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We report an infinite number of orthonormal wave functions bases for the quantum problem of
a free particle in presence of an applied external magnetic field. Each set of orthonormal wave
functions (basis) is labeled by an integer p, which is the number of magnetic fluxons trapped in the
unit cell. These bases are suitable to describe particles whose probability density is periodic and
defines a lattice in position space. The present bases of orthonormal wave functions unveils fractional
effects since the number of particles in the unit cell is independent of the number of trapped fluxons.
For a single particle under p fluxes in the unit cell, and confined to the lowest Landau level, the
probability density vanishes in p points, thus each zero is associated to a fraction 1/p of the particle.
Remarkably the case of n+1 filled Landau levels, hence with a total of N = (n+1)p fermions, n being
the highest filled Landau level, the density displays an egg-box pattern with p2 maxima (minima)
which means that a (n+ 1)/p fraction of flux is associated to every one of these maxima (minima).
We also consider the case of particles interacting through the magnetic field energy created by their
own motion and find an attractive interaction among them in case they are confined to the lowest
Landau level (n = 0). The well-known de Haas-van Alphen oscillations are retrieved within the
present orthonormal basis of wave functions thus providing evidence of its correctness.

PACS numbers: 75.70.Kw, 75.50.-y, 11.27.+d, 05.45.Yv

I. INTRODUCTION

The quantum problem of free fermions in a magnetic
field has been long investigated since the early days of
Quantum Mechanics, and its study is nowadays part of
the educational training of any physics student [1–5].
Although nearly ninety years have passed since Landau
firstly explained the diamagnetism of metals [6], based
on a free electron model, the study of particles in a
magnetic field has remained a subject of interest as new
and startling phenomena are still unfolding from it [7],
such as the quantum Hall effect [8, 9]. In this paper
we report novel and interesting properties in case that
fermions form a lattice state, and so, the probability
density is periodic in position space. Our results stem
from the finding of new bases of orthonormal wave
functions, which are reported here and follow from
Abrikosov‘s solution for the vortex lattice [10] The
Landau gauge is used and a rectangular unit cell is
taken with dimension L1 and L2. The orthonormal wave
function basis features p magnetic fluxons trapped in the
unit cell (Φ = pΦ0, Φ0 ≡ hc/e, e the electronic charge)
and the choice of p fixes a distinct set of orthonormal
functions. Hence in the present formalism each Landau
level, labeled by n has p available states, each one
associated to a distinct wave function that belongs
to this orthonormal set. For simplicity we ignore the
spin degree of freedom such that each level fits a single
particle. The present approach allows for the treatment
of situations such that the number of particles and the
number of fluxons in the unit cell are not necessarily the

same, thus potentially useful for cases with fractional
charge and flux. We treat a few cases in details to
exemplify the fractional effects. For instance the case of
the full lowest Landau level, with p particles which is the
same as the number of fluxons, shown in Fig. 2. There
one sees the presence of p2 maxima (minima) of the
probability density, thus there is 1/p fluxons associated
to each maxima (minima), as shown in Table II. The
case of a single particle in a unit cell with p fluxons is
seen in Fig. 3. The probability density has p zeros and
so, each zero is associated with 1/p of a particle. Finally
in Fig. 4 is the case of n + 1 fully filled Landau levels,
and so with N = (n + 1)p particles or fluxons. We find
the remarkable property that the probability density
displays p2 maxima (minima) in position space within
the unit cell, similarly to an egg-box arrangement,
which is Fig. 2 result extended to higher Landau levels.
Consequently the number of particles per maximum is
fractional, and given by (n+ 1)/p, as shown in Table II.
The above examples correspond to free fermions in a
magnetic field. We also treat in this paper the curious
case that the local magnetic field created by the motion
of the fermions is also taken into account, provided
that the particles are confined to the first Landau level
(n = 0). We report here that the magnetic energy of this
system is negative thus causing an attraction between
the fermions. For this special case the so-called first or-
der equations [11] apply. They were firstly used by A.A.
Abrikosov to discover vortices in superconductors [10].

To show the correctness of the present approach we
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use the present formalism to the de Haas-Van Alphen
effect and retrieve some well-known properties, such as
the periodicity of the energy with respect to the applied
field H3, and also with respect to 1/H3, that allows for
the measurement of the Fermi surface area. The de Haas-
van Alphen effect is known to reveal quantum oscillatory
phenomena in metals that unveils fundamental properties
directly obtained from the magnetisation M , which is a
thermodynamic function of state [2–5]. This means that
theoretical models for the Fermi surface can be checked in
a very rigorous manner through the de Haas-van Alphen
effect [12, 13].

II. PERIODIC SOLUTIONS FOR THE
SCHRÖDINGER EQUATION OF A FREE

PARTICLE IN A MAGNETIC FIELD

In this section we obtain solutions of the Schrödinger
for free particles in presence of a magnetic field H3, under
the condition of spatial periodicity. The Hamiltonian is
well-known and given by,

1

2m
~D2ψ = Eψ, (1)

where ~D = x̂1D1 + x̂2D2 + x̂3D3. The covariant
derivative is Dj ≡ −i~∇j − (e/c)Aj , j = 1, 2 e 3, e
is the particles charge and Aj is the vector potential.
The magnetic field is set along the direction x̂3 such

that the Landau gauge is given by ~A = (−H3x2, 0, 0),
~∇ × ~A = x̂3H3. Uniaxial symmetry is assumed and so,
there is no derivative along x̂3 since A3 = 0. Only the
derivatives D1 e D2 remain and so, the index is limited
to j = 1 e 2. The wave function is described by the
coordinates perpendicular to the direction of the applied
field, ψ = ψ(x1, x2).

Assume a rectangular unit cell, with dimensions L1 e
L2 in this plane (x1, x2). We seek states that are periodic
on this lattice and for this purpose make demands on the
wave function under x1 → x1 + L1 and x2 → x2 + L2 to
guarantee that |ψ(x1, x2)|2 be periodic. This means to
impose quasi-periodicity along the coordinate x1,

ψ(x1 + L1, x2) = eiη1ψ(x1, x2), (2)

as the phase eiη1 does not affect the periodicity condition
|ψ(x1 +L1, x2)|2 = |ψ(x1, x2)|2. Similarly the periodicity
along the coordinate x2, |ψ(x1, x2 +L2)|2 = |ψ(x1, x2)|2,
is a consequence of the demand that,

ψ(x1, x2 + L2) = eiη2ψ(x1, x2), (3)

where eiη2 is an arbitrary phase.

The general solution of Eq. (1) in the Landau gauge
is well known to be given by ψ ≡ ψn,k(x1, x2) =
eikx1fn(x2). Thus along one of the coordinates, x1, is

a plane wave, whereas along the other, x2, is a harmonic
oscillator. Therefore there are two quantum indices, k
and n, the latter index defines the Landau level. Hence
Eq. (1) acquires the following form.[
− ~2

2m

∂2

∂x2
2

+
1

2
mω2

c (x2 − x′2)
2
]
fn(x2) = Enfn(x2),

(4)
where x′2 = −(~ck)/(eH3) and ωc is the Larmor fre-
quency given by,

ωc =
eH3

mc
. (5)

The analogy of Eq. (4) with the harmonic oscillator yields
the eigenvalues as,

En = ~ωc
(
n+

1

2

)
, n = 0, 1, 2, 3..., (6)

and shows that the Landau levels are equally spaced in
energy and separated by ~ωc.

The solution for fn(x2) is given by,

fn(x2) = AnHn(x̄2)e−
1
2 x̄

2
2 , (7)

where An is a constant to be determined, Hn(x̄2) are the
Hermite polynomials and the variable x̄2 is defined by,

x̄2 ≡
√
eH3

~c

(
x2 +

c~
eH3

k

)
. (8)

Hence the wave function is given by,

ψn,k(x1, x2) = Ane
ikx1Hn(x̄2)e−

1
2 x̄

2
2 . (9)

The wave functions ψn,k(x1, x2), Eq. (9), are orthogonal,
and satisfy the following condition.∫

d2x ψ∗m,k′ψn,k = δ(k − k′)δnm. (10)

This is easily checked, by taking ψm,k′ e ψn,k, and com-
puting the integral,∫

d2x ψ∗m,k′ψn,k = AmAnIx1
Ix2

, (11)

where

Ix1 =

∫ +∞

−∞
dx1 e

i(k−k′)x1 , (12)

and

Ix2
=

∫ +∞

−∞
dx2 Hm(x̄′2)Hn(x̄2)e−

1
2 (x̄′22 +x̄2

2), (13)

such that x̄2 is given by Eq. (8) and x̄′2 is equivalent
to Eq. (8) for k′. The integration in x1 yields that
Ix1

= 2πδ(k − k′). Then x̄′2 = x̄2 and deriving both
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sides of Eq. (8) gives that dx2 =
√

~c
eH3

dx̄2. Hence

Ix2
=
√

~c
eH3

∫∞
−∞ dx̄2Hm(x̄2)Hn(x̄2)e−x̄

2
2 . One obtains

that Ix2
= 0 if m 6= n and Ix2

=
√

~c
eH3

2nn!
√
π if m = n.

Combining these results in Eq. (11) gives the constant of
Eq. (9).

An =

(
eH3

4π2~c

)1/4 (
2nn!
√
π
)−1/2

. (14)

So far the orthonormality of the wave functions, ex-
pressed in Eq. (10) is not limited to the unit cell, and
this is where news bases can be introduced as their wave
functions are orthonormal in a unit cell.

In power of the well-known solution for the Schrödinger
equation, given by Eq. (9), we revisit the period-
icity to unveil startling properties. Along x1 the
quasi-periodicity is easily checked: ψn(x1 + L1, x2) =

eikL1ψn(x1, x2) = Ane
ikL1

∑
k cn,ke

ikx1Hn(x̄2)e−
1
2 x̄

2
2 ,

and eiη1 = eikL1 . However the quasi periodicity along
x2 is only possible for the wavefunction summed over k,

ψn(x1, x2) =
∑
k

cn,kψn,k(x1, x2), (15)

which introduces the so far free parameters, cn,k. How-
ever the above wave function spoils the quasi periodicity
along x1, unless if the sum over k is limited to the fol-
lowing values,

k =
2π

L1
l, l = 0,±1,±2, ..., (16)

In this case, eiη1 = 1, and the coefficients belong to the
discrete set cn,k = cn,l. A remarkable consequence of the
quasi periodicity condition along x2 is the quantization
of the magnetic flux in the unit cell. There should be an
integer number of p magnetic flux inside the unit cell,

pΦ0 = H3L1L2, (17)

where Φ0 is the unit flux defined by a single electronic
charge,

Φ0 =
hc

e
= 4, 14 · 10−7G · cm2. (18)

to have quasi periodicity along x2. This also limits the
number of coefficients in Eq. (15) to just p free coeffi-
cients, since it must hold that,

cn,l+p = cn,l. (19)

To check this write the wave function as,

ψn(x1, x2) =
∑
l

cn,lψn,l(x1, x2), (20)

where

ψn,l(x1, x2) = Ane
i 2π
L1
lx1Hn (gl(x2)) e−

1
2 (gl(x2))2 (21)

with gl(x2) ≡
√

2πH3

Φ0

(
x2 + Φ0

H3L1
l
)

, and Φ0 given by

(18). To calculate ψn(x1, x2 + L2), firstly notice that
under the flux quantization condition one obtains that,

L2 +(Φ0/H3L1)l = (Φ0/H3L1)(l+p). Next write ei
2π
L1
lx1

as e−i
2π
L1
px1ei

2π
L1

(l+p)x1 , to obtain that ψn(x1, x2 + L2) =

e−i
2π
L1
px1An

∑
l c
n
l+pe

i 2π
L1

(l+p)x1Hn(ḡl(x2))e−
1
2 (ḡl(x2))2

com ḡl(x2) =
√

2πp
L1L2

(
x2 + L2

p (l + p)
)

. Define

l′ = l + p to retrieve the original form, namely,

ψn(x1, x2 + L2) = e−i
2π
L1
px1ψn(x1, x2). Thus it holds

that η2 = − 2π
L1
px1. For this reason we introduce p

e l′ → l into the wave function. Thus under the
assumption that the coefficients are limited to a set, as
stated in Eq. (19), the wave function can be expressed
in terms of p instead of H3. Then the wave function, as
given by Eq. (20), becomes,

ψn(x1, x2, p) =
∑
l

cn,lψn,l(x1, x2, p)

and

ψn,l(x1, x2, p) = Ane
i 2π
L1
x1Hn (ḡl(x2)) e−

1
2 (ḡl(x2))2

where

ḡl(x2) =

√
2πp

L1L2

(
x2 +

L2l

p

)
.

It remains to solve Eq. (19) and find the finite num-
ber of coefficients, to fully determine the set of p wave-
functions that must be proven orthonormal. Notice that
p is fixed and this defines φn,q(x1, x2, p), such that q =
0, ..., p−1. The seek solutions for growing values of p and
start with the initial value, p = 1. This is the case treated
by A. Abrikosov in his seminal work where vortices were
discovered in superconductivity [10]. In this case Eq. (19)
becomes cn,l+1 = cn,l, and the solution simply corre-
sponds to all coefficients equal, regardless of l. We choose
that cn,l = cn,0. For p = 2, Eq. (19) becomes cn,l+2 = cn,l
and in this case there are two free coefficients, chosen to
be cn,0 and cn,1, for l even and odd ones, respectively.
Therefore cn,l = cn,0 for l = 0, ±2, ±4, ±6, ... and
cn,l = cn,1 for l = ±1, ±3, ±4, .... For the next case,
p = 3, Eq. (19) becomes cn,l+3 = cn,l, and there are tree
free coefficients at each Landau level n. Similarly, the
choices are cn,0, cn,1 and cn,2. This gives that cn,l = cn,0
for l = 0, ±3, ±6, ..., cn,l = cn,1 for l = ±1, ±4, ±7, ...
and cn,l = cn,2 for l = ±2, ±5, ±8, .... The last case
explicitly treated here is p = 4, and in this case, Eq. (19)
becomes cn,l+4 = cn,l. There are four free coefficients,
namely, cn,0, cn,1, cn,2 and cn,3. Hence we introduce
the general notation cn,q for the coefficients, such that
q = 0, 1, 2, ..., p − 1, represent the p free and indepen-
dent coefficients. Table II provides the coefficients for the
first four cases, namely, p = 1, 2, 3 and 4. For instance,
for p = 1 there is only q = 0, and consequently, only one
free and independent coefficient. For p = 2 there are the
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p = 1
q = 0

cn,l = cn,0

p = 2
q = 0 q = 1

cn,2l = cn,0 cn,2l+1 = cn,1

p = 3
q = 0 q = 1 q = 2

cn,3l = cn,0 cn,3l+1 = cn,1 cn,3l+2 = cn,2

p = 4
q = 0 q = 1 q = 2 q = 3

cn,4l = cn,0 cn,4l+1 = cn,1 cn,4l+2 = cn,2 cn,4l+3 = cn,3

TABLE I: The coefficients cn,q, for p = 1, 2, 3 and 4.

q = 0 and q = 1 cases, and so, two coefficients. For p = 3
the three free coefficients are associated to q = 0, 1 and
2. Lastly for p = 4 the four free coefficients are associ-
ated to q = 0, 1, 2 and 3. In power of such information
we write the most general quasi periodic ψn function as,

ψn,p(x1, x2) =

p−1∑
q=0

cn,qφn,q(x1, x2, p), (22)

where the functions φn,q(x1, x2, p) are defined below,

φn,q(x1, x2, p) = Ane
i 2π
L1
qx1

+∞∑
l=−∞

ei
2π
L1
plx1Hn(flq)e

− 1
2 f

2
lq ,

(23)
such that flq is defined by,

flq ≡
√

2πp

L1L2

[
x2 +

L2

p
(pl + q)

]
. (24)

Next we prove that the φn,q functions with the same
value of p form an orthonormal set in the rectangular
unit cell. ∫

L1L2

d2x φ∗m,q′φn,q = δqq′δnm. (25)

They are degenerate eigenfunctions of the free Hamil-
tonian with eigenvalues labeled by n, the Landau level

index: 1
2m

~D2φn,q = ~ωc(n+ 1
2 )φn,q. For the first Landau

level, n = 0, φ0,q satisfies the condition D+φ0,q = 0,
where this operator is defined by Eq. (83).

This set of orthonormal functions is central to obtain
the results of this paper and for this reason, we have
confirmed that the theoretical prove given below by do-
ing a direct numerical verification. We have also proven
the completeness of the constant p set, as shown below.
Hence we stress that two functions with distinct values
of the trapped flux, say p1 and p2, do not belong to the
same set of orthonormal functions, and so, are not or-
thogonal, as numerically checked. In fact they belong to

two distinct sets of orthonormal functions. Therefore for
a fixed value of p, we consider the functions φm,q′ and
φn,q and compute the integral IL1L2 defined below.

IL1L2
=

∫
L1L2

d2x φ∗m,q′φn,q =

AmAn

+∞∑
l′=−∞

+∞∑
l=−∞

I1I2, (26)

where

I1 =

∫ L1

0

dx1 e
i 2π
L1

[(pl+q)−(pl′+q′)]x1 , (27)

and

I2 =

∫ L2

0

dx2 Hm(f ′l′q′)Hn(flq)e
− 1

2 (f ′2l′q′+f
2
lq), (28)

such that f ′l′q′ is given by Eq. (24) for l′ e q′. The integral

I1 differs from zero only in case l = l′ e q = q′. Then
one obtains that I1 = L1δqq′ and this yields that f ′l′q′ =

flq. A change of variables, y = flq in Eq. (24) brings a

change in the integration variable, dx2 =
√

L1L2

2πp dy, and

so, I2 =
√

L1L2

2πp

∫ yf
yi
dyHm(y)Hn(y)e−y

2

, with the limits

of integration given by

yi =

√
2πL2

pL1
(pl + q) and yf =

√
2πL2

pL1
[p(l + 1) + q].

Hence the integral of Eq. (26) is expressed as,

IL1L2
= AmAn

√
L3

1L2

2πp

+∞∑
l=−∞

∫ yf

yi

dy Hm(y)Hn(y)e−y
2

.

(29)
The integral along the x2 direction, which is limited to
the unit cell, is extended to the whole axis. According to
the change of variable, yi and yf run from l until l + 1,
that is, the integrand becomes independent of l. There-

fore we write that,
∑+∞
l=−∞

∫ yf
yi
dy =

∫ +∞
−∞ dy, and in this

way,
∫∞
−∞ dy Hm(y)Hn(y)e−y

2

= 2nn!
√
πδnm. Substi-

tuting this result into Eq. (29) brings the conclusion that
the functions of Eq. (23) are orthogonal. They become
orthonormal according to Eq. (25) by choice of

An =

(
2πp

L3
1L2

)1/4 (
2nn!
√
π
)−1/2

. (30)

III. KINETIC ENERGY OF FREE FERMIONS
IN A MAGNETIC FIELD

In this section we introduce the second quantization
formalism to treat the free fermions in a magnetic field.
The completeness of the set of wave functions under
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fixed p is verified since it is necessary to prove the anti-
commutation relations in real space. For non-interacting
fermions the Hamiltonian is given by,

H = K, (31)

where the kinetic energy, K, is,

K =

∫
d2x

1

2m

(
~DΨ
)† (

~DΨ
)
. (32)

Ψ is a second quantized field and we aim to fill energy
levels according to the exclusion principle up to the Fermi
surface. We express the kinetic energy in a more conve-
nient way,

K =
1

2m

∫
d2x

(
Ψ† ~D2Ψ

)
+

~2

4m

∫
d2x ~∇2ρ, (33)

where ρ ≡ Ψ†Ψ. It happens that the second integral van-
ishes due to the periodicity of the state, and the kinetic
energy becomes,

K =
1

2m

∫
d2x

(
Ψ† ~D2Ψ

)
. (34)

To derive Eq. (33) we write
(
~DΨ
)† (

~DΨ
)

=(
i~~∇Ψ† − (e/c) ~AΨ†

)
· ~α, with ~α ≡ ~DΨ. Using that

~∇Ψ† · ~α = ~∇ · (Ψ†~α)−Ψ†(~∇ · ~α), one gets that(
~DΨ
)† (

~DΨ
)

= Ψ†
(
−i~~∇− (e/c) ~A

)
· ~α+ i~~∇ · (Ψ†~α).

The kinetic energy becomes,

K =
1

2m

∫
d2x

(
Ψ† ~D2Ψ

)
+

i~
2m

∫
d2x ~∇ ·

(
Ψ† ~DΨ

)
,

(35)
and its complex conjugate,

K∗ =
1

2m

∫
d2x

(
~D2Ψ

)†
Ψ− i~

2m

∫
d2x ~∇ ·

(
( ~DΨ)†Ψ

)
.

(36)
The kinetic energy is real thus summing Eqs. (35) e (36)
and dividing by two, gives that,

K =
1

4m

∫
d2xΨ† ~D2Ψ +

(
~D2Ψ

)†
Ψ

+
i~
4m

∫
d2x ~∇ ·

(
Ψ† ~DΨ−Ψ( ~DΨ)†

)
.

The two terms in the first integral are shown to be equal,

Ψ† ~D2Ψ =
(
~D2Ψ

)†
Ψ, and in the second integral it holds

that Ψ† ~DΨ−( ~DΨ)†Ψ = ~∇
(
Ψ†Ψ

)
. In this way we obtain

the symmetrized kinetic energy given in Eq. (33).

The second integral (33) simply vanishes in case of a
periodic state, as shown below. We write it as a surface
integral,

~2

4m

∫
d2x ~∇2ρ =

~2

4m

∮ (
~∇ρ
)
· ~ndl, (37)

x2

x10 L1

L2

n=x1^

n=x2^

n=-x1^

n= x2^-

FIG. 1: The integration scheme and the definition of the vec-
tor ~n perpendicular to the surface.

where ~n is a vector normal to the border lines of the unit
cell where the above integration is taken and performed.

using the theorem
∮
c
~F · ~ndl =

∫
S
~∇ · ~Fd2x for a vector

function ~F in the plane (x1, x2). The integral of Eq. (37)
is illustrated in Fig. 1. Notice that the line integrals
along the path dl = dx1 is obtained by taking ~n = −x̂2

for x2 = 0, and ~n = x̂2 for x2 = L2. The integrals along
the path dl = dx2 have ~n = −x̂1 for x1 = 0 and ~n = x̂1

for x1 = L1, then Eq. (37) is written as,

~2

4m

∮ (
~∇ρ
)
· ~ndl =

~2

4m

{∫ L1

0

dx1

(
∂

∂x2
ρ(x1, L2)− ∂

∂x2
ρ(x1, 0)

)
+

∫ L2

0

dx2

(
∂

∂x1
ρ(L1, x2)− ∂

∂x1
ρ(0, x2)

)}
.

(38)

Recall that ρ is periodic, and so, the integrals in opposite sides of the rectangular unit cell annihilate each other,
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resulting that,

~2

4m

∮ (
~∇ρ
)
· ~n dl = 0. (39)

Next we introduce the second quantization formalism
to treat the fermionic particles. Notice that the second
quantized field Ψp(x1, x2) carries the index p to stress
the p fluxons are trapped in the unit cell area, L1L2.

Ψp(x1, x2)=

∞∑
n=0

Ψn,p(x1, x2)=

∞∑
n=0

p−1∑
q=0

cn,qφn,q(x1, x2, p),

(40)
where the functions φn,q(x1, x2, p) are given by Eq. (23)
and the coefficients cn,q are to be interpreted as de-
struction operators below. The second quantized field

Ψp(x1, x2) satisfies the anti-commutation relation,{
Ψp(x1, x2),Ψ†p(x

′
1, x
′
2)
}

= δ(x1 − x′1)δ(x2 − x′2), and

(41)

{Ψp(x1, x2),Ψp(x
′
1, x
′
2)} = 0, (42)

assuming that the operators cn,q obey the conditions be-
low. {

cn,q , c
†
m,q′

}
= δqq′δnm, (43)

{cn,q , cm,q′} = 0. (44)

The completeness relation of the orthonormal set de-
fined by p is behind Eq. (41) and to prove we start with
Eq. (40). Using Eq. (43) it follows that,

{
Ψp(x1, x2),Ψ†p (x′1, x

′
2)
}

=

∞∑
n=0

p−1∑
q=0

φn,q(x1, x2, p)φ
∗
n,q(x

′
1, x
′
2, p), (45)

and then,

{
Ψp(x1, x2),Ψ†p (x′1, x

′
2)
}

=

√
2πp

L3
1L2

p−1∑
q=0

+∞∑
l=−∞

ei
2π
L1

(pl+q)x1

+∞∑
l′=−∞

e−i
2π
L1

(pl′+q)x′1

∞∑
n=0

b2nHn(flq)Hn(f ′l′q)e
− 1

2 (f2
lq+f

′2
l′q).(46)

The latter is obtained by using φn,q(x1, x2, p), defined by

Eqs. (23) and (30), where bn = (2nn!
√
π)
−1/2

. Firstly
consider the sum in n, which is essentially done over
the normalized wavefunctions of the harmonic oscilla-
tor, ψn(x) = (2nn!

√
π)
−1/2

Hn(x)e
1
2x

2

, where Hn(x)
are the Hermite polynomials. Hence the ψn(x) satisfy∫∞
−∞ ψ∗m(x)ψn(x) = δnm and the corresponding com-

pleteness relation is
∑∞
n=0 ψn(x)ψn(y) = δ(x− y). Thus

the sum over n in Eq. (45) becomes

∞∑
n=0

b2nHn(flq)Hn(f ′l′q)e
− 1

2 (f2
lq+f

′2
l′q) = δ(flq − f ′l′q),

and using Eq. (24), one obtains that

∑∞
n=0 b

2
nHn(flq)Hn(f ′l′q)e

− 1
2 (f2

lq+f
′2
l′q) =

δ
(√

2πp
L1L2

(x2 − x′2) + L2(l − l′)
)

. Considering that

x2 e l are independent variables it holds that the delta
function is centered at x2 = x′2 and l = l′. Therefore we
have the following completeness relation.

∞∑
n=0

b2nHn(flq)Hn(f ′l′q)e
− 1

2 (f2
lq+f

′2
l′q) =

√
L1L2

2πp
δ(x2 − x′2) ,

(47)
where we have used the property δ(a(x2−x′2)) = 1

aδ(x2−
x′2), a =

√
2πp
L1L2

. Using Eq. (47), the Eq. (45) becomes,

{
Ψp(x1, x2),Ψ†p (x′1, x

′
2)
}

=
1

L1

p−1∑
q=0

+∞∑
l=−∞

ei
2π
L1

(pl+q)(x1−x′1)δ(x2 − x′2) . (48)

Next the sum Sp =
∑p−1
q=0

∑+∞
l=−∞ ei

2π
L1

(pl+q)(x1−x′1) must be analysed. For p = 1 the sum be-
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comes S1 =
∑+∞
l=−∞ ei

2π
L1
l(x1−x′1), for p = 2, it is

S2 =
∑+∞
l=−∞

(
ei

2π
L1

(2l)(x1−x′1) + ei
2π
L1

(2l+1)(x1−x′1)
)

,

and for p = 3 it is given by S3 =∑+∞
l=−∞

(
ei

2π
L1

(3l)(x1−x′1) + ei
2π
L1

(3l+1)(x1−x′1)
)

+∑+∞
l=−∞ ei

2π
L1

(3l+2)(x1−x′1). Notice that the total sum runs
over all integers, and in this way, one can write that

Sp =

p−1∑
q=0

+∞∑
l=−∞

ei
2π
L1

(pl+q)(x1−x′1) =

+∞∑
r=−∞

ei
2π
L1
r(x1−x′1).

Hence we have reached the second completeness relation,

Sp =

+∞∑
r=−∞

ei
2π
L1
r(x1−x′1) = L1δ(x1 − x′1) , (49)

that once added to Eq. (48), gives the anti-commuting
relation given by Eq. (41), thus proving its correctness.

A. The energy and the number of particles in
terms of the operators cn,q

The kinetic energy K, given by Eq. (34), and Ψ = Ψp

given by Eq. (40), once put together render the kinetic
energy expressed in terms of the operators cn,q. The
following identity

1

2m

∫
d2x

(
Ψ† ~D2Ψ

)
=
∑
n,m

∑
q,q′

Enc
†
m,q′cn,q

∫
d2xφ∗m,q′φn,q,

(50)
added to the orthonormality condition, Eq. (25), restricts
the sums to m = n e q = q′.

1

2m

∫
d2x

(
Ψ† ~D2Ψ

)
=

∞∑
n=0

p−1∑
q=0

Enc
†
n,qcn,q, (51)

where En is given by Eq. (6). Hence the Hamiltonian of
Eq. (31) acquires the diagonal form given by,

H =

∞∑
n=0

p−1∑
q=0

Enc
†
n,qcn,q. (52)

The operator that determines the number of particles is
also diagonal and given by,

N =

∫
d2xΨ†Ψ =

∞∑
n=0

p−1∑
q=0

c†n,qcn,q. (53)

B. The wave function and the spatial electronic
density

The fermions fill all the levels up to the highest one,
and so, the first n′ Landau levels, n = 0, 1, 2, ..., n′ − 1,
each with p electrons, and the last Landau level n′ can be
partially filled with p′ electrons, hence p′ < p. Therefore
the wave function |Φ〉 representing this state has the form
|Φ〉 =

∏
n,q c

†
n,q|0〉 where c†n,q is a creation operator, the

index n ∈ [0, n′] represents the Landau levels, and the
index q, 0 ≤ q ≤ p̃− 1, runs over p̃, which is the number
of particles in each Landau level n. An explicit version
of the wave function is given below.

|Φ〉 = c†n′,p′−1 · · · c
†
n′,1c

†
n′,0︸ ︷︷ ︸

(level n = n′ incomplete)

(level n = n′ − 1 complete)︷ ︸︸ ︷
c†n′−1,p−1 · · · c

†
n′−1,1c

†
n′−1,0 · · · c

†
1,p−1 · · · c

†
1,1c
†
1,0︸ ︷︷ ︸

(level n = 1 complete)

(level n = 0 complete)︷ ︸︸ ︷
c†0,p−1 · · · c

†
0,1c
†
0,0 |0〉. (54)

The state |Φ〉 is automatically normalized, 〈Φ|Φ〉 = 1 and
has a fixed number of particles, Eq. (53), since,

N|Φ〉 = N |Φ〉, whereN = n′p+ p′ (55)

The spatially distributed electronic density is given by
the expectation value 〈Φ|ρp|Φ〉, where ρp ≡ Ψ†pΨp and
Ψp is the operator associated to the periodic density, that

acquires the following form.

ρp =

∞∑
m=0

∞∑
n=0

p−1∑
q′=0

p−1∑
q=0

c†m,q′cn,qφ
∗
m,q′φn,q. (56)

Then the expectation value is obtained used the anti-
commutation condition of Eq. (43).

〈Φ|ρp|Φ〉 =

n′−1∑
n=0

p−1∑
q=0

|φn,q(p)|2 +

p′−1∑
q=0

|φn′,q(p)|2. (57)
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FIG. 2: The spatial electronic density in the unit cell (x1/L1, x2/L2) for the case of the completely filled first Landau levels
(n = 0, sum over q). The number of trapped magnetic fluxons is equal to the number of particles, p, and the plots are shown
from left to right according to p = 1, 2, 3 and 4.

FIG. 3: The spatial electronic density is shown in the unit cell (x1/L1, x2/L2) for the case of the partially filled first Landau
levels (n = 0, q = 0). The number of trapped magnetic fluxons is p whereas there is only one particle in the unit cell. The
plots are shown from left to right according to p = 1, 2, 3 and 4.

This calculation is straightforward once observed that
there is no contribution to the expectation value in case

that the ρp operators, c†m,q′ or cn,q, are not contained

in |Φ〉. Notice that the functions belonging to the
orthonormal set are being explicitly expressed with its p
dependence, namely as φn,q(p), although this notation
is implicit elsewhere.

Fig. 2 shows the spatial electronic density of the com-
pletely filled first Landau levels (n = 0). In this case the

wavefunction (54) is |Φ〉 = c†0,p−1 · · · c
†
0,1c
†
0,0|0〉, and so

the spatial density becomes 〈Φ|ρp|Φ〉 =
∑p−1
q=0 |φ0,q(p)|2,

obtained from Eq. (57). The number of trapped flux and
the number of particles is the same and equal to p. In-
terestingly the density displays an egg-box pattern with
p2 maxima (minima). Hence each maxima (minima) can
be associated to a fraction 1/p of a particle. Notice that
as p increases, the difference between the maximum and
the minimimum density shrinks. This is a consequence
of the sum over the |φ0,q(p)|2 wave functions which
adds more positive contributions as p increases. for this
reason the first plot, which corresponds to p = 1, is able
to reach zero density, as the sum over q is absent.

Fig. 3 shows the spatial electronic density for the
partially filled first Landau levels (n = 0) such that
only the q = 0 state is present. In this case the wave

function (54) contains a single particle, |Φ〉 = c†0,0|0〉,
and the spatial density becomes 〈Φ|ρp|Φ〉 = |φ0,0(p)|2,
obtained from Eq. (57). The number of trapped flux
and the number of particles is not the same, the former
is p whereas the latter is one. The density displays p
zeros, which is the number of trapped flux in the unit
cell. Thus each zero in the density is associated to 1/p
particles. The first plot of Fig. 2 and Fig. 3 coincide as
both correspond to p = 1 and q = 0.

Fig. 4 shows the remarkable fact that the electronic
density of N = (n + 1)p particles displays an egg-box
pattern with p2 maxima (minima). There are p parti-
cles (and fluxons) in each Landau level and n filled Lan-
dau levels, thus making a total of N = (n + 1)p parti-
cles (fluxons). From top to bottom the sum is over the
Landau levels n′ = 0, 1, n′ = 0, 1, 2 and n′ = 0, 1, 2, 3,
thus defining the maximum Landau level n = 1, 2 and 3.
Hence the unit cell is shown in units of (x1/L1, x2/L2),
such that the last level of Eq. (57), n′ = n, is also filled,
p′ = p. The columns run from left to right and the num-
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FIG. 4: The spatial electronic density 〈Φ|ρp|Φ〉, obtained from Eq. (57), is shown in the unit cell x1/L1, (x2/L2) for the case
of completely filled Landau levels. The rows correspond to the sum over Landau levels, n′ = 0, 1, n′ = 0, 1, 2 and n′ = 0, 1, 2, 3
from top to bottom, and are associated to the maximum Landau level n = 1, 2 and 3, respectively. The columns run from left to
right the number of particles in the unit cell, p = 1, 2, 3 and 4, which is the same as the number of trapped flux. Then the plots
are labeled by (p, n) where p and n are integers and the total number of particles associated to each one is N(p, n) = (n+ 1)p.
Interestingly the density shows p2 maxima (or minima) independent of n, the number of filled Landau levels. Hence ratio
between the number of particles and the number of density maxima (minima) is given by (n + 1)/p. The ratio of each of the
plots displayed are given in Table II.

ber of particles in the unit cell ranges p = 1, 2, 3 and
4. Notice that the scales of the plots do not coincide al-
though the same set of colors is used. The case where
only the lowest Landau level is considered, n = n′ = 0,
is treated in Fig. 2. Therefore the first, second and third
rows correspond to the densities, 〈Φ|ρp|Φ〉 = |φ0,0(p)|2 +
|φ1,0(p)|2, 〈Φ|ρp|Φ〉 = |φ0,0(p)|2 + |φ1,0(p)|2 + |φ2,0(p)|2,
and 〈Φ|ρp|Φ〉 = |φ0,0(p)|2 + |φ1,0(p)|2 + |φ2,0(p)|2 +
|φ3,0(p)|2, respectively. Remarkably, the ratio between
the total number of particles and the number of maxima
(minima) is fractional, and given by (n+ 1)/p, as shown
in Table II.

p = 1 p = 2 p = 3 p = 4
n = 0 1 1/2 1/3 1/4
n = 1 2 1 2/3 1/2
n = 2 3 3/2 1 3/4
n = 3 4 2 4/3 1

TABLE II: The (n, p) above elements are associated to the
Landau level n, and the number of particles in each Landau
level, p, Indices run n = 0, 1, 2, 3 and p = 1, 2, 3, 4, respec-
tively. Notice that all levels are filled up to n which gives for
the total number of particles, p(n+1). The number of density
maxima (minima) observed in Figs. 2 and 4 is p2. Therefore
the ratio between the total number of particles and the ob-
served maxima (minima) is fractional and given by (n+ 1)/p.
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C. de Haas-van Alphen oscillations

In this section we show that the present formalism de-
scribes the well-known results of de Hass-van Alphen os-
cillations, which essentially describe how the energy and
the magnetization change according to the magnetic field.
There are N spinless fermions distributed in n′ + 1 Lan-
dau levels, the first n′ ones, n = 0, 1, 2, ..., n′ − 1, are
totally filled and the highest one, n′, can be partially
filled with p′ electrons. Recall that in the last sections
we have developed a set of orthonormal wave functions
φn,q(x1, x2, p), defined by Eqs. (23) and (24), where p
is the number of trapped magnetic fluxons in the unit
cell. The periodicity of φn,q(x1, x2, p) has required that
p = H3L1L2/Φ0, according to Eq. (17). The second
quantization formalism shows that there are p available
states for any Landau level since q = 0, . . . , p − 1 but
not all of them needs to be filled. Therefore the num-
ber of fermions remains free to be determined. for this a
new parameter λ is introduced and is associated to the
highest Landau level, n′, that is only partially filled.

p′ = λp, where λ ∈ [0, 1) (58)

We define a filling variable,

ν ≡ N

p
, (59)

that determines the number of occupied Landau levels
according to the number of particles.

ν = n′ + λ. (60)

Notice that ν and λ are continuous variables whereas n′

is a discrete variable. A new critical field H ′3 ia defined
associated to the density of particles, N/A,

H ′3 ≡
N

A
Φ0, (61)

where A = L1L2 is the unit cell area. As the applied field
H3 is associated to p according to Eq. (17), and Eq. (59)
holds, one obtains that,

ν =
H ′3
H3

. (62)

Combining Eqs. (5), (18), (62) and (61), one obtains a
new way to write the filling factor, ν.

ν =
2πN~2

Am

1

~ωc
. (63)

The Landau levels are filled in multiples of H ′3 since n′ =[
H′3
H3

]
, and the incomplete filling λ becomes,

λ =
H ′3
H3
−
[
H ′3
H3

]
. (64)

The notation [α] means to take the largest equal or
smaller integer contained in a number α.

Further physical insight about the filling factor
ν is achieved by introducing the magnetic length
l0 =

√
~c/eH3. This length describes the semi-classical

orbit of the particle in presence of the magnetic field.
It stems from the centripetal force, mv2/r = qvH3/c,
where v is the velocity and r the radius of the circular
orbit. Added to Bohr’s angular momentum condition,
mvr = n0~, where n0 is an integer, it leads that the
orbits are quantized, r =

√
n0l0. Two possible areas are

associated to the particle, namely, the disk associated
to the magnetic orbit, πl20, and the area defined by the
electronic density, A/N . The filling factor corresponds
to their ratio, ν = 2πl20/(A/N). Previously we found
that the filling factor is large, ν � 1, in case that many
Landau levels are filled, n′ � 1. Therefore in this case
there are many overlapping orbits and this semi-classical
picture no longer holds and should be abandoned.
This shows that the present lattice state is beyond the
semi-classical view.

The total energy of the fermionic particles requires the
summation over all levels and this is readily obtained
from the Hamiltonian of Eq. (52) by computing the en-
ergy expectation value,

Ep = 〈Φ|H|Φ〉 = (E0p+ E1p+ . . .+ En′−1p) + En′p
′

= p

n′−1∑
n=0

En + En′p
′, (65)

where En = ~ωc (n+ 1/2) is given by Eq. (6), and
En′ = ~ωc (n′ + 1/2). In summary, total energy Ep
takes the contribution of n′ fully filled Landau levels,

p
∑n′−1
n=0 En, added to the highest level, n′, that may be

partially filled, En′p
′. Introducing Eq. (58) and the sum∑n′−1

n=0 (n+ 1/2) = n′2/2, one obtains that,

Ep =

[
n′2

2
+

(
n′ +

1

2

)
λ

]
~ωcp. (66)

The energy Ep is shown to be explicitly periodic with
respect to the filling factor ν, or to its inverse ν−1, the
latter being proportional to the applied field H3. We
combine the Eqs. (66) and (59) to obtain the energy per
particle as a function of the applied field.

ε(H3) ≡ Ep
N

=

(
n′2

2
+

(
n′ +

1

2

)
λ

)
~ωc
ν
. (67)

Using Eq. (63) one obtains that,

ε(H3) = ε(0) +
~ωc
2ν

λ(1− λ), (68)

where ε(0) is the energy per particle in the absence of
field,

ε(0) =
Nπ~2

Am
. (69)



11

FIG. 5: The oscillations of the energy, normalized by its zero magnetic field, is shown here, as obtained from Eq. (71). The
left plot shows this energy ratio as a function of the inverse of the filling factor, ν−1 = H3/H

′
3, whereas the right one is with

respect to the filling factor, ν = H ′3/H3. ν describes the number of filled Landau levels and H ′3 is the required to locate all
electrons in the lowest Landau level. Notice the periodicity in both H3 and 1/H3.

This is done by firstly casting the energy as ε(H3) =(
n′2 + 2n′λ+ λ

) ~ωc
2ν , and then, adding a term ±λ2

inside the parenthesis to obtain that ε(H3) =(
(n′ + λ)2 + λ− λ2

) ~ωc
2ν . Next using that ν = n′ + λ,

Eq. (60), one obtains that,

ε(H3) =
1

2
ν~ωc +

~ωc
2ν

λ(1− λ). (70)

We briefly review the derivation of the average energy
per particle without the applied field, given by Eq. (69).
This can be achieved by direct arguments without the
inclusion of the applied field. By integrating over the
Fermi surface disk, one obtains that N/A = k2

F /4π and
that the total energy per particle is ET /N = EF /2, EF =
(~kF )2/2m. Hence one finds the zero field energy per
particle of Eq. (69), that is, ET /N = ε(0). Hence the
ratio between the energy in presence of a field, ε(H3),
and without a field, ε(0), becomes,

ε(H3)

ε(0)
= 1 +

(
H3

H ′3

)2

λ(1− λ). (71)

The above expression is plotted in Fig. 5 and shows
the oscillations with respect to the filling factor. Since
ν−1 = H3/H

′
3 the left plot shows that the period of oscil-

lations increases for increasing H3. The amplitude of os-
cillations smoothly increases proportional to H2

3 accord-
ing to Eq. (71), while λ is a periodic function of 1/H3.
The same data is also plotted in the right plot, in this
case with respect to ν, and both plots show a periodicity.

The magnetization M is obtained from,

M = −∂ε(H3)

∂H3
, (72)

where ε(H3) is given by Eq. (68), that once combined
with Eqs. (5) and (64), gives that,

ε(H3) = µB

{
2π~cN
Ae

+
H2

3

H ′3

(
H ′3
H3
−
[
H ′3
H3

])(
1− H ′3

H3
−
[
H ′3
H3

])}
, (73)

where µB is Bohr’s magneton.

µB =
e~

2mc
. (74)

M/µB is obtained by deriving Eq. (73) with respect to
H3.

M

µB
= 1− 2λ− 2λ(1− λ)

λ+ n′
. (75)

Fig. 6 plots the magnetization versus ν = λ+n′ as given
by Eq. (75). Notice that although the energy is a contin-
uous function of H3, its derivative is discontinuous when
the Landau level is totally filled. Consider the field H3

near to a multiple of H ′3. In this neighborhood there is
a change in ν = λ + n′ by going from λ = 1− (slightly
below 1.0) to λ = 0+ (slightly above 0). A discontinuity

arises in the magnetization since M(λ=1−)
µB

≈ −1.0 and
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FIG. 6: The magnetization, given by Eq. (75), as a function
of ν = H ′3/H3, where H ′3 = N/(AΦ0), according to Eq. (61).
Notice the periodicity of the magnetization with respect to
1/H3.

M(λ=0+)
µB

≈ 1.0, as shown in Fig. 6.

In case many Landau levels are filled, namely case
n′ >> 1, Eq. (75) becomes,

M

µB
≈ 1− 2λ, (76)

which shows that the magnetization M is a periodic func-
tion of 1/H3 with the period given by,

∆

(
1

H3

)
=

1

H ′3
=

A

NΦ0
. (77)

Using that /N = 4π/k2
F (spinless fermions) we retrieve

the de Haas-van Alphen result that the oscillations are
inversely proportional to the Fermi surface area AF ≡
πk2

F :

∆

(
1

H3

)
=

2πe

~c
1

AF
. (78)

D. The attractive magnetic interaction among
particles confined to the lowest Landau level

In this section we include interaction among particles
confined to the lowest Landau level. The motion of the
particles due to the external field make them generate
currents which create a local magnetic field causing a
mutual interaction among them. We prove here that this
magnetic interaction is attractive and to treat it the field
energy is incorporated into the hamiltonian, and added
to the kinetic energy such that,

H = K + F, (79)

where the kinetic energy, K, is,

K =

∫
d3x

1

2m

2∑
j=1

(DjΨ)
†

(DjΨ) , (80)

and the field energy, F , is,

F =

∫
d3x

1

8π

(
~h(Ψ)− ~H

)2

. (81)

The local magnetic field is also a second quantized field,
~h(Ψ), obtained by solving Ampère’s law,

~∇× ~h(Ψ) =
4π

c
~J(Ψ), ~J(Ψ) =

e

2m

(
Ψ† ~DΨ + c.c.

)
,(82)

by knowledge of the current. A special attention must
be paid to the dimensionality of the fields, as the mag-
netic field and the the current are tied to each other
through Ampère’s law, which assigns to Ψ the dimen-
sionality [Ψ] = 1/

√
V , where V = AL3 is a volume,

the product of the unit cell area in the plane, A, times
a length along the direction of the applied field, L3.
This is consistent with the energy being an integral over
three-dimensional space, but uniaxial symmetry along
the direction of the external applied field renders the
problem two-dimensional. All the fields only depend

on (x1, x2), including the local field is ~h(Ψ) = x̂3h3(Ψ),
h3 = ∂1A2 − ∂2A1. For the applied field we choose, as

before, that A3 = 0 and ~H = x̂3H3.
Remarkably Ampère’s law is solved exactly and the lo-
cal magnetic field h3(Ψ) fully determined. To achive this
purpose we introduce a dual view of the kinetic energy
that requires the operators,

D± ≡ D1 ± iD2. (83)

We use the following identity

(D+Ψ)
†

(D+Ψ) =

2∑
j=1

(DjΨ)
†

(DjΨ) + iΨ†[D1, D2]Ψ

− ~m
e

(∂1J2 − ∂2J1) , (84)

where the current components Ji, i = 1 e 2, are given by
Eq. (82), and the commutation relation is given by,

[D1, D2] = −e~
ic
h3. (85)

Combining Eqs. (80), (84), (85), and using that,

~m
e

(∂1J2 − ∂2J1) =
~2

2
~∇2(Ψ†Ψ), (86)

one obtains that,

K =

∫
d3x

(
|D+Ψ|2

2m
+

e~
2mc

h3Ψ†Ψ

)
+

~2

4m

∫
d3x~∇2(Ψ†Ψ), (87)

where the last term is a surface term. The dual for-
mulation of the kinetic energy also leads to a dual for-
mulation of the current, which is obtained by varying
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the kinetic energy with respect to the vector potential,

δFk = · · · − 1
c

∫
d2x ~J · δ ~A. Therefore one obtains the

components of the current in the plane.

J1 =
e

2m

[
Ψ†
(
D+Ψ

)
+
(
D+Ψ

)†
Ψ
]
− e~

2m
∂2

(
Ψ†Ψ

)
,(88)

e

J2 =
e

2im

[
Ψ†
(
D+Ψ

)
−
(
D+Ψ

)†
Ψ
]

+
e~
2m

∂1

(
Ψ†Ψ

)
. (89)

The confinement to the lowest Landau leads to a full
solution of Ampère’s law. The axial symmetry gives
that ∂2h3 = (4π/c)J1 e ∂1h3 = −(4π/c)J2. Then
h3 + (2πe~/mc)|Ψ|2 = constant, and this constant is de-
termined by the condition that the local field must be
equal to the applied field, h3 = H3, in case that Ψ = 0.
We have found that there are first order equations that
link Ψ to h3, in the following way.

D+Ψ = 0, (90)

and

h3(Ψ) = H3 − 4πµBΨ†Ψ, (91)

where µB is Bohr’s magneton, Eq. (74). The first or-
der equations are expected to be a useful approximation
to the solution in case that h3 � H3. For this reason
they are only solved approximately in the following way.
Firstly Eq. (90) is solved for Ψ assuming that the vector
potential is only due to H3. Thus corrections to vector
potential are not considered in this stage. Then the local
magnetic field, h3, is obtained from Eq. (90), which leads
to corrections to H3 in terms of Ψ. The general solution
for Ψ, given by Eq. (40), is the n = 0 part of the general
solution, since D+Ψ0,p = 0.

Ψ0,p(x1, x2) =
1√
L3

p−1∑
q=0

c0,qφ0,q(x1, x2, p). (92)

where

φ0,q(x1, x2, p) =

(
2πp

L3
1L2

) 1
4

+∞∑
l=−∞

ei
2π
L1

(pl+q)x1e−
1
2 f

2
lq , (93)

with flq defined in (24) since D+φ0,q = 0. Once in power
of Ψ the local field follows from (91) by computing the
expectation value

〈
Φ
∣∣h3(Ψ0,p)

∣∣Φ〉 for a state |Φ〉 con-
strained to the first Landau level. Hence one obtains
that,

〈
Φ
∣∣h3(Ψ0,p)

∣∣Φ〉 = H3 − µB
4π

L3

p′−1∑
q=0

∣∣φ0,q(x1, x2, p)
∣∣2.(94)

The first order equations unveil an attraction among
particles confined to the lowest Landau level. To

see this introduce Eq. (90) into the kinetic en-
ergy, given by Eq. (87). The Hamiltonian (79) be-

comes H = µB
∫
d3xh3Ψ†Ψ + ~2

4m

∫
d3x~∇2(Ψ†Ψ) +

1
8π

∫
d3x

(
~h− ~H

)2

, that once combined with Ψ†Ψ =

−(1/4πµB)(h3 −H3) from Eq. (91) renders that,

H =

∫
d3x

(
1

8π
H2

3 −
1

8π
h3(Ψ)2 +

~2

4m
~∇2(Ψ†Ψ)

)
, (95)

Next we express H by introducing Eq. (91) into Eq. (95).

H = 2πµ2
B

∫
d3x

[
H3Ψ†Ψ

2πµB
−
(
Ψ†Ψ

)2
+
~∇2(Ψ†Ψ)

2πre

]
,

(96)
where Bohr’s magneton is related to the electron’s clas-
sical radius by ~2/4m = µ2

B/re → re = e2/mc2. Eq. (95)
shows that the magnetic field energy is negative, −h2

3/8π,
and so, able to lower the energy by becoming more in-
tense. In other words, it causes attraction among the
particles. Notice that the total energy must remain pos-
itive, as initially assumed according to Eq. (79). For the

periodic state the last term vanishes,
∫
d2x~∇2Ψ†Ψ = 0,

as previously shown. Since µBH3 = ~ωc/2, the Hamilto-
nian cal also be expressed as,

H =

∫
d3x

[
~ωc
2

Ψ†Ψ− 2πµ2
B

(
Ψ†Ψ

)2]
, (97)

The second term is evidently attractive although, in
comparison with the first, very small.

The length L3 is truly a free parameter that in fact de-
termines the local magnetic field h3, as shown in Eq. (94).
Thus it cannot be determined by the present approach.
It should be regarded as a phenomenological parameter
that gauges the difference h3−H3. Recall that the three
dimensional integration is turned into a two dimensional
integration, by assuming

∫
d3x/L3 =

∫
d2x. Thus this

length limits the validity of the first order equation ap-
proach, which is to have h3−H3 very small. According to
Eq. (91) this requires that H3 � 4πµBΨ†Ψ, or equally,

L3 >>

√
2π

p
re. (98)

This is easily reachable for any reasonable L3, consid-
ering that re = 2.8 10−15 m. This relation is obtained
by assuming that Ψ†Ψ ∼

√
2πp/(L3A), where the area

A is associated to the flux quantization in the plane,
H3A = pΦ0. Bohr’s magneton, the magnetic flux and
the classical radius are connected through µB = Φ0re

4π ,
and from it the above condition for L3 is straightfor-
wardly obtained. In summary the deviation H3 − h3 is
freely adjusted and once this is done the parameter L3

becomes known. A part from the choice of L3 the theory
can be treated two-dimensionally in the plane (x1, x2)
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9.0

FIG. 7: The deviation of the local magnetic field to the ap-
plied field, −

〈
Φ
∣∣h3(Ψ0,p)−H3

∣∣Φ〉
L3/µB , is shown here in a

unit cell. The unit cell (x1/L1, x2/L2) is displayed for the
cases p = 1 (left,up), p = 2 (right,up), p = 3 (left,down) and
p = 4 (right,down ), respectively. The number of particles for
the totally filled lowest Landau level, n = 0 is N = p. Thus
there are 1 (top-left), 2 (top-right), 3 (bottom-left), and 4
(bottom-right) particles (fluxons), respectively. Remarkably
the ratio between the number of maxima (minima) of the local
field, as seen in the above plots, and the number of particles
is 1, 1/2, 1/3 and 1/4, respectively.

due to its uniaxial symmetry along the applied field.

The deviation of the local field to the ap-
plied field is shown in Fig. 7, and is given by
−
〈
Φ
∣∣h3(Ψ0,p)−H3

∣∣Φ〉L3/µB . This deviation shows
the existence of maxima and minima in the unit cell,
(x1/L1, x2/L2). The lowest Landau level is assumed

totally filled and the figure shows the cases p = 1
(left,up), p = 2 (right,up), p = 3 (left,down) and p = 4
(right,down). Notice that while this figure shows the den-
sity, Fig. 7 displays the local field h3, and they are con-
nected to each other by Eq. (94). An egg-box pattern
emerges with p2 maxima (pink) and p2 minima (black)
in the magnetic field pattern. The ratio between the
maxima (minima) of the local field and the number of
particles is fractional, and given by 1/p, as found in Ta-
ble II.

IV. CONCLUSION

The set of orthonormal bases developed here yield wave
functions for the well-known Schrödinger equation prob-
lem of a particle in a magnetic field that features a peri-
odic density probability. These wave functions display
a fixed number of p trapped magnetic flux per Lan-
dau level. The second quantization study reveals that
the number of particles, N , and the number of flux-
ons trapped in the unit cell, p, are independent. For
N fermions distributed among n+ 1 Landau energy lev-
els we find the remarkable property that the density of
particles presents p2 spatial maxima (minima) in the unit
cell for any n. In case the highest Landau level is com-
pletely filled, and so with N = (n + 1)p particles, there
are (n + 1)/p particles per maxima (minima). We have
shown that in case that particles fall in the lowest Lan-
dau level (n = 0), the magnetic field produced by the
particles yields a residual attractive interaction among
them. The present set of orthonormal functions retrieves
the de Haas-van Alphen effect results, namely the total
magnetization displays a periodicity with respect to the
inverse of the applied field which is proportional to the
area of the Fermi surface.

[1] S. Flügge, Practical Quantum Mechanics, classics in
mathematics (Springer-Verlag, 2013), ISBN 978-3-642-
61995-3.

[2] C. Kittel, Introduction to Solid State Physics (John Wi-
ley & Sons, 1976), ISBN 9780471490241.

[3] N. Ashcroft and N. Mermin, Solid State Physics, Science:
Physics (Saunders College, 1976), ISBN 9780030493461.

[4] J. W. Rohlf, Modern Physics from a to z (Wiley, 1994),
ISBN 9780471572701.

[5] in Quantum Mechanics with Applications to Nanotech-
nology and Information Science, edited by Y. B. Band
and Y. Avishai (Academic Press, Amsterdam, 2013), pp.
381 – 544, ISBN 978-0-444-53786-7.

[6] L. Landau, Zeitschrift für Physik 64, 629 (1930), ISSN
0044-3328.

[7] J. Barrier, P. Kumaravadivel, R. Krishna Kumar, L. A.
Ponomarenko, N. Xin, M. Holwill, C. Mullan, M. Kim,
R. V. Gorbachev, M. D. Thompson, et al., Nature Com-

munications 11, 5756 (2020), ISSN 2041-1723.
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