =

∫
D⊂[−1,1]d

ddm e−NvF [m|Θ], (5)

where the canonical free energy F [m|Θ] = F‖[m|Θ] +
F⊥[m|Θ] is decomposed into two contributions coming
respectively from the condensed modes and the trans-
verse fluctuations (See SM, Appendix B):

F‖[m|Θ] = −S[m] +

d∑
α=1

ηαmα − V [m|Θ], (6)

F⊥[m|Θ] = − 1

Nv
log
( 1

2N [m]

∑
s⊥

e−Heff [s
⊥|m,Θ]

)
, (7)

(ηα
def
= 1√

Nv

∑
i ηiu

α
i ) which are respectively associated

with a potential function for the magnetizations

V [m|Θ] =
1

Nv

Nh∑
j=1

log cosh
(√

Nv

d∑
α=1

wαmαv
α
j −θj

)
, (8)

and an effective Hamiltonian Heff for the transverse de-
grees of freedom given in the form of a disordered Ising
model of N [m] spins with paramagnetic-like state of or-
der defined for each m (see SM, Appendix C). The de-
fault entropy (N [m] log(2)) of the transverse variables is
assigned by convenience to F‖ so that F⊥ vanishes when
Heff = 0. In the following we focus on the dominant as-
pects of the training process resulting from the expression
F‖.We leave aside specific training problems associated
with the transverse fluctuations, like e.g. the emergence
of spurious modes, which will be analyzed elsewhere in
detail thanks to this effective Hamiltonian formalism.

Coulomb formulation and linear regression. — The
potential term in F‖, which acts on the magnetization
m representing here the position of a particle in a d-
dimensional space, can be re-written as (See SM Ap-
pendix D)

V [m|Θ] =

∫
dndz q(n, z)|nTm− z|, (9)
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after introducing in the space O(d)× R, the density

q(n, z) =
2

Nv

Nh∑
j=1

νjδνj

(
z − θj

νj

)
δ(n− nj) ≥ 0, (10)

of latent features, δν(x) = ν
2

[
1 − tanh2(νx)

]
being a

“smoothed” delta function of width ν−1, with

νj =

Ã
Nv

d∑
α=1

w2
αv

α
j

2 (11)

nαj =

√
Nv
νj

wαv
α
j (12)

The kernel |nTj m − z| represents the Coulomb potential
exerted by a uniformly charged hyperplane, defined by
its normal vector n and its distance z to the origin, on
a charge located at m. As a result, each feature j cor-
responds also to a charged hyperplane of normal vector
nj , offset zj = θj/νj and finite thickness ν−1

j . At this
point let us remark that the wα control through (11) both
the strength of the Coulomb interaction via (9,10) and
the charged hyperplanes thickness; the right singular vec-
tors projections vαj control on their side the orientation
of these hyperplanes in the intrinsic space through (12).
Note that the visible bias vector η is equivalent to some
surface charge placed at the edge of the domain of m
and can be incorporated into q(n, z). The log-likelihood
of the RBM has then three terms

 L[Θ] = −Ep̂
[
V [m|Θ] + F⊥[m|Θ]

]
− log

(
Z[Θ]

)
,

where log
(
Z[Θ]

)
is a complex self-interaction of the

charged hyperplanes among each other; Ep̂
[
F⊥[m|Θ]

]
is

in principle small, especially if there is no transverse bias;
finally,

Ep̂
[
V [m|Θ]

]
=

∫
dmdndz p̂(m)|nTm− z|q(n, z), (13)

takes the form of a repulsive Coulomb interaction be-
tween training data points represented by the empirical
distribution p̂(m), and positively charged hyperplanes.
It corresponds to a slight extension of the RBM model in
terms of more general activation function (encompassing
RELU [30] for instance and similar to [31]), where each
feature contribution in (3) comes with a non-negative
weight qj to be optimized, while the features themselves
defined by the pairs (nj , θj) are predefined. This formula-
tion introduced here at first in a theoretical perspective to
understand the RBM, can also be used in practice when
the intrinsic space is identified in advance. Then letting
wβ = 0 for β > d results in F⊥ independent of Θ and the
optimization of  L[Θ] (w.r.t. the features weights q(n, z))
becomes convex, this “Coulomb” formulation being in
the exponential family. As a result the optimal solution
can be obtained with good numerical precision thanks to

a natural gradient ascent [32] following the geodesics of
the Fisher metric (See SM, Appendix G), the complex-
ity being O(N3

f +N2
f ×Nd

p ) in the number of predefined

features Nf and of points Nd
p needed to compute Z[Θ]

(and its derivatives) through (5). Typically this remains
tractable for d ≤ 3 and Nf ≤ O(103) simply using a reg-
ular discretization of the feature space (n, z) ⊂ [−1, 1]d

as shown in the next section. Additionally, an even more
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FIG. 2. 1-d intrinsic data (Nv = 103) with 5 clusters solved
with Nh = 20 predefined features thanks to a natural gra-
dient ascent of the LL. Dotted lines indicate location of fea-
tures with nonvanishing weights qj . The feature contributions
F(m) − h(m) to the free energy are seen to regress h(m) on
the data. The resulting distribution is shown (red) on the
inset with the empirical training distribution (blue) and the
failed result of a standard RBM training (green).

tractable approach bypassing the computation of Z[Θ],
based on a linear regression seems plausible according
to the following observations. In terms of the Coulomb
charges density

ρ(m|Θ) =

∫
dndz q(n, z)δ

(
nTm− z

)
, (14)

resulting from a distribution q(n, z) of uniformly charged
hyperplanes the marginal distribution of m reads

P (m|Θ) =
1

Z[Θ]
e−NvF [m|Θ],

=
eNv
(
S(m)+

∫
dm′ρ(m′|Θ)Kd(|m−m′|)−F⊥[m|Θ]

)
Z[Θ]

withKd(|m−m′|) the inverse of the d-dimensional Lapla-
cian ∇2

d operator (See SM, Appendix D). Assuming for
the moment that ρ is not restricted to be of the specific
RBM form (14), this relation can be explicitly inverted
to match any smoothed version p̂ε(m) of the empirical
distribution p̂(m):

ρ(m|Θ) = ∇2
d

( 1

Nv
log p̂ε(m)− S[m] + F⊥[m|Θ]

)
(15)
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up to surface terms, provided that F⊥ is independent
of ρ. Doing that leads to overfit the data with a den-

Training distribution RBM distribution

F ‖[m] ρ(m)

−1 −0.5 0 0.5 1

m−

−1

−0.5

0

0.5

1

m
+

0

2

4

6

8

10

12

−1 −0.5 0 0.5 1

m−

−1

−0.5

0

0.5

1

m
+

0

2

4

6

8

10

12

−1 −0.5 0 0.5 1

m−

−1

−0.5

0

0.5

1

m
+

−1.622
−1.62
−1.618
−1.616
−1.614
−1.612
−1.61
−1.608

−1 −0.5 0 0.5 1

m−

−1

−0.5

0

0.5

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

FIG. 3. 2-d intrinsic dataset (Nv = 103) with 6 point-like
clusters and a circular one (upper left) and corresponding
RBM density (upper right) found with Nh = 900 predefined
features, along with its free energy landscape (bottom left)
and Coulomb charges distribution (bottom right)

sity of Coulomb charges concentrated on the faces of
the Voronoi cells enclosing the data points (see SM, Ap-
pendix E). To be meaningful this solution has to be
projected on the “RBM” space, i.e. a density ρ of the
form (14) corresponding to a finite number of features.
The fact that any distribution ρ can be approximated
to arbitrary precision by such a superposition of charged
hyperplanes relates to the property that the RBM is a
universal approximator [33]. The appropriate metric to
perform such a projection is the Fisher metric [32] and
this ends up being equivalent to minimizing the Kullback-
Leibler divergence (DKL) between p̂(m) and P (m|Θ) i.e
to maximizing the LL. Nonetheless, if we expect the opti-
mal solution to be very close to p̂, we may use directly the
Fisher metric estimated at the empirical point p̂ thereby
turning the problem into the following linear regression

Θ? = argmin
q

Ep̂
[∣∣F⊥[m]− S[m]−

Nh∑
j=1

qjVj [m]
∣∣2] (16)

of F⊥[m] − S[m] on the score variables Vj [m]
def
=

∂ log(P (m|Θ))
∂qj

conjugate to qj (see SM, Appendix F).

Study cases. — To illustrate these statements first
consider a dataset supported by a 1-d subspace given
by the vector ui = 1/

√
Nv with unbiased fluctuations

along other directions. A rank one W = w1u
1v1T is

assumed since we expect transverse modes to vanish from
the linear stability analysis of the training given in [28].
The relation (4) reduces then to the magnetization m =
tanh(µ) along u leading in the Coulomb formulation to

F [m|q] = h(m)−
Nh∑
j=0

qj |m− zj |, (qj ≥ 0)

with h(m) = 1
2 (1 ± m) log(1 ± m). The natural gradi-

ent ascent of the LL yields optimal solution as the one
shown on Fig. 2. As is manifest on Fig. 2 the result
is the linear regression (16) of F⊥[m] − S[m] = h(m)
in terms of a piecewise linear function, where the break
points correspond to the locations zj of the relevant fea-
tures and qj the corresponding break of slope at these
points. This involves, however, an implicit regularization
which will be studied elsewhere, in order to maintain the
regions free of data below h(m) in order to stay away
from first-order transitions where the local Fisher met-
ric would cease to be a meaningful approximation to the
DKL. As a 2-d example we consider data concentrated
in the subspace spanned by the vectors u1

i = 1/
√
Nv and

u2
i = (−1)i/

√
Nv with irrelevant transverse fluctuations,

hence assuming now W = w1u
1v1T +w2u

2v2T . We have
then a finite magnetization (m1,m2) along each direction
and the free energy considered in the Coulomb formula-
tion reads

F [m|Θ] =
1

2
[h(m+) + h(m−)]

−
Nh∑
j=1

qj |m1 cos(ωj) +m2 sin(ωj)− zj |,

where m± = m1 ±m2 ∈ [−1, 1] and ωj ∈ [0, π[ are the
angles made by the charged lines with the m2 axis. The
result of the natural gradient ascent of the LL is shown
on Fig. 3. Here a large number of features (ωj , zj) ∈
[0, π] × [−1, 1] have been predefined on a regular lattice
in order to obtain a continuous charge distribution and
a smooth free energy landscape (see more details in SM,
Appendix G). Finally, in both study cases the standard
RBM training fails for two distinct reasons unveiled by
the Coulomb picture (see SM, Appendix G): (i) the Gibbs
sampling is plagued by the presence of first-order phase
transitions with respect to an annealing temperature; (ii)
the charged hyperplanes get easily trapped by Coulomb
barriers formed by the clusters of data , a pitfall bypassed
by the convex “Coulomb” relaxation.

Discussion. — The physical picture of the RBM
emerging here, in addition to identifying and disentan-
gling via Eqs. (11,12) the role played by some key fac-
tors, underlines the importance of two distinct aspects
of learning a high dimensional distribution : the or-
dered part corresponding to global statistical patterns
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and the fluctuations around these patterns encoding pos-
sibly short range correlations or corresponding to noise.
Under a flat intrinsic space hypothesis our formalism de-
couples them and gives indications of how to learn them
separately in order to obtain high quality models that
are needed in scientific applications, when default RBM
algorithms are thwarted by low dimensional global pat-
terns as we see in our experiments. Among many pos-
sible developments we foresee that the “Coulomb” con-
vex relaxation could be used to fine-tune some otherwise
poorly trained RBM, and opens the intriguing possibility
of tackling unsupervised learning via regularized linear
regressions.
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[20] M. Mézard. Mean-field message-passing equations in the
Hopfield model and its generalizations. Phys. Rev. E,
95:022117, 2017.

[21] A. Barra, A. Bernacchia, E. Santucci, and P. Contucci.
On the equivalence of Hopfield networks and Boltzmann
machines. Neural Networks, 34:1–9, 2012.

[22] A. Barra, G. Genovese, P. Sollich, and D. Tantari. Phase
diagram of restricted Boltzmann machines and general-
ized Hopfield networks with arbitrary priors. Phys. Rev.
E, 97:022310, 2018.

[23] A. Barra, G. Genovese, P. Sollich, and D. Tantari.
Phase transitions in restricted Boltzmann machines with
generic priors. Phys. Rev. E, 96(4):042156, 2017.

[24] E. Agliari, A. Barra, A. Galluzzi, F. Guerra, and
F. Moauro. Multitasking associative networks. Phys.
Rev. Lett., 109:268101, 2012.

[25] R. Monasson and J. Tubiana. Emergence of composi-
tional representations in restricted Boltzmann machines.
Phys. Rev. Let., 118:138301, 2017.

[26] A. Decelle and C. Furtlehner. Restricted Boltzmann ma-
chine, recent advances and mean-field theory. Chinese
Physics B, 2020.

[27] A. Decelle, G. Fissore, and C. Furtlehner. Spectral dy-
namics of learning in restricted Boltzmann machines.
EPL, 119(6):60001, 2017.

[28] A. Decelle, G. Fissore, and C. Furtlehner. Thermody-
namics of restricted Boltzmann machines and related
learning dynamics. J.Stat.Phys., 172(18):1576–1608,
2018.

[29] Note that practically speaking we use finite Nv estimates
of Φ and mα so that the preceding relation is in fact valid
up to some O(1/

√
Nv) corrections w.r.t. limit defined by

some hypothetical pu when Nv →∞.
[30] V. Nair and G.E. Hinton. Rectified linear units improve

restricted Boltzmann machines. In ICML ’10, pages 807–
814, 2010.

[31] W. Ping, Q. Liu, and A.T. Ihler. Learning infinite RBMs
with Frank-Wolfe. In NIPS, volume 29, 2016.



6

[32] S.-I. Amari. Natural gradient works efficiently in learn-
ing. Neural Computation, 10(2):251–276, 1998.

[33] N. Le Roux and Y. Bengio. Representational power of
restricted Boltzmann machines and deep belief networks.
Neural Computation, 20(6):1631–1649, 2008.

[34] H. Touchette. The large deviation approach to statistical
mechanics. Physics Reports, 478:1–69, 2009.

Appendix A: Canonical ensemble with
magnetization constraints

The decomposition of the vector of visible variables s
on the left singular basis

sα
def
=

1√
Nv

Nv∑
i=1

siu
α
i , (A1)

coincides with mα for α = 1, . . . d by definition of the
magnetization constraints. We look for a change of vari-
ables s −→ (m, s⊥) where the original spin variables are
replaced by the set of m = {mα, α = 1, . . . d} and N [m]
transverse spin variables. Let us denote by Es∼U the ex-
pectation taken when the original spin variables are iid,
si ∼ U{−1,1}. The change of measure is made by looking
at the prior distribution over the original spin variables:

Pprior[s] =
1

2Nv
= Pprior[s

⊥|m]Pprior[m],

where

Pprior[m] = Es∼U

[ d∏
α=1

δ(sα −mα)
]

= eNv(S[m]−log 2)

(A2)
represents the density of states (normalized to one) asso-
ciated with the magnetization constraints m, S[m] the
configuration entropy associated with these magnetiza-
tions and

Pprior[s
⊥|m]

def
=

1

2N [m]
,

with N [m] = NvS[m]/ log(2) representing the remain-
ing number of degrees of freedom s⊥ taken out of the
Nv initial ones. Note that there is a formal difficulty
here because the size of the transverse variables vector
s⊥ depends explicitly on m. This however is not really
a problem if consider s⊥ to be a vector of size Nv where
the last Nv−N (m) bits are frozen arbitrarily to 1, which
is done in practice by defining the prior distribution

Pprior[s
⊥|m]

def
=

1

2N [m]

Nv∏
`=N [m]+1

δ(s⊥` − 1).

To avoid additional burden on the notations we keep this
as implicit and s⊥ always refers to the set of non-frozen

variables. We want here to determine S[m] from (A2).
We have

Es∼U[sα] = 0 and Es∼U[sαsβ ] =
1

Nv
δαβ ,

the second relation resulting from the orthogonality of
the uα vectors. As a result, for large Nv we have

Pprior[m] =
1

(2π)d/2
exp
(
−Nv

2

d∑
α=1

m2
α

)
. (A3)

This is valid as long as the magnetization are not too
large (mα = O(1/

√
Nv)). To study the regime where

modes condense, i.e. when mα = O(1), we have to resort
to large deviations estimations [34]. With d assumed to
beO(1), as Nv →∞ we expect in this regime a behaviour
of the form

Pprior[m] � e−NvI[m],

where I[m] called the rate function, has 0 as minimum
value and can be determined in the present situation
thanks to the Gärtner-Ellis theorem from the moment
generating function of Pprior[m]. Denoting by µ = O(1)
a conjugate d-dimensional vector and assuming that we
can make sense of the following limit

Φ[µ]
def
= lim

Nv→∞

1

Nv
log
(
Es∼U

[
eNv

∑d
α=1mα(s)µα

])
,

= lim
Nv→∞

1

Nv

∑
i

log cosh
(√

Nv

d∑
α=1

uαi µα

)
,

I[m] is then simply given by the Legendre-Fenchel trans-
form of Φ:

I[m] = mµ[m]T − Φ
[
µ[m]

]
,

with µ[m] implicitly given by (in principle when Nv →
∞)

mα = lim
Nv→∞

1√
Nv

Nv∑
i=1

uαi tanh
(√

Nv

d∑
β=1

uβi µβ
)
,

= Eu∼pu

[
uα tanh

( d∑
β=1

uβµβ
)]

(A4)

where we assume in the last equality some limit pu of
the joint empirical distribution of uα =

√
Nvu

α
i when

Nv →∞. From the small m behaviour given in (A3) we
finally have determined the configuration entropy as

S[m] = −I[m] + log(2) +
d

2Nv
log(2π),

= Φ[µ[m]]−mTµ[m] + log(2) +O
( 1

Nv

)
.

Note that practically speaking we use finite Nv estimates
of Φ and mα so that the preceding relation is in fact valid
up to some O(1/

√
Nv) corrections w.r.t. limit defined by

some hypothetical pu when Nv →∞.
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Appendix B: Longitudinal and transverse free
energy

In order to disentangle the contributions of the collec-
tive modes materialized by some magnetization m along
some directions uα, α = 1, . . . d from the noise corre-
sponding to the fluctuations of the transverse variables
s⊥ we assume first to be able to rewrite the Hamiltonian
corresponding to the visible distribution (3)

P [s|Θ] =
e−H[s|Θ]

Z[Θ]
,

in terms of the new degrees of freedoms

H[s|Θ] = H[m, s⊥|Θ],

such that the joint distribution takes the form

P [m, s⊥|Θ] =
e−H[m,s⊥|Θ]

Z[Θ]
.

This in turn can be written

P [m, s⊥|Θ] = P [s⊥|m,Θ]P [m|Θ], (B1)

with

P [m|Θ] =
∑
s

P [s]

d∏
α=1

δ(sα −mα)
def
=
e−NvF [m|Θ]

Z[Θ]
,

after introducing the canonical free energy F [m|Θ]. Let
us denote by

H[s⊥|m,Θ]
def
= H[m, s⊥|Θ]−H0[m|Θ], (B2)

the “conditional” Hamiltonian, where H0[m|Θ] is at this
point an arbitrary function of m independent of s⊥. We
chose it as to contain only contributions from the lon-
gitudinal magnetization, i.e. coincides with the constant
part ofH[m, s⊥|Θ] w.r.t. s⊥ when neglecting the singular

values wβ of W and the O
(

1/
√
Nv

)
residual transverse

magnetizations mβ for β > d resulting from the con-
straints (see next Section). Rewriting the Hamiltonian
in terms of the SVD components sα and ηα respectively
of the visible variables and biases

H[s|Θ] =

Nv∑
i=1

ηisi −
Nh∑
j=1

log cosh
( Nv∑
i=1

Wijsi − θj
)

= Nv

Nv∑
α=1

ηαsα −
Nh∑
j=1

log cosh
(√

Nv

Nv∑
α=1

wαsαv
α
j − θj

)
,

this leads to the definition

H0[m|Θ] = Nv
( d∑
α=1

ηαmα − V (m|Θ)
)
, (B3)

with

V (m|Θ)
) def

=
1

Nv

Nh∑
j=1

log cosh
(√

Nv

d∑
α=1

wαmαv
α
j − θj

)
.

In terms of H0[m|Θ] the free energy reads

F [m|Θ] =
1

Nv

[
H0[m|Θ]− log

(∑
s⊥

e−H[s⊥|m,Θ]
)]
,

=
1

Nv

[
H0[m|Θ]− S[m]− log

(∑
s⊥ e

−H[s⊥|m,Θ]

2N [m]

)]
= F‖[m|Θ] + F⊥[m|Θ]

where we have introduced respectively the longitudinal
and transverse free energy:

F‖[m|Θ]
def
=

1

Nv
(H0[m|Θ]− S[m]),

F⊥[m|Θ]
def
= − 1

Nv
log
( 1

2N [m]

∑
s⊥

e−H[s⊥|m,Θ]
)
.

The longitudinal free energy of the system is the free en-
ergy of the system for a given magnetization m when the
transverse magnetization and interactions among the s⊥`
are neglected. These indeed are expected to be small by
definition of the intrinsic space. Vanishing interactions
corresponds to H

[
s⊥|m,Θ

]
= 0, in which case F‖[m|Θ]

coincides with F [m|Θ]. Non-vanishing interactions are
accounted for by the transverse free energy.

Appendix C: Effective Hamiltonian

To enter further into the description of transverse fluc-
tuations we need to specify the transverse degrees of free-
dom s⊥ and the way they interact through H[s⊥|m,Θ] in
the form of an effective Hamiltonian. For β > d the com-
ponents sβ given in (A1) are stochastic variables and we
denote them by sβ [s⊥|m], i.e. a mapping to be defined of
transverse variables to transverse projections given some
magnetization m. This mapping cannot be determined
exactly but since we look for an effective theory we con-
sider a linear map i.e. of the form

sβ [s⊥|m] = mβ [µ] +

N [m]∑
`=1

c`βs
⊥
` , β = d+ 1, . . . Nv,

(C1)
where the prior of these new variables is to be iid with
s⊥` ∼ U{−1,1}. Under the magnetization constraints only
we have (see Section A)

E[si|m] = mi[µ]

Cov(si, sj |m) = (1−m2
i [µ])δij +O

( 1

Nv

)
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with

mi[µ] = tanh
(√

Nv

d∑
α=1

µαu
α
i

)
.

As a result mβ [µ] (for β > d) represents the prior bias
resulting from the magnetizations constraints (A4)

mβ [µ] =
1√
Nv

Nv∑
i=1

uβi tanh
(√

Nv

d∑
α=1

µαu
α
i

)
, ∀β > d

(C2)
as a function of {µα, α = 1, . . . d} solution to equa-
tion (A4) and are O(1/

√
Nv). The second set of con-

straints comes from the set of prior covariances between
the sβ [s⊥|m] for β > d that have to be maintained to
properly account for the transverse degrees of freedom.
These are diagonal at leading order:

Cov(sβ [s⊥|m], sγ [s⊥|m]) =
1

Nv

Nv∑
i=1

uβi
2
(1−m2

i [µ])δβγ

+O
( 1

N2
v

)
. (C3)

A simple way to maintain at best these covariances in
the new representation is to associate a binary variable
s⊥` with the first N [m] principal axes of the previous
covariance matrix neglecting the remainder. Since the
covariance resulting from (C1) reads

Cov(sβ [s⊥|m], sγ [s⊥|m]) =

N [m]∑
`=1

c`βc
`
γ ,

the vector c` can be chosen as a principal axes of the
covariance matrix (C3) normalized to the standard de-

viation along the same axes which are O
(

1/
√
Nv

)
so

that cβ` coefficients are O
(

1/Nv

)
. Now that the trans-

verse variables are unambiguously defined we can ob-
tained their effective Hamiltonian by expanding H[s⊥|m]
defined in (B2) at second order in s⊥. From the def-
inition (B2,B3) there is a zero order term F⊥0 [m|Θ] =
O(1/

√
Nv) with convoluted expression which we give

only the first terms, contributing to the transverse free
energy and the first and second order terms corresponds
to a conventional Hamiltonian of a disordered Ising
model:

H[s⊥|m,Θ] ≈ Heff

[
s⊥|m,Θ

]
= NvF⊥0 [m|Θ]

+

N [m]∑
`=1

η⊥` [m,Θ]s⊥` +

N [m]∑
`,`′=1

W⊥``′ [m,Θ]s⊥` s
⊥
`′ .

with

F⊥0 [m|Θ] =

Nv∑
β=d+1

(ηβ + wβm̄β)mβ [µ]

η⊥` [m,Θ] = Nv

Nv∑
β=d+1

c`β(ηβ − wβm̄β)

W⊥`,`′ [m,Θ] = −Nv
Nh∑
j=1

(1− m̄2
j )

Nv∑
β,γ=d+1

wβwγc
`
βc
`′

γ v
β
j v

γ
j ,

after introducing the notations:

m̄j = tanh
(√

Nv
( d∑
α=1

wαmαv
α
j +

Nv∑
β=d+1

wβmβ [µ]vβj
)
− θj

)
,

m̄β =
1√
Nv

Nh∑
j=1

m̄jv
β
j .

η⊥` [m,Θ] is potentially O(1) while W⊥`,`′ [m,Θ] is

O
(

1√
Nv

)
.

To make connection with data, i.e. given a configura-
tion s with magnetization mα, α = 1, . . . d, from which
are extracted the transverse magnetization {mβ [µ], β =
d + 1, . . . Nv by solving the equations (A4), the s⊥ are
constructed as follows. First let for each ` = 1, . . . ,N [m]

m⊥` [s] =

Nv∑
β=d+1

(sβ −mβ [µ])u⊥`β

(thresholded to 1 [resp. −1] when bigger than 1 [resp.
lower than −1]) the magnetization of the configuration s
along this mode. This allows us to define the probability

p`[s] =
1 +m⊥` [s]

2
.

Then

s⊥` = 2τ` − 1, ∀` = 1, . . .N [m]

with τ` a Bernoulli variable of parameter p`[s], gives us
a set of spin variables fulfilling our needs.

Appendix D: Coulomb interaction picture

Let us consider the green function for the d-
dimensional Laplacian ∇2

d

Kd(|m−m′|) =



1

2
|m−m′|, (d = 1)

1

2π
log |m−m′|, (d = 2)

− Γ
(
d
2 − 1

)
4πd/2|m−m′|d−2

, (d > 2)
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which by definition is solution of

∇2
dKd(|m−m′|) = δ(m−m′).

We can use it to rewrite V [m|Θ] up to an irrelevant con-
stant term as

V [m|Θ] =

∫
ddm′ρ(m′|Θ)Kd(|m−m′|) (D1)

where ρ is the source term of the Poisson equation

∇2
dV [m|Θ] = ρ(m)

hence giving a density of Coulomb charges

ρ(m|Θ) =

Nh,d∑
j=1,α=1

w2
αv

α
j

2
(

1

− tanh2
(√

Nv

d∑
β=1

wβmβv
β
j − θj

))
.

To make sense of this quantity first remark that the func-
tion

δν(x)
def
=
ν

2

[
1− tanh2(νx)

]
−→
ν→∞

δ(x)

represents a normalized 1-d narrow density of width ν−1

such that ρ can be expressed as

ρ(m|Θ) =
2

Nv

Nh∑
j=1

νjδνj
(
nTj m− zj

)
(D2)

with νj and nj given by equation (11,12). In this form, ρ
is readily a superposition of Nh uniformly charged hyper-
planes of finite width. Each hyperplane j being defined
by a normal vector nj , an offset zj = θj/νj from the
origin, a finite width ν−1

j and a (hyper)surface charge
density 2νj/Nv. Furthermore this can be decomposed
into more elementary charged hyperplanes of zero width.
Equation (D1) now rewrites

V [m|Θ] =
2

Nv

Nh∑
j=1

νj

∫
ddm′δνj

(
nTj m

′−zj
)
Kd(|m−m′|)

For each term j, writing m′ = (nTj m
′)nj +m′⊥ = znj +

m′⊥, the transverse integration of m′⊥ yields∫
dm′Kd

(
|m−m′|

)
=∫

dzdm′⊥Kd

(»
(nTj m− z)2 + (m⊥ −m′⊥)2

)
=

∫
dz|nTm− z|.

up to an ill defined constant term after properly regular-
izing at large distances the integral over m′⊥. As a result
the one particle potential takes the form

V [m|Θ] =
2

Nh

Nh∑
j=1

νj

∫
dzδνj

(
z − zj

)
|nTj m− z|.

=

∫
dndz q(n, z)|nTm− z|

with q(n, z) given by equation (10)

Appendix E: Exact Coulomb charges interpolation

In order to interpolate exactly the empirical distribu-
tion p̂ with a generalized Coulomb charges RBM based
distribution it is needed to regularize log(p̂(m)). This can
be done in many different ways. Consider for instance

δε(m)
def
=

exp
(
− |m|

2

2ε

)
(2πε)d/2

with infinitesimal ε to approximate our point-like distri-
bution as

p̂(m) =
1

M

M∑
k=1

δε(m−mk),

and let

qε(k|m) =
δε(m−mk)∑
l δε(m−ml)

.

These probability weights realize a smooth partition of
the space at finite ε with Voronoi cells Rk centered at
each data point, qε(k|m) representing the probability
that m belongs to kth cell. Equipped with this nota-
tion we have

∇mδε(m−mk) = −m−mk

ε
δε(m−mk)

∇mqε(k|m) = −m−mk

ε
qε(k|m)

+

M∑
`=1

m−m`

ε
qε(k|m)qε(`|m).

As a result we get

∇2
d log p̂(m) = −1

ε
+

1

ε2

M∑
k=1

Vark∼qε(k|m)[mk].

When ε becomes small compared to nearest neighbour
distances this quantity becomes constant (= −1/ε) ex-
cept on the intersections between Voronoi cells, in par-
ticular on common faces Rk ∩ R` between two cells Rk
and R` it is

∇2
d log p̂(m) ∼

ε→0
−1

ε
+
|mk −m`|

2ε
δ(m ∈ Rk ∩R`).
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Indeed, let

θk
def
=

1

2
(mk + mk+1) and ∆k

def
=

1

2
(mk+1 −mk).

For δm = m− θk small compared to ∆k we have

qk(θk + δm) =
1

2

[
1− tanh

(∆T
k δm

2ε

)]
,

leading to

Vark∼qk(m)[mk] = |∆k|2
[
1− tanh2

(∆T
k δm

2ε

)]
.

Since ν
2

[
1 − tanh2(νx)

]
tends to δ(x) when ν → ∞ we

arrive at the statement. As a result the distribution of
charges is composed of a constant background + surface
distribution on Voronoi cells intersections:

ρbulk(m) = − 1

Nvε
+
|mk −m`|

2Nvε
δ(m ∈ Rk ∩R`).

The Voronoi cells intersecting with the boundary of the
m domain induce additional surface charges which can
be directly taken care of with visible bias. Let us show
how this works in 1-d. Let us call

V (m) =
1

Nv
log p̂(m)

which when regularized reads

V (m) = − 1

Nv
min
k

(m−mk)2

2ε
.

From what precedes, this potential can be exactly de-
composed onto a set of features as

V (m) = − m2

2Nvε
+ ηm+

∑
j

qj |m− zj |

with

qj =
1

2Nvε
(mj+1 −mj),

while from the limit behaviour V ′(1) and V ′(−1) of
V ′(m) we get

η =
m1 +mNv

2ε
.

Appendix F: RBM optimization seen as a linear
regression

The projection of the empirical distribution onto the
space of RBM with finite number of features is classi-
cally done by minimizing the Kullback Liebler divergence
(DKL). If however our RBM space is chosen with a high
number of relevant features, we may expect the solution

to be close enough to the empirical distribution so that
a Fisher metric, i.e. the infinitesimal counterpart of the
DKL, evaluated from the solution or from the empirical
distribution should coincide. In that case it might be
pertinent to use it instead of the DKL. Let us formalize
more precisely this projection problem. On one hand we
have the empirical measure approximated by a Coulomb
based RBM model of the form

p(m|ρ̂) =
1

Z[ρ̂]
e−NvF(m|ρ̂)

with

F(m|ρ̂) = F⊥[m]− S[m]−
∫
dm′ρ̂(m′)Kd(|m−m′|),

where ρ̂(m) is, as seen in the previous Section, the charge
density concentrated on the Voronoi cells faces coming
from the empirical part log p̂(m) (including surface terms
at the edge of the domain of m). On the other hand we
have an RBM with a pointwise distribution of features
q(n, z) yielding a free energy of the form

F(m|Θ) = F⊥[m]−S[m]−
∫
dm′ρ(m′|Θ)Kd(|m−m′|),

with

ρ(m|Θ) =

Nh∑
j=1

qjδ
(
nTj m− zj

)
.

Our goal is to find the (positive) weights {qj , j =
1, . . . Nh} such that the following distance

D(ρ, ρ′) =

∫
dm1dm2ρ(m1)J(m1,m2)ρ′(m2), (F1)

between ρ̂ and ρ is minimized. Here the relevant metric
J is the Fisher metric defined as

J
[
m1,m2

]
= Covm∼p(m|Θ)

[
Kd(|m−m1|),Kd(|m−m2|)

]
,

' Covm∼p̂(m)

[
Kd(|m−m1|),Kd(|m−m2|)

]
,

(F2)

approximated at the empirical point in last equation. As
we shall see this projection turns out to be a linear re-
gression of the centered random variable

V (m|ρ̂) =

∫
dm′ρ̂(m′)Kd(|m−m′|)

− Em∼p̂(m)

[∫
dm′ρ̂(m′)Kd(|m−m′|)

]
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onto the set of centered random variables (the score vari-
ables associated with q)

Vj(m)
def
=

∫
dm′δ

(
nTj m

′ − zj
)
Kd(|m−m′|)

− Em∼p̂(m)

[∫
dm′δ

(
nTj m

′ − zj
)
Kd(|m−m′|)

]
= |nTj m− zj | − Em∼p̂(m)

[
|nTj m− zj |

]
.

Em∼p̂(m) and Covm∼p̂(m) denote respectively empirical
expectation and covariance, according to our assumption
that the solution is close to p̂. Indeed, from elementary
linear algebra, the orthogonal projection V ‖ of a given
vector V̂ , onto a subspace spanned by a set of indepen-
dent vectors Vk is given by

V ‖ =
∑
k,l

[
G−1]kl(Vl, V̂ )Vk (F3)

with Gkl = (Vk, Vl) the Gram matrix of the set of vector
Vk for some given inner product (·, ·). Specified to our
problem, the vectors are the densities ρ, or equivalently
the random variables V (m|ρ) with inner product (F1,F2)
resulting in(
V (m|ρ), V (m|ρ′)

)
= Covm∼p̂(m)

[
V (m|ρ), V (m|ρ′)

]
.

The projection of V̂ [m] = V (m|ρ̂) is then given by
V ‖ in (F3) with G the empirical covariance matrix of
{V1, . . . VNh} and (Vk, V̂ ) the empirical covariance be-

tween Vk and V̂ (if the set Vk is not independent the
pseudo-inverse of G is taken instead of G−1). At this
point this regression seems intractable since V̂ involves
a very complicated density of charge ρ̂. This is not the
case because by construction we have∫
dm′ρ̂(m′)Kd

(
|m′−m|

)
=

1

Nv
log p̂(m)−S[m]+F⊥[m],

and log p̂(m) = log 1
M when evaluated on the data. This

means that the solution to our projection problem is ob-
tained by performing the previous linear regression with

V̂ (m) = F⊥[m]− S[m]− Em∼p̂(m)

[
F⊥[m]− S[m]

]
,

so that the RBM distribution will be finally of the form

PRBM(m) =
1

Z
e−NvF(m|Θ)

with

F(m|Θ) = F⊥[m]− S[m]−
Nh∑
j=1

qj |nTj m− zj |,

def
= V (m)− VRBM(m),

i.e. a difference between 2 convex potential whenever
F⊥[m] is convex or negligible. The interpolation point
corresponding to the situation where there is a sufficient
amount of Coulomb features to model exactly the em-
pirical distribution is shown on Fig. 4. In this appealing
picture there is however a shortcoming. The fact that we
impose the features weights to be non-negative insures
the regression curve to be convex but do not prevent it
to pass above the fitted potential in empty regions of
data. The reason for this, while the information theory
argument provides us with a strong guarantee at first
sight, is that the empirical Fisher metric is not relevant
everywhere on the embedding functional space defined
by the RBM features used to approximate V (m), but
only on regions supported with data. Other directions
are represented by random variables which are decorre-
lated from the data, so the Fisher metric is not covered
by (F1) along these directions. This requires the linear
regression to be complemented with some additional reg-
ularization which as shown on Fig. 4 should involve also
the distance between the derivatives of the two profiles
measured at the sample points.

m

zj

VRBM(m)V (m)

data point

2 arctan(qj)

FIG. 4. Picture of the VRBM(m) (in red) at the interpolation
threshold in 1-d.

Appendix G: Experiments

The transverse free energy being absent and the en-
tropy term independent of Θ ≡ q, the loss optimized in
the experiments is given by

 L[q] = −Em∼p̂
[
V [m|q]

]
− log

(
Z[q]

)
,

corresponding to

p(m|q) =
1

Z[q]
e−NvF [m|q]

with

F [m|q] = −S[m]−
Nh∑
j=0

qj |nTj m− zj |

In the 1-d study case, we have nj = 1 and the discretiza-
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TABLE I. LL obtained for the RBM in the study cases

LLRef LLCoulomb LLRBM Nfeatures Nepochs Nd
pts γ

d = 1 -471.45 -479.85 -479.82 5 5000 100 0.0001

-471.45 -471.66 -471.69 10 7000 100 0.0001

-471.45 -471.48 -471.48 20 10000 100 0.001

-471.45 — -535.00 20 2500 — 0.001

d = 2 -621.90 -623.74 -623.61 49 113000 900 0.0001

-621.90 -622.16 -622.24 169 155000 900 0.0001

-621.90 -621.97 -631.79 900 410000 1600 0.0001

tion concerns only zj = −1 + 2j/Nh, j = 1, . . . Nh. The
features j = 0 and j = Nh correspond to the visible bias
η.
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P
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β = 1.05

FIG. 5. First order phase transition mechanism of the
“Coulomb” RBM illustrated on the 1-d case. β represents an
annealing inverse temperature, which effect is to multiply the
energy part V (m) in the free energy Fβ(m) = βV (m)−h(m).
β = 1 is a reference RBM where many states are present with
comparable probabilistic weights; for β > 1 [resp. β < 1] the
state with highest [resp. lowest] V (m) is favored.

In the 2-d study case we have nj =(
cos(pπ/

√
Nh), sin(pπ/

√
Nh)

)
and zj = −1 + 2r/

√
Nh

with the entire decomposition of j = p
√
Nh + r. The

continuous dynamics of the parameters corresponding to
an ordinary gradient reads

q̇ = γ∇q  L[q],

with the learning rate γ. The scores associated with these
parameters are centered random variables classically de-
fined as

q∗(m) = ∇q log p(m|q),

which in our case read:

q∗j (m) = |nTj m− zj | − Em∼p(m|q)

[
|nTj m− zj |

]
.

In terms of these variables the gradient of the log likeli-
hood simply reads

∇q  L[q] = Em∼p̂
[
q∗(m)

]
,

p̂ being the empirical data distribution. In a continuous
limit of the training process indexed by the training time
t, let q̂∗t the time dependent expectation of qt(m) w.r.t
the empirical distribution p̂. We have

q̂∗j,t =

∫
dm
(
p̂(m)− p(m|qt)

)
|nTj m− zj |.

The evolution of q̂∗t with time is given by

d

dt
q̂∗t = −γCovm∼p(m|q)

[
q∗t (m), q∗Tt (m)

]
q̂∗t ,

where Covm∼p(m|q) denotes the covariance under p(m|q)
and corresponds to the Fisher metric of the q parame-
ter space. As we see as long as the covariance matrix
is strictly positive definite the dynamics is contractant.
When using the natural gradient [32] defined here as

∇̃q = Covm∼p(m|qt)
[
q∗t (m), q∗Tt (m)

]−1∇q,

the dynamics simplifies to

d

dt
q̂∗t = −γq̂∗t .

The norm of q̂∗t can be monitored during learning allow-
ing for an adaptive strategy for the learning rate used
in practice in these experiments to control the conver-
gence as well as the stopping criterion. Thanks to the
choice made for uα in these experiments the number of
configurations m is equal to N+1 and (N+1)2/4 respec-
tively in the 1 and 2-d case, so the LL of the resulting
“Coulomb” RBM which are obtained can be evaluated
exactly in both cases as well as the corresponding stan-
dard RBM. The latter is obtained through the following

asymptotic mapping assuming that
»∑

iW
2
ij is large for

all j:

log cosh
( Nv∑
i=1

Wijsi − θj
)
≈
 
Nv
∑
i

W 2
ij

∣∣∣ sT√
Nv

nj − zj
∣∣∣
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FIG. 6. Illustration of the failure of the standard RBM train-
ing due the occurrence of a first order transition signaled here
by a divergence between the Gibbs sampling evaluation of
the magnetization along the intrinsic axis with the exact one
(main plot), and due to the trapping of the zj ’s close to zero
(inset).

with

nij =
Wij»∑
iW

2
ij

and zj =
θj»

Nv
∑
iW

2
ij

leading to

qj =

√
1

Nv

∑
i

W 2
ij .

This results into the following correspondence

Wij =
√
Nvqjnij , θj = Nvqjzj .

In both experiments the number of visible variables is
Nv = 103, and the LL is an average value estimated
on an independent test set of 103 samples. The num-
ber of points Nd

pts used to estimate the integrals over m
needed to compute the natural gradient give a contribu-
tion NfN

d
pts to the complexity in a naive setting. The

indicated values in the Table I correspond to the point
where the results become insensitive to Nd

pts. The val-
ues LLCoulomb and LLRBM measured respectively for the
“Coulomb” machine which is optimized with the natural
gradient and its corresponding RBM using the previous
mapping are reported on Table I are compared with the
reference value LLRef of the hidden mixture model used
to generate the data. Note that the mapping gives a poor
model when many weak features are used as in the d = 2
case with Nh = 900. Note also that using the ordinary
gradient instead of the natural one seems to keep the last
bits of LL out of reach in a reasonable time.

Finally Fig. 6 illustrates the reasons for the failure
of the standard RBM training. First the Gibbs sam-
pling procedure is plagued by the presence of 1st order
phase transitions which is well understood when consid-
ering the “Coulomb” RBM. Indeed, in that case changing
the temperature corresponds to multiplying all the fea-
ture weights qj by a common factor β representing for
instance an annealing inverse temperature. The learn-
ing procedure is supposed to tune precisely the difference
Fβ [m|q] = βV (m|q)−S[m] at β = 1, in order to obtain
many coexisting states corresponding to different values
of condensed magnetization m. Then as in the example
of Fig. 5, changing slightly β has the effect of concentrat-
ing the probability distribution on the state with highest
or lowest value of V (m|q) depending on whether β is
smaller or greater than one. The second source of failure
is, as expected from the electrostatic picture, that the
hidden bias given in rescaled form by zj = θj/νj along
with (11) get trapped, around zero in the example of
Fig. 6 which prevent the machine to form more than two
ferromagnetic states in 1d.
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