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Abstract 

Magnetism prediction is of great significance for Fe-based metallic glasses 

(FeMGs), which have shown great commercial value. Theories or models established 

based on condensed matter physics exhibit several exceptions and limited accuracy. In 

this work, machine learning (ML) models learned from a large amount of experimental 

data were trained based on eXtreme gradient boosting (XGBoost), artificial neural 

networks (ANN), and random forest to predict the magnetic properties of FeMGs. The 

XGBoost and ANN models exhibited comparably excellent predictive performance, 

with R2 ≥ 0.903, mean absolute percentage error (MAPE) ≤ 6.17, and root mean squared 

error (RMSE) ≤ 0.098. The trained ML models aggregate the influence of 13 factors, 

which is difficult to achieve in traditional physical models. The influence of local 

structure, which was represented by the experimental parameter of the supercooled 

liquid region, presented a significant impact on the predictive performance of ML 

models. The developed ML-based method here can predict the magnetic properties of 

FeMGs by considering multiple factors simultaneously, including complex local 

structures. 
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1. Introduction 

Fe-based metallic glasses (FeMGs) have great commercial value for use in 

electrical transformers, magnetic sensors, electromagnetic wave absorbers, and 

magnetic amplifiers due to their excellent soft magnetic properties. These properties 

are characterized by high saturation magnetization, high permeability, and low 

coercivity. Since the first Fe-based metallic glass was developed in 1967 [1], 

numerous FeMGs have been investigated, mainly aiming to improve their soft 

magnetic properties and glass-forming ability (GFA), for example, Fe-B-Si [2–6], 

(Fe, Co)-B-RE [7] (RE: real earth elements), Fe-B-Mo[8–10], and Fe-B-Y [11,12]. 

A well-known commercial brand on the market is the FINEMET [13], which was 

established by Hitachi Metals. 

Revealing and understanding the origin of the magnetic properties of metallic 

glass is of great significance for the development of new functional materials in an 

efficient manner. For that, some valuable theories have been proposed, such as the 

well-known Slater–Pauling rule [14], generalized Slater–Pauling rule [15], and 

theories based on band-gap or charge transfer theories [16], which are provenly 

feasible. However, the magnetic properties of metallic glasses are the result of many 

factors. These theories or models that consider insufficient factors usually have 

many exceptions, and their estimation accuracy is limited. Therefore, it is still a 

challenge to reveal an accurate variation pattern of the soft magnetic properties of 

FeMGs based on physiochemical theories, so a large number of experiments 

consider a trial-and-error strategy to develop high-performance metallic glasses 
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[17–26]. 

Recently, machine learning (ML) has been applied to material science and 

became a promising tool for the development of new materials with desired 

properties. For example, based on extensive published research data, ML models 

have been trained to predict the GFA of metallic glasses [27–30], mechanical 

properties of metallic glasses [31,32], glass transition temperature [33], hardness of 

high-entropy alloys [34], optical constants of 2D materials [35], and morphology of 

nanoscale metal–organic frameworks [36]. In the past few decades, a large number 

of FeMGs have been discovered, so that sufficient data have been produced, and 

they could meet the data needs of ML. 

According to experiments and simulations, GFA and soft magnetism of FeMGs 

are both strongly related to their local structures [37–40]. Meanwhile, the GFA of 

metallic glasses can be quantified by experimental data of the supercooled liquid 

region (ΔTx). In this work, following the research strategy shown in Fig. 1, high-

performance ML models were trained to predict the magnetic properties of FeMGs 

by considering local structures. A FeMGs dataset containing approximately 400 

FeMGs was established based on published papers. In the FeMGs dataset, the 

experimental ΔTx data represents the effect of local structures, chemical 

components, and other theoretical calculation parameters, and they were treated as 

features. The experimental data of saturated magnetization (Bs) were treated as 

labels. Three efficient ML algorithms were investigated, namely eXtreme gradient 

boosting (XGBoost) [41], artificial neural networks (ANN), and random forest (RF) 
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[42]. Furthermore, the feature scores given by XGBoost indicate a strong 

correlation between the magnetism property and the local structure of FeMGs. 

 

FIG. 1. Training of a machine learning model developed to reveal the relationship 

between soft magnetism and local structure of FeMGs. 

 

2. ML methods 

2.1 Dataset 

The FeMGs dataset established in this work was obtained by searching published 

scientific journals that contained information about the required chemical components 

and experimental data, such as values of saturated magnetization (Bs), glass transition 

temperature (Tg), onset crystallization temperature (Tx), and supercooled liquid region 

(ΔTx). In addition, several theoretical parameters were calculated based on the chemical 

components of each FeMG, including theoretical density (ρ), theoretical melting point 

(𝑇𝑇m), theoretical molar volume (V), mean atom radius (𝑟̅𝑟), atomic size difference (δ), 

configurational entropy (ΔSc), electronegativity (χ), valence electron concentration 

(VEC), and valence electron concentration without FeCoNi (VEC’). These factors are 

relevant to the magnetic properties and thermal dynamics of metallic glasses. The 
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atomic percentages of ferromagnetic single elements (Fe, Co, and Ni) and metalloids 

(B and Si) were also obtained. Table I details the features mentioned above. Because 

different features have different scales and ranges, feature normalization was conducted 

before training the ML models to better stabilize the training. The values of all features 

were normalized by 

𝑥𝑥′ =
𝑥𝑥 − 𝑥̅𝑥
𝛿𝛿𝑥𝑥

 , 

where x and 𝑥𝑥′ refer to the original and normalized value of a feature, respectively; 

and 𝑥̅𝑥 and 𝛿𝛿𝑥𝑥 refer to the mean and standard deviation of x, respectively. 
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Table Ⅰ. Description of all features in the FeMGs dataset. 

Features Description 

Saturated magnetization (Bs) Experimental data 

Glass transition temperature (Tg) Experimental data 

Onset crystallization temperature (Tx) Experimental data 

Supercooled liquid region [43] (ΔTx)  ΔTx =Tx -Tg 

Theoretical melting point (𝑇𝑇m) 𝑇𝑇𝑚𝑚 = � 𝑐𝑐𝑖𝑖𝑇𝑇m𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

Theoretical density (𝜌𝜌) 𝜌𝜌 = 100/(�
𝑤𝑤𝑖𝑖
𝜌𝜌𝑖𝑖

𝑛𝑛

𝑖𝑖=1
) 

Mean atom radius (𝑟̅𝑟) 𝑟̅𝑟 = � 𝑐𝑐𝑖𝑖𝑟𝑟𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

Theoretical molar volume (V) 𝑉𝑉 = �
𝑐𝑐𝑖𝑖𝑚𝑚𝑖𝑖

𝜌𝜌𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 

Atomic size difference [44] (𝛿𝛿) 𝛿𝛿 = �� 𝑐𝑐𝑖𝑖 �1 −
𝑟𝑟𝑖𝑖
𝑟̅𝑟
�
2𝑛𝑛

𝑖𝑖=1
 

Configurational entropy [45] (ΔSc) ∆𝑆𝑆𝑐𝑐 =  −𝑅𝑅� 𝑐𝑐𝑖𝑖 ln 𝑐𝑐𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

Electronegativity [46] (𝜒𝜒)  𝜒𝜒 =  � 𝑐𝑐𝑖𝑖𝜒𝜒𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

Valence Electron Concentration [45] 

(VEC)  
𝑉𝑉𝑉𝑉𝑉𝑉 = � 𝑐𝑐𝑖𝑖(𝑉𝑉𝑉𝑉𝑉𝑉)𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 

Valence Electron Concentration 

without FeCoNi (VEC’) 

𝑉𝑉𝑉𝑉𝐶𝐶′ = � 𝑐𝑐𝑖𝑖(𝑉𝑉𝑉𝑉𝑉𝑉)𝑖𝑖
𝑛𝑛

𝑖𝑖=1
− 𝑐𝑐Fe(𝑉𝑉𝑉𝑉𝑉𝑉)Fe

− 𝑐𝑐Co(𝑉𝑉𝑉𝑉𝑉𝑉)Co − 𝑐𝑐Ni(𝑉𝑉𝑉𝑉𝑉𝑉)Ni 

Atomic ratio of Fe, Co, Ni, B, Si 𝑐𝑐Fe, 𝑐𝑐Co, 𝑐𝑐Ni, 𝑐𝑐B, 𝑐𝑐Si 

 

2.2 Algorithm selection 

From the perspective of data analysis, this work presents a nonlinear regression 
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problem. All three algorithms studied in this work, namely XGBoost, ANN, and RF, 

are suitable for nonlinear regression problems with small data sizes. XGBoost is an 

optimized implementation of gradient boosted decision trees [41], which has shown 

excellent performance and fast speed in many engineering applications. ANN 

algorithms have been developed for a long time, and they have received significant 

attention after breakthroughs in hardware technology. With a feed-forward structure, 

ANN can learn and summarize through the experimental use of known data. Similar to 

XGBoost, RF is also an ensemble learning algorithm [42], which combines the 

prediction results of multiple base learners to obtain an optimal learner with improved 

generalization ability and robustness. However, XGBoost is based on serialized base 

learners, and RF is based on parallelized base learners. 

To obtain the ML models with optimal predictive performance for the established 

dataset, the key parameters were tuned. For the XGBoost algorithm, the tuned 

parameters were n_estimators, max_depth, and min_child_weight. For the ANN 

algorithm, the tuned parameters were the number of hidden layers n and number of 

neurons in each hidden layer m, which were equal in each hidden layer. For the RF 

algorithm, the tuned parameters were n_estimators. 

Furthermore, the XGBoost and RF algorithms can provide feature scores, which are 

attributed to their intrinsic learning principles. Based on these feature scores, the 

relationship between Bs and selected features for training can be explained. From this 

point of view, XGBoost and RF-based models are explainable, whereas ANN-based 

models are non-explainable. 
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2.3 Model training and evaluation 

Machine learning is a data-driven method that requires as much data as possible. 

Although many published data on FeMGs were included, there is a need for caution 

due to possible overfitting because of insufficient data. To fully use the dataset and 

prevent overfitting, the k-fold cross-validation (k-CV) strategy with k = 10 was adopted. 

The dataset was randomly split into k partitions of the same size, which were marked 

as ki (i = 1, 2 … 10). The ML model was trained based on the values of ki (i = 1, 2 … 

9), and the predictive performance of the model was evaluated using the values of k10. 

This process was repeated k times to ensure that each of the k partitions could be treated 

as a test dataset. Finally, the k performance results were obtained, and the average value 

and standard deviation were used to describe the overall predictive performance of the 

model. 

A specific regression model is defined by hyperparameters, which significantly 

affect the predictive performance. To quantitatively compare the predictive capabilities 

of different ML regression models, three evaluation metrics were calculated: 

determination coefficient (R2), mean absolute percentage error (MAPE), and root mean 

squared error (RMSE). 

𝑅𝑅2(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�) = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=0
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=0

 , 

MAPE(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�) =
1
𝑛𝑛

 �
‖𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�‖
‖𝑦𝑦𝑖𝑖‖

𝑛𝑛

𝑖𝑖=1
 , 

RMSE(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�) = �
1
𝑛𝑛
� (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2

𝑛𝑛

𝑖𝑖=1
 , 

where 𝑦𝑦𝚤𝚤�  is the predicted value, 𝑦𝑦𝑖𝑖 is the true value, and 𝑦𝑦� is the average value of y. 
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The values of R2 range from -∞ to 1, and a value close to 1 indicates a good fit. R2 is a 

prevalent metric that shows the variability between the predicted and true values. 

MAPE and RMSE are often used to compare the predictive performance of different 

regression models. 

3. Results and discussions 

When the size of the dataset is not sufficiently large, the number of features chosen 

to train the ML model should be limited to avoid overfitting and dimensionality. To 

investigate the correlation of the features in the original dataset, the Pearson correlation 

coefficient (PCC) of any two features (X, Y) can be calculated by 

𝜌𝜌𝑋𝑋,𝑌𝑌 =
𝐸𝐸[(𝑋𝑋 − 𝜇𝜇𝑋𝑋)(𝑋𝑋 − 𝜇𝜇𝑌𝑌)]

𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌
 , 

where E is the expectation, 𝜇𝜇𝑋𝑋  is the mean of X, 𝜇𝜇𝑌𝑌  is the mean of Y, 𝜎𝜎𝑋𝑋  is the 

standard deviation of 𝑋𝑋, and 𝜎𝜎𝑌𝑌 is the standard deviation of 𝑌𝑌. 

The PCC value ranges from -1 to 1, and an absolute value closer to 1 indicates more 

linearly related variables. In this work, if the PCC absolute value of two features (|𝜌𝜌𝑋𝑋,𝑌𝑌|) 

was higher than 0.8, one of the two features was discarded based on background 

knowledge. Fig. 2 shows the correlation matrix generated by the PCC of each pair of 

features in the original dataset. The parameter pairs of δ-Tm, V-Tm, V-ρ, cB-δ, cFe-∆S𝑐𝑐, 

and cB-V presented strong correlations. 
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FIG. 2. Heatmap of Pearson's correlation coefficient of each pair of features in the 

original dataset. 

 

Note that the k-fold cross-validation results of the three ML algorithms with 15 

original features, which were denoted as XGBoost, ANN, and RF, and the three ML 

algorithms with reduced 13 features, which were denoted as XGBoost’, ANN’, and RF’. 

Regardless of metrics used (R2, MAPE and RMSE), it was clear that the reduced 

features used to train the ML models had little influence on their predictive performance. 

The R2, MAPE, and RMSE values with standard errors are listed in Table Ⅱ.  
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Table Ⅱ. Evaluation metrics for ML models. 

Metrics XGBoost XGBoost’ ANN ANN’ RF RF’ 

R2 0.906±0.026 0.909±0.024 0.910±0.048 0.903±0.066 0.779±0.11 0.801±0.099 

MAPE (%) 6.11±0.81 6.17±0.63 5.19±1.78 5.1±1.83 8.59±2.12 8.11±2.15 

RMSE 0.100±0.013 0.098±0.010 0.085±0.028 0.085±0.033 0.131±0.026 0.124±0.024 

 

According to the evaluation results, XGBoost and ANN showed comparably 

excellent predictive performance, whereas the predictive performance of RF was 

slightly inferior. It should be noted that all k-fold cross-validation results were based on 

tuned hyperparameters, which are discussed in detail below. 

The ANN architecture used in this work is illustrated in Fig. 3(a), which contains 

one input layer corresponding to the 12 reduced features, m hidden layers with n 

neurons for feature extraction, and one output layer for the predicted value. The loss 

function used in this model is the mean squared error, which is popular for regression 

problems. Fig. 3(b) illustrates the effect of m and n values on the predictive performance 

of ANN, which was evaluated by RMSE. Increasing the values of m and n complicates 

the network structure. However, that did not significantly improve the model 

performance. The optimal hyperparameters for the ANN were n = 64 and m = 2. Fig. 

3(c) shows the loss of training and validation during the learning process with a 

maximum epoch of 5000, which indicates that there was no overfitting in the trained 

ANN model. 
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FIG. 3. (a) Schematic of the ANN architecture designed to predict Bs of FeMGs based 

on selected features. (b) RMSE of ANN with different parameters. (c) Training and 

validation loss during the learning process of ANN with tuned parameters. 

The hyperparameter tuning for the XGBoost models was mainly focused on 

max_depth and min_child_weight. Fig. 4(a) shows the heatmap of R2 evaluation for the 

training of XGBoost models with different values of max_depth and min_child_weight. 

The darkest grid represents the optimal result, whose corresponding parameters are 

max_depth = 3 and min_child_weight = 1. 
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FIG. 4 (a) Hyperparameters tuning results for XGBoost evaluated by R2. (b) Feature 

importance ranking derived from XGBoost algorithm. Importance scores were 

normalized by dividing the maximum score, and the maximum value was set to 100. 

 

Based on the trained XGBoost model, the feature importance of the selected 12 

features was estimated. According to the feature scores illustrated in Fig. 4(b), the 

supercooled liquid region (ΔTx) of FeMGs had the greatest impact on the predictive 

performance of the XGBoost models, followed by theoretical melting point (Tm) and 

theoretical density (ρ), respectively. Because ΔTx is an experimental parameter that was 

used to indirectly reflect the influence of local structures, it can be concluded that the 

local structures of FeMGs indeed have a strong impact on their magnetic properties. 

Furthermore, the feature scores of 𝑇𝑇m, ρ, 𝑟̅𝑟, χ, VEC’, and 𝑐𝑐Fe were all over 50, which 

indicates that the influence of other features on the predictive ability of the trained ML 

models cannot be ignored. In other words, the origin of the magnetic properties of 

FeMGs is complex, as it is influenced by multiple factors. 

To simplify the theoretical analysis, the theories or models based on condensed 

matter physics [16,47] usually do not take into account many factors, which could be 
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responsible for the deviation of theoretical predictions of metallic magnetism from 

experimental results. ML models learn from a large amount of available experimental 

data and consider many features simultaneously. Therefore, they are well trained to 

complete prediction tasks with excellent accuracy. However, the number of features 

should match the size of the dataset, and due to the limited dataset size, only 12 features 

were used to train the ML models in this work. The established theories or models 

provide an important reference for feature selection in ML. Furthermore, increasing the 

amount of data would further improve the prediction performance of the ML models. 

 

4. Conclusions 

In this work, based on ML models trained by XGBoost, ANN, and RF, a data-driven 

strategy was proposed to predict the magnetic properties (Bs) of FeMGs with 

consideration of local structures. The ML models were trained based on an FeMGs 

dataset, which was collected from published studies and contained nearly 400 samples. 

Twelve features, which quantified the FeMGs samples from many aspects, were 

selected to train the ML models. The hyperparameters of the three ML models were 

tuned using a grid search strategy. XGBoost and ANN showed comparably excellent 

predictive performance. XGBoost and ANN models with tuned hyperparameters also 

showed comparably excellent predictive performance with R2 of 0.909 and 0.903, 

MAPE of 6.17 and 5.10, and RMSE of 0.098 and 0.085, respectively. Furthermore, a 

feature importance ranking was derived by XGBoost models, and it suggested that ΔTx 
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is crucial for the predictive performance of the ML models. In other words, the local 

structures of FeMGs strongly affect their magnetic properties. Compared to previous 

theories or models for magnetism, data-driven ML methods can aggregate the influence 

of many factors simultaneously, thereby providing magnetism prediction models with 

excellent accuracy. 
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