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A PRIORI BOUNDS FOR QUASI-LINEAR SPDES IN THE FULL

SUB-CRITICAL REGIME

FELIX OTTO, JONAS SAUER, SCOTT SMITH, AND HENDRIK WEBER

Abstract. This paper is concerned with quasi-linear parabolic equations driven by an additive
forcing ξ ∈ Cα−2, in the full sub-critical regime α ∈ (0, 1). We are inspired by Hairer’s regularity
structures, however we work with a more parsimonious model indexed by multi-indices rather
than trees. This allows us to capture additional symmetries which play a crucial role in our
analysis. Assuming bounds on this model, which is modified in agreement with the concept
of algebraic renormalization, we prove local a priori estimates on solutions to the quasi-linear
equations modified by the corresponding counter terms.
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1. Introduction

In this article, we study the quasi-linear parabolic partial differential equation

∂tu− a(u)∆u = ξ,(1)

where u = u(t, x) for (t, x) ∈ R × Rd, ∆ =
∑d

i=1 ∂
2
xi
, and the coefficient field u 7→ a(u)

is sufficiently smooth and uniformly elliptic. Throughout the paper we use the shorthand
notation x := (t, x), y := (s, y), and z := (r, z) for space-time points. In line with the
pathwise approach to stochastic analysis of Lyons [28], the external forcing ξ is deterministic
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and viewed as a realization of a singular noise1 which a.s. belongs to the (negative) parabolic
Hölder space Cα−2. For α ∈ (0,∞), the PDE (1) is sub-critical in the sense of Hairer [20]. A
standard reference point is space-time white noise, which is included in this regime if d = 1,
but marginally fails if d = 2. For α > 0 the solution to (1) should behave on small scales like
the solution to the linear equation where a is replaced by a constant, which belongs to Cα by
Schauder theory. Hence, we expect the same regularity for u, but the following difficulty arises:
for α ∈ (0, 1), there is no canonical definition of a(u)∆u as a limit of smooth approximations.
Indeed, the usual power counting heuristic fails since u ∈ Cα implies a(u) ∈ Cα and ∆u ∈ Cα−2,
but α+α−2 < 0. More concretely, one can carry out explicit calculations with Gaussian noise
to see that products of this type often require re-centering by suitable counter-terms, divergent
as the smooth regularization is released. As a result, (1) is not expected to be well-posed
in the traditional PDE sense and a similar re-centering will be needed for the non-linearity
a(u)∆u, which amounts to adjusting the equation (1) with certain counter-terms, known as a
renormalization.

There is now an extensive literature on renormalized stochastic PDE’s following the develop-
ment of regularity structures [19], [20] and paracontrolled calculus [18], the main applications of
these seminal works being to semi-linear equations, see e.g. [22]. The quasi-linear case was first
considered in [31] and soon after in [5], [14] in the case of α > 2

3
. The case α > 2

5
, which in one

space dimension includes the case of space-time white noise, was investigated in [15], [16].2 An
alternative approach to this regime inspired by [5] appeared in [7]. See also [32] for a treatment
of the initial value problem using the methods of [31] (in the regime α > 2

3
). The regime α > 1

corresponds to spatially colored noise, which has been studied in the articles [23], [24], and in
the series of papers [2], [3], and [1]. We also mention the articles [12], [13], and [25] where singu-
lar quasi-linear SPDE’s arise naturally in some relevant physical models. Finally, we mention
the interesting recent work [9] which explores the quasi-linear generalized KPZ equation driven
by space-time white noise, providing sufficient conditions for global well-posedness and a large
class of examples.

In our prior work [30], we developed two key analytic tools (see Section 4.1) which applied to
arbitrary α > 0, but applied them in the more restricted regime α > 1

2
. In fact, in [30] we

considered a more general problem of developing a well-posedness theory for the linear problem
with rough coefficients3. In the present article, we do not use linear well-posedness theory to
treat the non-linear problem (1). Instead, we shift our perspective and analyze the non-linear
problem directly. Our main result is an a priori bound on smooth solutions to a renormalized
version of (1). We provide a framework that applies to all sub-critical regularities α > 0 and all
space dimensions d. The aforementioned shift in perspective comes with the following merit.
Rather than arguing entirely within the class of modelled distributions (which would be forced
upon us if we had to pass through e.g. a contraction mapping principle), we show that any
solution to the renormalized equation admits a local description under the mere assumption of
local smallness of the supremum norm.

The main inputs for our Main Theorem are two structural assumptions on the driver ξ that
would not hold for an arbitrary ξ ∈ Cα−2, but are nonetheless very reasonable for realizations
of a large class of stationary space-time random fields. On the basis of the approach introduced
in this paper, the construction and the stochastic estimates of the renormalized model, which

1More precisely, we think of ξ as a realization of a singular noise with a small regularization in space-time
and hence make the qualitative assumption that ξ is smooth throughout the paper. Crucially, all quantitative
estimates on the solution depend only on the Cα−2-norm of ξ and higher order analogues of the corresponding
model, see Assumption 1 below.

2A number of aspects of this paper also work for arbitrary α > 0, but the authors did not identify the
renormalized PDE in the full sub-critical regime.

3Extending the linear theory developed in [30] to arbitrary α > 0 remains an interesting and challenging
open problem.
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this paper takes as an input, have been carried out in [27], and we will comment on how the
results of [27] connect to the present work below Assumption 1 and 2. However, in the spirit
of regularity structures, both papers are logically independent: based on purely deterministic
arguments, this paper establishes uniform interior regularity estimates for the renormalized
equation. Taken together, both papers demonstrate the viability of the approach to regularity
structures proposed in this paper. In particular, both papers are written in such a way that
they can be read independently.

We now state these assumptions and motivate them with the theory of regularity structures.
Inspired by [20], we rely on a triplet (A,T,G) consisting of a space of homogeneities A ⊂ R, an
abstract (linear) model space T, and a structure group G ⊂ Aut(T), in the sense of Hairer [21,
Definition 3.1]. For the black box approach to semi-linear equations developed in [8, 10, 11],
each τ ∈ T is a decorated rooted tree (or forest). A natural attempt to merge the semi-linear
machinery with the parametric rough path approach employed in [31], as advocated in [16] and
[30], would be to utilize trees depending on one or more parameters. In the present work, we
proceed in a rather different way by using a much smaller vector space T, which is essentially
indexed by multi-indices.

We motivate the form of the triplet (A,T,G) and its grading here by introducing our twist
on Hairer’s notion of a centered model, which we view as a parameterization of the solution
manifold for a renormalized version of (1). In fact, it is possible to motivate the algebraic objects
that appear in this article, including both the hierarchy of PDE’s determining the model and
the action of the structure group, as arising from searching for a formal series solution to (1),
as we discuss in Section 1.1 below. In order to explain the role of multi-indices played in our
analysis, we now give a slightly different motivation in line with the rough path perspective
where the ensemble of all non-linearities a is considered simultaneously. Thinking of ξ as being
fixed, we are interested in the analytical properties of the mapping

a 7→ u[a],

where we denote by u[a] the solution to (1) with nonlinearity a. This gives rise to a solution
manifold which has an important invariance:

u[a] + v = u[a(· − v)] for all v ∈ R;(2)

In words, if u solves (1), u+ v solves (1) with a replaced by its shifted version a(· − v). In case
of a driven ODE like ∂tu = a(u)ξ, this implies that modulo additive constants, the solution
manifold is parameterized by a. Hence in the ODE case

zk :=
1

k!

dka

duk
(0) for k ∈ N0(3)

provide a complete set of coordinates for the solution manifold modulo constants. Thinking of
u as u[(zk)k≥0] in abstract variables (zk)k≥0 we obtain u[a] upon choosing zk = zk for all k ≥ 0.
In our PDE case of (1), the coordinates (3) are insufficient. A natural ansatz is to enrich them
by a linear jet in some fixed base point x, which as in (3) we somewhat arbitrarily fix to be the
origin. We choose the jet to be zx · x with

zx := “∇xu(0)”;(4)

in view of the invariance (2) we deliberately drop the constant jet u(0). As is common in the
theory of rough paths and regularity structures, we will need to re-interpret (4) as a Gubinelli
derivative, cf. (20); thus the quotation marks. Since the coordinate a0 := z0 will play a
slightly different role in our considerations (in contrast to the other coordinates zx and (zk)k≥1,
we need arbitrary high powers in the ellipicity z0 if we want to describe the solution u to a
finite order of precision in terms of a series expansion), we often make the distinction and
write u[zx, (zk)k≥1; a0]. Formally, Taylor’s formula suggests that the general solution u can be
recovered from its partial derivatives with respect to z = (zx, z1, z2, . . .), which are parametrized
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by the countable set4 Nd
0 × c00(N0) of multi-indices β = (βx, β(1), β(2), . . .). An algebraically

convenient way to analyze objects labelled by multi-indices is via formal power series. We thus
introduce the model space T as the space of formal power series in infinitely many abstract
variables, the coefficients of which are (complex) analytic functions of a single parameter a0.
More precisely, each τ ∈ T is identified with a formal power series

∑

β

τβz
β ,

where β = (βx, β(1), β(2), . . . ) is a multi-index, zβ := zβx
x

∏∞
k=1 z

β(k)
k , and each coefficient τβ is

a function of a single parameter a0 from a disc DT in the right complex half plane containing
a (real) interval I = [Λ,Λ−1] for some fixed ellipticity parameter5 Λ ∈ (0, 1).

Another, rather minor, difference with standard regularity structures lies in the fact that we
adopt a dual perspective. In the setting of Hairer, the abstract model space would actually
correspond to T

∗ rather than T and the correspondence between the abstract space of symbols
in T∗ and the concrete space-time distributions is specified through a linear map Πx : T∗ →
S ′(Rd+1). We alternatively view Πx as a T-valued distribution. For notational reasons, it is
convenient to distinguish functions in the local description of u, denoted Πx, from distributions
in the description of6 a(u)∆u, denoted Π−

x
, which takes values in the slightly smaller space T−

where polynomials are excluded, see Section 2.1. The Π−
x
can be thought of as an enhancement

of the noise, in the sense that for any base-point x, it holds Π−
x0 = ξ − q0 where 0 denotes the

multi-index with all components being zero, and where we can allow for a constant q0 to ensure
that certain ensemble or space-time averages of the noise vanish. Similarly, Πx can be viewed
as an enhancement of the classical polynomials, in the sense that

(5) PΠx(y) = zx · (y − x),

where P is the projection onto the polynomial sector, cf. Section 2.1.

To each multi-index β one can associate a homogeneity |β| which is dictated by the inherent
scaling of (1), cf. (38). This naturally generates a set of homogeneities A and a grading of T in
terms of subspaces T|β| which consist of those elements of homogeneity |β|, i.e., of τ ∈ T such
that τγ = 0 for |γ| 6= |β|. These subspaces come with their norms. More specifically, we fix a
sequence of discs {D|β|}|β|<2, where all D|β| have the same center as DT and are such that

I ( D|β| ( D|γ| ( DT for |γ| < |β|,

and set

(6) ‖τ‖T|β|
:= sup

|γ|=|β|

sup
a0∈D|β|

|τγ(a0)|.

Observe that elements in T are (complex) analytic functions7 in a0, so that in view of Cauchy’s
integral formula derivatives with respect to a0 are conveniently estimated on a marginally larger
disc by the function itself; whence the nested form of the D|β|’s.

We now turn to our first assumption on the noise. For this we introduce an anisotropic distance.
Anisotropy in the directions of time and space is due to the parabolic operator ∂t −∆ and its

4Here the space c00(N0) := {β : N → N0 : suppβ is finite} is the space of all N0-valued sequences of finite
support.

5It turns out to be enough to consider functions of a single parameter rather than several parameters since
we perform estimates directly on the non-linear problem rather than attempt to develop a theory for the linear
problem with rough coefficients, as in [30].

6More accurately, the components of Π−

x
provide a local description of the renormalized non-linearity

a(u)∆u + h(u).
7We remark that we could avoid the use of complex methods altogether by monitoring the number of deriva-

tives with respect to a0 more thoroughly in terms of (real) vector-valued Ck-spaces; this approach was used in
[30].
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mapping properties on the scale of Hölder spaces (i.e., Schauder theory), which thus imposes
its intrinsic (Carnot-Carathéodory) metric given by

d(x,y) =
√

|t− s|+ |x− y|.(7)

We all use the shorthand-notation distx := dist(x, ∂D) for the parabolic distance of x from the
boundary of a domain D.

Assumption 1. For all x ∈ B1(0) ⊂ Rd+1, there exist smooth functions Πx : Rd+1 → T and
Π−

x
: Rd+1 → T− satisfying the compatibility conditions (5) and8

(∂t − a0∆)Πxβ =

{

ξ, if β = 0,

Π−
xβ, if β 6= 0.

(8)

Furthermore, it holds

sup
|β|<2

sup
y 6=x∈B1(0)⊂Rd+1

dist〈β〉α
x

d−|β|(y,x)‖Πx(y)‖T|β|
< ∞,(9)

where 〈β〉 is defined9 in (37).

Assumption 2 concerns the group G, which is a subgroup of the linear endo-morphisms of T,
together with a re-expansion map Γyx ∈ G associated to each pair of base-points x,y ∈ Rd+1.
This is essentially the structure group in the language of [21, Section 4.2], with the caveat that
due to our dual perspective mentioned above, the transformation Γyx ∈ G corresponds to the
adjoint of the corresponding quantity in [20]. Keeping in mind that elements of T are essentially
functions of an ellipticity parameter a0 and the abstract variables z, it turns out that elements
of G have an elegant formulation as differential operators in these variables. They lead to a

parametrization of G by τ (0) ∈ T and τ (1) ∈ Td (with τ
(1)
β = 0 unless |β| > 1) by an exponential

formula, see (42) in Subsection 2.3. Also see the recent work [26], where G is shown to arise
from a Hopf algebra in the context of our more parsimonious model. In Section 1.1, we give a
simple motivation for the definition of the structure group Γyx based on Taylor’s formula and
on a formal series solution to the PDE.

Assumption 2. For all x,y ∈ B1(0) there exists Γyx ∈ G determined by τ
(0)
yx ∈ T, τ

(1)
yx ∈ Td

with (τ
(1)
yx )β = 0 unless |β| > 1, such that

ΓyxΠy = Πx − τ (0)
yx

, in particular τ (0)
yx

(9)
= Πx(y),(10)

sup
|β|∈(1,2)

sup
y 6=x∈B1(0)

dist〈β〉α
x

d1−|β|(y,x)‖τ (1)
yx

‖T|β|
< ∞, .(11)

Furthermore, we assume there exists q ∈ T with qβ = 0 for βx 6= 0 such that for all x ∈ Rd+1

Π−
x
(x) = ξ(x)1− q,(12)

where 1 is the unit element in T defined by 1(z) = 1.

To measure the size of the model, we define

(13) [Π] := sup
m=0,1

sup
〈β〉≥1,|β|∈(m,2)

sup
y 6=x∈B1(0)

dist〈β〉α
x

dm−|β|(y,x)‖τ (m)
yx

‖T|β|
,

which is finite provided Assumptions 1 and 2 hold. We emphasize that these assumptions are
well-justified by the results in [27], as we will explain more precisely at the end of Section 1.2.
The most subtle point of our assumption is hidden in (12): the innocent looking q ∈ T in fact is
a collection of functions of a0 that determine the counter term h in the renormalized equation

8We may even allow for slightly more flexibility in identity (8) by demanding only that it holds up to an
affine function y 7→ Px(y), by which we mean Px(y) = p0 + p1 · (y − x) for some p0 ∈ T, p1 ∈ T

d.
9We mention that 〈β〉 can be interpreted as the number of appearances of the noise in a tree. Moreover, for

|β| < 2, the number 〈β〉 is completely determined by |β|, cf. Section 2.2.
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as we show below. In the application, one should think of q as deterministic but divergent as
the regularization (i.e., through mollification of ξ) vanishes, while the model (Πx,Π

−
x
,Γyx) is

random but stays bounded. Loosely speaking, q is what has to be subtracted from Π−
x
in order

for the latter to stay bounded.10 The important structural assumption is that q is independent
of the base point x and is not affected by adjoining polynomials, by which we mean that it
does not depend on the variable zx. In order to be self-contained, we argue below in Section
1.2 that these two structural assumptions and (12) are realistic.

We denote by ‖ · ‖ the supremum norm. We use d for dimension, Λ for an ellipticity constant,
and α ∈ ( 2

n+1
, 2
n
) for the Hölder exponent of the solution u. A constant is said to be universal

provided it depends only on d, n, and Λ. The notation A . B indicates an inequality that
holds up to a universal constant. The symbols ∨ and ∧ indicate max and min, respectively.

Main Theorem. Let α ∈ ( 2
n+1

, 2
n
) for some n ∈ N, Λ > 0 and a ∈ Cn(R) satisfy Λ ≤ a ≤ Λ−1

together with ‖a(k)‖ ≤ Λ−1 for 1 ≤ k ≤ n. Let ξ satisfy Assumptions 1 and 2 for some q ∈ T.
There exists a universal constant ε > 0 and a function h : R → R depending only on a and q
such that all smooth solutions u : Rd+1 → R to the renormalized PDE

(14) ∂tu− a(u)∆u+ h(u) = ξ on B1(0) ⊂ Rd+1

with ‖u‖ ≤ ε satisfy for all r ∈ (0, 1) and all x,y ∈ B1−r(0) with x 6= y the interior Hölder
bound

rα|u(y)− u(x)| . (‖u‖+ [Π])(1 ∨ [Π])dα(y,x).(15)

The Main Theorem holds in the full sub-critical regime α ∈ (0, 1) and provides bounds on u
which are independent of the possibly divergent constants hidden in the counter-term u 7→ h(u),
which is local and identified explicitly, see (18) below. En route to (15) we establish a much
stronger bound in the flavor of controlled rough paths, which plays the role of a higher regularity
theory in the setting of singular SPDE, see (19) below. The most substantial difference with
our prior work [30] is that we need to identify a suitable algebraic structure to support our
local description of u, which becomes increasingly refined as the parameter α approaches zero.
This algebraic machinery is a central ingredient that must be combined in a rather delicate
way with the analytical tools developed in [30]. Our approach is self-contained and we believe
our methods are quite robust, potentially adding a valuable alternative perspective even in the
context of semi-linear equations.

The renormalization of a(u)∆u involves counter-terms which are products of derivatives of
u 7→ a(u) with ’renormalization constants’ that depend on the forcing ξ. It will follow from
the proof of the Main Theorem that these ‘renormalization constants’ are collected precisely
in q ∈ T appearing in Assumption 2 through (8) (see also Section 1.2, where we argue why
this form of renormalization is to be expected). To be more specific, we encode the products
of derivatives of a by introducing

da(v) :=

(

1

k!

dka

duk
(v)

)

k∈N

and use the following shorthand notation: We write for β = (βx, β
′)

(16) da(v)β
′

:=
∏

k≥1

(

1

k!

dka

duk
(v)

)β(k)

,

and introduce a scaled norm of such a multi-index as follows

(17) |β|s :=
∑

k≥1

kβ(k).

10Using a re-expansion property of Π−, cf. (129), it is possible to verify that Π−

x
is characterized by Π−

x
(x).
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We will show that the renormalization h : R → R appearing in the Main Theorem is given by

h(v) :=

n−1
∑

|β|s=0

da(v)β
′

qβ′(a(v)),(18)

where we recall that q ∈ T depends on a variable a0 by the definition of T.
Estimate (15) is only the lowest of a whole hierarchy of estimates resembling the controlled
rough path condition in [17, Definition 1]. In fact, we will show that the functions Πx describe
the solution close to x ∈ Rd+1 to any order κ < 2, in the sense that for all r ∈ (0, 1) and all
x,y ∈ B1−r(0) there holds

rκ|u(y)− u(x)−
∑

|β|<κ

νβx(x)da(u(x))β
′

Πxβ(y; a(u(x)))| . (‖u‖+ [Π])(1 ∨ [Π]
κ
α )dκ(y,x),(19)

where the Gubinelli derivative ν is given by

ν(x) := ∇u(x)−
∑

|β|<1

da(u(x))β
′

∇Πxβ(x; a(u(x))).(20)

Here Πxβ(y; a0) denotes the coefficient of Πx(y) ∈ T in front of zβ evaluated at a0.

Since the first version of this work appeared on arXiv, there have been some further devel-
opments in this direction. In particular, the paper [6] studies renormalization of a class of
quasi-linear SPDEs containing (1), focusing on the initial value problem for small times. An
advantage of [6] is that the authors are able to provide an existence and uniqueness theory for
the SPDE. However, the result in [6] is conditional on the existence and continuity properties
of a suitable model. The model involves heat kernels which are not translation invariant and
have limited regularity near the initial time, which rules out a direct application of the results
of [11], so presently the hypotheses in [6] have not been verified.

The approach in [6] has a number of similarities with this paper and our previous work [30]. The
main departure from our methodology is that the ‘freezing in’ of the quasi-linear term a(u)∆u
is performed globally, with respect to a reference function approximating the initial condition
(similar to [5], which implements this with paracontrolled calculus). This allows the authors
to apply Hairer’s analytic results [19] to close a fixed point argument in a space of modelled
distributions and then recover the counter-terms by modifying the arguments of [4]. The choice
of reference function has some collateral damage in terms of the form of counter-terms in the
renormalized equation, which the authors can mitigate on a case by case basis. The arguments
in [6] are an instance of the traditional bottom-up approach to singular SPDE via a tree-based
model.

In contrast, our work introduces a new regularity structure and a top-down methodology. In
particular, we show that by indexing the local expansion more efficiently and defining the right
structure group, the correct counter-terms in the PDE appear automatically. This viewpoint
is not limited to quasi-linear equations, and leads to a particularly transparent simplification
in settings like KPZ or Φ4 where one can index the model (and corresponding local expansion)
simply by powers of the coupling constant and polynomials. Finally, we mention that it does
not seem clear how to apply the approach of [6] on a reference domain of a fixed size, which
is the setup of our main result. In fact, in order to achieve this in the present work, even
for solutions small in the supremum norm, we require more refined estimates on the solution
(closer to what is needed for global bounds), which is a key reason why we don’t attempt to
apply directly the results of [19] as in the approach of [6].

1.1. A Formal Series Expansion for the Solution. In this section, we motivate our alge-
braic objects and local expansion by a formal analysis of the PDE (1) without renormalization.
The discussion below is completely formal, as it involves manipulating formal power series
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which are not expected to converge. Let us freeze in the coefficients at a base point x and
re-write (1) as

(21) (∂t − a0∆)u = (a(u)− a0)∆u+ ξ,

where a0 := a(u(x)). Our goal is to find a formal series solution to (21) of the form

(22) u− u(x) = f(x).Π̂x.

We will demand that τ ∈ T 7→ f(x).τ is linear and has the morphism property: for σ, τ ∈ T

f(x).(στ) = (f(x).σ)(f(x).τ),

as well as f(x).zk = 1
k!
a(k)(u(x)). Similar to Πx, one should think of Π̂x as a T-valued function,

the hat being used to distinguish the two since at this stage there will be no renormalization.
Our goal is to show that formally, u satisfies (21) provided that the coefficients of Π̂x satisfy
a certain hierarchy of PDE’s, see (26) below. In the next section, we will explain that by
adjusting this hierarchy slightly via a suitable renormalization, we are led to a definition of Πx

which has been shown in [27] to satisfy the bounds imposed in the present work. We now turn
to the calculation. First note that considering the left-hand side of (21), by linearity we clearly
have that for u satisfying (22) it holds

(23) (∂t − a0∆)u = f(x).(∂t − a0∆)Π̂x.

Furthermore, turning to the right-hand side of (21) and applying ∆ to (22) together with
Taylor’s formula,

(a(u)− a0)∆u =
∑

k≥1

1

k!
a(k)(u(x))(u− u(x))kf(x).∆Π̂x

=
∑

k≥1

(

f(x).zk
)(

f(x).Π̂x

)k
f(x).∆Π̂x = f(x).

∑

k≥1

zkΠ̂
k
x
∆Π̂x,(24)

where we used the morphism property in the last step. Note also that for 1 ∈ T being the
constant power series with value 1, it holds f(x).1 = 1 for any x ∈ Rd+1. Hence, matching the
terms we see that (1) holds provided that

(25) (∂t − a0∆)Π̂x =
∑

k≥1

zkΠ̂
k
x
∆Π̂x + ξ1.

At the level of components, recalling the componentwise definition of multiplication of power
series, this reads as

(∂t − a0∆)Π̂xβ = Π̂−
xβ,

where

(26) Π̂−
xβ :=







ξ if β = 0
∑

k≥1

∑

β1+···+βk+1+ek=β

Π̂xβ1 · · · Π̂xβk
∆Π̂xβk+1

if β 6= 0.

Note that the sum in k is effectively finite due to the appearance of ek in the second sum. Here
ek is a multi-index with 1 in component k and zero in all other components. Note that with
this definition, the identity (24) turns into

(27) (a(u)− a0)∆u+ ξ = f(x).Π̂−
x
.

The similarity between (22) and (27) is effectively the reason why it suffices to use a single
index set for both the positive and the negative model simultaneously.

Remark 1. A simple way to achieve the properties of τ 7→ f(x).τ demanded above is as follows.
Define the linear form τ ∈ T 7→ f(x).τ by evaluating the formal power series τ , by setting the
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abstract variables z to be (an a priori unknown function) zx = ν(x) and zk = 1
k!

dka
duk (u(x)). That

is, writing τ = τ(zx, (zk)k≥1; a0) we introduce

f(x).τ := τ(ν(x), (
1

k!

dka

duk
(u(x)))k≥1; a(u(x))).(28)

Note that this is in line with the motivation given for our model space T, cf. (3) and (4), where
now we use a general base point x rather than fixing the origin arbitrarily. We remark again
that this definition is only formal, as the evaluation of a formal power series is unlikely to
converge. Ignoring this issue, we see that such a form f(x) clearly has the morphism property
(f(x).σ)(f(x).τ) = f(x).(στ). We also emphasize that this reasoning shows that evaluation is
the driving principle behind the definition of modelled distributions: it takes elements from the
abstract model space to concrete objects.

We now turn our attention to the structure group τ 7→ Γ̂yxτ and claim that its definition
arises naturally from demanding that the modelled distribution f(x) has the following (formal)
covariance property:

(29) f(y).τ = f(x).Γ̂yxτ

for all x,y ∈ Rd+1 and all τ ∈ T. Before deriving the action of Γ̂yx, we start by giving a
motivation for (29) based on demanding the consistency of the local expansion (22) across two
different base-points, together with the re-expansion property (10). In fact, for two points
x,y ∈ Rd+1, using the relation (22) first at y and then at x yields

f(y).Π̂y = u− u(y) = u− u(x)− (u(y)− u(x)) = f(x).(Π̂x − Π̂x(y)) = f(x).Γ̂yxΠ̂y,(30)

where we used (10) in the last step. The reader acquainted with regularity structures will notice
that Hairer’s definition of a modelled distribution f is a quantification of the defect in (29) for
x and y close together. Since f describes a formally exact solution u, it’s reasonable to expect
an identity rather than an inequality.

We will now use (29) and the definition (28) to deduce the action of Γ̂yx on zj . We take the
time to spell this calculation out explicitly since the manipulation is generally very similar to
the key ideas carried out in the proof of the Continuity Lemma, a core point of the present
work. Applying Taylor’s formula yields

f(y).zj =
1

j!
a(j)(u(y)) =

∑

k≥j

1

j!
(u(y)− u(x))k−j 1

(k − j)!
a(k)(u(x)).

Inserting (22) and using the morphism property of f , we deduce

f(y).zj =
∑

k≥j

1

j!
(f(x).Π̂x(y))

k−j 1

(k − j)!
a(k)(u(x))

=
∑

k≥j

(

k

j

)

(f(x).Π̂x(y))
k−jf(x).zk = f(x).

∑

k≥j

(

k

j

)

Π̂x(y)
k−j

zk.

Since f(x) is linear, we see that ensuring (29) amounts to defining

(31) Γ̂yxzj :=
∑

k≥j

(

k

j

)

Π̂x(y)
k−j

zk.

1.2. The Renormalized Model. Accepting that some form of counter-term in (1) is nec-
essary, we aim to choose it in a minimally intrusive way. This is in line with the axiomatic
approach common in the physics community, see also [27]. In particular, we ask that it is
scaling wise lower order and respects the symmetries of the SPDE and its solution manifold,
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which then restricts the possible functional dependence. Hence in view of [8], the appropriate
ansatz for a counter term in equation (1) is

∂tu− a(u)∆u+ h(u) +H(u) · ∇u = ξ.(32)

The ansatz (32) is thus parameterized by the nonlinearities h and H that one postulates to
be deterministic, i.e., dependent only on the law but not the realizations of ξ. In making
the ansatz (32), we have in mind a ξ whose law is invariant under shifts of space-time and
implicitly use symmetry as follows. As the original nonlinear operator u 7→ ∂tu− a(u)∆u does
not depend explicitly on space-time, we may assume that the same is true for h and H . There
is a further symmetry-related reduction: we demand that if the law of ξ is invariant under the
spatial reflection xi 7→ −xi for i ∈ {1, . . . , d}, then the same is true for the solution u. Since
u 7→ ∂tu− a(u)∆u commutes with spatial reflection, this requires H ≡ 0. Hence (32) collapses
to (14).

In fact, there is a final, but crucial symmetry observation related to the (functional) dependence
of the function h = h[a](u) of u ∈ R on the nonlinearity a. For this, recall that the solution
manifold has the important shift invariance (2). By our principle of minimal intrusiveness
regarding the symmetries of the SPDE we therefore assume the following covariance under
shifts

h[a(·+ v)](u) = h[a](u+ v).(33)

This implies that h is determined by a functional q = h[·](0) on the space of nonlinearities via

h[a](v) = q[a(·+ v)].(34)

At least heuristically, there is a one-to-one correspondence between functionals a 7→ τ [a] and
S := {τ ∈ T : τ independent of zx}. In particular, (34) can be recast for fixed a as

h(v) = g(v).q, v ∈ R,(35)

where S ∋ τ 7→ g(v).τ acts via g(v).τ = τ [a(· + v)]. On the one hand, (35) is a non-truncated
version of (18), as can be seen via (3), (16) and

1

k!

dka(·+ v)

duk
(0) =

1

k!

dka

duk
(v), for k ∈ N0.

On the other hand, Taylor’s formula gives for x ∈ Rd+1

h(u) =
∑

k≥0

1

k!
(u− u(x))k(∂k

u)|u=u(x)h =
∑

k≥0

1

k!
(u− u(x))k(∂k

u)|u=u(x)g.q

=
∑

k≥0

1

k!
(u− u(x))kg(u(x)).(D(0))kq,

where the derivation D(0) is the infinitesimal generator of shifts on the algebra T determined
via ∂ug.τ = g.D(0)τ for all τ ∈ T. We remark that D(0) is given by (44) as shown in Lemma 2
below. Furthermore, by (28) we formally obtain g(u(x)).τ = τ [a(·+ u(x))] = f(x).τ for τ ∈ S.
Using (22) and the morphism property of f(x), we therefore expect

h(u) =
∑

k≥0

1

k!
(f(x).Πx)

kf(x).(D(0))kq = f(x).
∑

k≥0

1

k!
Πk

x
(D(0))kq.

Following the same steps as in Section 1.1, we see that if we demand

(∂t − a0∆)Πx =
∑

k≥1

zkΠ
k
x
∆Πx −

∑

k≥0

1

k!
Πk

x
(D(0))kq + ξ1 =: Π−

x
.

then u given by (22) is formally a solution to the renormalized equation (14). In particular,
keeping in mind that Πx(x) = 0, we expect (12).
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Now that we have finished motivating our assumptions, we comment on the precise connection
with the work [27] where the model is constructed. Note that in [27], the letter c is used in
place of our q. In particular,

• analytical dependence on the parameter a0 of all relevant objects as imposed by the
definition of T is obtained in [27] in Remark 2.7;

• (5) corresponds to (2.21) in [27] in the relevant case βx ∈ {0, 1},
• (8) corresponds to (2.35) in [27], where we spell out explicitly the (β = 0)-component.
Indeed, the (β = 0)-component of (2.18) in [27] reads Π−

x0 = ξ − q0, which is (8) up to
a constant q0 which we can allow for in view of the footnote to (8);

• (9) corresponds to (2.36) in [27];
• the explicit form of elements in G postulated in (42) corresponds to (2.44) in [27];
• (10) corresponds to (2.61) in [27];
• (11) corresponds to (2.55) in [27];
• and (12) corresponds to evaluating (2.18) in [27] at the base point x and observing that
the sums collapse due to (2.36) in form of Πxβ(x) = 0.

2. Model Space and Structure Group

In this section, we introduce the algebraic framework which underlies our local expansion for
the solution and is used to quantify our assumptions on the forcing ξ. For a multi-index
a = (a1, . . . , ad) we use the standard notation

a! := a1! · · · ad!, |a| := a1 + . . .+ ad, xa := xa1
1 · · ·xad

d ,

with the convention that 00 = 1.

2.1. The Model Space. Recall the definition of the model space T as the linear space of
formal power series

∑

β τβz
β in the abstract variables z = (zx, z1, z2, . . .) ∈ Rd × RN. It will be

important that T forms an algebra with unit element 1 defined via 1(z) := 1, and given σ, τ ∈ T

the product στ is identified with its coefficients via

(36) (στ)β :=
∑

β1+β2=β

σβ1τβ2 .

A special role is played by the monomials zx, {zj}j≥1, and in addition we define z0 := a01. It
will be convenient to separate the polynomial sector T̄ of T from the rest, that is we write

T = T̄⊕ T−

with

T̄ := {τ ∈ T : τ(βx,β′) = 0 unless βx 6= 0, β ′ = 0},

T− := {τ ∈ T : τ(βx,0) = 0 for all βx 6= 0}.

We denote the projection of T onto T̄ by P. Notice that in particular 1 ∈ T−, which should be
compared with the β = 0 constraint of (8), and we warn the reader that we are departing from
the notational convention in [20].

2.2. Homogeneities. We now define a grading of T by assigning a homogeneity to each el-
ementary monomial zβ , or equivalently to each multi-index β. Specifically, recalling (17) we
define an integer-valued function β 7→ 〈β〉 by

(37) 〈β〉 := |β|s + 1βx=0,

cf. (17) and use this to define the homogeneity

(38) |β| := 〈β〉α+ |βx|.
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Remark 2. We want to emphasize that we are not making any departures from the traditional
homogeneity counting in regularity structures. For example, for βx ∈ Nd

0 with |βx| = 1 we have
|(βx, 0)| = 1 to be compatible with (5) and |0| = α which should be compared with the β = 0
constraint of (8), keeping in mind ξ ∈ Cα−2.

Remark 3. The definition can also be motivated by a scaling argument. Indeed, observe that
the Cα−2-norm of ξ is invariant under the scaling ξ(x) 7→ ξ̃(x) := λα−2ξ(x̃), x̃ := (λ−2t, λ−1x).
Such scaling leaves (1) invariant if we define ũ(x) := λαu(x̃) and ã(v) = a(λ−αv). In view of
(3) and (4), this leads to the rescaled coordinates z̃ := (λα−1zx, λ

−αz1, λ
−2αz2, . . .). Thus, for

the partial derivatives Π̃β of ũ with respect to z̃ we have

Π̃β(x) = ∂β
z̃
|z̃=0ũ(x) = λα+α

∑
k≥1 kβ(k)+(1−α)|βx|∂β

z
|z=0u(x̃) = λ|β|Πβ(x̃),

which is exactly corresponding to (37) in the relevant case |βx| = 0, 1.

This assignment of homogeneities naturally generates a finite set of homogeneities

A :=
{

|β| < 2
}

⊂ N0α + N0.

The reader should keep in mind that the least element of A is α, the homogeneity of the
multi-index β = 0, cf. Remark 2. A distinguished role will also be played by ⌈α−1⌉α, the least
homogeneity in A larger than 1. Moreover we note that if β and γ are such that |β| = |γ| ∈ A,
then the choice of α implies that |β|s = |γ|s, 〈β〉 = 〈γ〉, and βx = γx. The notion of homogeneity
leads to a grading on T as follows: for each δ ∈ A we define

Tδ := {τ ∈ T : τβ = 0 if |β| 6= δ}, T≥δ :=
⋃

|β|≥δ

T|β|,

and analogously T>δ. It will be important to keep in mind how the multiplication of power
series in the sense of (36) interacts with the grading resulting from the definition (38). The
reader should be careful to note that although |β1+β2|s = |β1|s+ |β2|s, in most cases of interest
in this article, |β1 + β2| 6= |β1|+ |β2|. This is easily seen to be false by considering β1 = β2 = 0.
For the typical cases that interest us, the two sides differ by α, and for convenience we record
this in the following lemma.

Lemma 1. Let β1, β2 be multi-indices.

(1) The following identity holds:

(39) |β1 + β2| =

{

|β1|+ |β2| − α if |β1,x| · |β2,x| = 0.

|β1|+ |β2| else

(2) The following implication holds:

σ ∈ T≥|β1|

τ ∈ T≥|β2|

}

⇒ στ ∈ T≥|β1|+|β2|−α ⊂ T≥|β1|∨|β2|.(40)

Moreover, if |β1,x| · |β2,x| = 0, then

σ ∈ T|β1|

τ ∈ T|β2|

}

⇒ στ ∈ T|β1|+|β2|−α.(41)

Proof. To see the identity (39), notice that

|β1 + β2| = α
(

|β1|s + |β2|s + 1β1,x+β2,x=0

)

+ |β1,x|+ |β2,x|

= |β1|+ |β2|+ α
(

1β1,x+β2,x=0 − 1β1,x=0 − 1β2,x=0

)

.

Hence, if at least one of β1,x, β2,x is zero, then |β1 + β2| = |β1| + |β2| − α and otherwise all
indicator functions above vanish and |β1 + β2| = |β1| + |β2|. This establishes (39). We now
turn to the implication (40) and suppose σ ∈ T≥|β1|, τ ∈ T≥|β2|. We now argue that (στ)γ = 0
if |γ| < |β1| + |β2| − α. Indeed, keeping in mind (36), if γ1 + γ2 = γ, then by (39) it holds
|γ1| + |γ2| ≤ |γ| + α < |β1| + |β2|. Hence, |γi| < |βi| for at least one of i = 1, 2, which implies
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that σγ1τγ2 = 0, yielding the claim. The inclusion T≥|β1|+|β2|−α ⊂ T≥|β1|∨|β2| follows immediately
since all homogeneities in A are at least α. To show (41), let σ ∈ T|β1|, τ ∈ T|β2| and consider
(στ)γ , where γ = γ1 + γ2. Then (στ)γ = 0 unless |γ1| = |β1| and |γ2| = |β2|, and hence
|γ1,x| · |γ2,x| = |β1,x| · |β2,x| = 0. Thus, by (39) it holds |γ| = |γ1|+ |γ2| −α = |β1|+ |β2| −α. �

2.3. The Structure Group. We now define a subgroup G of the linear endo-morphisms Γ of
T. Namely, each Γ is required to be of the “exponential” form

Γ =
∑

k,|a|≥0

1

k!a!
τ (k,a)D(k,a),(42)

where (τ (0), τ (1)) ∈ T× Td.11 Here, we have used the notation

τ (k,a) := (τ (0))k(τ (1))a, and D(k,a) := (D(0))k(D(1))a,(43)

with the linear operators D(0) and D(1) given by

D(0) := z1∂a0 +

∞
∑

k=1

(k + 1)zk+1∂zk , D(1) := ∇zx .(44)

These are “derivations” in the sense that they satisfy

D(τσ) = (Dτ)σ + τ(Dσ) for all τ, σ ∈ T,(45)

in particular D1 = 0. It will be convenient to record their value on the linear monomials (recall
z0 = a01):

{

D(0)zj = (j + 1)zj+1 for j ∈ N0,

D(0)zx = 0,
(46)

and for 0 6= a ∈ Nd
0

{

(D(1))azj = 0 if j ∈ N0,

(D(1))azax = a!1.
(47)

In particular, if we introduce for τ = (τ 1, . . . , τd) ∈ Td the notation Γτ := (Γτ 1, . . . ,Γτd) ∈ Td,
then we have

Γzj =
∑

k≥j

(

k

j

)

(τ (0))k−j
zk, for j ≥ 0,(48)

Γzx = zx + τ (1).(49)

By a short calculation using the binomial formula and (45), it follows that Γ is an algebra
morphism, that is for σ, τ ∈ T we have

Γ(στ) = (Γσ)(Γτ), Γ1 = 1.(50)

Remark 4. The reader might wonder where the definition (42) based on (44) comes from.
We first note that the relation (48) is consistent with our heuristic expectation (31). In fact,
we could equivalently define Γ by starting with (48)-(49) and extending to the rest of T by
demanding (50). However, the rather explicit expression (44) is useful in the proof of the
Continuity Lemma, where the starting point is a general τ ∈ T. To motivate the D(0) operator,
note that we could alternatively define it by starting with (46) and extending to a general τ by
demanding (45). Furthermore, (46) has a simple interpretation: thinking of zj as a placeholder
for 1

j!
a(j)(u), cf. (3), the D(0) operator simply corresponds to differentiation in u. This will be

important in the proof of Corollary 1.

11At this stage, τ (0), τ (1) are arbitrary since we are describing a generic group element. Given base-points

x,y we write τ
(0)
yx ,τ

(1)
yx for the specific choices leading to the group element Γyx described in Assumption 2.
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We mention that the set G of all Γ given in the form (42), where (τ (0), τ (1)) runs through T×Td,
forms a subgroup of the endomorphisms on T. In particular, every Γ ∈ G is invertible. In the
present work, we do not need these properties and hence refer the reader12 to [26], where the
group structure is established in a more general situation.

Since the coefficients τβ are analytic in a0, we may estimate higher derivatives with respect
to a0 on D|β| by lower ones on a larger set, and hence it follows from the definition of the

operators D(0) and D(1) in (44) and (43), and from the nestedness of the discs D|β| that for
|γ| ∈ A, k ∈ N0 and |a| ≤ 1 with |γ|+ µ(k, a) ∈ A, we have

D(k,a) : T|γ| → T|γ|+µ(k,a), µ(k, a) := kα + |a|(α− 1), ‖D(k,a)τ‖|γ|+µ(k,a) . ‖τ‖|γ|,(51)

where the implicit constant is universal (indeed, it does not depend on the specific k ∈ N0 since
there are only finitely many k that fulfill the proviso).

2.4. Linear forms on (u, ν) space. We define a family of linear forms parametrized by R×Rd

which will be used to quantify our estimates on the solution u, cf. (73). Namely, for each
(u, ν) ∈ R× Rd we define

(52) g(u, ν).τ :=
∑

β

νβxda(u)β
′

τβ(a(u)),

for all τ ∈ T which have at most finitely many non-zero coefficients τβ . We will often omit the
dependence of g on (u, ν) and simply use the shorthand notation g.τ . We will make extensive
use of the fact that τ 7→ g.τ is an algebra morphism, that is

(53) g.(στ) =
(

g.σ
)(

g.τ
)

,

which can be seen from recalling (36) and writing

g.(στ) =
∑

β

νβxda(u)β
′
∑

β1+β2=β

σβ1(a(u))τβ2(a(u))

=
∑

β1,β2

νβ1,xνβ2,xda(u)β
′
1da(u)β

′
2σβ1(a(u))τβ2(a(u)) =

(

g.σ
)(

g.τ
)

.

A further property of g is the interaction between differentiation in (u, ν) space and application
of the operators D(k,a) used in the definition of G, cf. (43).

Lemma 2. For all k ≥ 0 and a ∈ Nd
0 it holds

∂k
u∂

a

ν(g.τ) = g.D(k,a)τ.(54)

Proof. Note that it suffices to show (54) for the special cases k = 1, a = 0 and k = 0, |a| = 1
which read

∂u(g.τ) = g.D(0)τ, ∂a

ν(g.τ) = g.(D(1))aτ for |a| = 1.(55)

The general case then follows by iteration. To establish (55) we start with monomials and then
use the morphism property (53) to extend to a general τ . Indeed, note that for monomials zx
and zj , j ≥ 0, we find

∂u(g.zj) =
a(j+1)(u)

j!
= (j + 1)g.zj+1

(46)
= g.D(0)

zj ,

∂u(g.zx) = ∂uν = 0
(46)
= g.D(0)

zx,

12We mention for the convenience of the reader two basic transformation rules: if (τ (0), τ (1)) generates Γ, then

(−Γ−1τ (0),−Γ−1τ (1)) generates Γ−1. If additionally (τ (0)
′

, τ (1)
′

) generates Γ′, then (τ (0) +Γτ (0)
′

, τ (1) +Γτ (1)
′

)
generates ΓΓ′, cf. Proposition 5.1(iii) in [26].
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as well as

∂a

ν(g.zj) = ∂a

ν

a(j)(u)

j!
= 0

(47)
= g.(D(1))azj ,

∂a

ν(g.z
a

x) = ∂a

νν
a = 1

(47)
= g.(D(1))azax.

Since D(0) is a derivation, cf. (45), and since τ 7→ g.τ is a morphism, if (55) holds for given
τ, τ ′, applying the product rule gives

∂u
(

g.ττ ′
)

= ∂u
(

g.τg.τ ′
)

=
(

∂ug.τ
)(

g.τ ′
)

+
(

g.τ
)(

∂ug.τ
′
)

(55)
=
(

g.D(0)τ
)(

g.τ ′
)

+
(

g.τ
)(

g.D(0)τ ′
)

= g.
(

(D(0)τ)τ ′ + τ(D(0)τ ′)
) (45)
= g.D(0)(ττ ′).

Similarly, ∂a

ν(g.ττ
′) = g.(D(1))a(ττ ′) for |a| = 1. This shows (55) for all τ ∈ T|γ| that are

polynomial in a0, and hence by density for all τ ∈ T|γ|. �

2.5. Projections. For each β we define the projection Pβ : T → T|β| via

τ =
∑

β

τβz
β 7→ Pβτ := τβz

β ,

and for each η > 0, we define the projection Qη :=
∑

|β|<η Pβ : T 7→ T<η, i.e.

(56) τ =
∑

β

τβz
β 7→ Qητ :=

∑

|β|<η

τβz
β.

We will need a variation of the exponential formula (42) for the composition of a group element
with a projection onto homogeneities below a given level. This will be employed in the proof
of Corollary 1, which is the starting point for the proof of the Graded Continuity Lemma. In
preparation for truncating the infinite summation in (42), it is convenient to introduce the
following notation: for |a| = 0, 1 and κ ∈ R

(57) K(κ, |a|) := ⌈α−1(κ+ |a|)⌉ − ⌈α−1|a|⌉ − 1.

Throughout the article, we will often use the abbreviation K(|a|).

Lemma 3. Let η > 0 and let Γ ∈ G be associated with (τ (0), τ (1)) ∈ T × (T>1)
d. For each

τ ∈ T|γ| with |γ| ∈ A and |γ| < η it holds

QηΓτ = Qη

∑

|a|=0,1

K(η−|γ|,|a|)
∑

k=0

1

k!a!
τ (k,a)D(k,a)τ,(58)

cf. (57).

Proof. We apply Qη on both sides of (42) and our goal is to truncate the summation in k, |a|.
Observe that for τ ∈ T|γ| with |γ| ∈ A we have |γx| ∈ {0, 1} and therefore D(k,a)τ = 0 if |a| ≥ 2,

cf. (44). Note that due to the structure of the set of homogeneities, τ (1) ∈ Td
>1 implies τ (1) ∈

Td
≥⌈α−1⌉α, which together with (τ (0))k ∈ T≥α implies via (40) that τ (k,a) ∈ T≥(1+|a|⌊α−1⌋)α. Com-

bining this withD(k,a)τ ∈ T|γ|+kα+|a|(α−1), cf. (51), (40) yields that τ
(k,a)D(k,a)τ ∈ T≥|γ|+kα+|a|(⌈α−1⌉α−1)

and therefore Qη(τ
(k,a)D(k,a)τ) = 0 provided that k ≥ α−1(η − |γ| + |a|)− |a|⌈α−1⌉ and hence

for k ≥ K(η − |γ|, |a|) + 1. �

Next we introduce a truncated version of g denoted gη, via

τ ∈ T 7→ gη.τ := g.Qητ =
∑

|β|<η

g.Pβτ.(59)
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We also need a variant of the morphism property (53) for gη with η ∈ (0, 2). Let us first
consider a special case and let σ, τ ∈ T with τ ∈ T|γ| for some |γ| < η, then by (39)

gη.(στ) =
∑

|β|<η

∑

β1+β2=β

νβ1,x+β2,xda(u)β
′
1+β′

2σβ1(a(u))τβ2(a(u))

=
∑

|β2|=|γ|

νβ2,xda(u)β
′
2τβ2(a(u))

∑

|β1|<η+α−|γ|

νβ1,xda(u)β
′
1σβ1(a(u))

=
(

gη+α−|γ|.σ
)(

gη.τ
)

.(60)

Note that the right-hand side is generally not the same as (gη.σ)(gη.τ), but instead involves a
truncation at a (potentially) lower level η + α − |γ| ≤ η. More generally, we find that for any
σ, τ ∈ T it holds

(61) gη.(στ) =
∑

|γ|<η

(

gη+α−|γ|.σ
)(

g.Pγτ
)

,

which follows from gη.(στ) = gη.(σQητ), cf. the inclusion (40), then by decomposing the pro-
jection cf. (56) and applying (60). We now combine Lemma 2, Lemma 3, and (60) to obtain
the following corollary, for which we recall the definition of µ(k, a) in (51).

Corollary 1. Let η ∈ (0, 2), τ ∈ T|γ| for |γ| < η, and g be given by (52). For all u, u′ ∈ R,
ν, ν ′ ∈ Rd, there exist some u0, u1 ∈ R between u and u′ such that

gη(u
′, ν ′).τ − gη(u, ν).Γτ

=
∑

|a|=0,1

K(η−|γ|,|a|)
∑

k=1−|a|

1

k!a!

(

(u′ − u)k(ν ′ − ν)a − gη+α−|γ|−µ(k,a)(u, ν).τ
(k,a)
)

g(u, ν).D(k,a)τ

+
∑

|a|=0,1

1

K(η − |γ|, |a|)!
(u′ − u)K(η−|γ|,|a|)(ν ′ − ν)a

(

g(u|a|, ν)− g(u, ν)
)

.D(K(η−|γ|,|a|),a)τ.

Proof. Since τ ∈ T|γ| for |γ| < η, it holds that gη(u
′, ν ′).τ = g(u′, ν ′).τ and hence

(62) gη(u
′, ν ′).τ − gη(u, ν).Γτ =

(

g(u′, ν ′)− g(u, ν)
)

.τ − gη(u, ν).(Γτ − τ).

We will analyze the first term using Taylor’s theorem and (54), while for the second term we
will appeal to Lemma 3. Since η and |γ| are fixed throughout the proof, we will simply write
K(|a|) instead of K(η − |γ|, |a|). Indeed, for the second term in (62) applying g on both sides
of (58), cf. (59) we find

gη.(Γτ − τ) =
∑

|a|=0,1

K(|a|)
∑

k=1−|a|

1

k!a!
gη.(τ

(k,a)D(k,a)τ)

=
∑

|a|=0,1

K(|a|)
∑

k=1−|a|

1

k!a!
gη+α−|γ|−µ(k,a).τ

(k,a)g.D(k,a)τ.(63)

In the second equality, we used (60) and D(k,a)τ ∈ T|γ|+µ(k,a), cf. (51). We also used that

gη.D
(k,a)τ = g.D(k,a)τ due to |γ|+µ(k, a) < η for k ≤ K(|a|), which is a result of the inequality

K(|a|) < α−1(η − |γ|+ |a|)− |a|, c.f. (57).

For the first term in (62), we write
(

g(u′, ν ′)− g(u, ν)
)

.τ =
(

g(u′, ν)− g(u, ν)
)

.τ +
(

g(u′, ν ′)− g(u′, ν)
)

.τ(64)
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and analyze both terms separately. By Taylor’s formula in u to order K(0) and (54), there
exists a u0 ∈ R between u and u′ such that

(

g(u′, ν)− g(u, ν)
)

.τ =

K(0)
∑

k=1

1

k!
(u′ − u)kg(u, ν).D(k,0)τ

+
1

K(0)!
(u′ − u)K(0)

(

g(u0, ν)− g(u, ν)
)

.D(K(0),0)τ.(65)

For the second term in (64), we first use that ∂a

νg = 0 for |a| > 1 to write

(

g(u′, ν ′)− g(u′, ν)
)

.τ =
∑

|a|=1

(ν ′ − ν)a∂a

νg(u
′, ν).τ =

∑

|a|=1

(ν ′ − ν)ag(u′, ν).D(0,a)τ.

Now Taylor’s formula in u to order K(1) and (54) yield a u1 ∈ R between u and u′ such that

(

g(u′, ν ′)− g(u′, ν)
)

.τ =
∑

|a|=1

K(1)
∑

k=0

(ν ′ − ν)a(u− u′)kg(u, ν).D(k,a)τ

+
∑

|a|=1

1

K(1)!
(ν ′ − ν)a(u− u′)K(1)

(

g(u1, ν)− g(u, ν)
)

.D(K(1),a)τ.(66)

Combining the identities (62)-(66) the proof is complete. �

Remark 5. In the above, we used that η < 2 in our appeal to (60). We remark that Corollary
1 continues to hold if we relax this assumption to η < 1 + ⌈α−1⌉α and τ ∈ T−. Recall that in
the derivation of (60), this ensures that there is no contribution of the form σβ1(a(u))τβ2(a(u))
where both β1,x 6= 0 and β2,x 6= 0, so the application of (39) is valid.

In our main application of the previous lemma, we will need to further simplify the quantity

(67) (u′ − u)k(ν ′ − ν)a − gη+α−|γ|−µ(k,a)(u, ν).τ
(k,a)

in order to relate it to the semi-norms (73) defined in the next section. This is accomplished
with the following lemma.

Lemma 4. Let κ ∈ (0, 2), J ∈ N, um ∈ R and τm ∈ T for m ∈ {1, . . . , J}. The following
identity holds:

( J
∏

m=1

um

)

− gκ.(τ1 · · · τJ )

= (u1 − gκ.τ1)
J
∏

m=2

um +
∑

|β|<κ

J
∑

j=2

(uj − gκ+α−|β|.τj)

( J
∏

m=j+1

um

)

g.Pβ(τ1 · · · τj−1).(68)

Proof. We give a proof by induction on J . For J = 1, the claim follows immediately, noting
that by convention the empty sum is zero and the empty product is one. To provide some
additional intuition, let us also consider the case J = 2 (the reader can also skip directly to the
case of general J below). Using (61),

u1u2 − gκ.(τ1τ2) = (u1 − gκ.τ1)u2 + u2(gκ.τ1)−
∑

|β|<κ

(gκ+α−|β|.τ2)(g.Pβτ1)

= (u1 − gκ.τ1)u2 +
∑

|β|<κ

(u2 − gκ+α−|β|.τ2)(g.Pβτ1),
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which is precisely (68). We now proceed to the general inductive proof. Let J > 1 be such that
the statement is true for J − 1. We multiply the induction hypothesis by uJ resulting in

( J
∏

m=1

um

)

− uJgκ.(τ1 · · · τJ−1)

= (u1 − gκ.τ1)

J
∏

m=2

um +
∑

|β|<κ

J−1
∑

j=2

(uj − gκ+α−|β|.τj)

( J
∏

m=j+1

um

)

g.Pβ(τ1 · · · τj−1).(69)

Now we further analyze the LHS of the equality above and write

uJgκ.(τ1 · · · τJ−1) =
∑

|β|<κ

uJg.Pβ(τ1 · · · τJ−1) =
∑

|β|<κ

(uJ − gκ+α−|β|.τJ)g.Pβ(τ1 · · · τJ−1)

+
∑

|β|<κ

g.Pβ(τ1 · · · τJ−1)(gκ+α−|β|.τJ ).

The first term is now incorporated in the RHS of (69) to give the contribution from j = J , and
it only remains to argue that the second term simplifies via

gκ.(τ1 · · · τJ) =
∑

|β|<κ

g.Pβ(τ1 · · · τJ−1)(gκ+α−|β|.τJ ),

which follows immediately from (61). �

Remark 6. Let us explain how we intend to apply Lemma 4 in the context of Corollary 1. We
claim that for |a| = 0, 1 and any κ ∈ (0, 2) it holds

(u′ − u)k(ν ′ − ν)a − gκ(u, ν).τ
(k,a)

=
(

(u′ − u)1−|a|(ν ′ − ν)a − gκ(u, ν).(τ
(0))1−|a|(τ (1))a

)

(u′ − u)k+|a|−1

+
∑

|β|<κ

(

u′ − u− gκ+α−|β|(u, ν).τ
(0)
)

k+|a|
∑

j=2

(u′ − u)k+|a|−jg.Pβτ
(j−1−|a|,a)(70)

Indeed, for |a| = 0, 1 this follows from Lemma 4 with J = k + |a|, u1 = (u′ − u)1−|a|(ν ′ − ν)a,
τ1 = (τ (0))1−|a|(τ (1))a and um = u′ − u, τm = τ (0) for m = 2, · · · , J . The identity above makes
it easy to estimate the LHS in terms of the semi-norms (73) defined below.

3. Modelled Distributions

Let D ⊂ Rd+1 be a bounded, open, convex domain. Given functions u : D → R, ν =
(ν1, . . . , νd) : D → Rd, and a cut-off value η > 0, recalling (52), (56) we define a map fη : D →
T

∗ via

(71) fη(x).τ := g(u(x), ν(x)).Qητ.

An important consequence of truncating fη at a finite level η is the loss of the covariance
property (29), which has to be replaced by a corresponding continuity property. To quantify
this type of continuity of fη with respect to the base point x ∈ D in the case of a finite cut-off
level η > 0, we take inspiration from [20, Definition 3.7] and define the quantity13 |||fη||| to be
the minimal M > 0 such that for all τ ∈ T−, x ∈ D and y ∈ B 1

2
distx(x) it holds

distη
x

∣

∣fη(y).τ − fη(x).Γyxτ
∣

∣ ≤ M
∑

|β|<η

dη−|β|(y,x) dist〈β〉α
x

‖τ‖T|β|
,(72)

13For ease of notation we do not explicitly state the dependence of |||f |||, [u]η and [ν]′η on D.
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where we recall the shorthand-notation distx := dist(x, ∂D) for the parabolic distance of x from
the boundary of D.14 By analogy to (103), we seek to control u and ν through the (weighted)
nonlinear quantities

[u]κ := sup

{

distκ
x

|u(y)− u(x)− fκ(x).τ
(0)
yx |

dκ(y,x)
: x ∈ D, y ∈ Bdistx(x)

}

, κ > 0.

[ν]′κ := sup

{

distκ
x

|ν(y)− ν(x)− fκ(x).τ
(1)
yx |

dκ−1(y,x)
: x ∈ D, y ∈ B 1

2
distx

(x)

}

, κ > 1.

(73)

This control relaxes the formal identity (22) and draws on the ideas of (controlled) rough paths
developed in [17], [28]. Observe that both quantities depend not only on u and ν, but also on
on ξ and the nonlinearity a via f . Note that [u]α is just a weighted α-Hölder semi-norm of u,
while for higher values of κ, the quantity [u]κ is nonlinear in u. Similarly, [ν]′⌈α−1⌉α is a weighted

(⌈α−1⌉α − 1)-Hölder norm of ν, while for higher values of κ, nonlinear effects come into play.
We additionally introduce

(74) ‖ν‖′1 := sup
x∈D

distx |ν(x)|

The following lemma is at the core of the article. It can be understood as a control on the
semi-norm defined via (72) in terms of (73)-(74) in a way that scales optimally with respect
to u and ν. This lemma is crucial in order to meet the requirements of reconstruction and
integration, cf. Propositions 1 and 2 which we will recall in Section 4 below.

Continuity Lemma. Let u : D → R and ν : D → Rd be smooth functions and define fη via
(71) with η < 1 + ⌊α−1⌋α. Assume that for some δ ∈ (0, 1

2
) it holds ‖u‖+ δα[Π] ≤ 1. Then the

following estimate holds:

|||fη+α||| . [u]η + [ν]′η + δ−η.

Remark 7. The assumption that ‖u‖ + δα[Π] ≤ 1 is purely for convenience. In fact, the two
main inputs for the Continuity Lemma are the Graded Continuity Lemma, which gives a more
general bound on the above semi-norm, together with interpolation inequalities, cf. Lemma 5,
and neither requires this assumption, but it slightly simplifies the combined output.

3.1. Graded Continuity Lemma. We start by analyzing for each |γ| < η the optimal Mη,|γ|

such that (72) holds for all τ ∈ T|γ| ∩ T−. We refer to this as the Graded Continuity Lemma,
since the estimate for Mη,|γ| involves the semi-norms (73) for variable κ, in comparison to the
Continuity Lemma which involves only the semi-norm of order η.

Graded Continuity Lemma. Let η < 1+ ⌈α−1⌉α. For all τ ∈ T|γ| ∩T− with |γ| < η, x ∈ D
and y ∈ B 1

2
distx(x) it holds

distη−〈γ〉α
x

∣

∣fη(y).τ − fη(x).Γyxτ
∣

∣ . Mη,|γ|d
η−|γ|(y,x)‖τ‖T|γ|

,(75)

where

Mη,|γ|

. 1 + [Π]
η−〈γ〉α

α + sup
α≤κ≤η−〈γ〉α

[u]
η−〈γ〉α

κ
κ + (‖ν‖′1)

η−〈γ〉α + 1|γx|=1 sup
⌈α−1⌉α≤κ≤η−〈γ〉α

([ν]′κ)
η−〈γ〉α

κ(76)

14On a first reading, we would advise the reader to ignore the factor of distη
x
and think of y ∈ D in the

definitions (72) and (73). Many of the core ideas in the paper are largely unrelated to this additional weight. In
fact, the weights could be completely avoided if one restricted attention to solutions to (14) which are space-time
periodic, though in general due to the renormalization these may be difficult to construct even with smooth
noise.
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Proof of the Graded Continuity Lemma. Without loss of generality, we may assume ‖τ‖T|γ|
= 1.

For brevity, we will write K(|a|) for K(η − |γ|, |a|). We apply Corollary 1, taking into account
Remark 5, with u′ = u(y), u = u(x), ν ′ = ν(y), ν = ν(x), and Γ = Γyx to obtain

fη(y).τ − fη(x).Γyxτ

=
∑

|a|=0,1

K(a)
∑

k=1−|a|

1

k!a!

(

(u(y)− u(x))k(ν(y)− ν(x))a − fη+α−|γ|−µ(k,a)(x).τ
(k,a)
yx

)

f(x).D(k,a)τ(77)

+
∑

|a|=0,1

1

K(a)!
(u(y)− u(x))K(a)(ν(y)− ν(x))a

(

g(u|a|, ν(x))− f(x)
)

.D(K(a),a)τ,(78)

for some intermediary point ua with |ua − u(x)| ≤ |u(y) − u(x)|. We will start by arguing
the following bound, which is used in estimating both (77) and (78): for all |a| ≤ 1 and
1 ≤ k ≤ K(a) + 1

|f(x).D(k,a)τ | ≤ ‖g(·, ν(x)).D(k,a)τ‖C0(R) . (1− 1|γx|=0,|a|=1)
( ‖ν‖′1
distx

)|γx|(1−|a|)
.(79)

The first inequality is immediate. For the second, notice that if |γx| = 0 and |a| = 1, then
g(·, ν(x)).D(k,a)τ = 0 since D(k,a)τ = 0, cf. (47). The other cases follow easily from the defini-
tions (52) and (71), taking into account the convention ‖a(m)(·)‖C0(R) . 1 for m ≤ n, (51), and
the normalization ‖τ‖T|γ|

= 1.

We now turn to estimating (78). By (79), and using that for δ ∈ [0, 1] and |a| ≤ 1 we have the
(standard Hölder space) interpolation inequality

‖g(·, ν(x)).D(K(|a|),a)τ‖Cδ(R) ≤ ‖g(·, ν(x)).D(K(|a|),a)τ‖C0(R) + ‖g(·, ν(x)).D(K(|a|),a)τ‖C1(R)

≤ ‖g(·, ν(x)).D(K(|a|),a)τ‖C0(R) + ‖g(·, ν(x)).D(K(|a|)+1,a)τ‖C0(R)

. (1− 1|γx|=0,|a|=1)
( ‖ν‖′1
distx

)|γx|(1−|a|)
,

setting δ = η−|γ|+|a|
α

− ⌈η−|γ|+|a|
α

⌉+ 1 ∈ [0, 1] cf. (57), we can bound each summand of (78) by

|u(y)− u(x)|K(|a|)|ua − u(x)|δ|ν(y)− ν(x)||a|‖g(·, ν(x)).D(K(|a|),a)τ‖Cδ(R)

. (1− 1|γx|=0,|a|=1)d
η−|γ|(y,x) dist〈γ〉α−η

x
[u]α

−1(η−|γ|)+|a|(α−1−⌈α−1⌉)
α ([ν]′⌈α−1⌉α)

|a|(‖ν‖′1)
|γx|(1−|a|)

. dη−|γ|(y,x) dist〈γ〉α−η
x

(

[u]
η−〈γ〉α

α
α + 1|γx|=1(‖ν‖

′
1)

η−〈γ〉α + 1|γx|=1([ν]
′
⌈α−1⌉α)

η−〈γ〉α

⌈α−1⌉α

)

,

where we used Young’s inequality in the last step, keeping in mind (38).

Now we turn to the estimate for (77): for the (k, a) summand we bound f(x).D(k,a)τ with (79)
and estimate the other part of the product using identity (70) with κ = η + α − |γ| − µ(k, a).
Note that due to (79), we are free to exclude the case |a| = 1, |γx| = 0, so that our assumption
η < 1 + ⌊α−1⌋α ensures κ < 2. We therefore obtain

(u(y)− u(x))k(ν(y)− ν(x))a − fη+α−|γ|−µ(k,a)(x).τ
(k,a)
yx

=
(

(u(y)− u(x))1−|a|(ν(y)− ν(x))a − fη+α−|γ|−µ(k,a)(x).(τ
(0)
yx

)1−|a|(τ (1)
yx

)a
)

(80)

× (u(y)− u(x))k+|a|−1

+
∑

|β|<η+α−|γ|−µ(k,a)

(

u(y)− u(x)− fη+2α−|γ|−µ(k,a)−|β|(x).τ
(0)
xy

)

k+|a|
∑

j=2

(u(y)− u(x))k+|a|−j(81)

× f(x).Pβτ
(j−1−|a|,a)
yx

.
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We insert the above identity into (77) and then estimate the resulting contribution, taking into

account (79). The contribution from (80) for k ≥ 1− |a| is estimated by dη−|γ|(y,x) dist〈γ〉α−η
x

multiplied by

(1− 1|γx|=0,|a|=1)
(

[u]η+α−|γ|−µ(k,a)(‖ν‖
′
1)

|γx|
)1−|a|

([ν]′η+α−|γ|−µ(k,a))
|a|[u]k+|a|−1

α

. [u]
η−〈γ〉α

α
α + [u]

η−〈γ〉α
η+α−|γ|−kα

η+α−|γ|−kα
+ 1|γx|=1(‖ν‖

′
1)

η−〈γ〉α + 1|γx|=1([ν]
′
η−(〈γ〉+k)α)

η−〈γ〉α
η−(〈γ〉+k)α ,

where the second line above is the result of Young’s inequality. Note that η + α − |γ| − kα ≤
η − 〈γ〉α, simply using k ≥ 0 if |γx| = 1 and k ≥ 1 if |γx| = 0, so the above is contained in
Mη,|γ|.

The contribution to (77) from (81) is estimated similarly, but requires the following additional
estimate

(82) |f(x).Pβτ
(j−1−|a|,a)
yx

| . d|β|+(j−2)α−|a|(y,x)dist−|β|−(j−2)α
x

{

[Π]j−1(‖ν‖′1)
|βx|, |β| 6= 1

[Π]j−2‖ν‖′1, |β| = 1

which follows from (13), (36), and (39). In the case |β| = 1, the improved exponent on [Π] is a
consequence of (5). Indeed, if |a| = 1, then the left-hand side vanishes by Assumption 2, while
if |a| = 0, Assumption 1 implies via (5) that the factor of [Π]j−1 in (82) can be replaced by
[Π]j−2 since β1 + . . .+ βj−1 = β and |β| = 1 implies that |βi| = 1 for one i ∈ {1, . . . , j − 1} and
βk = 0 for all k 6= i.

Applying (82), the contribution to (77) from a summand in (81) with |γ|+|β|+µ(k, a) < η+2α,

|β| 6= 1 is estimated by dη−|γ|(y,x) dist〈γ〉α−η
x

multiplied by

(1− 1|γx|=0,|a|=1)[u]η+2α−|γ|−|β|−µ(k,a)[u]
k−j+|a|
α (‖ν‖′1)

|βx|+|γx|(1−|a|)[Π]j−1

. [u]
η−〈γ〉α

α
α + [u]

η−〈γ〉α
η+2α−|γ|−|β|−µ(k,a)

η+2α−|γ|−|β|−µ(k,a) + (‖ν‖′1)
η−〈γ〉α + [Π]

(j−1)(η−〈γ〉α)
(j+〈β〉−2)α ,

where we used Young’s inequality. Notice that for β satisfying the constraints above it holds

〈β〉 ≥ 1, so that again by Young’s inequality it holds [Π]
(j−1)(η−〈γ〉α)
(j+〈β〉−2)α ≤ 1 + Π

η−〈γ〉α
α . Finally, we

note that if |β| = 1 so that 〈β〉 = 0, the same estimate holds by the same argument, simply
accounting for the change in the exponent of [Π] resulting from the second case in (82). �

3.2. Interpolation Inequalities. The final ingredient to pass from the graded continuity
lemma to the continuity lemma is interpolation inequalities.

Lemma 5. Let D ⊂ Rd be a domain. Let u : D → R be a smooth function and define ν : D → R

via (20). Let α < κ < η < 2. For all δ ∈ (0, 1
2
) it holds

[u]κ . [u]
κ
η
η (‖u‖+ δα[Π])1−

κ
η +

(

‖u‖+ δα[Π]
)

(δ−1 ∨ [Π]
1
α )κ,(83)

‖ν‖′1 . [u]
1
η
η (‖u‖+ δα[Π])1−

1
η +

(

‖u‖+ δα[Π]
)

(δ−1 ∨ [Π]
1
α ) η > 1,(84)

[ν]′κ . ([ν]′η)
κ−1
η−1
(

‖ν‖′1 + δα[Π]
)

η−κ
η−1 + (‖ν‖′1 + δα[Π])

(

δ−1 ∨ [Π]
1
α

)κ−1
κ > 1.(85)

The implicit constants are universal and independent of δ.

Proof. We start with the following claim: for any R ∈ (0, 1) the following inequalities hold

[u]κ . [u]ηR
η−κ +

(

‖u‖+Rα[Π]
)

R−κ + ‖ν‖′1R
1−κ + [Π]‖ν‖′1R

1+α−κ,(86)

‖ν‖′1 . [u]ηR
η−1 + (‖u‖+Rα[Π])R−1 + [Π]‖ν‖′1R

α,(87)

[ν]κ . [ν]ηR
η−κ +

(

‖ν‖′1 +Rα[Π]
)

R1−κ + [Π]‖ν‖′1R
1+α−κ.(88)

We recall in advance that ‖τ
(0)
xy ‖T|β|

≤ dist|βx|
x

[Π]
(

d(x,y)
distx

)|β|
for all β ∈ A, and hence in particular

|ν(x)|‖τ
(0)
xy ‖T|β|

≤ ‖ν‖′1[Π]
(

d(x,y)
distx

)|β|
, cf. (74). The reader should also keep in mind that by
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convention |da(u)β| . 1 for all β ∈ A. To show (86), pick R ∈ (0, 1) and x,y ∈ D with

y ∈ Bdistx(x). Notice that for d(x,y)
distx

≥ R it holds that

( distx
d(x,y)

)κ∣
∣u(y)− u(x)− fκ(x).τ

(0)
yx

∣

∣

. R−κ‖u‖+ [Π]
∑

α≤|β|<κ
|βx|=0

R|β|−κ +R1−κ‖ν‖′1 + [Π]‖ν‖′1
∑

1<|β|<κ
|βx|=1

R|β|−κ.

Alternatively, for d(x,y)
distx

≤ R it holds that

( distx
d(x,y)

)κ∣
∣u(y)− u(x)− fκ(x).τ

(0)
yx

∣

∣

≤
( distx
d(x,y)

)κ∣
∣u(y)− u(x)− fη(x).τ

(0)
yx

∣

∣ +
( distx
d(x,y)

)κ∣
∣(fη − fκ)(x).τ

(0)
yx

∣

∣

. Rη−κ[u]η + [Π]
∑

κ≤|β|<η
|βx|=0

R|β|−κ + [Π]‖ν‖′1
∑

κ≤|β|<η
|βx|=1

R|β|−κ.

Combining the two observations and using that R|β| ≤ Rα for |β| > 0 and R|β| ≤ R1+α for
|β| > 1, |βx| = 1, we obtain (86). The bound (88) follows by an analogous argument. To show

(87), given x ∈ D and 1 ≤ i ≤ d, let y := x+R distx ei ∈ D, so that d(x,y)
distx

= R. Applying this,

we find with distx |ν(x)| ≤ ‖ν‖′1 that

R distx |νi(x)| = |νi(x)(y − x)i|

. |u(y)− u(x)− fη(x).τ
(0)
yx

|‖u‖+ [Π]
∑

α≤|β|<η
|βx|=0

R|β| + [Π]
∑

1+α≤|β|<η
|βx|=1

(‖ν‖′1)
|βx|R|β|

. [u]ηR
η + ‖u‖+Rα[Π] + [Π]‖ν‖′1R

1+α.

Taking the supremum over 1 ≤ i ≤ d and dividing by R yields (87).

Recall that δ ∈ (0, 1
2
) has been fixed in advance. We now claim that there is a universal ǫ > 0

that for any for any R satisfying both

(89) R ≤ δ, Rα[Π] ≤ ǫ,

the following inequalities hold

[u]κ . [u]ηR
η−κ +

(

‖u‖+ δα[Π]
)

R−κ,(90)

‖ν‖′1 . [u]ηR
η−1 +

(

‖u‖+ δα[Π]
)

R−1,(91)

[ν]κ . [ν]ηR
η−κ +

(

‖ν‖′1 + δα[Π]
)

R1−κ.(92)

Indeed, it is clear from (87) that a sufficiently small and universal ǫ can be chosen to obtain
(91). Now (90) and (92) follow in virtue of (89) by inserting (91) into (86) and (88).

We would like to choose R to balance the two terms in (90) and (91). In both cases this
corresponds to choosing Rη = (‖u‖+ δα[Π])[u]−1

η . If (89) holds with this choice of R, then we
obtain the (homogeneous) interpolation inequalities

[u]κ . [u]
κ
η
η (‖u‖+ δα[Π])1−

κ
η , ‖ν‖′1 . [u]

1
η
η (‖u‖+ δα[Π])1−

1
η ,

which imply (83) and (84). If instead (89) fails, then it follows that

[u]η ≤
(

‖u‖+ δα[Π]
)

[δ−η ∨ (ǫ−1[Π])
η
α ] .

(

‖u‖+ δα[Π]
)

(δ−1 ∨ [Π]
1
α )η.(93)



A PRIORI BOUNDS IN THE FULL SUB-CRITICAL REGIME 23

In this case, we apply (91) and (90) with R = δ ∧
(

ǫ[Π]−1
)

1
α ≈ δ ∧ [Π]−

1
α , which satisfies (89)

by design, then we insert (93). This yields

‖ν‖′1 .
(

‖u‖+ δα[Π]
)

[Rη−1(δ−1 ∨ [Π]
1
α )η +R−1] .

(

‖u‖+ δα[Π]
)

(δ−1 ∨ [Π]
1
α ),

which implies (84). Similarly, we obtain

[u]κ .
(

‖u‖+ δα[Π]
)

(δ−1 ∨ [Π]
1
α )κ,

which implies (83). This completes the proof of the estimates on [u]κ and ‖ν‖′1.

The proof of (85) follows a similar argument. To balance terms in (92), we would need to
choose Rη−1 = (‖ν‖′1 + δα[Π])[ν]−1

η . If (89) holds with this choice of R, we find

[ν]′κ .
(

‖ν‖′1 + δα[Π]
)

η−κ
η−1 ([ν]′η)

κ−1
η−1 ,

which implies (85). Otherwise, we find that

[ν]η .
(

‖ν‖′1 + δα[Π]
)

(δ−1 ∨ [Π]
1
α )η−1,

so that choosing again R ≈ δ ∧ [Π]−
1
α leads us to

[ν]κ .
(

‖ν‖′1 + δα[Π]
)

(δ−1 ∨ [Π]
1
α )κ−1,

which implies (85). �

3.3. Proof of the Continuity Lemma.

Proof of the Continuity Lemma. In light of the Graded Continuity Lemma (applied with η+α
in place of η), it suffices to show that for all |γ| < η + α with 〈γ〉 ≥ 1 (since τ ∈ T− ∩ T|γ|

implies 〈γ〉 ≥ 1) it holds

Mη+α,|γ| . [u]η + [ν]′η + δ−η.(94)

We will make use of the following interpolation inequalities:

[u]κ . [u]
κ
η
η + δ−κ, ‖ν‖′1 . [u]

1
η
η + δ−1, [ν]′κ . ([u]η ∨ [ν]′η)

κ
η + δ−κ.(95)

The first two follow immediately from (83)-(84) in light of our assumption ‖u‖+ δα[Π] ≤ 1. We
now argue the third inequality. Indeed, inserting the second inequality in (95) into (85) and
using δα[Π] ≤ 1 ≤ δ−1 we find

[ν]′κ . ([ν]′η)
κ−1
η−1
(

[u]
1
η
η + δ−1

)
η−κ
η−1 +

(

[u]
1
η
η + δ−1

)

δ−(κ−1)

.
(

[u]η ∨ [ν]′η
)

κ
η + ([ν]′η)

κ−1
η−1 δ−

η−κ
η−1 + [u]

1
η
η δ

−(κ−1) + δ−κ,

which implies the claim via Young’s inequality applied to the second and third terms.

In particular, from (95) it follows that for any exponent p ≤ η it holds

(96) [u]
p
κ
κ + (‖ν‖′1)

p + ([ν]′κ)
p
κ . [u]η + [ν]′η + δ−η.

Hence, using (76) followed by (96) with p = η − (〈γ〉 − 1)α ≤ η, we obtain (94). �
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4. Jets and Proof of the Main Theorem

In this section, we present the two main analytic ingredients required for our method, recon-
struction and integration in the language of [20], then show how to apply them to deduce our
main result. The general strategy is to prove (19), from which the (weaker) bound (15) easily
follows from our interpolation inequalities, cf. (83). Hence, our main focus is on estimating
the [u]η and [ν]′η semi-norms, which we view abstractly as a semi-norm on a specific jet of
smooth functions. By a jet, we mean a family of functions Ux : D → R indexed by a base
point x ∈ D ⊂ Rd+1. These are used to describe the remainder that appears in the formal
identities (22) and (27) when the linear form f(x) is replaced by its truncated version fη(x).
More precisely, given u satisfying (14) and ν defined by (20), we define

Ux := u− u(x)− fη(x).Πx,

Fx :=
(

a(u)− a(u(x))
)

∆u+ ξ − h(u)− fη+α(x).Π
−
x
,

(97)

where η ∈ (1, 2) will be chosen sufficiently close to 2 depending on how close α is to 0, cf. (123).
Our goal is then to estimate distη

x
d−η(y,x)|Ux(y)|, which is done using Proposition 2, a gener-

alization of classical Schauder theory to jets.

To describe the input for Proposition 2, let us fix our notational conventions for convolutions:
we say that ρ is a symmetric convolution kernel if it is a Schwartz function with integral 1
satisfying ρ(t, x) = ρ(t,−x). For a fixed ρ, we use λ > 0 to denote a convolution parameter and
write (·)λ for the convolution with ρλ, where ρλ(t, x) := λ−(d+2)ρ(λ−2t, λ−1x). Specifically, given
a (regular) tempered distribution F and a kernel ρ, we define Fλ(x) :=

´

Rd+1 F (y)ρλ(x−y)dy,

and omit the specific kernel from the notation.15

The most important input for Proposition 2 is (106), which requires for each base-point x ∈ D
a control on distη

x
λ2−η|(∂t − a(u(x))∆)Uxλ(x)|, the natural extension of the Cη−2 semi-norm

applied to the jet {(∂t − a(u(x))∆)Ux}x. At this point, the compatibility between Πx and Π−
x

in the form of (8) becomes important, as it leads to a compatibility between Ux and Fx up to
a correction. Specifically, it follows from (8) and (14) that

(98) (∂t − a(u(x))∆)Ux = Fx + (fη(x)− fη+α(x)).Π
−
x
.

The second term on the right-hand side is straightforward to estimate to order η − 2 since it
only involves Π−

xβ for |β| ≥ η, and we can easily combine (8) and (9) for this purpose, cf. (131).

Hence, our main task is to estimate distη
x
λ2−η|Fxλ(x)|, which is where Proposition 1 comes into

play. The main input for Proposition 1 is (104), which requires a bound on
∣

∣Fxµ(y)−Fyµ(y)
∣

∣ in
terms of a sum of terms of the form dκ1(y,x)µκ2 where κ1+κ2 = δ > 0. It follows immediately
from the definition (97) that

(99) Fxµ(y)− Fyµ(y) = (a(u(y))− a(u(x)))∆uµ(y) + fη+α(y).Π
−
yµ(y)− fη+α(x).Π

−
xµ(y).

This identity needs to be further re-arranged: for instance the first term could at best be
bounded by [u]2αd

α(y,x)µα−2, but adding the exponents gives 2α−2 < 0 for α < 1. Fortunately,
there are many cancellations between the above quantities, and we establish that in the following
way. We start by arguing the following change of base-point for the negative model

(100) Π−
x
= ΓyxΠ

−
y
+
∑

k≥1

zkΠx(y)
k∆Πx.

Inserting this above we find that

Fxµ(y)− Fyµ(y) =
(

fη+α(y).id− fη+α(x).Γyx

)

Π−
y

+
(

a(u(y))− a(u(x))
)

∆uµ(y)−
∑

k≥1

fη+α(x).(zkΠx(y)
k∆Πx).

15In the notation of Hairer [20], Fλ(x) = 〈F, ρλ
x
〉.
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The first term is exactly tailored to the modelled distribution norm (72) and leads to a sum
of terms of the form |||fη+α|||[Π]d

η+α−|β|(y,x)µ|β|−2, which explains the role of the Continuity
Lemma. The second contribution above is precisely the truncated version of (24). We show
below that by a Taylor expansion and further application of Lemma 4 (similar to the proof of
the Graded Continuity Lemma), this quantity can be estimated by a sum of terms: the ones

of highest order taking the form [u]
η+α
κ

κ dη+α−|β|(y,x)µ|β|−2, where α ≤ κ ≤ η. This suggests to
apply Proposition 1 with δ = η+α−2 provided that η > 2−α. The output from reconstruction
is of order η + α− 2, which in particular implies a control of order η − 2. If we take the above
estimates as an input for integration, we would find

(101) [u]η + [ν]′η . ([u]η + [ν]′η)[Π] +
∑

α≤κ≤η

[u]
η+α
κ

κ + l.o.t,

where the first term comes from the Continuity Lemma. Unfortunately, even with the help
of our interpolation inequalities, this estimate does not close without an additional a priori
smallness constraint on [u]η and [Π]. For typical pertubative results, this is usually achieved
via a continuity argument or exploiting an additional small factor of the time interval. However,
our main result is of a different character and takes for granted only the rather weak input:
smallness of ‖u‖. To improve on (101), we need to be more careful in passing from the η+α−2
output from reconstruction to the η − 2 input required for integration. Namely, in Lemma 7
we interpolate between the (optimal) η + α− 2 > 0 description (on small scales) with a rather
coarse α− 2 bound (on large scales) to obtain an η− 2 < 0 description where the quantities on
the right-hand side of (101) are effectively raised to the power η

η+α
, allowing us to apply our

interpolation inequalities and buckle under smallness of ‖u‖.

4.1. Approximation by Jets. We are interested in jets that are uniformly locally bounded,
which we monitor using the quantity

‖U‖0 := sup{|Ux(y)| : x ∈ D,y ∈ Bdistx(x)},(102)

where we recall the shorthand-notation distx := dist(x, ∂D) for the distance of x from the
boundary of D. Moreover, we measure higher regularity of order η > 0 via the weighted
quantities

[U ]η := sup{distη
x

|Ux(y)|

dη(y,x)
: x ∈ D,y ∈ Bdistx(x)},

[U ]′η := sup{distη
x

|Ux(y)|

dη−1(y,x)
: x ∈ D,y ∈ B 1

2
distx(x)}.

(103)

The second definition is used to monitor jets related to analogues of Gubinelli derivatives, which
explains the subscript η despite U being measured against dη−1(y,x). It also hints to why the
supremum over y is taken over a smaller ball. The definition (103) is designed to be compatible
with (73) (for a specific choice of jet).

We first cite a local reconstruction assertion, which can be found in essentially this form in [29];
it is a local version of the reconstruction theorem in [31], both being inspired by related results
in [20].

Proposition 1. (Reconstruction) Let δ > 0 and K ⊂ (−∞, δ) finite. There is a symmetric
convolution kernel ρ with supp ρ ⊂ B1(0) with the following property. Fix z ∈ D, λ ∈ (0, 1)
with λ < distz. Assume that for a jet of smooth functions {Fx}x such that Fz(z) = 0, there is
C > 0 such that for all µ ∈ (0, λ) and x,y ∈ Bλ−µ(z) it holds

(104)
∣

∣Fxµ(y)− Fyµ(y)
∣

∣ ≤ C
∑

κ∈K

dδ−κ(y,x)µκ,
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Then we have

(105)
∣

∣Fzλ(z)
∣

∣ . Cλδ,

where the implicit constant depends only on η, K, and the dimension d.

The following proposition on integration of jets is a local variant of Lemma 5 in [30] and extends
Lemma 2.11 in [29]. Within the proof of the Main Theorem, the output of Proposition 1 will
be used as an input of Proposition 2. At first glance, the conditions of Proposition 2 appear
to be stronger than expected if compared to integration lemmas from multi-level Schauder
theory that are used in semi-linear contexts, as we have to include the continuity condition
(107). However, we emphasize that condition (106) is rather weak: It does not rely at all on
regularity information of the coefficient field a relative to the base point or the convolution
scale. This condition alone can therefore not suffice to give a result that is applicable to
quasi-linear equations. Proposition 2 can thus be understood as providing a surprisingly weak
supplementary condition to (106), namely the three-point continuity (107), which is sufficient
to conclude the regularity statement (108).

Proposition 2 (Integration). Let Λ ∈ (0, 1), η ∈ (1, 2) and let A ⊂ (0, η) be finite. Con-
sider a jet of smooth functions {Ux}x on D such that for all x ∈ D it holds Ux(x) = 0 and
∇y|y=xUx(y) = 0, and assume that [U ]η < ∞. Let ρ be a symmetric convolution kernel with
compact support in B1(0), and let the following two conditions be satisfied for some M > 0.

(1) For all y ∈ D and λ ∈ (0, 1
10
disty) it holds

(106) inf
a0,c0

distη
y

∣

∣(∂t − a0∆)Uyλ(y)− c0
∣

∣ ≤ Mλη−2

where the infimum runs over all a0 ∈ I := [Λ,Λ−1] and all constants c0 ∈ R.
(2) (Three-point continuity) For all x ∈ D, y ∈ B 1

2
distx(x), z ∈ B 1

2
distx(y) it holds

distη
x

∣

∣Ux(z)−Ux(y)− Uy(z)− γx(y) · (z − y)
∣

∣ ≤ M
∑

κ∈A

dη−κ(y,x)dκ(z,y),(107)

for some jet {γx}x with γx : D → Rd.

Then it holds

[U ]η + [γ]′η . M + ‖U‖0.(108)

Here the implicit constant in (108) depends only on Λ, η, A, the dimension d and the convolution
kernel ρ.

Proof. Step 1. We claim that for all x ∈ D, and all λ ∈ (0, 1
10
distx), R ∈ (0, 1

2
distx) with

λ ≤ 1
2
R it holds

distη
x

inf
a0∈I,c0∈R

‖(∂s − a0∆)Uxλ − c0‖BR(x) ≤ Mλα−2(λ+R)η−α,(109)

where ‖ · ‖M denotes the supremum norm restricted to a subset M ⊂ Rd+1. To this end, we let
x,y satisfy d(y,x) ≤ R and write

(∂t − a0∆)(Uxλ − Uyλ)(y)

=

ˆ

(

Ux(z)− Ux(y)− Uy(z)− γx(y) · (z − y)
)

(∂t − a0∆)ρλ(y− z)dz.

Using the three-point continuity condition (107), which is valid since R, λ < 1
2
distx we find

that

distη
x

∣

∣(∂s − a0∆)(Uxλ − Uyλ)(y)
∣

∣

. M
∑

κ∈A

ˆ

dη−κ(y,x)dκ(z,y)|(∂t − a0∆)ρλ(y − z)|dz . M
∑

κ∈A

Rη−κλκ−2.(110)
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To pass from (110) to (109) we use the triangle inequality and Young’s inequality together with
(106) and note that distx

disty
≤ 2 as a consequence of disty ≥ distx −R and R ≤ 1

2
distx.

Step 2. We claim that for all base points x ∈ D and scales λ ∈ (0, 1
10
distx), R,L ∈ (0, 1

2
distx)

with λ,R ≤ 1
2
L it holds
(

distx
R

)η

inf
ℓ
‖Uxλ − ℓ‖BR(x) .

(

R

L

)2−η

[U ]η +
L2M

Rη
λα−2(λ+ L)η−α,(111)

where the infimum runs over all affine functions ℓ, by which we mean functions of the form
ℓ(y) = c + ν · (y − x) for some c ∈ R and ν ∈ Rd. Towards this end, we define for a0 ∈ I and
c0 that are near optimal in the estimate (109) a decomposition Uxλ = u<(·) + u>(·) by setting
u> to be the (decaying) solution to

(∂s − a0∆)u> = I(BL(x)) ((∂s − a0∆)Uxλ − c0) ,

where I(BL(x)) is the characteristic function of BL(x). Observe that on BL(x) it holds

(∂s − a0∆)u< = c0.(112)

By standard estimates for the heat equation and (109) we have

‖u>‖BL(x) . L2‖(∂s − a0∆)Uxλ − c0‖BL(x) ≤ L2 dist−η
x

Mλα−2(λ+ L)η−α,(113)

together with

‖{∂s,∇
2}u<‖BR(x) . L−2‖u<‖BL(x),(114)

where we used that R ≤ 1
2
L. In fact, (114) is slightly non-standard due to the presence

of a constant c0 on the right-hand side of (112). However, this can be reduced to the case
c0 = 0 as observed in [31, Lemma 3.6]. Next we define a concrete affine function via ℓ<(y) :=
u<(x) +∇u<(x) · (y − x) and observe that Taylor’s formula, (114) and R ≤ L give

‖u< − ℓ<‖BR(x) . R2‖∂su<‖BR(x) +R2‖∇2u<‖BR(x)

(114)

.

(

R

L

)2

‖u<‖BL(x) ≤

(

R

L

)2

‖Uxλ‖BL(x) + ‖u>‖BL(x).

Combining this observation with (113) gives

‖Uxλ − ℓ<‖BR(x) ≤ ‖u>‖BR(x) + ‖u< − ℓ<‖BR(x)

.

(

R

L

)2

‖Uxλ‖BL(x) + ‖u>‖BL(x)

.

(

R

L

)2

‖Uxλ‖BL(x) + L2 dist−η
x

Mλα−2(λ+ L)η−α,

which implies (111), since

1

Lη
‖Uxλ‖BL(x) .

1

Lη
‖Ux‖BL+λ(x) .

1

(2L)η
‖Ux‖B2L(x) ≤ dist−η

x
[U ]η

by the definition of [U ]η, the constraints on λ, L and the fact that Ux(x) = 0 by assumption.

Step 3. We claim that for all base points x ∈ D and all scales λ,R ∈ (0, 1
2
distx) it holds

distη
x
‖Uxλ−Ux‖BR(x) . [U ]ηλ

η +M
∑

κ∈A

Rη−κλκ.(115)

For y ∈ BR(x) we write

(Uxλ − Ux)(y) =

ˆ

(Ux(z)− Ux(y))ρλ(y − z)dz.
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By the symmetry of the convolution kernel under the involution x 7→ −x, we have in particular
´

ν · (y − x)ρλ(y − z)dz = 0 for any ν ∈ Rd, so that we may rewrite the above identity as

(Uxλ − Ux)(y) =

ˆ

Uy(z)ρλ(y − z)dz

+

ˆ

(Ux(z)− Ux(y)− Uy(z)− γx(y) · (z − y))ρλ(y − z)dz.

By the choice of R, the triangle inequality and the definition of distx, we have that y ∈ BR(x)
implies 1

2
distx ≤ disty. Hence, by the choice of λ and since the support of ρ is contained in

B1(0), we have d(z,y) ≤ 1
2
distx ≤ disty, so that z ∈ Bdisty(y). Thus, the definition (103) of

[U ]η and (107) give

|(Uxλ − Ux)(y)| ≤ dist−η
y
[U ]η

ˆ

dη(z,y)|ρλ(y, z)|dz

+ dist−η
x

M
∑

κ∈A

dη−κ(x,y)

ˆ

dκ(z,y)|ρλ(y, z)|dz.

This implies by virtue of the scaling properties ρλ and once more 1
2
distx ≤ disty the desired

distη
x
|(Uxλ−Ux)(y)| . [U ]ηλ

η +M
∑

κ∈A

dη−κ(y,x)λκ.

Step 4. We claim the norm equivalence

[U ]η ∼ [[U ]]η,(116)

where we have set

[[U ]]η := sup
x∈B1(0)

distη
x

sup
R∈(0,distx)

R−η inf
ℓ
‖Ux − ℓ‖BR(x),(117)

and where ∼ means that both inequalities with . and & are true. Here, the infimum runs over
all affine functions ℓ. We first argue that these ℓ may be chosen to be independent of R, that
is, for all x ∈ D

inf
ℓ

sup
R∈(0,distx)

R−η‖Ux − ℓ‖BR(x) . dist−η
x
[[U ]]η =: C,(118)

where we denote the right-hand side momentarily by C for better readability. Indeed, let
ℓR(y) = cR + νR · (y − x) be (near) optimal in (117). Then by definition of [[U ]]η and the
triangle inequality,

R−η‖ℓ2R − ℓR‖BR(x) . C.

This implies R−(η−1)|ν2R−νR|+R−η|c2R−cR| . C. Since η > 1, telescoping gives R−(η−1)|νR−
νR′ |+R−η|cR − cR′ | . C for all R′ ≤ R and thus the existence of ν ∈ Rd and c ∈ R such that

R−(η−1)|νR − ν| +R−η|cR − c| . C,

so that ℓ(y) := c + ν · (y − x) satisfies

R−η‖ℓR − ℓ‖BR(x) . C.

Hence we may pass from (117) to (118) by the triangle inequality.

It is clear from (118) and the assumptions on U that necessarily for any x ∈ D the optimal ℓ
must be of the form ℓ(y) = 0. Thus

|Ux(y)| . [[U ]]η

(d(y,x)

distx

)η

(119)

for y ∈ Bdistx(x), which establishes the nontrivial direction of (116).
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Step 5. We now give the estimate of [U ]η in (108), that is, we will show

[U ]η . M + ‖U‖0.(120)

Combining Steps 2 and 3, we obtain by the triangle inequality for each base point x ∈ D and
all scales λ ∈ (0, 1

10
distx), R,L ∈ (0, 1

2
distx) with λ,R ≤ 1

2
L

(

distx
R

)η

inf
ℓ
‖Ux−ℓ‖BR(x) . [U ]η

(

(

R

L

)2−η

+

(

λ

R

)η
)

+
L2M

Rη
λα−2(λ+ L)η−α +M

∑

κ∈A

R−κλκ.

Now we link the scales L and λ to R by introducing a small ε ∈ (0, 1
5
) and choosing L = 1

ε
R

and λ = εR. Then for all R ∈ (0, ε
2
distx) we have

(

distx
R

)η

inf
ℓ
‖Ux − ℓ‖BR(x) . [U ]η(ε

2−η + εη) +M
(

εη−4 + ε2α−4−η +
∑

κ∈A

εκ
)

.

Since for R ∈ [ ε
2
distx, distx) we have by the definition (102) of ‖U‖0
(

distx
R

)η

inf
ℓ
‖Ux − ℓ‖BR(x) . ε−η‖Ux‖BR(x) ≤ ε−η‖U‖0,

Step 4 implies

[U ]η . ‖U‖0ε
−η + [U ]η(ε

2−η + εη) +M
∑

κ∈A

(

ε−η+2κ−4 + εκ
)

.(121)

Taking into account η ∈ (0, 2) and using the qualitative property that [U ]η < ∞, we may choose
ε small enough to ensure (120).

Step 6. Finally, we show the full estimate (108). For x ∈ D and y ∈ B 1
2
distx(x) choose

z := y + d(y,x)ei for each i ∈ {1, . . . , d}. Observe that (z − y)i = d(z,y) = d(y,x), so that in
particular z ∈ B 1

2
distx

(y). Using

d(z,x) ≤ d(y,x) + d(z,y) = 2d(y,x) < distx(122)

and 1
2
distx ≤ disty, we see z ∈ Bdistx(x) ∩ Bdisty(y). Hence, the definition (103) of [U ]η and

the triangle inequality yield

distη
x
|Ux(z)− Ux(y)− Uy(z)|

. [U ]η(d
η(z,x) + dη(y,x) + dη(z,y)) . [U ]ηd

η(y,x),

where in the last step we used (122) again. We now combine this with the three-point continuity
condition (107) and the triangle inequality, using again d(z,y) = d(y,x) to the effect of

distη
x
|γx(y) · (z − y)| . (M + [U ]η)d

η(y,x).

Noting |γx(y) · (z − y)| = |γi,x(y)|d(y,x), we have together with (120)

distη
x
|γi,x(y)| . (M + ‖U‖0)d

η−1(y,x).

Since i ∈ {1, . . . , d} was arbitrary, this yields

[γ]′η . M + ‖U‖0,

which together with (120) implies (108). �
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4.2. Application of Reconstruction. We now need to place a constraint on the height of
η. A lower bound is required for reconstruction and an upper bound is required to use the
Continuity Lemma. We will additionally need an upper bound in terms of n ∈ N. More
specifically, recalling that n ∈ N is defined such that nα < 2 < (n+ 1)α we select η subject to

2− α < η ≤ min{nα, 1 + ⌊α−1⌋α} < 2.(123)

Lemma 6. For all y ∈ D and λ ∈ (0, 1
5
disty) we have

distη+α
y

∣

∣Fyλ(y)
∣

∣ . M̃λη+α−2,(124)

where

M̃ := sup
α≤κ≤η

[u]
η+α
κ

κ + (|||fη+α|||+ 1 ∨ [Π]
η
α )[Π] + (‖ν‖′1)

η+α.

Proof. We divide the proof in three steps. In Step 1 we show an identity for the difference of
Fx and Fy. This identity is used in Step 2 to obtain an estimate which we recognize as the
input (104) of Proposition 1. In Step 3 we apply Proposition 1 and obtain (124).

Step 1. In this step, we show that for all x,y ∈ D there is u∗ ∈ R between u(x) and u(y) with

Fx − Fy =
(

fη+α(y).id− fη+α(x).Γyx

)

Π−
y

(125)

+
1

(n− 1)!

(

a(n−1)(u∗)− a(n−1)(u(x))
)(

u(y)− u(x)
)n−1

∆u(126)

+
n−1
∑

k=1

1

k!
a(k)(u(x))

(

(u(y)− u(x))k∆u− fη−(k−1)α(x).Πx(y)
k∆Πx

)

.(127)

By definition (97), keeping in mind that a(u)∆u+ ξ− h(u) is independent of the base point x,

(128) Fx − Fy =
(

a(u(y))− a(u(x))
)

∆u+ fη+α(y).Π
−
y
− fη+α(x).Π

−
x
.

Furthermore, we claim that

Π−
x
= ΓyxΠ

−
y
+
∑

k≥1

zk(τ
(0)
yx

)k
∆Πx.(129)

To see this, write the compatibility condition (8) in the form Π−
y
= ∂tΠy − z0∆Πy, then apply

Γyx on both sides and use the morphism property, the j = 0 item of (48), and the re-expansion

property (10). In light of (129) and τ
(0)
yx = Πx(y), we obtain

fη+α(y).Π
−
y
− fη+α(x).Π

−
x
= fη+α(y).Π

−
y
− fη+α(x).ΓyxΠ

−
y
−
∑

k≥1

fη+α(x).(zkΠx(y)
k∆Πx),

and thus inserting (129) into (128) reveals

Fx − Fy = fη+α(y).Π
−
y
− fη+α(x).ΓyxΠ

−
y

+
(

a(u(y))− a(u(x))
)

∆u−

n−1
∑

k=1

1

k!
a(k)(u(x))fη−(k−1)α(x).(Πx(y)

k∆Πx),

where we have also applied (60) in form of Remark 5 to κ := η+α, σ := zk ∈ T(k+1)α ∩T− and

τ := Πx(y)
k∆Πx, relying on fη+α.zk = 1

k!
a(k)(u(x)) for k ≤ n − 1 and fη+α.zk = 0 otherwise

since η + α ≤ (n + 1)α by assumption (123), cf. (16), (52) and (71). Hence applying Taylor’s
formula in u to order n− 1 to the term a(u(y))− a(u(x)) yields the claimed identity.

Step 2. In this step we show that for all x ∈ D, y ∈ B 1
2
distx(x) and 0 < µ ≤ 1

2
distx it holds

distη+α
x

∣

∣Fxµ(y)− Fyµ(y)
∣

∣ . M̃
∑

|β|<η+α

dη+α−|β|(y,x)µ|β|−2.(130)
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We mention in passing that

1

2
distx ≤ disty ≤

3

2
distx,

which we will use multiple times without further mentioning. Indeed, for the first inequality,
note that for all z ∈ ∂D using the triangle inequality and y ∈ B 1

2
distx(x) gives distx ≤ d(z,x) ≤

d(z,y) + 1
2
distx, which implies the claim by taking the infimum in z. The second inequality is

argued in a similar way.

We now apply the convolution kernel (·)µ to the identity from Step 1, evaluate at y, and
estimate each contribution. For (125) we first observe that (9) combined with (8) implies due
to supp ρ ⊂ B1(0) and µ ≤ 1

2
distx ≤ disty, that

dist〈β〉α
x

‖Π−
yµ(y)‖T|β|

. dist〈β〉α
y

ˆ

‖Πy(z)‖T|β|
(∂s −∆)ρµ(y − z) dz . [Π]µ|β|−2.(131)

Now we use the definition (72) together with (131) to obtain

distη+α
x

∣

∣(fη+α(x).Γyx − fη+α(y).id)Π
−
yµ(y)

∣

∣

.
∑

|β|<η+α

|||fη+α|||d
η+α−|β|(y,x) dist〈β〉α

x
‖Π−

yµ(y)‖T|β|

.
∑

|β|<η+α

|||fη+α|||[Π]d
η+α−|β|(y,x)µ|β|−2,

which is contained in the right-hand side of (130).

Next we estimate (126). First note that (131) implies

distα
x
|∆uµ(y)| . [u]αµ

α−2.(132)

Since u∗ is between u(x) and u(y), our assumption ‖a‖Cn . 1 with δ := η

α
− (n − 1) ∈ (0, 1],

cf. (123) implies

distη+α
x

|
(

a(n−1)(u∗)− a(n−1)(u(x))
)(

u(y)− u(x)
)n−1

∆uµ|

. distη+α
x

|u(y)− u(x)|n−1+δ|∆uµ(y)| . [u]
η+α
α

α dη(y,x)µα−2,

which is contained in the right-hand side of (130).

Finally, we estimate (127). For this, it is enough to show that for k ∈ {1, . . . , n− 1}

distη+α
x

∣

∣

(

u(y)− u(x)
)k
∆uµ(y)− fη−(k−1)α(x).(Πx(y)

k∆Πxµ(y))
∣

∣

. M̃
∑

|β|<η+α

dη+α−|β|(y,x)µ|β|−2.(133)

We apply Lemma 4 with g := f(x), κ := η − (k − 1)α ∈ (0, 2), J = k + 1, u1 = ∆uµ(y),
τ1 := ∆Πxµ(y) and um = u(y)− u(x) as well as τm := Πx(y) for m ∈ {2, . . . , k + 1}. Then for
|β| < η − (k − 1)α, we have

∆uµ(y)
(

u(y)− u(x)
)k

− fη−(k−1)α(x).(∆Πxµ(y)Πx(y)
k)

=
(

∆uµ(y)− fη−(k−1)α(x).∆Πxµ(y)
)

(u(y)− u(x))k−1(134)

+
∑

|β|<η−(k−1)α

k+1
∑

j=2

(

u(y)− u(x)− fη−(k−2)α−|β|.Πx(y)
)(

u(y)− u(x)
)k−j+1

(135)

× f(x).Pβ(∆Πxµ(y)Πx(y)
j−2).
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To estimate (134), we notice that for any κ = η − (k − 1)α it holds

distκ
x

∣

∣∆uµ(y)− fκ(x).∆Πxµ(y)
∣

∣

(10)

. distκ
x

ˆ

|(u(z)− u(x)− fκ(x).τ
(0)
zx

)∆ρµ(y − z)| dz

. [u]κ

ˆ

dη(x, z)|∆ρµ(y − z)| dz . [u]κ(d
κ(y,x) + µκ)µ−2,

where we used that z ∈ Bdistx(x) since supp ρ ⊂ B1(0) and d(z,x) ≤ µ + d(y,x) ≤ distx.

Hence, the contribution of (134) to M̃ is

[u]η−(k−1)α[u]
k
α . [u]

η+α
η−(k−1)α

η−(k−1)α + [u]
η+α
α

α .

The estimate for (135) follows directly from the definition (73) together with the bound

dist|β|+(j−2)α
x

∣

∣f(x).Pβ(∆Πxµ(y)Πx(y)
j−2)

∣

∣

. d(y,x)|β|+(j−2)α

{

(‖ν‖′1)
βx[Π]j−1 |β| 6= 1

(‖ν‖′1)
βx[Π]j−21j≥3 |β| = 1

.

The argument is entirely analagous to the proof of (82) for |a| = 0, but also taking into account
that ∆Πx ∈ T− and hence Pβ∆Πx = 0 if |β| = 1 (which explains the 1j≥3). Hence, the

contribution to M̃ from a summand in (135) with 〈β〉 ≥ 1 is

(136) [u]η−(k−2)α−|β|[u]
k+1−j
α (‖ν‖′1)

|βx|[Π]j−1 . [u]
η+α

η−(k−2)α−|β|

η−(k−2)α−|β|+[u]
η+α
α

α +(‖ν‖′1)
η+α+[Π]

(j−1)(η+α)
(j+〈β〉−2)α .

Note that the exponent of [Π] satisfies the following inequality: η+α

η
≤ (j−1)(η+α)

(j+〈β〉−2)α
≤ η+α

α
. Indeed,

the upper bound follows from 〈β〉 ≥ 1, and the lower uses the constraint |β| < η − (k − 1)α

followed by 2 ≤ j ≤ k + 1 to bound from below by (j−1)(η+α)
η+(j−k−1)α

≥ (j − 1)η+α

η
≥ η+α

η
. The case

|β| = 1, for which 〈β〉 = 0, is treated in an identical way, simply taking into account the change
in the exponent of [Π].

Step 3. In this step we will obtain (124) as a consequence of Proposition 1 and the estimate
(130). We first argue that Fx(x) = 0 for all x ∈ B1(0). To show this, note that

fη+α(x).q =

n−1
∑

|β′|s=0

da(u(x))β
′

qβ(a(u(x))) = h(u(x)).(137)

Indeed, since qβ = 0 unless βx = 0, (71) gives

fη+α(x).q =
∑

|β|<η+α
βx=0

da(u(x))β
′

qβ(a(u(x))),

and for β with βx = 0, (38), (123) and nα < 2 < η + α imply

0 ≤ |β ′|s ≤ n− 1 ⇔ α ≤ |β| < η + α.

Together with Π−
x
(x) = ξ(x)1− q, cf. (12), (137) yields

Fx(x) = 0.

Our last step is to use (130) to obtain (104), so that (105) turns into our desired output
∣

∣Fzλ(z)
∣

∣ . dist−(η+α)
z

M̃λη+α−2,

for z ∈ B1(0) and λ ∈ (0, 1
5
distz). Note that we simply relabelled y as z in comparison to

(124). To do so, we use Proposition 1 and now fix z ∈ D and λ ∈ (0, 1
5
distz). We need to argue
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that for any µ ∈ (0, λ) and x,y ∈ Bλ−µ(z) it holds
∣

∣Fxµ(y)− Fyµ(y)
∣

∣ . M̃(distz)
−(η+α)

∑

κ∈A

dη+α−κ(y,x)µκ−2.

To apply (130), we need to show that x,y ∈ Bλ−µ(z) and λ < 1
5
distz imply y ∈ B 1

2
distx

(x).

Indeed, first note that d(y,x) ≤ d(x, z) + d(y, z) ≤ 2(λ − µ) ≤ 2
5
distz. Furthermore, since

distz ≤ distx+d(z,x) ≤ distx+λ ≤ distx+
1
5
distz, we have 4

5
distz ≤ distx so that combining

the two yields d(y,x) ≤ 1
2
distx. Hence, (130) is applicable, and since our argument also

showed that distz . distx, we may change the factor of distη+α
x

to distη+α
z

, which completes the
proof. �

4.3. Negative Interpolation. We now use interpolation, the argument and notation being
similar to the proof of Lemma 5.

Lemma 7. Let u : Rd → R be a smooth function and define ν : Rd → R via (20). Assume
0 < δ < 1

2
and let M̃ ∈ R be defined as in Lemma 6. For each x ∈ D and λ ∈ (0, 1

5
distx),

distη
x
λ2−η inf

a0∈I,c0
|(∂t − a0∆)Uxλ(x)− c0|

. (‖u‖+ δα[Π])
α

η+α (M̃ + [u]η)
η

η+α +
(

‖u‖+ δα[Π]
)

(δ−1 ∨ [Π]
1
α )η.(138)

Proof. Let x ∈ D and λ ∈ (0, 1
5
distx), and set R := λ

distx
.

Small scale bounds : We will first argue that

(139) distη
x
λ2−η inf

a0∈I,c0
|(∂t − a0∆)Uxλ(x)− c0| . M̃Rα + [Π]

∑

η≤|β|<η+α

(‖ν‖′1)
|βx|R|β|−η.

To prove it, note that

(∂t − a(u(x))∆)Ux = Fx − (fη+α(x)− fη(x)).Π
−
x
+ ℓ0,

where the ℓ0 := fη(x).Px is active only if Px from (the footnote of) Assumption 1 is non-zero.
We now apply (·)λ on both sides and evaluate at y = x. By (124) and the constraint on λ we
have

distη
x
λ2−η|Fxλ(x)| . dist−α

x
M̃λα = M̃Rα.

Furthermore, using (131) we have

distη
x
λ2−η

∣

∣(fη+α − fη)(x).Π
−
xλ(x)| . [Π]

∑

η≤|β|<η+α

(‖ν‖′1)
|βx|R|β|−η

Since a(u(x)) ∈ I and ℓ0(x) ∈ R, this completes the proof of (139).

Large scale bounds: We now turn to the large-scale estimate and in this case we write

(∂t − a(u(x))∆)Uxλ = (∂t − a(u(x))∆)uλ − fη(x).(∂t − a0∆)Πxλ,

which implies via the triangle inequality

distη
x
λ2−η inf

a0∈I,c0∈R
|(∂t − a0∆)Uxλ(x)− c0| . ‖u‖R−η + [Π]

∑

|β|<η

(‖ν‖′1)
|βx|R|β|−η(140)

Hence, combining (139) and (140) we obtain

distη
x
λ2−η inf

a0∈I,c0∈R
|(∂t − a0∆)Uxλ(x)− c0|(141)

. M̃Rα + ‖u‖R−η + [Π]
∑

|β|<η+α

(‖ν‖′1)
βxR|β|−η.(142)
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If R ≤ 1 satisfies (89), we may use (68) to obtain

distη
x
λ2−η inf

a0∈I,c0∈R
|(∂t − a0∆)Uxλ(x)− c0|

. (M̃ + [u]η)R
α + (‖u‖+ δα[Π])R−η.(143)

To complete the proof, we argue similarly as in Lemma 5. Namely, balancing the terms leads
us to define R via Rη+α = (‖u‖+ δα[Π])(M̃ + [u]η)

−1. If (89) is satisfied with this choice of R,
then we obtain

distη
x
λ2−η inf

a0∈I,c0
|(∂t − a0∆)Uxλ(x)− c0| . (‖u‖+ δα[Π])

α
η+α (M̃ + [u]η)

η
η+α ,

which implies (138). If (89) fails, then we find

M̃ + [u]η .
(

‖u‖+ δα[Π]
)

(δ−1 ∨ [Π]
1
α )η+α,

so that choosing R ≈ δ ∧ [Π]−
1
α , (143) leads to

distx λ
2−η inf

a0∈I,c0∈R
|(∂t − a0∆)Uxλ(x)− c0| .

(

‖u‖+ δα[Π]
)

(δ−1 ∨ [Π]
1
α )η,

which again implies (138).
�

4.4. Application of Integration. We will now use Proposition 2 in order to transform the
output (124) of Lemma 6 into a bound on the solution u to the renormalized equation (14).

Lemma 8. Let u be a smooth solution to (14) and define ν as in (20). For η satisfying (123)
and δ ∈ (0, 1

2
) it holds

[u]η + [ν]′η . (‖u‖+ δα[Π])
α

η+αM̃
η

η+α +
(

‖ν‖′1 + |||fη|||)[Π]

+
(

‖u‖+ δα[Π]
)

(δ−1 ∨ |[Π]
1
α )η(144)

Proof. Recall that the jet in Proposition 2 is required to be centered to first order in the sense
that Ux(x) = ∇y|y=xUx(y) = 0. For the specific choice (97), we find that Ux(x) = 0 since
Πxβ(x) = 0 for |β| < 2, cf. (9). Let us now explain how the choice of ν in (19) ensures
∇y|y=xUx(y) = 0. Indeed, note that

∇Ux(y) = ∇u(y)− fη(x).∇Πx(y) = ∇u(y)− fη(x).∇(id− P)Πx(y)− ν(x),(145)

where we recall that id−P is the projection of T onto T−, cf. Section 2.1 and we used∇PΠx = zx,
cf. (5) together with fη(x).zx = ν(x), cf. (71). Furthermore, since ∇Πxβ(x) = 0 for |β| > 1, cf.
(9), we may use the definition of fη, cf. (71), to write

ν(x) = ∇u(x)− f1(x).∇Πx(x) = ∇u(x)− fη(x).∇(id− P)Πx(x),

and obtain that ∇y|y=xUx(y) vanishes.

Step 1. In this step, we establish the three-point continuity condition: for all x ∈ B1(0),
y ∈ B 1

2
distx(x) and z ∈ B 1

2
distx(y) it holds

distη
x

∣

∣Ux(z)− Ux(y)− Uy(z)− γx(y) · (z − y)
∣

∣ .
∑

α≤|β|≤η−α

|||fη|||[Π]d
η−|β|(y,x)d|β|(z,y),(146)

where γx(y) is defined by

(147) γx(y) := (fη(x).Γyx − fη(y).id)zx.
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To establish (146), use (10) to write Πx(z)− Πx(y) = ΓyxΠy(z), so that

Ux(z)− Ux(y)− Uy(z)− γx(y) · (z − y)

= fη(x).(Πx(z)− Πx(y))− fη(y).Πy(z)− γx(y) · (z − y)

= fη(x).ΓyxΠy(z)− fη(y).Πy(z)− γx(y) · (z − y)

= (fη(x).Γyx − fη(y).id)(id− P)Πy(z),

where we have used PΠy(z) := zx · (z − y), cf. (5). Since distx ≤ 2 disty, we find by (72)

distη
x

∣

∣Ux(z)− Ux(y)− Uy(z)− γx(y) · (z − y)
∣

∣

.

η−α
∑

|β|=α

|||fη|||d
η−|β|(y,x) dist〈β〉α

y
‖(id− P)τ (0)

zy
‖T|β|

(9)

.

η−α
∑

|β|=α

|||fη|||[Π]d
η−|β|(y,x)d|β|(z,y),

which yields (146).

Step 2. We may apply Proposition 2 to the jet y 7→ Ux(y), as we have verified (106) in
Lemma 7 and (107) in Step 2, where the set A ∩ (0, η] plays the role of A. Moreover, Ux(x) =
∇y|y=xUx(y) = 0 as observed at the beginning of the proof.

Observe that for x ∈ B1(0) and y ∈ Bdistx(x) we have

u(y)− u(x)− fη(x).τ
(0)
yx

(10)
= u(y)− u(x)− fη(x).Πx(y) = Ux(y)

and thus by (9) and d(x,y) ≤ distx ≤ 1 and the definition of ‖U‖0 in (102)

‖U‖0 . ‖u‖+ [Π] + ‖ν‖′1[Π].

Moreover, the definition of γx(y) in Step 2, (49) and fη.zx = ν, cf. (71), imply

ν(y)− ν(x)− fη(x).τ
(1)
yx

= −γx(y).

Therefore, as a result of the steps above, and taking into account that δ−1 ∨ [Π]
1
α ≥ 1, and also

using Young’s inequality, the output (108) implies (144). �

4.5. Proof of the Main Theorem.

Proof. The main step is to prove that for η satisfying (123), there exists a universal ǫ > 0 such
that if ‖u‖ ≤ ǫ, then

(148) [u]η . (‖u‖+ [Π])(1 ∨ [Π]
η
α ).

We will choose ǫ later in the proof, but we mention already that we will apply Lemma 5, Lemma
8 and the Continuity Lemma with δ := 1

2
∧ (ǫ[Π]−1)

1
α , so we may assume throughout that

(149) ‖u‖+ δα[Π] ≤ 2ǫ ≤ 1.

We will make use of the following interpolation inequalities:

[u]κ . [u]
κ
η
η , ‖ν‖′1 . [u]

1
η
η , [ν]′κ . ([u]η ∨ [ν]′η)

κ
η + δ−κ(150)

which follow from (83)-(84) and (149). Indeed, for the first two inequalities, notice that we
have dropped the second term on the RHS of each of (83)-(84), which is possible since if the
second term dominates the first term on the RHS (83)-(84), then

[u]η . (‖u‖+ δα[Π])(δ−1 ∨ [Π]
1
α )η . (‖u‖+ [Π])(1 ∨ [Π]

η
α ),

which is precisely (148). The third inequality in (150) was already justified in the proof of (95).
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Our plan is to deduce (148) from (144), so we need to control M̃ . We claim that

(151) M̃ . [u]
η+α
η

η + ([ν]′η)
η+α
η + [Π]δ−η.

In light of (150), it holds

sup
α≤κ≤η

[u]
η+α
κ

κ + (‖ν‖′1)
η+α + [Π](1 ∨ [Π]

η
α ) . [u]

η+α
η

η + [Π]δ−η.

Furthermore, by the Continuity Lemma and Young’s inequality it holds

|||fη+α|||[Π] . ([u]η + [ν]′η + δ−η)[Π] . [u]
η+α
η

η + ([ν]′η)
η+α
η + [Π]

η+α
α + [Π]δ−η,

which completes the proof of (151).

We now consider the remaining contributions to (144). Using again the Continuity Lemma,
Young’s inequality, and (150) we find that

(|||fη|||+ ‖ν‖′1)[Π] . ([u]η−α + [ν]′η−α + δ−(η−α) + [u]
1
η
η )[Π]

.
(

[u]η + [ν]′η−α

)
η−α
η [Π] + ǫη[u]η + ǫ−

η−1
η [Π]

η
η−1 + δ−η[Π]

. ǫ
η

η−α ([u]η + [ν]′η) + δ−η[Π].

We now insert the above estimates into (144), taking into account (149) and Young’s inequality
to obtain

[u]η + [ν]′η . (ǫ
α

η+α + ǫ
η

η−α )([u]η + [ν]′η) + [Π]δ−η + (‖u‖+ δα[Π]
)

δ−η

. (ǫ
α

η+α + ǫ
η

η−α )([u]η + [ν]′η) + (‖u‖+ [Π])(1 ∨ [Π]
η
α ).

Choosing ǫ sufficiently small (and universal), we obtain (148).

We now combine (148) with interpolation to conclude the main estimate (15). Namely, using
(83) with δ = 1

2
, we obtain

[u]κ . [u]
κ
η
η

(

‖u‖+ [Π]
)1−α

η +
(

‖u‖+ [Π]
)

(1 ∨ [Π]
κ
α )

.
(

‖u‖+ [Π]
)

(1 ∨ [Π]
κ
α ).

If x,y ∈ B1−r(0) with r ∈ (0, 1), then distx ≥ r. Hence, if y ∈ Bdistx(x), the above estimate
with κ = α implies (15), and if y /∈ Bdistx(x), then d(y,x) ≥ distx ≥ r and hence

rα|u(y)− u(x)| . rα‖u‖ . ‖u‖dα(y,x),

which is also contained in the right-hand side of (15). We conclude by arguing the more general
claim (19) by essentially the same argument. No changes are required if κ ≤ 1 and if κ ∈ (1, 2)
we use that by (84) (with κ playing the role of η) and Young’s inequality

‖ν‖′1 . [u]κ + (‖u‖+ [Π])(1 ∨ [Π]
1
α ),

which implies that

rκ|ν(x)| ≤ r|ν(x)| .
(

‖u‖+ [Π]
)

(1 ∨ [Π]
κ
α ).

�
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[7] Ismaël Bailleul and Antoine Mouzard. Paracontrolled Calculus for Quasilinear Singular PDEs. Stoch. Par-
tial Differ. Equ. Anal. Comput., 2022. 2

[8] Yvain Bruned, Ajay Chandra, Ilya Chevyrev, and Martin Hairer. Renormalising SPDEs in Regularity
Structures. J. Eur. Math. Soc. (JEMS), 23(3):869–947, 2021. 3, 10
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