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We present a new mechanism that harnesses extremely weak Kerr-type nonlinearities in a single
driven cavity to deterministically generate single photon Fock states, and more general photon-
blockaded states. Our method is effective even for nonlinearities that are orders-of-magnitude smaller
than photonic loss. It is also completely distinct from so-called unconventional photon blockade
mechanisms, as the generated states are non-Gaussian, exhibit a sharp cut-off in their photon
number distribution, and can be arbitrarily close to a single-photon Fock state. Our ideas require
only standard linear and parametric drives, and are hence compatible with a variety of different
photonic platforms.

I. INTRODUCTION

Single-photon Fock states are a fundamental resource
needed in a myriad of quantum information protocols
and technologies. There is as a result enormous inter-
est in resource-friendly methods for their production [1].
A generic, well-studied mechanism is photon blockade
[2]: apply a monochromatic drive to a nonlinear pho-
tonic cavity, such that the drive is only resonant for
the vacuum to one photon transition, but not for higher
transitions. While conceptually simple, this conventional
photon blockade (CPB) mechanism requires the single-
photon nonlinearity to be much larger than the loss rate.
This regime can be achieved in highly nonlinear cavi-
ties incorporating single atoms [3], quantum dots [4] or
superconducting qubits [5, 6]. Unfortunately, this stan-
dard type of photon blockade is completely out of reach in
more conventional systems that exhibit only weak nonlin-
earities (e.g. optical micro or nanoresonators fabricated
using materials with intrinsic χ(3) nonlinearities).

The ability to realize effects akin to photon blockade in
weakly nonlinear systems would be an incredibly power-
ful resource. There has thus been a flurry of theoretical
activity to uncover possible such mechanisms. Among
the best known proposals is that of “unconventional pho-
ton blockade” (UPB), where states with arbitrarily small
g(2)(0) correlation functions can be generated using ex-
tremely weak nonlinearities. UPB was originally pro-
posed in Ref. 7 and subsequently analyzed in many dif-
ferent works [8–17]. It has also been realized experimen-
tally in a circuit QED platform [18], and in a quantum
dot plus cavity setup [19]. Unfortunately, UPB is only
capable of generating Gaussian states that have positive-
definite Wigner functions, and that do not exhibit a true
cut-off in their photon number distribution [11]; more-
over, they only exhibit suppressed intensity fluctuations
in the limit where the average photon number is van-
ishingly small. These features severely limit their utility
for many possible applications. We note that an alterna-
tive approach to stabilizing intra-cavity Fock states is to
use dissipation-engineering ideas (see e.g. [20–23]). These
methods are however also resource demanding, and re-
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Figure 1. Fock states with ultra-weak nonlinearities.
(a) Basic system: a nonlinear cavity is subject to both one-
and two-photon drives Λ1,Λ2. (b) Time dependence of drive
amplitudes for the protocol (see “Generating single photon
states in the lab frame” section). The key idea is to real-
ize an effective nonlinear one photon drive in a displaced
frame. (c) Numerical simulations of performance including
imperfections. Parameters are chosen such that the effective
nonlinear drive amplitude Λ̃3 = 2κ, and the final state has
⟨1|ρ̂|1⟩ = 0.5. Left: g(2)(0) of the prepared state including
errors in the initial/final displacement operations; these are
modelled as added thermal noise (n̄th quanta). Note with
added thermal noise, g(2)(0) must be greater than n̄th. Right:
final g(2)(0) with imperfect drive-amplitude matching δλ1 ̸= 0
(cf. Eq. (7)). Dashed red lines show intracavity photon num-
ber |αb|2 ∼ (κ/U)2 during the intermediate part of the pro-
tocol.

quire strong, structured nonlinearities.
In this work, we propose and analyze a new photon

blockade mechanism that (unlike UPB) deterministically
generates truly non-Gaussian blockaded states (i.e. zero
probability for more than one photon) using arbitrarily
weak single-photon nonlinearities (see Fig. 1). In further
contrast to UPB, this can be achieved while also hav-
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ing the single-Fock state probability to be order 1. Our
mechanism is based on using nonlinearity to modify ma-
trix elements of an effective cavity driving process, as
opposed to introducing nonlinearity in a spectrum (as is
done in CPB), see Fig. 2. In its simplest form, it reduces
to realizing an effective single-mode Hamiltonian of the
form:

Ĥblock = Λ̃3â
†(â†â− r) + h.c. (1)

where the parameter r is tuned to 1. Here â is the cavity
annihilation operator, Λ̃3 is the amplitude of an effective
nonlinear driving process. By construction, this Hamil-
tonian connects the vacuum and one photon states, but
does not allow driving from |1⟩ to the |2⟩ photon state.
Crucially, as this blockade is a matrix element effect, it
is effective even if cavity loss is much larger than the
nonlinearity Λ̃3.

While the basic mechanism in Eq. (1) is extremely sim-
ple, it describes an unusual nonlinear driving element.
At first glance, it is not at all obvious how to realize
this Hamiltonian using standard χ(2) or χ(3) type optical
nonlinearities. Despite its exotic form, we show that it
can be achieved using standard ingredients: a standard
Kerr-type nonlinearity (strength U), along with standard
single-photon and two photon (i.e. parametric) drives.
Crucially, the mechanism is effective even if the Kerr
nonlinearity strength U is much much weaker than the
cavity loss rate κ. We also discuss how our scheme can
be realized using three-wave mixing type (i.e. χ(2)) non-
linearities.

In what follows, we analyze in detail the physics of
our basic mechanism and how it could be harnessed
for a time-dependent protocol that generates propagat-
ing Fock states in a variety of realistic weakly-nonlinear
optical setups. We also discuss extensions of our ba-
sic idea, where the same underlying mechanism can be
used to generate more complex blockaded states and even
multi-mode non-Gaussian entangled states (see App. B).
Note that the infinite-time, steady-state properties of a
damped cavity subject to the driving in Eq. (1) (in a dis-
placed frame) were studied in Ref. 24. While this steady
state could be tuned to realize a partial blockade effect,
the effect was extremely limited. The steady state never
exhibited Wigner-function negativity, and moreover was
exponentially fragile to imperfections (i.e. a small devia-
tion of the parameter r from an integer value completely
destroyed the partial blockade). The utility of this effect
was thus marginal. In contrast, our work here explores
the finite time dynamics of systems with this kind of non-
linear driving. We show that, surprisingly, our model
exhibits metastability and two distinct slow relaxation
timescales. The intermediate-time physics can thus be
extremely different from the ultimate steady state. In
particular, this regime enables the near-perfect genera-
tion of Fock states (including states with highly negative
Wigner functions), in a way that is robust against imper-
fections. We also stress that Ref. 24 did not discuss or

Figure 2. Basic photon blockade mechanisms. Left:
conventional photon blockade mechanisms (CPB) rely on the
nonlinearity U shifting the spectrum of the system; blockade
thus requires U ≫ κ. Right: Our new approach is based on
engineering a nonlinear drive that has no matrix element g12
connecting Fock states |1⟩ and |2⟩. This blockade mechanism
is effective even if nonlinearity is arbitrarily weak.

analyze a concrete implementation of Eq. (1) in a generic
driven Kerr cavity system, nor did it analyze an explicit
time-dependent Fock-state generation protocol; it also
did not identify let alone describe quantitatively the sur-
prising long-lived metastability of this system. These are
all crucial and new features of our work.

II. RESULTS

Basic mechanism and realization in a driven,
weakly-nonlinear cavity. Despite wanting to realize
a somewhat exotic nonlinear drive (cf. Eq. (1)), we will
consider a physical system that is both conventional and
ubiquitous. It consists of a single mode of a bosonic res-
onator (frequency ωc, lowering operator â) having a weak
self-Kerr nonlinearity U , which is subject to both one-
and two-photon drives with amplitudes Λ1 and Λ2 re-
spectively and commensurate drive frequencies 2ω1 = ω2.
Starting from the lab-frame Hamiltonian, moving to the
rotating frame set by ω1, and making a standard rotating
wave approximation (RWA), we find (see “Methods”)

ĤRWA = Uâ†â†ââ+∆â†â+ (Λ1â
† +Λ2â

†â† +h.c.). (2)

Here ∆ = ωc−ω1 is the detuning of the drives from cavity
resonance. We stress that the two-photon drive Λ2 can be
realized in many different ways. For example, one could
use a weak nonlinear coupling to a strongly-pumped aux-
iliary mode, or just simply apply two additional (linear)
drive tones to the main cavity mode (see, e.g. [25]). Our
results below do not depend on the specific method of
implementation.

From a quantum optics perspective, our driven cav-
ity mode seems innocuous: it has an extremely weak
Kerr nonlinearity, and simple quadratic driving terms
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(which on their own would only generate simple Gaus-
sian states). To obtain something more interesting, our
general approach is to use linear driving (i.e. a displace-
ment in phase space) to effectively enhance the effects of
U . Such linear displacements are often used to enhance
the properties of weakly nonlinear systems by yielding
tuneable linear dynamics (e.g. parametric amplifiers re-
alized by driving weakly nonlinear cavities, or tuneable
sideband interactions in quantum optomechanics [26]).
Such linear dynamics does not allow for the generation
of non-classical, non-Gaussian states. Here, we how a
displacement can be used to generate an effective non-
linear cavity drive with a strength ≫ U . We note that
linear driving has also been used in circuit QED exper-
iments to generate a tuneable longitudinal coupling be-
tween a qubit and a cavity [27–29]. The interaction in
those works is a single-photon cavity drive whose phase
is controlled by an auxiliary qubit. This is distinct from
the kind of interaction we realize, namely a single-photon
cavity drive whose magnitude is controlled by the photon
number of the cavity itself, as opposed to that of a highly
nonlinear auxiliary system.

We show that by moving to a displaced frame of the
cavity, â→ â+α where α is an arbitrary displacement pa-
rameter, we can generate a displacement-enhanced non-
linearity that is precisely the term we seek to engineer
(see “Methods”). Upon moving to a displaced frame of
the cavity, we find that the Kerr nonlinearity generates,
among corrections to the other terms in ĤRWA, the de-
sired nonlinear drive Λ̃3â

†â†â+h.c. with drive amplitude:
Λ̃3 = 2Uα (see “Methods”, Eq. (15d)).

Our goal is to realize (in our displaced frame) the ideal
blockade Hamiltonian

Ĥtarget =
(
Λ̃3â

†(â†â− r) + h.c.
)
+ Uâ†â†ââ. (3)

To achieve this, we first decide on a desired strength for
the nonlinear drive amplitude Λ̃3 in Ĥtarget, and pick the
displacement parameter α to achieve this. This requires:

α→ αb ≡
Λ̃3

2U
. (4)

We will typically want Λ̃3 ≳ κ, implying that a large
displacement will be needed if the nonlinearity U is weak.

The last step is to pick our original drive parame-
ters Λ1,Λ2,∆ to make the remaining terms in the full
displaced Hamiltonian Ĥα (see Eq. (14) in “Methods”)
match Ĥtarget. This leads to the choices:

Λ1 → Λ1,b ≡ Λ̃3

[
−r + |Λ̃3|2

2U2
+

iκ

4U

]
, (5a)

Λ2 → Λ2,b ≡ −Λ̃2
3/4U, (5b)

∆ → ∆b ≡ −|Λ̃3|2/U. (5c)

With this choice of drive parameters and displacement
parameter α, our displaced-frame Hamiltonian Ĥα has

exactly the desired form of the target blockade-producing
Hamiltonian in Eq. (3). If we pick r in Eq. (5a) to be
an integer, it follows that we can achieve blockaded dy-
namics in the displaced frame. To be concrete, imagine
we tune parameters to achieve r = 1. If we then start
the system in the vacuum of the displaced frame (i.e. a
coherent state in the lab frame), then the full system dy-
namics will be confined to the Fock states n = 0, n = 1 in
the displaced frame, regardless of how small the original
value of U was.

We have thus demonstrated how the basic physics of
Eq. (1) can be realized using an arbitrarily-weak Kerr
nonlinearity and standard one and two photon driving
processes. Note that the magnitude of the nonlinear driv-
ing in the displaced frame is the product of the original
Kerr nonlinearity U (which could be extremely small)
and the displacement α (which at this stage, we can as-
sume to be very large). There is of course an important
caveat about our scheme at this stage: as described, it
only yields blockaded states and Fock states in the dis-
placed frame. As we show in the “Generating single pho-
ton states in the lab frame” section below, this is not a
true limitation, as we can easily harness this physics to
generate true lab-frame Fock states (see also Fig. 1).
Blockade dynamics in the presence of loss. Before
addressing how one converts displaced-frame blockaded
states into truly blockaded states, we first investigate the
dynamics of our system in the displaced frame. We thus
study displaced-frame master equation

d

dt
ρ̂ = −i[Ĥtarget, ρ̂] + κD[â]ρ̂ (6)

where Ĥtarget is given by Eq. (3). We will consider the
dynamics when the parameter r is close to, but not iden-
tical, to its ideal value for an n = 1 Fock state blockade,
i.e. r = 1+ δr. In practice, δr corresponds to a failure to
exactly match the one and two photon drive amplitudes
in the ideal required manner, as dictated by Eqs. (5a) and
(5b). Our focus here will be primarily on understanding
the temporal dynamics on time scales t ≲ 1/κ, and using
this to identify optimal parameters for generating Fock
states.
Dynamics for ideal drive amplitude matching. For
perfect parameter tuning δr = 0, we have ideal blockade
dynamics where the drive cannot connect the n = 1 and
n = 2 Fock states. Within the blockade manifold spanned
by {|0⟩, |1⟩}, the cavity behaves like a two-level-system
which is resonantly driven with Rabi frequency ∝ Λ̃3,
i.e. Ĥtarget → Λ̃3|1⟩⟨0| + h.c.. As there is no probabil-
ity of having 2 or more photons, for this perfect tuning
of r, the equal-time g(2) correlation function (defined as
g(2)(0) ≡ ⟨â†â†ââ⟩/⟨â†â⟩2) is always exactly 0. To gen-
erate a single-photon state, we simply need to perform
an effective π-pulse. This amounts to turning on the one
and two photon drives (with the ideal amplitudes given
by Eqs.(5a) and (5b)) for a time tπ = π/(2|Λ̃3|). This
allows the perfect generation of a Fock state in the limit
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Figure 3. Impact of mismatched drive amplitudes on
blockade dynamics. (a) Average intracavity photon num-
ber versus time (log axes) for values of the dimensionless rel-
ative amplitude mismatch δλ1 (cf. Eq. (7)). One clearly sees
two distinct timescales: the desired low-amplitude blockaded
state is reached on a time scale ∼ 1/κ, whereas if δλ1 ̸= 0,
there is a much slower heating to a high amplitude state,
Γesc (cf. Eq. (10)). Note that all of the δλ1 shown are much
larger than the “anti-resonance” width ∆r for these parame-
ters (cf. Fig. 6), i.e., the steady state blockade is destroyed for
all δλ1 shown. (b) Zoom in on short-time behaviour of (a), lin-
ear axes. The dashed curve is the ideal δλ1 = 0 steady-state
average photon number. (c) The instantaneous intracavity
correlation function g(2)(0; t), for various imperfection levels
δλ1. Dashed lines correspond to the short-time analytic re-
sult in Eq. (8). For all plots we use parameters U = 0.4κ and
Λ̃3 = 2κ.

where tπ ≪ 1/κ, requiring |Λ̃3|/κ ≫ 1. We stress that
this condition can be met even if U ≪ κ.
Impact of imperfect drive-amplitude matching.
We now consider what is likely the dominant error mech-
anism for our scheme: the inability to perfectly match
the drive amplitudes Λ1 and Λ2 as required to achieve
r = 1. For small mismatch δr, there is only a weak ma-
trix element connecting |1⟩ to |2⟩. As we will show, this
means that we still have approximate blockade physics
over a long timescale, enabling the production of non-
classical blockaded states. The perfect single photon
blockade we desire requires matching the linear and cu-
bic driving terms in the displaced-frame Hamiltonian Ĥα

(cf. Eq. (14)), i.e. Λ̃1 = −Λ̃3 (i.e. r = 1). Deviations from
this amplitude-matching condition will then degrade our
scheme. We thus define δλ1, the dimensionless relative
amplitude error in the single-photon drive amplitude, via

Λ̃1 = −Λ̃3(1 + δλ1). (7)

While in general both the magnitude and phase of δλ1 are
important, for the small deviations we focus on here, only
the magnitude matters. We take δλ1 real and positive for
all of the numerical simulations.

To get some analytic insight into the impact of this
imperfection, consider the most interesting regime of
small imperfection |δλ1| ≪ 1 and large effective driving,
|Λ̃3| > κ. For short times, dissipation can be neglected,
and further, the dynamics will be restricted to the states
|0⟩, |1⟩, and |2⟩ (as the leakage to higher levels is weak).
In this regime, we find that the instantaneous g(2)(0; t)
is time-independent and given by

g(2)(0; t) = |δλ1|2. (8)

This suggests that highly blockaded states are possible
without requiring an incredibly precise balancing of drive
amplitudes.

In Fig. 3(b)-(c), we show the results of a numerical
simulation of the effects of a non-zero drive-amplitude
mismatch δλ1. We see that the intracavity average pho-
ton number shown in Fig. 3(b) undergoes Rabi oscilla-
tions before leaving the blockaded subspace; we also see
that Eq. (8) provides a good description of the intracav-
ity g(2)(0) until a time t ∼ 1/|Λ̃3|, after which there is a
departure from the blockaded subspace. The net result
of our simulations and analysis is that errors in ampli-
tude matching do not prevent the generation of useful
blockaded states: for short times, the evolution produces
states with small g(2)(0) while at the same time hav-
ing appreciable non-vacuum population. As the Figure
shows, even for relative mismatches of δλ1 ∼ 0.1, block-
aded states with ⟨â†â⟩ ∼ 0.5 and g(2)(0) < 0.1 can be
produced.
Slow time scales, metastability and blockaded
states in the infinite-time limit. While for applica-
tions, the relatively robust blockade physics we obtain at
short times is more than sufficient, it is also interesting
to ask about the nature of the long-time steady state.
For δλ1 = 0, the blockade is perfect for all times, and
the steady state has no population of higher Fock states.
With imperfections, the situation is different. We saw
above that the short-time blockade physics is relatively
robust against amplitude mismatch errors. This how-
ever is not true for the infinite-time state. As discussed
in “Methods”, for δλ1 = 0, the system has a long-lived,
metastable high-photon number state that is only able
to decay via quantum tunneling. This manifests itself as
an extremely slow relaxation rate (i.e. dissipative gap):

γslow ∼ κ exp

(
−9|Λ̃3|2

4U2

)
(9)

(cf. Eq. (23) and preceding discussion in “Methods”).
This exponentially small dissipative gap directly leads to
the extreme fragility of the steady-state photon blockade
to even minuscule mismatches of drive amplitude. A sim-
ple perturbative argument suggests that the steady state
blockade is lost when |δλ1| ≃ γslow/κ, i.e. even when
|δλ1| ≪ 1 (cf. Fig. 6). This fragility makes the steady-
state effect essentially unattainable in experiment. Note
that the extreme sensitivity of the steady state to relative
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drive amplitudes was first observed without explanation
in Ref. [24]; the qualitative and quantitative explanations
of this phenomenon provided in “Methods” is however
new to this work.

One might worry that this small dissipative gap should
also have made the finite-time blockade physics presented
above highly fragile. This is not the case: for an im-
perfect system that starts from vacuum, there is a dis-
tinct metastable regime of relevance whose physics is con-
trolled by a new timescale unrelated to 1/γslow. The rele-
vant rate Γesc now corresponds to a slow escape from the
blockaded subspace. For imperfect amplitude matching
(δλ1 ̸= 0), there is a weak coupling between blockaded
and un-blockaded subspaces. Once in the un-blockaded
subspace, the system can eventually populate the weakly
metastable, high-amplitude state. While this escape de-
stroys the blockade and results in a very large average
photon number in the steady state, this corruption oc-
curs over a very slow timescale 1/Γesc. The slow heating
associated with this phenomena can be seen in Fig. 3(a).

The escape rate Γesc can be estimated using a Fermi’s
Golden Rule (FGR) argument where δλ1 (the imperfec-
tion in the single photon drive amplitude) is treated as
a perturbation. This is consistent with the numerically
observed behaviour that the average intracavity photon
number approaches its steady-state value exponentially.
Defining δΛ̃1 = Λ̃3 × δλ1, an approximate FGR calcula-
tion yields (see Methods)

Γesc = c
|δΛ̃1|2

κ
, (10)

with c is a dimensionless number. While in general it will
depend on other parameters in the unperturbed Hamil-
tonian, for κ≫ Λ̃3 we find it is constant: c = 1. In con-
trast, for the regime of interest κ ∼ Λ̃3, a simple analytic
estimate is not possible. We do however find from numer-
ics in this regime (i.e. by fitting the long-time relaxation
of the average photon number shown in Fig. 3(a)) that
c ≈ 0.25 in this regime. The overall form of Γesc reflects
two basic facts: the cavity can only leave the blockade
subspace through the very small matrix element ∝ δΛ̃1,
and the cavity must jump into energy eigenstates which
are not localized to the Fock state |2⟩ but spread out
in Fock space and thus harder to jump into. The latter
effect leads generically to c < 1.

The slow escape rate Γesc defines a time window over
which the blockaded subspace is isolated from the rest of
Hilbert space. In order to prepare Fock states, one just
needs this time to be long compared to inverse drive am-
plitudes. In practice, this leads to the weak constraint
on drive-amplitude matching δλ1 < 1. This is to be con-
trasted against the exponentially more demanding con-
dition needed for blockade physics in the steady state,
δλ1 < γslow/κ. The vast difference in these conditions
means that our blockade mechanism is with reach of
various experimental platforms, whereas in contrast the
steady-state version of the effect is completely impracti-

cal.
Photon blockade with weak drive. The short-time
blockade physics we have considered so far requires Λ̃3 >
κ. Via Eq. (4), we see this is possible even if U ≪ κ, as
long as we use a large displacement αb. While at a funda-
mental level such large displacements pose no problems,
at a practical level they can create issues. We will see this
explicitly in the next section, where we discuss in detail
how to turn the displaced-frame Fock states produced by
Eq. (3) to true lab-frame Fock states.

Given this possible concern, it is also interesting to ask
about the dynamics of system where |Λ̃3| ≪ κ, a regime
that could be reached with small U and modest displace-
ments α. Consider first the case where the drive ampli-
tudes are perfectly matched, implying r = 1 in Eq. (3).
In this case, the system approaches the infinite-time,
perfectly-blockaded steady state on a timescale ∼ 1/κ.
This state has zero probability for having more than one
photon, and the single photon occupancy is

⟨1|ρ̂(t→ ∞)|1⟩ = 4|Λ̃3/κ|2

1 + 8|Λ̃3/κ|2
. (11)

Hence, having a weak Λ̃3/κ does not break the block-
ade, but just reduces the population of the one photon
state. On the bright side, in this weak drive regime,
the blockade much more robust to amplitude mismatch
errors. Fig. 4(a) shows the transition from the under-
damped regime Λ̃3 > κ/4, where coherent oscillations
are visible, to the overdamped regime where the cavity
exponentially relaxes to the steady state. The robustness
of the overdamped blockade is shown in Fig. 4(b) where
the g(2)(0; t) of the overdamped blockade remains near
the amplitude-mismatch-limited value g(2)(0; t) = |δλ1|2
given by Eq. (8) for long times even as the underdamped
blockade experiences a large rise in g(2)(0; t) for times
κt ∼ 1.
Generating single photon states in the lab frame.
Our discussion so far has established how, using a cavity
mode with an extremely weak Kerr nonlinearity U ≪ κ
and standard one and two photon drives, it is possible
to generate truly photon-blockaded states in a displaced
frame. In the displaced frame, and for ideal matching
of drive amplitudes, these states have zero population of
states with two or more photons, and moreover, can have
a population of the |1⟩ Fock state that approaches one.
We also showed that this physics is robust again modest
errors in matching the two drive amplitudes appropri-
ately.

We discussed the displacement transformation â →
â + α that led to the Hamiltonian in Eq. (14) as a pas-
sive transformation. In order to make use of this idea to
generate true Fock states, we now view the displacement
as an active transformation: a short, high-amplitude one
photon drive will be used to initially and rapidly displace
the cavity state by an amplitude αb. A similar protocol
will then be used to undo this displacement at the end
of the blockade protocol. In what follows, we discuss
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Figure 4. Photon blockade dynamics with weak Λ̃3

drive. As discussed in the text, the resource requirements of
our scheme are greatly reduced if one only tries to achieve a
nonlinear drive Λ̃3 ≲ κ. (a) Average intracavity photon num-
ber versus time for an imperfect drive amplitude matching
δλ1 = 0.01, for different Λ̃3. As expected, ⟨n̂⟩(t) approaches
its steady state value (cf. Eq. (11)) in a time ∼ 1/κ. Reducing
Λ̃3 reduces this value. (b) Instantaneous intracavity g(2)(0; t)
of the cavity as a function of time, with δλ1 = 0.01. Even for
modest drives Λ̃3 < κ, a good blockade is achieved at short
times. For all plots U = 0.075κ.

each step of this protocol in detail, including a treatment
of new error mechanisms associated with imperfect dis-
placements.
Protocol overview. The basic idea of the full scheme
is sketched in Fig. 5. It has three main steps:

1. Initial displacement: With the cavity initially in
vacuum |0⟩, we rapidly displace the cavity (using
the one photon drive) to the coherent state |αb⟩
(see Eq. (4)).

2. Fock state generation: We next turn on the
two photon drive, and set both the drive ampli-
tudes Λ1,Λ2 to their ideal values given by Eqs. (5a)
and (5b). We then let the system evolve for an
optimally-chosen time τblock ∼ |Λ̃3|−1. This will
prepare to good approximation a single photon
blockaded state in the displaced frame.

3. Final displacement: Finally, we turn off the two
photon drive, and adjust the amplitude of the one
photon drive Λ1 such that rapidly displaces the
cavity by an amount −αb. This then shifts our
displaced-frame blockaded state to lab-frame block-
aded state (ideally the state |1⟩).

The end result of the three steps above is a blockaded,
approximate single-photon state in the cavity. To turn
this into a more useful propagating single photon state,
we imagine a situation where the cavity is overcoupled

Figure 5. Fock state generation protocol timing dia-
gram. Upper panel: the three steps of the generation proto-
col described in the “Protocol overview” section. The grey re-
gions are the initial and final cavity displacements which are
implemented by applying strong one photon drives (Λ1) to
the cavity for a short displacement time τd ≪ κ−1. Ramped
two photon drives (Λ2) are also applied to correct unwanted
squeezing generated by U during these displacement opera-
tions. The white region represents the displaced-frame Fock
state generation step; here, one and two photon drive ampli-
tudes are tuned to their ideal values as given by Eqs. (5a)-
(5c). The evolution here occurs for a duration τblock ∼ |Λ̃3|−1

that can be optimized, during which the cavity evolves under
Eq. (13). Bottom panel: Cavity phase space diagram show-
ing schematically the evolution of the cavity state in the lab
frame.

to a waveguide or transmission line. In this case, one
simple waits at the end of step three. The intracavity
state will then preferentially leak out into waveguide as
an approximate Fock state in a propagating mode with
an exponential profile. Note that while overcoupling will
increase κ, this is not overly detrimental to our protocol.
As we have stressed, our protocol can be effective even if
the Kerr nonlinearity U is much smaller than the total
loss rate κ of the cavity.

The initial and final displacements in our protocol
are of course key aspects needed to achieve our final,
lab-frame photon-blockaded state. As discussed, these
should correspond to amplitudes αb,−αb respectively,
where this amplitude is determined by Eq. (4). A fail-
ure to perform this ideally represents another possible
experimental imperfection that would degrade from our
scheme. Even if the one photon drive used to perform
these displacements can be calibrated perfectly, the weak
cavity nonlinearity U can cause errors during steps 1 and
3 of the protocol. The dominant error is an unwanted
parametric drive generated via U ; this could be cancelled
by also applying a compensating two photon drive Λ2 ̸= 0
during steps 1 and 3; this is depicted in Fig. 5. In what
follows, as opposed to focusing on a particular mecha-
nism, we use a general model to characterize errors in
the displacement steps (steps 1 and 3) of our general
protocol.
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Numerical results. Having outlined our full protocol,
we numerically study its performance. Step 2 is modelled
exactly, by evolving our system as per the full master
equation in Eq. (13). The possibly imperfect displace-
ment operations in steps 1 and 3 are modelled as a combi-
nation of a perfect displacement and the injection of ther-
mal noise (corresponding to n̄th thermal quanta). For-
mally, this corresponds to a Gaussian additive noise chan-
nel [30]. Note that this additive thermal noise rapidly de-
grades the blockade. If we start with a perfect Fock state
|1⟩ and add n̄th thermal quanta (via an additive Gaussian
noise channel), then one can show that g(2)(0) ≥ 4n̄th.
Further details are provided in App. A, as are results for
limitations arising from classical displacement and phase
noise.

In addition to displacement errors, we consider drive
amplitude mismatches which we discussed in the “Impact
of imperfect drive-amplitude matching” section. The re-
sults of that analysis apply here, but as a check we per-
form the full Fock state generation protocol with small
δλ1 ̸= 0. The figure of merit for the Fock state genera-
tion protocol is the instantaneous second order coherence
g(2)(0) at the end of the protocol as a function of U/κ.

Shown in Fig. 1(c) are numerical simulations of our full
time-dependent protocol for various choices of U/κ. In
each case, parameters are chosen to produce (in the ideal
case) a state where the blockaded state has ⟨1|ρ̂|1⟩ = 0.5.
The numerical results show that the blockade protocol is
effective even for U/κ ∼ 0.03, and moreover, is robust
against both small displacement errors and small ampli-
tude match errors. There is no fundamental limit against
applying our protocol for even smaller values of U . Nu-
merics becomes somewhat unwieldy, given the large dis-
placements αb ∼ κ/U that are required.

III. DISCUSSION

A key virtue of our scheme is that it is extremely
generic: there are many different kinds of systems that
can realize weakly-nonlinear electromagnetic modes with
one- and two-photon drives. In the context of weakly
nonlinear optical cavities, the primary experimental chal-
lenge for implementation is the large cavity displace-
ments required, αb ∼ κ/U . For typical low-loss silicon
micro-resonators, the intrinsic χ(3) nonlinearity yields
U/κ ∼ 10−8 [31]. The χ(3) of silicon nitride is typically
even smaller [32–34]. While the large displacements and
intra-cavity powers required in such systems to achieve
αb ∼ κ/U may be possible given the pulsed nature of
our scheme, a safer route would be to follow the general
ideas in the “Photon blockade with weak drive” section.
Here, one uses displacements much smaller than κ/U ,
making constraints on power handling much more rea-
sonable. This results in a perfect blockade and states
with vanishingly small g(2)(0). The price to pay however
is that the average photon number will also be very small.
We stress that even in this regime, the states generated

have a strong advantage over the unconventional pho-
ton blockade (UPB) mechanism of Ref. [7]: unlike UPB,
our states are non-Gaussian and have zero population of
higher Fock states.

An alternative route for implementation in optical cav-
ities would be to utilize χ(2) nonlinearities in materials
with broken inversion symmetry like silicon nitride or alu-
minum nitride. These nonlinearities are parametrically
larger than the corresponding χ(3); a recent experiment
even achieved a single-photon χ(2) nonlinearity that was
∼ 0.01κ [35]. We stress that while our scheme requires
a Kerr-type four-wave mixing nonlinearity, this can be
achieved starting with three-wave mixing χ(2) processes
that generates a nonlinear coupling to a detuned auxil-
iary mode [36]. To second order in this coupling, one
generates the desired self-Kerr interaction U needed for
our scheme. Despite being second order, this can still be
orders-of-magnitude larger than an intrinsic χ(3) nonlin-
earity.

While optical cavities are one possible domain of ap-
plication, they are not the only candidate. Our ideas
could also be exploited in parametrically-driven nanome-
chanical systems with weak intrinsic Duffing nonlineari-
ties (see e.g. [37]), as well as in microwave cavity systems.
A current trend in quantum information processing with
superconducting circuits is to store and process informa-
tion in high-Q microwave cavities (see, e.g. [38, 39]). In
such schemes, detuned qubits are often used to induce
weak nonlinearities in the principle bosonic modes. A
key limitation in these approaches is that the qubit also
induces new loss mechanisms. Our ideas here suggest a
path to circumvent this. One could use extremely large
qubit-cavity detunings, resulting in both very weak in-
duced cavity nonlinearities, but also weak induced dissi-
pation. Our scheme shows that such weak nonlinearities
could still be harnessed to produce non-classical states.

In this work, we have described a new basic route to
generating photonic states that are blockaded: they have
a sharp cutoff in their photon-number distribution, hav-
ing zero probability to have more than r photons in the
state. This is accomplished by using standard tools (a
weak Kerr nonlinearity, one and two photon drives) to
realize an effective non-linear drive, cf. Eq. (3). In stark
contrast to the well-studied unconventional photon block-
ade mechanism [7], our scheme can generate truly block-
aded states, and states that do not need to be infinitely
close to being vacuum. In principle, our basic mecha-
nism is effective even for arbitrarily weak nonlinearities
U ≪ κ. In practice, limitations will arise from the in-
ability to perfectly match the one and two photon drive
amplitudes, and the inability to apply the required dis-
placement transformations perfectly. We showed that the
scheme nonetheless can be effective even if these imper-
fections are present.

While our analysis focused on generating states that
approximate single-photon Fock states, the idea is much
more general. By picking the parameter r in Eq. (3)
to be an integer larger than one (which then influences
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the choice of drive amplitudes via Eqs. (5a) and (5b)),
one can generate higher-order blockaded states: states
that are confined to the manifold spanned by Fock states
|0⟩, |1⟩, ..., |r⟩. Further, the same basic idea can used
to generate non-classical, multi-mode entangled states.
One again realizes the nonlinear driving Hamiltonian in
Eq.(3) in a displaced frame, but now the mode â is actu-
ally a collective mode of 2 or more distinct cavity modes.
Generating a Fock state in this collective mode directly
corresponds to a W -style entangled state. More details
are provided in App. B.

In summary, we believe that the mechanism discussed
here will prove to be valuable tool for generating non-
classical photonic states in a variety of platforms where
only weak nonlinearities are achievable. It could also con-
ceivably be harnessed as a tool for quantum simulation,
i.e. to realize models of strongly interacting photons. Our
ideas are compatible with a wide variety of bosonic sys-
tems, including optical and microwave cavities, as well as
more general superconducting circuit QED setups.

IV. MATERIALS AND METHODS

RWA Hamiltonian. A crucial result of this work is that
to implement the nonlinear photon drive of Eq. (1), we
require only a single mode of a bosonic resonator with
a weak self-Kerr nonlinearity U and standard one and
two photon drives. The starting lab-frame Hamiltonian
is thus (ℏ = 1)

Ĥ = ωcâ
†â+

U

6
(â+ â†)4

+ (Λ1e
−iω1t + Λ∗

1e
iω1t)(â+ â†)

+ (Λ2e
−iω2t + Λ∗

2e
iω2t)(ââ+ â†â†). (12)

Note that the only nonlinearity in this Hamiltonian is
Kerr interaction U , which we will allow to be extremely
weak, i.e. U ≪ κ, where κ is the cavity loss rate. The
two photon drive Λ2 is a standard parametric drive, and
can be realized without requiring a strong single-photon
nonlinarity.

We choose the drive frequencies to satisfy ω2 = 2ω1 =
2(ωc − ∆), implying they are equally detuned from the
resonance by an amount ∆. We also work in the stan-
dard regime where ωc is the largest frequency in the prob-
lem, allowing us to make a rotating wave approximation
(RWA) on both the nonlinearity and drive terms. Mak-
ing the RWA and working in the rotating frame set by
the drive frequency ω1, we obtain Eq. (2). Note that we
have normal-ordered the nonlinearity; thus the nonlin-
earity strength in ĤRWA is U . Note also that normal-
ordering shifts the resonance to ω̃c = ωc + 2U ; we im-
plicitly assume the detuning from resonance in ĤRWA is
thus ∆ = ω1 − ω̃c.
Displacement transformation. We use strong driv-
ing to enhance the effects of U in ĤRWA. We also include
single photon loss at a rate κ using a standard Lind-

blad master equation description. Letting ρ̂ denote the
reduced density matrix of the cavity mode, we have

d

dt
ρ̂ = −i[ĤRWA, ρ̂] + κD[â]ρ̂ (13)

where D[â]Ô = (âÔâ†−{â†â, Ô}/2) is the standard Lind-
blad dissipative superoperator.

The trick is now to show that with appropriate param-
eter tuning, a simple displacement of our weakly non-
linear Hamiltonian in Eq. (2) can yield exactly the kind
of nonlinear driving interaction we are looking for. In
particular, we want a Hamiltonian that is unitarily equiv-
alent to Ĥtarget in Eq. (3), where the parameter r will be
set to a positive integer. This Hamiltonian describes a
nonlinear driving process that can pump up an initial
vacuum state to the n = r Fock state, but no higher.

To achieve this equivalence, we consider a displace-
ment transformation to a new frame where the original
photonic vacuum is shifted to the coherent state |−α⟩; we
leave the amplitude α unspecified for the moment. This
required unitary is Dα = exp (αâ† − α∗â), which trans-
forms the lowering operator as â → â + α. In this new
displaced frame, the master equation for our system has
the same form as Eq. (13), but with a modified displaced
Hamiltonian Ĥα

Ĥα = Uâ†â†ââ+ ∆̃â†â

+ (Λ̃1â
† + Λ̃2â

†â† + Λ̃3â
†â†â+ h.c.). (14)

All of the terms in the original lab-frame Hamiltonian ap-
pear in Ĥα, but with altered coefficients; we also generate
the desired nonlinear single-photon driving term Λ̃3. The
displaced-frame Hamiltonian parameters are:

∆̃ = ∆+ 4U |α|2, (15a)

Λ̃1 = Λ1 + α∆+ 2α∗Λ2 + 2U |α|2α− 1

2
iκα, (15b)

Λ̃2 = Λ2 + Uα2, (15c)

Λ̃3 = 2Uα. (15d)

Notice that by picking the displacement α and the lab-
frame Hamiltonian parameters Λ1, Λ2, ∆, we have com-
plete control over all of the displaced-frame Hamilto-
nian parameters. In particular the choices in Eqs. (4-
5) lead to the target Hamiltonian Ĥtarget. Also notice
that the displacement transformation modifies the Lind-
blad dissipator as D[â] 7→ D[â + α] which we rewrite as
D[â]− i[(−iακ/2)â† +h.c., ρ]. The induced coherent lin-
ear drive component has been absorbed into Λ̃1 in Eq.
(13b). The net result is that the damping rate of the
cavity is the same in the displaced frame.
Photon blockade in the infinite-time steady state.
The main focus of our work is understanding Fock state
generation using the dynamics of Eq. (13) for times much
shorter than the full relaxation time of the system. Here,
we comment on features of the infinite-time steady state.
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The properties of this steady state were discussed in
Ref. [24] using an exact-solution technique.

As discussed, when r is exactly tuned to an integer, the
steady state exhibits blockade: the steady state photon
number distribution truncates at n = r. Surprisingly,
this blockade phenomena is lost even for extremely small
deviations of r away from an integer. This manifests it-
self as an anti-resonance phenomena when the average
photon number in the steady state, ⟨n̂⟩ss is plotted ver-
sus r. There is a sharp dip in this quantity when r is
an integer, with the width of these features ∆r ≪ 1.
This behaviour is illustrated in Fig. 6, where we plot the
full-width half-max ∆r for the anti-resonance in ⟨n̂(r)⟩ss
centered at r = 1. We plot this width as a function of
Λ̃3/U . The plot shows an exponential dependence on
this parameter. Away from the blockade point r = 1, the
steady state photon number is approximately constant
and has a large value ≫ 1.

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

U/Λ̃3

10−20

10−15

10−10

10−5

100

FW
H

M
(δ
r)

Figure 6. Steady state photon number antiresonance
width as a function of U/Λ̃3. Full width at half maximum
of the steady state photon number at the single-photon block-
ade antiresonance as a function of U/Λ̃3 as measured by the
small deviation δλ1 (cf. Eq. (7)).

Both the large average steady state photon number
away from integer r, and the extremely small anti-
resonance widths can be understood starting with a
semiclassical analysis, which reveals a large-amplitude
metastable state. The semiclassical equation of motion
for the amplitude α = ⟨â⟩ that follows from Eq. (13) is:

d

dt
α = −2iUα∗α2− 2iΛ̃3α

∗α− iΛ̃3α
2+ iΛ̃3r−

κ

2
α (16)

For r = 0 (nonlinear drive only) and κ = 0, the steady-
state solutions to this equation are α0 = 0 (with multi-
plicity 2) and

αha = −3Λ̃3

2U
. (17)

Because we always assume a regime where U ≪ Λ̃3, this
amplitude is typically very large. Including non-zero κ
and r, we find that the first-order correction to this am-

plitude is small. To first order, we have

αha = −3Λ̃3

2U
− iκ

2Λ̃3

+
2U

9Λ̃3

r. (18)

We can also confirm that this is an accurate description
of the large-amplitude state by numerically finding the
fixed points to Eq. (16) without assuming small r, κ.

Next, we show that this semiclassical solution is stable
by performing a standard linear stability analysis of the
semiclassical equations. The eigenvalues of the linearized
equations of motion for α and α∗ about αha are

λ± = −κ
2
± i3

√
3
Λ̃2
3

2U

(
1− 8

27

U2

Λ̃2
3

r

)
(19)

which have negative real parts, indicating linear stability
at the semiclassical level. Turning to the quantum prob-
lem, our system always has a unique steady state, which
for integer r is a blockaded state. Hence, for integer r the
above semiclassically-stable state is only unstable due to
quantum effects (i.e. precisely the blockade physics we
have described, which is intimately tied to the discrete-
ness of photon number).

Returning to the quantum problem, we find that upon
numerically diagonalizing Ĥblock in Eq. (1), there is an
eigenstate |Φ⟩ with photon number ⟨n̂⟩Φ ≈ |αha|2 where
αha is given by Eq. (19). Focusing on the single photon
blockade, r = 1, we numerically diagonalize the Liouvil-
lian Eq. (13) which reveals that there is generically a sin-
gle nonzero eigenvalue γslow which is significantly smaller
than κ; all other decay rates are order κ or larger. We
seek to show that this eigenvalue corresponds to the de-
cay of the Hamiltonian eigenstate |Φ⟩ and that the value
is exponentially small in Λ̃3/U .

Working under the assumption that |Φ⟩ is the state
whose decay is given by the Liouvillian eigenvalue γslow,
we use first order degenerate Liouvillian perturbation
theory to estimate γslow. The exact eigenstates within
the single photon blockade manifold {|0⟩, |1⟩} are given
by

|ψ±⟩ =
1√
2
(|0⟩ ± |1⟩); E± = ∓Λ̃3. (20)

Note that these span the {|0⟩, |1⟩} manifold so that
⟨0|Φ⟩ = ⟨1|Φ⟩ = 0. Using the numerically computed
|Φ⟩, we find that it is reasonably well approximated by
the coherent state |αha⟩ with overlap |⟨αha|Φ⟩|2 > 0.96

for U ≪ Λ̃3. We enforce orthogonality with the block-
ade eigenstates Eq. (20) which gives us the approximate
eigenstate

|ϕ⟩ = 1

N

(
|αha⟩ − e−

1
2 |αha|2 |0⟩ − αhae

− 1
2 |αha|2 |1⟩

)
(21)

where N is the normalization constant. Under the as-
sumption that |ϕ⟩ is an approximate eigenstate of Ĥblock,
the relevant three-eigenstate degenerate manifold of the
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unperturbed Liouvillian L0 = −i[Ĥblock, ·] is {|ψ+⟩⟨ψ+|,
|ψ−⟩⟨ψ−|, |ϕ⟩⟨ϕ|}. (The third exact eigenstate is |Φ⟩⟨Φ|
of course.) The perturbation is single photon loss

L1 = κD[â] (22)

where D[X̂] is the standard Lindblad dissipator. We di-
agonalize the three state subspace with respect to L1

and compute the eigenvalues. The irrelevant eigenvalues
are γ0 = 0, whose eigenvector is the κ ≪ Λ̃3 limit of
the single photon blockade steady state, and γ1 = κ/2,
whose eigenvector describes population imbalance rela-
tive to the steady state. The final eigenvalue is the only
one whose eigenvector involves |ϕ⟩⟨ϕ| and for U ≪ Λ̃3 is
given by

γslow ≈ κ|αha|2
(
1 + 2|αha|2

)
e−|αha|2 . (23)

This shows that the dissipative gap of the blockade Li-
ouvillian spectrum is exponentially small in U/Λ̃3 ≪ 1
due to a quasistable eigenstate of the coherent Hamilto-
nian. We thus have provided a quantitative and intuitive
understanding of the surprising sensitivity of the steady
state to small deviations of r away from integer values,
explaining the surprisingly sharp anti-resonance phenom-
ena found in Ref. [24].
Estimation of Γesc. We provide details here on how to
use Fermi’s Golden Rule (FGR) to estimate the slow rate
Γesc (c.f. Eq. (10)) which governs escape from the block-
aded subspace in the presence of imperfect drive ampli-
tudes. Consider first the simple case where κ≪ Λ̃3. We
write the system Hamiltonian Ĥ = Ĥ0 + (δΛ̃1â

† + h.c.),
where Ĥ0 is the ideal Hamiltonian with perfect drive
amplitude matching (i.e. Ĥ0 = Ĥtarget with r = 1,
c.f. Eq. (3)). Treating the last term as a perturbation,
and letting |ϕj⟩ (Ej) denote eigenstates (eigenvalues) of
Ĥ0, application of FGR yields

Γesc =
∑

j∈{unblock}
|⟨ϕj |δΛ̃1â

†|ϕ±⟩|2
γj/2

(∆E)2 + γ2j /4
. (24)

Here |ϕ±⟩ are the two blockade-subspace eigenstates of
Ĥ0, and ∆E = Ej −E±. The last factor in Eq. (24) cor-
responds to the lifetime-broadened density of states of
each unblockaded eigenstate; for weak κ, the decay rate
γj = κ⟨ϕj |â†â|ϕj⟩. This general form matches that of
Eq. (10) in the main text, with a prefactor c that in gen-
eral depends on the unblockaded eigenstates of Ĥ0 and
hence U/Λ̃3. We find good agreement between Eq. (24)
(computed from exact diagonalization) and the rate ex-
tracted from numerical simulations of the system dynam-
ics for weak κ. As an example, we consider Λ̃3 = 100κ.
For U/Λ̃3 = 0.2, the estimate is c = 0.0051 and the ex-
tracted value from the dynamics is c = 0.0047, and for
U/Λ̃3 = 0.3 the estimate is c = 0.0036 and the extracted
value is c = 0.0045. These are typical of this parameter
regime. The small value of c here directly reflects the
delocalization of the unblockaded eigenstates.

For more general regimes, it is trickier to directly apply
FGR, as one can no longer treat the effects of κ by sim-
ply lifetime broadening each unperturbed eigenstate. For
κ≫ Λ̃3, on can use the fact that the large dissipation will
disrupt the formation of coherent eigenstates outside the
blockaded subspace. In this case, we can estimate Γesc

by considering a transition from either |ϕ±⟩ to the Fock
state |2⟩, whose decay rate is simply 2κ. This leads to an
approximate decay rate corresponding to Eq. (10) with
parameter-independent constant c = 1. For the most rel-
evant regime κ ∼ Λ̃3, it is difficult to rigorously calculate
the decay rate as neither κ nor the unblockaded coherent
dynamics can be treated perturbatively. As discussed in
the main text, numerically a good agreement is found to
the general form in Eq. (10) with c ∼ 0.25. Heuristi-
cally, this is consistent with the results presented above;
the slightly smaller value of c corresponds to the partial
delocalization of unblockaded eigenstates.
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Appendix A: Displacement error modeling and
discussion of phase noise

The protocol for generating single photons (see Fig. 5
in the main text) requires a rapid displacement of the
cavity by an amplitude αb (see Eq. (4) in the main text)
at the beginning and a rapid displacement by −αb at the
end of the protocol. These displacements will not be per-
fect in any experiment so we must model small errors in
them. Instead of enumerating specific possible errors that
can occur during the displacements, we elected to offer
a general error model via the Gaussian additive thermal
noise channel. The thermal noise model not only pro-
vides results on how the correlation function g(2)(0) is
bounded by the initial thermal occupation of the cavity,
it can also be directly connected to errors in the displace-
ment parameter αb. As we show, this model also allows
one to directly assess the impact of classical displacement
noise. We also discuss how an almost identical approach
can be used to model classical phase noise.

Displacement errors occur when the displacement am-
plitude is not αb but some

α̃b = αb + δ (A1)

for some small complex error δ. We treat these errors
generally by letting δ be a complex zero-mean Gaussian
random variable with variance σ2. Averaging over these
random displacements starting from vacuum |0⟩ results
in a thermal state [30]; or in our case, a thermal state
displaced by αb. The occupation number n̄th of the ther-
mal state is related to the variance σ2 of the random
displacement errors by

n̄th = σ2. (A2)

One can see this by comparing the variance of the cav-
ity quadratures for the thermal state and for the Gaus-
sian average of the displaced coherent states. To model
the displacement errors during the initial displacement
numerically, we perfectly displace a thermal state with
some occupation n̄th:

|0⟩⟨0| 7→ D̂(αb)ρ̂th(n̄th)D̂
†(αb) (A3)

where D̂ is the displacement operator.
At the end of the protocol we must displace the cav-

ity back to the origin and apply the thermal noise chan-
nel. Applying the thermal noise channel to the blockaded
state is not so easy because it is no longer a coherent
state. Fortunately we are not particularly interested in
the exact form of the final state, we are only interested in
the correlation functions ⟨â†â⟩ and ⟨â†â†ââ⟩ as these are
all we need to compute g(2)(0). Thus at the end of the
protocol, we perform a perfect displacement −αb, then
we inject the same thermal noise into the final state by
passing the cavity mode â through a beamsplitter with
transmissivity 1− ϵ. A mode b̂ with a thermal state, oc-

cupation ⟨b̂† b̂⟩ = ñ, is put on the vacuum port of the
beamsplitter. The output mode is thus

ĉ =
√
1− ϵâ+

√
ϵb̂. (A4)

We will consider the limit ϵ → 0, ñ → ∞ such that
ϵñ = n̄th is fixed. Now assuming ⟨â⟩ = 0, a reasonable
assumption as the coherence between |0⟩ and |1⟩ decays
very quickly during the protocol, we find

⟨ĉ†ĉ⟩ = ⟨â†â⟩+ n̄th, (A5)

⟨ĉ†ĉ†ĉĉ⟩ = ⟨â†â†ââ⟩+ 4⟨â†â⟩n̄th + 2n̄2th, (A6)

after taking the limit ϵ → 0, ñ → ∞. Finally for small
n̄th ≪ ⟨â†â⟩, we compute g(2)(0) = ⟨ĉ†ĉ†ĉĉ⟩/⟨ĉ†ĉ⟩2 to
place the bound

g(2)(0) ≥ ⟨â†â†ââ⟩
⟨â†â⟩2

+
4n̄th
⟨â†â⟩

. (A7)

In the numerical simulations, we perform a perfect dis-
placement back to the origin at the end of the protocol
and use this expression to bound g(2)(0).

The Gaussian thermal noise model as presented above
describes the additive noise of small displacement errors
α̃b = αb + δ. The results presented in Fig. 1 of the main
text are thus readily interpreted as additive displacement
errors via Eq. (A2). Already this allows an experimental-
ist to determine the maximum allowed fractional error of
the displacements to achieve a desired g(2)(0). Of course,
with all other parameters fixed, this maximum fractional
error is dependent on the displacement αb.

In some experimental settings, a more natural error
model would correspond to the noise-corrupted displace-
ment having the form

α̃b = (1 + δ)αb. (A8)

This could arise, e.g., because the coherent tone source,
e.g., optical laser or microwave generator, will have a
limited precision to which its output power and phase can
be controlled. Again if δ is a complex Gaussian random
variable, multiplicative displacement errors correspond
to the Gaussian thermal channel via

n̄th = |αb|2σ2 (A9)

where σ2 is the variance of δ. Thus the standard devi-
ation σ is the fractional error |α̃b − αb|/|αb| of the dis-
placement operation.

One drawback of the thermal noise model treats all dis-
placement errors equally: it assumes that amplitude er-
rors |α̃b| = |αb|(1+Re δ) and phase errors α̃b = eiIm δαb ≈
|αb|(1 + iIm δ) have the same variance. In many settings
however, the dominant error will be a phase error. Thus
in what follows we also model the impact of phase errors
that are Gaussian distributed. Without loss of generality
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Figure 7. Numerical simulations of the performance of the
single photon generation protocol in the presence of displace-
ment phase errors during the initial/final displacement opera-
tors. Parameters are chosen such that the effective nonlinear
drive amplitude Λ̃3 = 2κ and the final state has ⟨1|ρ̂|1⟩ = 0.5.
The parameter σ is the standard deviation of the phase noise
in radians. Note that g(2)(0) must be greater than (U/κ)2σ2.

we let αb = |αb|. The phase error is

α̃b = eiθαb ≈ (1 + iθ)αb (A10)

where θ is a real Gaussian random variable with variance
σ2 ≪ 1. We define the cavity quadratures

X̂ =
1√
2
(â+ â†) (A11)

Ŷ =
1

i
√
2
(â− â†). (A12)

To linear order in θ, phase noise causes diffusion in the
Ŷ quadrature. The variance of this diffusion is |αb|2σ2

Thus our Gaussian phase noise model diffuses the Ŷ
quadrature such that its variance is ⟨∆Ŷ 2⟩ = 1

2 + |αb|2σ2

while leaving the X̂ quadrature variance ⟨∆X̂2⟩ = 1
2 .

This noise channel is easily applied to the cavity vac-
uum: squeeze a thermal state along the X̂ quadra-
ture such that the X̂ quadrature variance is reduced to
⟨∆X̂2⟩ = 1

2 and the Ŷ quadrature variance is increased
to ⟨∆Ŷ 2⟩ = 1

2+ |αb|2σ2, then perfectly displace this state
by αb. The map is

|0⟩⟨0| 7→ D̂(αb)Ŝ(ξ)ρ̂th(n̄th)Ŝ
†(ξ)D̂†(αb) (A13)

where Ŝ is the squeeze operator. The thermal occupation

and squeezing are set by

n̄th =
1

2

(√
1 + 2|αb|2σ2 − 1

)
(A14)

ξ =
1

4
ln
(
1 + 2|αb|2σ2

)
. (A15)

As was the case with the thermal noise model, applying
the channel to vacuum is easy but applying it to the
blockaded state is not so easy. We thus take the same
approach which is to bound the second order coherence.
This time, after perfectly displacing the cavity back to
the origin, the output mode ĉ is given by

ĉ = â+
i√
2
dY (A16)

where dY is a real Gaussian random variable with vari-
ance |αb|2σ2. This describes diffusion in the Ŷ quadra-
ture of the output mode ĉ. Assuming ⟨â⟩ = 0 and
⟨ââ⟩ = 0, the second order coherence is bounded by

g(2)(0) ≥ ⟨â†â†ââ⟩
⟨â†â⟩2

+
2|αb|2σ2

⟨â†â⟩
. (A17)

We compute the correlation functions in â at the end of
the numerical simulation and use this expression to put
a lower bound on g(2)(0).

Shown in Fig. 7 are numerical simulations of the time-
dependent single photon generation protocol for various
choices of U/κ subject to phase noise during the initial
and final displacements as described above. The simula-
tion parameters are chosen to produce (in the ideal case)
a final blockaded state with ⟨1|ρ̂|1⟩ = 0.5. The curves are
labeled by the standard deviation σ of the phase noise in
radians.

Appendix B: Multi-mode generalization and
preparation of non-Gaussian entangled states

Our basic scheme in Eq. (1) can be easily extended
to a mechanism that allows the generation of entangled
M -mode non-Gaussian photonic states using only weak
nonlinearities U ≪ κ. For concreteness, we describe here
the extension to a M = 2 mode system with lowering
operators â1, â2. The idea is simple: we again want to
realize the nonlinear driving Hamiltonian in Eq (1) in a
displaced frame, but now the single-mode lowering oper-
ator â by a collective mode, e.g.

b̂ = (â1 + â2)/
√
2. (B1)

The desired nonlinear driving Hamiltonian is

Ĥblock,2 = Λ̃b̂†(b̂†b̂− r) + h.c.. (B2)

In what follows, we focus on realizing a single-excitation
state, and hence take r = 1. Following the logic of “Dy-
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namics for ideal drive amplitude matching,” the ideal dy-
namics under this Hamiltonian can prepare a single ex-
citation in the collective b mode. If we use the photon
number of each a1, a2 mode to separately encode a qubit,
than the single excitation state produced is a maximally
entangled Bell state (|10⟩+ |01⟩) /

√
2.

We stress that the Hamiltonian in Eq. (B2) amounts
to simply replacing â in Eq. (1) of the main text with
the collective mode b̂. It thus immediately follows that if
we take the four-wave mixing Hamiltonian Eq. (2) in the
main text, replace â with b̂, then the resulting Hamilto-
nian is equivalent to Eq. (B2) up to unitary displacement
operators of modes â1 and â2.

Given this, a simple substitution then in Eq. (2) yields
the required form of the starting two-mode Hamiltonian

ĤRWA,2 = Ub̂†b̂†b̂b̂+∆b̂†b̂+ (Λ1b̂
† + Λ2b̂

†b̂† + h.c.).
(B3)

where again b̂ is given by Eq. (B1). The linear
and quadratic terms that are generated describe linear
drives on both modes, detuning and beam-splitter cou-
plings, and parametric drives (both degenerate and non-
degenerate). The nonlinear four-wave mixing terms take

the form

ĤRWA,2,U =
U

2

 2∑
j,k=1

â†j â
†
kâj âk +

(
â†1â

†
1â2â2 + h.c.

)
(B4)

Note that we now require both self and cross Kerr interac-
tions, but also four-wave mixing processes that exchange
interactions between modes 1 and 2.

Following the logic of the main text, we imagine dis-
placing each mode âj by the amplitude αb given in
Eq. (4). By further tuning the parameters the drive
parameters Λ1,Λ2 and detuning parameter ∆ as per
Eqs. (5), the above two-mode Hamiltonian is unitarily
equivalent to the desired two-mode blockade Hamiltonian
in Eq. (B2). We thus show how our basic ideas generalize
directly to multi-mode systems; other related approaches
are also possible. While the introduction of modes does
involve more complexities, the basic feature of our orig-
inal scheme remains: generation of non-classical block-
aded (now entangled) states is possible even if the four-
wave mixing nonlinearities U are much weaker that pho-
tonic loss.
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