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We present a microscopic quantum theory of light-matter interaction in pristine sheets of two-
dimensional semiconductors coupled to localized electromagnetic resonators such as optical nanocav-
ities or plasmonic particles. The light-matter interaction breaks the translation symmetry of excitons
in the two-dimensional lattice, and we find that this symmetry-breaking interaction leads to the for-
mation of a localized exciton state, which mimics the spatial distribution of the electromagnetic
field of the resonator. The localized exciton state is in turn coupled to an environment of residual
exciton states. We quantify the influence of the environment and find that it is most pronounced
for small lateral confinement length scales of the electromagnetic field in the resonator, and that
environmental effects can be neglected if this length scale is sufficiently large. The microscopic the-
ory provides a physically appealing derivation of the coupled-oscillator models widely used to model
experiments on these types of systems, in which all observable quantities are directly derived from
the material parameters and the properties of the resonant electromagnetic field. As a consistency
check, we show that the theory recovers the results of semiclassical electromagnetic calculations and
experimental measurements of the excitonic dielectric response in the linear excitation limit. The
theory, however, is not limited to linear response, and in general describes nonlinear exciton-exciton
interactions in the localized exciton state, thereby providing a powerful means of investigating the
nonlinear optical response of such systems.

I. INTRODUCTION

Over the last decade, there has been a growing inter-
est in excitonic properties of two-dimensional (2D) semi-
conductors, especially in monolayers of the transition-
metal dichalcogenide family1. Owing to a direct bandgap
in the visible frequency range and large exciton bind-
ing energies, these materials are particularly interesting
for polaritonic physics and technology2. Indeed, pris-
tine sheets of these materials have been interfaced with
optical nanocavities or plasmonic resonators, leading to
coupling strengths of the order of 100 meV3–10. Different
models have been used to describe the experiments and
to account for the fact that the high interaction strengths
have been reached even without the need for careful po-
sitioning of the nano-resonator to align it with a local
defect in the 2D material. Phenomenological treatments
originating in the quantum optics literature view the elec-
tronic excitations in the 2D-material that couple to the
resonant electromagnetic field as a collection of N in-
dependent dipole particles, where N is typically fitted
to match the experimentally observed light-matter cou-
pling strength3,6–8,10. Within such N -dipole theories,
the effective light–matter coupling strength is propor-
tional to

√
N/V , where V is an effective electromagnetic

mode volume. Although the phenomenological models
can be well fitted to experimental data, there appears to
be no convincing microscopic theory explaining the ori-
gin or nature of the dipolar particles in the seemingly
pristine 2D materials. As a consequence, the usefulness

FIG. 1. Illustration of an electromagnetic resonator in the
form of a plasmonic nanorod situated above an infinite sheet
of 2D semiconductor material. Light-matter interaction be-
tween the resonant electromagnetic field and excitons in the
semiconductor leads to the formation of a localized collective
exciton mode with a center-of-mass wave function matching
the in-plane electric field profile indicated by the color coding.

of the quantum optical concepts has been questioned11,
and it has been argued that a framework rooted in the
condensed-matter theory of quantum wells is more ap-
propriate. In particular, it has been recognised that such
an approach can lead to models in which the electro-
magnetic resonator couples to a single effective exciton
state11,12.

In this article we build on similar ideas as put forward
in Ref. 11 and develop a microscopic quantum theory for
excitons in 2D materials coupled to electromagnetic res-
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onators (see Fig. 1). The resonator may be realized using
plasmonic resonances in metal3–10 or dielectric nanocav-
ities13–15, including a new generation of dielectric cavi-
ties with extreme confinement of light16–18. Our anal-
ysis shows that by breaking the translation symmetry,
the interaction with the electromagnetic field of the res-
onator leads to the formation of a localised exciton state
with a center-of-mass wave function exactly matching the
electromagnetic field profile. We find that this localised
exciton state can be formally described as an excitonic
reaction coordinate - a very successful theoretical concept
developed in the context of open quantum systems19–25.
With this formalism, we derive analytical results for the
coupling strength between the exciton and the resonant
electromagnetic field as well as the nonlinear exciton-
exciton interaction. These results show explicitly that
the coupling strength does not scale with the effective
mode volume V or the number of excitons N . Rather,
the coupling strength is independent of the lateral field
confinement L and depends only on the confinement in
the out-of-plane direction Lz. The independence of L
arises from a perfect spatial overlap between the exci-
ton reaction coordinate and the resonant electromagnetic
field within the plane.

The representation of the excitons in terms of a single
reaction coordinate comes at the price of introducing a
residual environment of exciton states that are coupled
to the reaction coordinate, but not directly to the elec-
tromagnetic field. We show, however, that these residual
exciton states influence the dynamics of the system only
at very small lateral confinement length scales, typically
below a few nanometers. Within the same reaction coor-
dinate formalism, one can also conveniently account for
nonlinear exciton-exciton interactions, and we find that
the lateral field confinement here plays a crucial role: It
determines the effective area of the exciton reaction co-
ordinate, and the nonlinear interaction of excitons within
the reaction coordinate therefore scales as 1/L2, reflect-
ing the fact that the optical confinement dictates the
multi-excitonic co-localisation.

We present three different approaches for calculating
the time evolution of the system and use these methods
to assess the influence of the residual exciton environ-
ment and the nonlinear response. In this way, we identify
a range of lateral confinement lengths where L is suffi-
ciently large that the residual excitons can be ignored
but at the same time small enough that the nonlinear
response significantly alters the dynamics.

The article is organised as follows. In Sec. II, we de-
scribe the Wannier-Mott exciton states of the 2D ma-
terials, the electromagnetic fields of the resonators, and
their interaction. In Sec. III, we derive the exciton reac-
tion coordinate formulation for coupling to a single mode
of the electromagnetic resonator. In Sec. IV, we calcu-
late the time evolution of the system using three different
approaches, which we benchmark against each other to
assess their regimes of validity. In Sec. V, we derive the
effective linear dielectric function of the Wannier-Mott

excitons and use this function to make a reference calcu-
lation of the excitation spectrum, which we compare to
the microscopic quantum reaction coordinate approach
in the linear-response limit. Finally, we summarise our
findings in Sec. VI.

II. GENERAL FRAMEWORK

In this section, we present the fundamental struc-
ture of the theory, which is based on Wannier-Mott
exciton states and their interactions with a resonant
electromagnetic field described by a single quasi-normal
mode (QNM). We will generally study excitons in direct-
bandgap semiconductors with discrete in-plane trans-
lational symmetry. In this sense, monolayer two-
dimensional semiconductors such as transition metal
dichalcogenides share many physical features with semi-
conductor quantum wells, although the excitons of the
former are often more strongly bound due to their re-
duced dielectric screening1. Monolayer transition-metal
dichalcogenides have direct bandgaps at the K and K ′

points26,27 and feature a rich electronic band structure
(cf. Fig. 2a,c). In the vicinity of these K and K ′

points, however, the conduction and valence bands can
be well approximated by parabolic bands, leading to an
effective-mass approximation, which we shall use here.
The optically bright excitons generated from these bands
are Coulomb-bound electron-hole states. Comprehensive
theoretical treatments of excitons resolve their compos-
ite fermionic electron-hole structure28–35. Here, we shall
employ a simpler description of the excitons in terms of
interacting bosons36–40.

The resonant electromagnetic fields in optical cavities
and plasmonic particles share many characteristics with
the bound states of electrons. It is a distinct feature of
electromagnetic resonators, however, that the modes are
not truly bound, and this gives rise to discrete peaks with
finite widths in scattering spectra, for example. From a
mathematical point of view, it is advantageous to treat
these resonances as modes of the electromagnetic field
with finite lifetimes, and the theory of QNMs provides a
rigorous framework for doing this41–44. In this work, we
will start from a quantum description of the electromag-
netic field in electromagnetic resonators45 and extend the
theory to describe the interaction with Wannier-Mott ex-
citons in 2D materials. At positions far from the res-
onator, a QNM description of the electromagnetic field
is non-trivial, and this poses a challenge for coupling to
excitons in the nominally infinite sheet of 2D material.
Such a description is in principle influenced by retarda-
tion effects, but for the present purpose of describing
interactions very close to the resonator we avoid these
complications by treating the interaction in the quasi-
static limit.
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FIG. 2. a. Electronic band structure (yellow) for monolayer
WS2 (data from G0W0-calculations of Ref. 46). The band en-
ergies are plotted as function of in-plane wave vector and are
given relative to the Fermi energy, EF. Within the effective-
mass approximation, the conduction and valence band en-
ergies near the band gap, (K or K′), are approximated as
parabolic (blue and green dashed lines). b. Conduction band
(blue) and valence band (green) band electronic energies rela-
tive to valence band maximum, Evbm (left axis) as a function
of the wavevector, k, given relative to K (or K′). Also shown
is the lowest-lying 1s exciton energy (right axis) as a function
of the center-of-mass momentum, k. The band gap, Eg and
the exciton gap, E0 = Eg − Eb, are indicated with vertical
arrows. The effective masses of the valence and conduction
bands are independent of the direction in k-space46 and the
exciton dispersion is thus direction-independent as well. c.
The Brillouin zone of a 2D hexagonal lattice with special sym-
metry points marked as red dots and the path over which the
band structure in panel a is calculated (grey line).

A. Exciton states

The description of the excitonic degrees of freedom in
the 2D material will be based on a Wannier-Mott frame-
work47, which provides a useful analytical description
of the excitons and has proven successful in this con-
text48,49. To this end, we consider the lowest-energy
conduction band and the highest-energy valence band of
a two-dimensional semiconductor, separated by a band
gap energy Eg. We denote by |0〉 the Fermi sea, i.e. the
fermionic state in which the valence band is fully occu-
pied by electrons and the conduction band is empty. The
fermionic creation operator for a hole in the valence band

with in-plane wavevector k is denoted by v†αk and, simi-

larly, c†αk denotes the creation operator for an electron in
the conduction band. Here, the index α labels the high-
symmetry point with wavevector Kα, when the band gap
is degenerate, as is the case for e.g. monolayer transition-
metal dichalcogenides, where α ∈ {K,K ′}1. The single-
particle wave functions, ψc,αk(r) and ψv,αk(r) are taken
to be of Bloch form,

ψi,αk(r) =
1√
N
ei(k+Kα)·rui,α(r), (1)

where i = c, v; N is the number of unit cells in the 2D
sheet with surface area S, and ui,α(r) is a Bloch function,
which has the periodicity of the crystal lattice and is
normalised over a single unit cell,

∫
VUC

d3r |ui,α(r)|2 =

1. Within the Wannier-Mott framework, the conduction
band and valence band energies are described through
effective masses, me and mh, respectively, which reflect
the local parabolic approximation to the band structure
near the K and K ′ valleys, cf. Fig. 2a.

The Wannier-Mott exciton states can be written as a
momentum-superposition of electron-hole pairs50

|Φn,αk〉 =
∑
q

φn(q)ĉ†α,(me/M)k+qv̂
†
α,(mh/M)k−q |0〉 , (2)

where φn(q) is the momentum-space exciton wave func-
tion with shell index n, and M = me + mh is the total
exciton mass. The label k is thus the center-of-mass mo-
mentum of the exciton. In Ref. 49, it was found that
a very good approximation to the lowest-energy exci-
ton (n = 1) for several two-dimensional transition-metal
dichalcogenides is given by the simple hydrogenic form

φ(q) =

√
8πa2

B/S

[1 + (qaB)2]3/2
, (3)

in which aB is the exciton Bohr radius and q = |q| .
This form is often found in the context of semiconduc-
tor quantum wells51,52. In the present work, we restrict
our discussion to the lowest-lying exciton and generally
use Eq. (3) for the exciton wave function and denote its
quantum state by |Φα,k〉, dropping the index n in Eq. (2).
The total exciton energy is given by the sum of the ki-
netic energy of the center-of-mass coordinate, the band
gap Eg and the exciton binding energy, Eb:

Ek = E0 +
h̄2k2

2M
, (4)

where E0 := Eg −Eb is the exciton gap, as illustrated in
Fig. 2b. We will often use the corresponding frequencies
as well, ωk = Ek/h̄, and ω0 = E0/h̄.

Being composed of electron-hole pairs, it is favourable
to describe the excitons through a set of bosonic creation

operators, b̂†αk, which generate single- and multi-excitonic
quantum states. Noting, however, that operators of

the form C†αk =
∑

q φ(q)ĉ†α,(me/M)k+qv̂
†
α,(mh/M)k−q

have commutation relations that are neither bosonic
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nor fermionic53, a description of the excitons as non-
interacting bosons is infeasible. Nevertheless, it is pos-
sible to use an approximate description in terms of in-
teracting bosons36–40. In this work, we include the lead-
ing interaction term, which arises due to exciton-exciton
Coulomb interactions51,52, such that the total bosonic
form of the exciton Hamiltonian (including the free exci-
ton energy) is

Ĥx =
∑
αk

h̄ωkb̂
†
αkb̂αk

+
∑
αkk′q

h̄Wkk′qb̂
†
αk+qb̂

†
αk′−qb̂αk′ b̂αk,

(5)

where h̄Wkk′q is the momentum-dependent exciton-

exciton interaction energy and b̂αk and b̂†αk are bosonic
exciton annihilation and creation operators, obeying the

commutation relation [b̂αk, b̂
†
α′,k′ ] = δkk′δαα′ . These op-

erators can be understood as a bosonic approximation to

the excitonic operators Ĉαk and Ĉ†αk, such that b̂†αk |0′〉
is the bosonic representation of |Φαk〉. The state |0′〉 is
the bosonic exciton vacuum state, which is the bosonic
equivalent to the Fermi sea36. In the present context,
the correspondence between excitonic fermion pairs and
bosons is only of formal interest, since the practical calcu-
lations of the microscopic light-matter coupling strength
can be phrased in terms of the fermionic operators. Simi-
larly, the interaction strengths Wkk′q are directly related
to four-particle scattering matrix elements evaluated in
the original fermionic space36,38,51,52. For convenience,
we can split the exciton Hamiltonian into a noninter-

acting part, Ĥx,0 =
∑
αk h̄ωkb̂

†
αkb̂αk, and an interacting

part, Ŵ =
∑
αkk′q h̄Wkk′qb̂

†
αk+qb̂

†
αk′−qb̂αk′ b̂αk. Detailed

discussions and calculations of the interaction strengths
Wkk′q can be found in Refs.51,52,54,55. In general, a mo-

mentum cutoff of the order a−1
B is reported, which means

that h̄Wkk′q ' h̄W000 for k, k′, q � a−1
B . In Ref. 55,

variational calculations of the exciton wavefunctions and
the corresponding Coulomb matrix elements showed that
for monolayer WS2, the interaction strength can be ap-
proximated as h̄W000 ' 2.07Eba

2
B/S. It was also shown

that the interaction has contributions from a direct part,
where the constituent electron and hole within the two
interacting excitons remain fixed, and an exchange part,
where the constituent particles are exchanged. In par-
ticular, it was shown that the exchange part dominates
at low momenta, and that the direct part vanishes iden-
tically at zero momentum, meaning that the matrix ele-
ment W000 is determined solely by the exchange contri-
bution. We note, furthermore, that intervalley exchange
Coulomb effects in transition-metal dichalcogenides56 are
not included in this work. Besides from an overall shift,
the linear exchange coupling vanishes for vanishing ex-
citon center-of-mass momentum56–58, and is therefore
small for optically bright excitons, which have small
center-of-mass momenta. The nonlinear intervalley ex-
change Coulomb interaction is small compared to the in-
travalley Coulomb interaction, Ŵ 34. Thus, we expect

that the intervalley exchange interaction will give rise to
minor corrections to the overall physics of light-matter
coupling and the weak nonlinear optical response stud-
ied here.

A collection of relevant material parameters for a se-
lection of monolayer transition-metal dichalcogenides is
presented in Table I.

B. Resonant electromagnetic fields

Optical cavities and plasmonic particles support a
number of resonances, which show up as distinct peaks in
scattering spectra, for example, and whose correspond-
ing field distributions are commonly referred to as quasi-
normal modes (QNMs)41–44 or resonant states61,62. They
are defined as solutions to the wave equation subject to
suitable radiation conditions, such as the Silver-Müller
condition for resonators in free space63,64. For the present
application, we limit the analysis to cases in which there
is only a single QNM in the frequency range of interest,
and we denote the associated electric-field distribution
by f̃c(r); the corresponding eigenfrequency ω̃c = ωc − iγc

is complex with a negative imaginary part, where γc ac-
counts for the cavity decay rate. For positions close to
or inside the resonator, the operator describing the quan-
tized electric field can be expanded in terms of this QNM
by the method presented in Ref. 45. In this work, we
shall be interested in coupling to sheets of 2D materials,
which extend to regions far away from the resonator, and
where the formulation of Ref. 45 is not directly applica-
ble. As discussed in Appendix A, however, it is possible
to extend the general framework of Ref. 45 by use of the
Lippmann-Schwinger equation and ideas originally put
forward in Ref. 65 to write the electric-field operator at
general positions r outside the resonator in terms of a
convolution as

Ê(r, t) = i

√
h̄ωc

2ε0

∫ ∞
0

dτ F̃c(r, t− τ)âc(τ) + H.c. (6)

Here, the creation and annihilation operators â†c and âc

obey the commutation relation [âc(t), â†c(t)] = 145, and

the memory kernel F̃c(r, t), which ensures a proper causal
relation to locations far from the resonator, derives from
analytical continuation of the electric field QNM onto the
real frequency axis. In the present work, we shall focus on
the local and non-retarded coupling dynamics by setting
F̃c(r, t) = F̃c(r)δ(t) and calculating F̃c(r) from f̃c(r) by
use of the quasistatic Green tensor, see Appendix A for
details. Moreover, as we shall see below, the coupling
will be phrased in terms of the electromagnetic vector
potential, which we write in the single-QNM case as

Â(r) =

√
h̄

2ε0ωc
[âcF̃c(r) + â†cF̃

∗
c(r)]. (7)

Due to radiative loss and possibly absorption in the res-
onator material, the energy of the electromagnetic field
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Material mh [m0] me [m0] Eg [eV] Eb [eV] aB [nm] V [m/s]

WS2 0.3446 0.3346 2.5346 0.5246 1.9559 6.7× 105 27

MoS2 0.5346 0.4346 2.5346 0.5546 2.059 1.6860 5.3× 105 27

WSe2 0.3646 0.3946 2.1046 0.4846 3.359 6.0× 105 27

MoSe2 0.5846 0.4946 2.1246 0.5046 2.659 4.7× 105 27

TABLE I. Relevant material parameters with referenced sources for a selection of monolayer transition metal dichalcogenides.
The listed quantities are: Effective electron and hole masses, me and mh, respectively, given in units of the free electron
mass, m0; the bandgap energy, Eg; the exciton binding energy, Eb; the exciton Bohr radius, aB; and the velocity parameter,
V , used for calculation of the Bloch momentum matrix elements. The band gaps from Ref. 46 have been taken from G0W0

band-structure calculations. The exciton Bohr radius has been calculated using the oscillator strength from the experimentally
measured dielectric response of monolayers exfoliated on fused silica substrates in Ref. 59, as described in Sec. V. For WS2, the
oscillator strength is explicitly given in Ref. 59. For the other materials, we have fitted six Lorentzian oscillators to the data
for the imaginary part of the dielectric function in Ref. 59 to extract the oscillator strength. A similar calculation based on
absorption measurements was made in Ref. 60 for MoS2.

in the resonator is not conserved. Therefore, it is conve-
nient to describe the state of the field through its density
operator, ρ̂c, which in the absence of interactions is gov-
erned by the master equation45

dρ̂c

dt
= −i[ωcâ

†
câc, ρ̂c] + 2γcD(âc, ρ̂c), (8)

where

D(x̂, ρ̂) = x̂ρ̂x̂† − 1

2
(x̂†x̂ρ̂+ ρ̂x̂†x̂) (9)

is the Lindblad dissipator.

C. Light–matter interaction

We now proceed to consider interactions between
the excitons and the resonant electromagnetic field.
The exciton-field coupling is generated by the minimal-
coupling Hamiltonian, of which the dominating part
(written in first quantization) is66

ĤI = − e0

m0

∑
i

Â(ri) · p̂i, (10)

where the sum runs over the electrons in the system.
The light–matter interaction Hamiltonian can be cast

into the second-quantised form67

ĤI = h̄
∑
αk

[
b̂†αk(gαkâc + g′αkâ

†
c) + b̂αk(g′∗αkâc + g∗αkâ

†
c)
]
,

(11)

where the interaction strengths are evaluated in the
fermionic space as

h̄gαk = − e0

m0

√
h̄

2ε0ωc
〈Φαk|

∑
i

F̃c(ri) · p̂i|0〉 , (12)

and h̄g′αk is obtained by replacing F̃c(r) with F̃∗c(r). As-
suming that the light–matter coupling is weak compared
to the relevant electromagnetic frequencies and exciton

frequencies, we make the rotating-wave approximation,
corresponding to setting g′αk = 0 in Eq. (11). With these
approximations, the light–matter interaction is

ĤI =
∑
αk

(
h̄gαkâcb̂

†
αk + h̄g∗αkâ

†
cb̂αk

)
. (13)

Using the Slater-Condon rules47, the matrix element
entering gαk can be evaluated, again in the fermionic
space, as

〈Φαk|
∑
i

F̃c(ri) · p̂i|0〉 =

1

N

∑
q

φ(q)

∫
d3r e−ik·ru∗c,α(r)p̂ · F̃c(r)uv,α(r),

(14)

where we used the expression for the single-particle wave
functions of Eq. (1). The summation over q only involves
the wave function φ(q) and can thus be evaluated inde-
pendently as

∑
q

φ(q) =
S

(2π)2

∫
d2qφ(q) =

√
2S

πa2
B

. (15)

Assuming that the mode function does not vary apprecia-
bly over the unit cell, and that the relevant wavevectors
are much smaller than the inverse lattice constant, we
can approximate the integral in Eq. (14) as a sum over
unit cells (indexed by j) and a Bloch matrix element∫

d3r e−ik·ru∗c(r)p · F̃c,α(r)uv,α(r)

=
∑
j

e−ik·rj F̃c(rj , z0) · pαcv,
(16)

where pαcv =
∫
VUC

d3ru∗c,α(r)p̂uv,α(r), rj is the lateral

coordinate of the jth unit cell, and we have taken the
2D-sheet to be located at z = z0. For 2D materials in
the transition-metal dichalcogenide family, the two de-
generate exciton modes at the K and K ′ valleys have
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the matrix elements27,68, pKcv = m0V (x + iy), pK
′

cv =
m0V (x − iy), where V is a material-dependent velocity
parameter (see Table I for values). These matrix ele-
ments are circularly polarized due to spin-orbit coupling.
The summation over j in Eq. (16) can then be rewritten
as an integral as

∑
j →

N
S

∫
d2r. Combining everything,

the coupling strength becomes

h̄gαk = − e0

m0

√
h̄

πε0ωca2
BS

∫
d2r e−ik·rF̃c(r, z0) · pαcv,

(17)

where the integral is over the infinite extent of the 2D
material. Whereas the QNMs diverge (exponentially) at
sufficiently large distances from the resonator44, the func-
tions F̃c(r) behave as the free-space quasistatic Green
tensor at sufficiently large distances and are therefore
square integrable.

We note that in addition to the contributions to the
light-matter interactions derived until this point, a non-
linear saturation term of the form

ŴEM =
∑

αk1k2k3

h̄σαk1k2k3(b̂†αk1
b̂αk2 b̂αk3 + H.c.)

× (â†c + âc)

(18)

appears due to the non-bosonic nature of the exci-
tons51,52. Within the hydrogenic Wannier-Mott exci-
ton approximation, the nonlinear interaction due to sat-
uration can be approximated in the zero-momentum
limit, where it takes its maximal value, as h̄σα000 '
(4π/7)(a2

B/S)2G0, where G0 is the coupling strength51.
For a coupling strength of 50 meV and an exciton bind-
ing energy of 500 meV, this gives a ratio relative to the
exciton-exciton Coulomb interaction of σα000/W000 '
0.17. Thus, for the systems of interest in this article,
the Coulomb exciton-exciton interaction Ŵ is considered
to be the strongest nonlinear effect, and the saturation
interaction is neglected. We do note, however, that such
saturation effects have been shown to play an important
role for the nonlinear dynamics of trions in transition-
metal dichalcogenides, owing to the three-fermion com-
posite structure of trions69,70.

III. EXCITON REACTION COORDINATE

In Section II, we have seen that the excitons are de-
scribed by a Hamiltonian Ĥx, which conserves the center-
of-mass momentum k, thus reflecting the discrete transla-
tion symmetry of the 2D material sheet. This symmetry
is then explicitly broken through the interaction Hamil-
tonian ĤI, because the electric-field distribution F̃c is
not translationally invariant. In this section, we intro-
duce a basis transformation of the excitons that provides
a natural starting point for analyzing this system. The
transformation defines a localized exciton mode, which
we denote the exciton reaction coordinate in the spirit of

quantum chemistry, where the concept of reaction coordi-
nates has been developed in a similar fashion to describe
nuclear motion in molecules19–24. In the new basis, the
light-matter interaction is greatly simplified, because the
electromagnetic field couples only to the exciton reaction
coordinate. The transformation comes at the cost of in-
troducing a reservoir of residual exciton modes, which in
turn are coupled to the reaction coordinate. However,
as we shall see in Section IV, there are several successful
approximate strategies for treating these residual modes.

A. Exciton reaction coordinate and residual
excitonic spectral density

We now define a new basis of exciton modes, {B̂i},
generated by a unitary transformation U as25

B̂i =
∑
αk

Uiαkb̂αk, (19)

in which the first row in the transformation matrix U is
given by U0αk = g∗αk(

∑
αk |gαk|

2
)−1/2, such that

B̂0 =
[∑
αk

|gαk| 2
]−1/2∑

αk

g∗αkb̂αk. (20)

We denote this collective mode as the exciton reaction
coordinate. The remaining rows in U are constructed via
Gram-Schmidt orthogonalisation as orthonormal vectors,
such that U is unitary, i.e.∑

αk

U∗jαkUiαk = δij . (21)

The light–matter interaction can now be written in the
much simpler form

ĤI = h̄G0(B̂0â
† + B̂†0â), (22)

where G0 =
√∑

αk |gαk|
2
. This illustrates the advan-

tage of introducing the reaction coordinate: by construc-
tion, the resonant electromagnetic field now only inter-
acts with the weighted sum of Wannier-Mott excitons
defined by B̂0. The transformation U thus precisely cap-
tures the notion of a localized excitonic state, which is
defined by the interaction with the electromagnetic field.
This physically appealing reformulation of the dynam-
ics comes at the computational price that the associated
free-exciton Hamiltonian Ĥx,0 is no longer diagonal,

Ĥx,0 =
∑
ii′

h̄Ωii′B̂
†
i B̂i′ , (23)

where Ωii′ =
∑
αkEkUiαkU

∗
i′αk and thus Ωii′ = Ω∗i′i. In

this way, the exciton reaction coordinate is coupled to a
residual environment of other exciton modes, B̂i, i > 0.
As we shall see later, it is useful to have access to the
spectral density of this environment, and this requires
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a re-diagonalisation as follows. The procedure starts by
separating out the terms in Ĥx,0 that contain the reaction

coordinate B̂0,

Ĥx,0 =h̄Ω00B̂
†
0B̂0 + h̄

∑
i>0

(
Ω0iB̂

†
0B̂i + Ωi0B̂

†
i B̂0

)
+
∑
ii′>0

h̄Ωii′B̂
†
i B̂i′ .

(24)

This can be written in the compact matrix form

Ĥx,0 = h̄Ω00B̂
†
0B̂0 + B̂†h̄λB̂0 + B̂0h̄λ

†B̂ + B̂†h̄Ω′B̂,
(25)

where Ω′ is constructed from Ω by removing the first row
and column, and B̂ and λ are vectors with elements B̂i
and λi = Ωi0, respectively, with i > 0. We now wish to
re-diagonalise the part of the Hamiltonian governing the
modes with i > 0. To do this, we define Ũ as the trans-
formation that diagonalises Ω′, such that Ω̃ := Ũ†Ω′Ũ
is diagonal. We also define a transformed set of modes,

B̂ = Ũ ˆ̃B. Since Ω′ is a Hermitian matrix, Ũ is unitary,
and the columns of Ũ are the eigenvectors of Ω′. In this
way, the last term in Eq. (25) can be written in a diagonal
form, and the free-exciton Hamiltonian can be written as

Ĥx,0 = h̄Ω0B̂
†
0B̂0 +

∑
i>0

h̄Ω̃i
ˆ̃B†i

ˆ̃Bi + h̄λ̃iB̂0
ˆ̃B†i + h̄λ̃∗i B̂

†
0

ˆ̃Bi,

(26)

where λ̃ = Ũ†λ and we have defined Ω0 := Ω00, Ω̃i :=
Ω̃ii. From Eq. (26) it is evident that the exciton states
of the residual environment are mutually uncoupled and
couple only to the exciton reaction coordinate. The spec-
tral density of the residual environment can be calculated
from Eq. (26) as

Jres(ω) =
∑
i>0

|λ̃i|
2
δ(ω − Ω̃i). (27)

This is in short called the residual spectral density of the
exciton reaction coordinate. Although the procedure of
constructing the reaction coordinate transformation ma-
trix U and subsequently the re-diagonalisation matrix Ũ
can be carried out numerically, this scales poorly with
the number of elements in the matrix. Fortunately, the
procedure of extracting reaction coordinates and resid-
ual spectral densities has been extensively studied in the
literature of open quantum systems24,25,71–73, and there
are direct ways of obtaining the residual spectral density
without going through the intermediate steps as above.

The starting point for such analyses is the exciton spec-
tral density of the full set of exciton states:

J(ω) =
∑
αk

|gαk|2δ(ω − ωk), (28)

from which we can derive the necessary quantities related
to the exciton reaction coordinate. Starting with the

reaction coordinate frequency, we have

Ω0 =
∑
αk

U∗0αkωkU0αk =

∫
dω ωJ(ω)∫
dω J(ω)

, (29)

which is simply the first moment of J(ω). The coupling
strength can be calculated similarly,

G0 =

√∑
αk

|gαk| 2 =

√∫
dω J(ω). (30)

The residual spectral density is more involved. Here we
shall not prove the relation between J and Jres, but state
a result from Ref. 71,

Jres(ω) =
G2

0J(ω)

Φ2(ω) + π2J2(ω)
, (31)

where

Φ(ω) =
1

2
lim
`→0+

∫ b

a

dν J(ν)

[
1

ω − ν − i`
+

1

ω − ν + i`

]
(32)

is the so-called reducer and the interval [a, b] is the fre-
quency support of J(ω)71; in the present case, the sup-
port of the spectral density is [ω0,∞). When calculating
the reducer numerically, it is convenient to use the form71

Φ(ω) = J(ω) ln

[
ω − a
b− ω

]
−
∫ b

a

dν
J(ν)− J(ω)

ν − ω
, (33)

where the upper limit of the support, b, is chosen suf-
ficiently large that Jres can be considered independent
thereof. To deepen the intuitive understanding of the
reaction coordinate transformation for our 2D excitonic
systems, and for practical reasons, we can rewrite the
creation operator of the exciton reaction coordinate by
introducing the real-space exciton operators b†α(r) =

S−1/2
∑

k e
−ik·rb†αk, such that

B†0 =
∑
α

∫
d2rψα0 (r)b†α(r), (34)

where ψα0 (r) is the real-space exciton reaction coordinate
wave function,

ψα0 (r) = − F̃c(r, z0) · pαcv√∑
α′

∫
d2r′ |F̃c(r′, z0) · pα′

cv|
2
. (35)

From the form of ψα0 (r), it is clear that the exciton reac-
tion coordinate inherits its spatial distribution from the
vectorial projection of the electromagnetic field distribu-
tion F̃c(r) onto the plane of the 2D material.

It is useful to establish the connection between the
coupling strength G0, and the electromagnetic field dis-
tribution given by F̃c(r). This can be obtained by using
the general exciton–field coupling coefficient, Eq. (17),
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along with the expression for G0, Eq. (30), which leads
directly to

h̄G0 =

√
h̄e2

0

πε0m2
0ωca2

B

∑
α

∫
d2r |F̃c(r, z0) · pαcv|

2
. (36)

Importantly, the coupling strength is independent of the
lateral confinement length of the optical mode. This can
already be seen in Eq. (36), where the integral over the
mode extends over the entire 2D surface. The indepen-
dence of G0 on the lateral confinement stems from the
fact that the exciton reaction coordinate wave function,
Eq. (35), is perfectly matched with the optical mode
within the 2D plane. In Sec. III C, we show this analyti-
cally for the case of a mode profile that is separable in the
in-plane and out-of-plane coordinates and see that the
coupling strength only depends on the out-of-plane con-
finement length. In Appendix D, we have also performed
numerical calculations with a QNM of a gold nanorod res-
onator as in Fig. 1, where the resonator length is varied.
The calculations show that the contribution to G0 from
the integral over the normalised QNM profile in Eq. (36)
varies only about 1% when the length of the nanorod -
and hence the lateral confinement length of the QNM -
is varied between 80 nm and 95 nm.

B. Exciton-exciton interactions within the reaction
coordinate

The exciton-exciton interaction, Ŵ , can be rewritten
in the transformed basis of exciton modes {B̂i} as

Ŵ =
∑
αkk′q

∑
ii′jj′

h̄Wkk′qUiαk+qUjαk′−qU
∗
j′αk′U∗i′αk

× B̂†i B̂
†
j B̂j′B̂i′ .

(37)

In the dynamical model derived below, we account only
for the exciton-exciton interactions within the exciton re-
action coordinate. This is justified by the assumption
that this is the only region of the exciton Hilbert space
where the exciton density is sufficiently large to give a
significant contribution to the dynamics. Thus, keeping
only the term i, i′, j, j′ = 0 in the summation, we end up
with the interaction term

Ŵ0 = h̄W ′0B̂
†
0B̂
†
0B̂0B̂0, (38)

with the effective nonlinear interaction strength

W ′0 =
∑
αkk′q

Wkk′qU0αk+qU0αk′−qU
∗
0αk′U∗0αk. (39)

When the characteristic confinement length of the elec-
tromagnetic field is large compared with the exciton Bohr
radius, the transformation elements U0k decay on a mo-
mentum scale that is small compared to the momentum
variation of Wkk′q. In this regime, we can approximate

Wkk′q ' W000. Furthermore, using the spatial reaction
coordinate wave function, ψ0, the effective nonlinear in-
teraction strength can be vastly simplified as

W ′0 = SW000

∑
α

∫
d2r |ψα0 (r)| 4. (40)

This result is consistent with Ref. 12, where it is assumed
that there exists an excitonic eigenmode with the same
spatial wave function as the resonator mode. As we shall
see explicitly later, the integral of |ψα0 (r)| 4 is a measure
of only the lateral confinement of the optical mode. Thus,
the lateral optical confinement is inherited by the exciton
reaction coordinate, thereby determining the interaction
strength between excitons within the reaction coordinate.

C. Localized and separable mode profiles

In this subsection, we investigate the coupling dynam-
ics in an idealized limit of an electromagnetic mode func-
tion that is localized and separable. We do this in or-
der to illustrate the mechanism by which the perfect co-
localization of the exciton reaction coordinate and the
resonant field leads to a coupling strength that is inde-
pendent of the lateral extent of the electromagnetic field.

The electromagnetic field distribution F̃c(r) is local-
ized in space, as discussed in Section II B. It is advanta-
geous, therefore, to think of F̃c(r) as a hypothetical lo-
calized solution to the wave equation with a purely real
frequency. Even if all resonant electromagnetic modes
of optical cavities and plasmonic particles have finite Q-
values and are leaky in nature, the abstraction of perfect
temporal and spatial confinement allows us to derive a
number of interesting analytical results regarding the ef-
fect of the electromagnetic field distribution on the cou-
pling strength. At positions close to the resonator, F̃c(r)

closely resembles the QNM f̃c(r) since they are related
by the analytical continuation ω̃c → ωc. Therefore, we
expect the general findings to apply qualitatively also to
electromagnetic resonators with finite Q-values.

With this motivation, we consider now a localized
mode function F̃c(r) in an environment of constant and
real permittivity ε, and we assume that the field is sepa-
rable in the lateral and perpendicular coordinates, such
that

F̃(x, y, z) = nF̃z(z)F̃‖(x, y), (41)

where n is the unit polarisation vector of the mode. Since
F̃(r) is localized in space, it obeys the normalization re-
quirement

εeff

∫
dz |F̃z(z)|

2
∫

d2r |F̃‖(r)| 2 = 1, (42)

in which εeff is an effective dielectric constant to account
for the dielectric response of the surrounding material.
While ε(r) can be considered constant within the 2D
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semiconductor sheet, it generally varies across the sur-
rounding structure. In order to focus on the influence of
the confinement length scales, however, we approximate
the combined effect by use of an effective dielectric con-
stant εeff . We note that this assumption is not generally a
requirement for using the theory, and for the numerically
calculated QNM that we describe in Sec. V and App. D,
we do not make any such simplifying assumptions about
the dielectric environment.

Using the separable mode function in Eq. (41) and the
normalization reguirement in Eq. (42), we can demon-
strate that G0 is entirely independent of the lateral mode
distribution by rewriting it as

h̄G0 =

√√√√∑
α

h̄e2
0|n · pαcv|

2

πε0m2
0ωca2

BLz
, (43)

where

Lz =
εeff

∫
dz |F̃z(z)|

2

|F̃z(z0)| 2
(44)

is the out-of-plane confinement length. It follows from
Eq. (43) that the coupling strength is independent of the
lateral mode distribution, and that it scales with the out-

of-plane confinement length as G0 ∝ L
−1/2
z . For ease of

notation, we shall use an implicit summation over the val-
ley index as |n · pcv| = (

∑
α |n · pαcv|

2
)1/2 when stating

the polarisation overlap used in specific calculations.
The reaction coordinate exciton–exciton interaction

strength W ′0 can be written using Eq. (40) as

h̄W ′0 = h̄SW000ηn

∫
d2r |F‖(r)| 4(∫
d2r |F‖(r)| 2

)2 , (45)

where

ηn =

∑
α |n · pαcv|

4(∑
α |n · pαcv|

2
)2 (46)

is a polarisation-dependent prefactor. This prefactor
takes values between 1/2 and 1. The maximal value, 1, is
obtained when n is orthogonal to one of the momentum
matrix elements, i.e. n·pαcv = 0. Conversely, the minimal
value, 1/2, is obtained when |n · pαcv| is equal for the two
polarisations.

1. Gaussian lateral field distribution

We now proceed by assuming that the lateral field
distribution defined by the electromagnetic resonator is
Gaussian with a confinement length scale L,

F̃‖(x, y) =
e−(x2+y2)/(2L2)

L
√
π

. (47)
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FIG. 3. Excitonic spectral density (solid lines) and corres-
ponding residual spectral densities (dotted lines, both scaled
up by a factor of 104) for a Gaussian lateral field distribution
with L = 20 nm, Lz = 200 nm and |pcv · n|/pcv = 0.3, cou-
pled to monolayer WS2 (dark blue) and MoS2 (light blue),
respectively. The inset shows the Gaussian lateral field dis-
tribution F̃‖(x, y).

We note that
∫

d2r |F̃‖(r)| 2 = 1, so that the normalisa-

tion requirement is εeff

∫
dz |F̃z(z)|

2
= 1, and the exciton

coupling strengths in Eq. (17) can be written as

gαk = −

√
4e2

0|n · pαcv|
2
L2

h̄ε0m2
0ωca2

BS
F̃z(z0)e−

1
2 (kL)2 . (48)

This relatively simple expression for the coupling
strength allows us to evaluate the expression for the spec-
tral density in Eq. (28) by writing the summation over
k as an integral,

∑
k →

S
(2π)2

∫
d2k. In this way, we find

that we can write the spectral density compactly in terms
of the reaction coordinate coupling strength in Eq. (43)
as

J(ω) = (G2
0/ξ)Θ(ω − ω0)e−(ω−ω0)/ξ, (49)

where ξ = h̄/(2ML2) is a cutoff frequency and Θ is the
Heaviside function. Using this analytical expression for
the spectral density, it is also possible to evaluate the
residual spectral density in Eq. (31) analytically,

Jres(ω) =
ξΘ(ω − ω0)e(ω−ω0)/ξ

Ei2[(ω − ω0)/ξ] + π2
, (50)

where Ei(x) =
∫ x
−∞ dz exp(z)/z is the exponential inte-

gral function.
Fig. 3 shows an example of the spectral density and

residual spectral density generated by the Gaussian field
distribution in Eq. (47) coupled to WS2 and MoS2, re-
spectively. As can be seen from Eq. (49), the magnitude
of the spectral density scales as the ratio G2

0/ξ. Here, G0

depends on the material-specific parameters pαcv and aB

along with the out-of-plane confinement length scale Lz.
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The cutoff frequency ξ depends on the material-specific
total exciton mass M as well as the in-plane confinement
length scale of the resonator, L. The magnitude of the
residual spectral density, on the other hand, scales as
the cutoff frequency ξ. Thus, the cutoff frequency deter-
mines not only the relevant frequency scale of the exciton
spectral density, but also the relative strength of the in-
teractions with the residual exciton environment.

The reaction coordinate exciton–exciton interaction
strength W ′0 can be obtained from Eq. (45) as

h̄W ′0 =
h̄SW000ηn

2πL2
, (51)

As anticipated in Sec. I, this nonlinear interaction
strength scales inversely with the confinement area, L2,
reflecting that the co-localisation of multiple excitons
(and thereby their interaction) is fully determined by the
electromagnetic field distribution. For the calculations
in this article that involve nonlinear interactions with
Gaussian electromagnetic modes (Sec. IV C 3), we take
the polarisation prefactor to be unity, corresponding to
a circularly polarised optical mode.

IV. TIME EVOLUTION

Based on the general framework in Sec. II and the
reformulation in terms of the reaction coordinate in
Sec. III, we are now in a position to calculate the time
evolution of the excitations in the coupled system com-
prising the electromagnetic resonator and the 2D mate-
rial.

In this section, we present three strategies of increas-
ing complexity for calculating the system dynamics. The
first method, which is exact when excitonic broadening
effects are ignored, is based on direct time evolution of
the single-excitation product states formed by the Fock
states of a single electromagnetic excitation and the con-
tinuum of single-exciton states with given momentum.
The second method is based on a Markovian treatment
of the residual exciton modes, and a master equation for
the reduced density operator of the resonant electromag-
netic field and the exciton reaction coordinate is derived.
In this formulation, one can account for excitonic decay
and dephasing within the reaction coordinate, and exter-
nal driving of the system can be included as well. The
Markovian master equation is benchmarked against the
exact treatment when excitonic broadening effects and
external driving are ignored, thereby providing a refer-
ence calculation to assess the Markov approximation for
the interaction with the residual exciton modes. The
third method is based on an iterative extension of the
reaction coordinate mapping, allowing one to represent
the residual exciton modes by a one-dimensional chain
of bosonic modes. This, in turn, enables the model to
account for non-Markovian features of the residual envi-
ronment, although our implementation can only evolve
the system up to a finite time. Furthermore, using this

approach, it is also straightforward to include external
driving with a time-dependent amplitude, as is the case
when the system is excited by a laser pulse.

A. Exact evolution in the single-excitation sector

As a relatively simple starting point, and to establish
a benchmark for evaluating the precision of more com-
plicated approaches for time-evolution calculations, we
consider in this section the Fock state representation of a
simplified model system. This approach is motivated by
the fact that the dynamics can be solved exactly, when
the coupled system is restricted to the one-excitation sec-
tor. In practice, we do this by initialising the resonant
electromagnetic field in a single-photon Fock state, such
that nonlinearities can be neglected. We can then expand
the combined state as

|Ψ(t)〉 = φc(t) |1; {0}〉+
∑
αk

φαk(t) |0; 1αk〉 , (52)

where |1; {0}〉 denotes the state with a single electromag-
netic excitation and zero excitons and |0; 1αk〉 denotes the
state with no electromagnetic excitations combined with
a single exciton with momentum k. The amplitude φc

then obeys the equation of motion74

dφc(t)

dt
= −

∫ t

0

dt′K(t− t′)φc(t′)− γcφc(t), (53)

where

K(τ) = Θ(τ)

∫
dω J(ω)e−i(ω−ωc)τ . (54)

Compared to Ref. 74, the roles of the electromagnetic
and electronic degrees of freedom are interchanged, so
that the excitons act as a continuum with which the sin-
gle electromagnetic field of the resonator interacts. Since
J(ω) does not suffer from an ultraviolet divergence, there
is no need to introduce a cut-off in order to evaluate the
integral. Although this method is in principle exact, it is
limited to single-excitation problems and cannot be used
to model problems with external driving or dephasing
effects. For this reason, we use the method mostly for
reference calculations for the master equation formula-
tions to be described below.

B. Secular Markovian master equation

In this section we derive a secular Markovian master
equation for the reduced density operator ρ̂ of the sys-
tem comprising the resonant electromagnetic field and
the exciton reaction coordinate, where the residual exci-
ton modes are traced out. We subsequently benchmark
this master equation approach against the exact method
from section IV A. We do this in the limit where dephas-
ing and driving effects are turned off in order to assess
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the accuracy of the master equation and study the con-
ditions for describing the interactions with the residual
exciton modes within the Markov approximation.

In the Hamiltonian governing the evolution of the reso-
nant electromagnetic field, we include external laser driv-
ing with frequency ωd and constant amplitude F in addi-
tion to the free evolution described in Section II B, such
that the part of the Hamiltonian governing the field evo-
lution is Ĥc = h̄ωcâ

†
câc + h̄F (eiωdtâc + e−iωdtâ†c).

Next, we divide the total Hamiltonian into contribu-
tions describing the exciton reaction coordinate and the
resonant mode, being the system (S), the residual ex-
citon modes, being the reservoir (R), and their mutual

coupling (SR), as Ĥ = ĤS + ĤR + ĤSR. Putting it all
together, we have

ĤS = h̄(ωc − ωd)â†câc + h̄(Ω0 − ωd)B̂†0B̂0 + Ŵ0

+ h̄G0(B̂†0âc + B̂0â
†
c) + h̄F (âc + â†c),

ĤR =
∑
i>0

h̄(Ω̃i − ωd) ˆ̃B†i
ˆ̃Bi

ĤSR =
∑
i>0

h̄λ̃iB̂0
ˆ̃B†i + h̄λ̃∗i B̂

†
0

ˆ̃Bi,

(55)

in which we have expressed the Hamiltonian in a refer-
ence frame rotating with the driving frequency ωd. The
standard Markovian master equation obtained by tracing
out the environment is given by75

dρ̂

dt
= − i

h̄
[ĤS, ρ̂] + 2γcD(âc, ρ̂) +K[ρ̂], (56)

in which the Lindblad dissipator D(x̂, ρ̂) is specified in
Eq. (9), and

K[ρ̂] = − 1

h̄2

∫ ∞
0

dτ trR[ĤSR, [ĤSR(−τ), ρ̂⊗ ρ̂0
R]], (57)

where ĤSR(−τ) = e−i(ĤS+ĤR)τ/h̄ĤSRe
+i(ĤS+ĤR)τ/h̄ is

the interaction-picture time evolution of ĤSR and ρ̂0
R is

the initial state of the residual excitonic environment,
which we take to be the exciton vacuum. As discussed
in Appendix B, we can use the secular approximation to
write the exciton dissipator K[ρ̂] in a simpler form as

K[ρ̂] = −
∑
ω

{
Γres(ω)D[B̂0(ω), ρ̂]

− i∆res(ω)[(B̂0(ω))†B̂0(ω), ρ̂]
}
,

(58)

where the sum is over all system eigenfrequency differ-
ences ω, and the exciton dissipation rate Γres(ω) can be
written in terms of the residual spectral density as

Γres(ω) = 2πJres(ω + ωd). (59)

The operators B̂0(ω) and B̂†0(ω) are eigenstate-projected
exciton operators, which are described in detail in
App. B, where the term ∆res(ω) is also defined. In

the weak-driving limit, F � G0, γc, only the low-energy
states of the system are populated, and G0 dominates
the structure of the coupled system. In this limit,
we can calculate the eigenstates of ĤS in the basis
{|0, 0〉 , |1, 0〉 , |0, 1〉}, where |nc, nx〉 denotes a Fock state
with nc electromagnetic energy quanta in the resonant
field mode and nx excitons in the reaction coordinate
mode. We find that there are only two non-zero contri-
butions to the summation over ω, corresponding to the
upper and lower polariton modes, with frequencies

ω̄+ =
1

2
(ωc + Ω0 − 2ωd + η),

ω̄− =
1

2
(ωc + Ω0 − 2ωd − η). (60)

The corresponding eigenstate-projected operators are the
annihilation operators of the upper and lower polaritons,

B̂0(ω̄+) =
2G0(−δcx + η)

4G2
0 + (−δcx + η)2

âc +
(−δcx + η)2

4G2
0 + (−δcx + η)2

B̂0

B̂0(ω̄−) = − 2G0(δcx + η)

4G2
0 + (δcx + η)2

âc +
(δcx + η)2

4G2
0 + (δcx + η)2

B̂0

(61)

where δcx = ωc − Ω0 is the exciton–resonator detuning
and η =

√
4G2

0 + δ2
cx is the polariton splitting. The bars

over ω̄± signify that the polariton frequencies are given in
the rotating frame. They are related to the corresponding
lab frame frequencies ω± as ω± = ω̄± + ωd. In the case
where the lower-polariton energy ω− is below the exciton
gap ω0, (at resonance, this amounts to G0 > (Ω0 − ω0))

the contribution to the dissipator from B̂0(ω̄−) vanishes,
and we can write the master equation in the simplified
form

dρ̂

dt
= − i

h̄
[ĤS, ρ̂] + 2γcD(âc, ρ̂) + Γres(ω̄+)D(B̂′0, ρ̂),

(62)

where B̂′0 := B̂0(ω̄+).
These derivations put us in a position to understand

the impact of the different energy scales in the system
on a deeper level. In Fig. 4, the residual spectral den-
sity is shown along with an indication of the reaction
coordinate frequency Ω0. The upper and lower polari-
ton frequencies ω± are also indicated for the resonant
case ωc = Ω0, where ω± = Ω0 ± G0. From Eq. (59),
we know that the dissipation rates from the polaritons
into the residual environment are given by 2πJres(ω±).
Thus, when the coupling strength is increased far be-
yond the cutoff frequency ξ, the polaritonic peaks are
pushed away from the peak of Jres(ω), and the effective
interaction strength with the residual excitons is conse-
quently reduced. Correspondingly, if the cutoff frequency
is decreased, for example by increasing the lateral con-
finement length L, the same reduction in effective inter-
action strength is observed. In the following section, we
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FIG. 4. Residual spectral density (green shaded area) for a
Gaussian optical mode shown along with the exciton reaction
coordinate frequency, Ω0, and the polariton frequencies, ω±
(orange dotted lines), for the resonant case, ωc = Ω0 and for
G0 = 2ξ. The indicated frequencies are shown relative to
the exciton gap ω0. In the Markovian master equation, the
dissipation rates from the polaritons into the residual exciton
environment are proportional to Jres(ω±). Thereby, a large
coupling strength, G0, relative to the cutoff frequency, ξ, leads
to a weaker interaction with the residual environment, as the
polariton peaks are displaced further away from the peak of
Jres.

shall see that this phenomenon of effectively decoupling
the residual excitons when G0 � ξ leads to a large pa-
rameter regime where the residual environment can be
safely ignored.

1. Benchmarking

In Fig. 5a we show the temporal evolution of the res-
onator population for three different lateral confinement
length scales. The initial state is a single excitation in
the resonator. We compare the time evolution calcu-
lated by the exact equation of motion of the resonant
electromagnetic field in Eq. (53) (black solid lines) with
the secular Markovian master equation with all terms in-
cluded in Eq. (58) (green dots), as well as the simplified
Markovian master equation in Eq. (62) (dashed orange
lines). For reference, we have also shown the time evo-
lution generated when the residual excitons are entirely
ignored (red dotted lines). In general, the dynamics show
Rabi oscillations due to the interaction between the ex-
citon reaction coordinate and the resonator field. These
oscillations are damped due to Markovian losses of the
resonator and interactions with the residual excitons. As
discussed earlier, the effect of the residual excitons be-
comes more pronounced as the lateral size decreases. In
Fig. 5b, the relative errors of the three approximate ap-
proaches are shown. The errors are calculated as

Erel =

∫
dt [
〈
â†c(t)âc(t)

〉
− |φc(t)|2]2∫

dt |φc(t)|4
, (63)

where
〈
â†c(t)âc(t)

〉
is the population of the electromag-

netic resonator obtained with one of the master equa-
tions and φc(t) is obtained from the exact time evolu-
tion. Furthermore, the Markovian decay rate into the
residual exciton modes Γres is shown (blue solid line,
right y-axis). The dependence of the errors on the lateral
length scales confirms that the influence of the residual
excitons is more pronounced at small length scales. For
the chosen parameters, we find that the residual exci-
tons can be ignored when L >∼ 4 nm. Furthermore, we
see that the Markovian master equation provides a use-
ful description of the interactions with the residual envi-
ronment, which improves the accuracy of the calculated
time evolution. We also conclude that the error of the
simplified Markovian master equation, Eq. (62), is com-
parable with the full Markovian dissipator, Eq. (58) with
all secular terms included. In a significant portion of the
parameter regime, the simplified master equation even
performs slightly better.

2. Inclusion of excitonic broadening effects

Because of interactions with lattice phonons, the exci-
tons experience population decay and dephasing, which
result in a temperature-dependent broadening of the ex-
citon line76,77. In Ref. 76, it was found that the dom-
inant mechanisms generating excitonic decay are radia-
tive recombination (which is temperature-independent)
and scattering with phonons at the Λ point. In addi-
tion, an important contribution to the exciton linewidth
was found from intra-valley scattering with phonons at
the Γ point. Specifically, the total exciton linewidth of
various monolayer transition-metal dichalcogenides was
found to be well described by the temperature-dependent
expression Γx = γ0 + c1T + c2/[exp{Ω/kBT} − 1], where
c1, c2 and Ω are material-dependent coefficients. For
WS2 and WSe2, the temperature independent term γ0

contains contributions from radiative decay and sponta-
neous emission of Λ-phonons. The linear coefficient, c1,
stems from intra-valley scattering with thermally excited
phonons at the Γ point, and the last term accounts for in-
teractions with thermally excited phonons at the Λ point.
The first and last terms describe processes that lead to a
decay of excitons. Whereas radiative decay is accounted
for through the interaction with the electromagnetic field,
ĤI, we include the possibility of scattering into dark ex-
citon states as a decay term in the master equation of the
form 2γxD(B̂0, ρ̂), where γx = γnr

0 +c2/[exp{Ω/kBT}−1]
and γnr

0 is the non-radiative contribution to γ0. Intra-
valley scattering with Γ-phonons, on the other hand,
does not lead to a population decay but rather to a de-
phasing, similar to virtual phonon transitions to higher-
lying excited states seen in systems with localised exciton
states78–80. This process can be included in the mas-

ter equation by a dephasing term, 2γ′xD(B̂†0B̂0, ρ̂), where
γ′x = c1T . Thus, although the total exciton linewidth,
Γx = γx +γ′x, depends only on the sum of the two contri-
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Material γnr
0 [meV] c1 [µeV/K] c2 [meV] Ω [meV]

WSe2 3.6 56 9.4 15
WS2 2.1 28 6.5 20
MoS2 0 91 8.4 (decay), 7.2 (dephasing) 30

TABLE II. Parameters from Ref. 76 for calculation of temperature-dependent exciton decay and dephasing rates. The param-
eters are the temperature-independent contribution to the non-radiative decay from phonon interactions, γnr

0 , the contribution
to dephasing from intravalley phonon scattering, c1, the contribution to decay (and for MoS2 also dephasing) due to intervalley
phonon scattering, c2, and the typical phonon energy for intervalley processes, Ω.

,

FIG. 5. a. Exact transient dynamics of Gaussian resonator
mode coupled resonantly to WS2 (black solid lines) com-
pared to the solution of the simplified Markovian master
equation, Eq. (62) (orange dashed lines) and the Markovian
master equation with all secular terms included, Eq. (58)
(green dots). For reference, the solution of the master equa-
tion without taking the residual exciton environment into ac-
count is also shown (dotted red lines). Parameters: Lz =
200 nm, 2h̄γc = 6.6 meV, |pcv · n|/pcv = 0.2, corresponding
to h̄G0 = 7.7 meV. b. The relative error (left axis) of the
three approximate approaches as a function of lateral con-
finement length, L, with line styles matching those in panel
a. The blue solid line (right axis) shows the Markovian decay
rate from the upper polariton into the residual environment.

butions, it is important to note that there is a difference
in nature between population decay and dephasing pro-
cesses. In Ref. 76, monolayer MoS2 was also studied,
and it was found that the coefficient c2 contains contri-
butions both from intra-valley scattering, i.e. dephasing,
and from interactions with Λ phonons, i.e. decay into
dark exciton states. The parameters from Ref. 76 are
presented in Table II.

We note that recent studies indicate strain as a possi-
ble way of energetically shifting the direct K-valley ex-
citon below the indirect, momentum-dark K − Λ exci-
ton in monolayer WSe2

81. Such an energetic cross-over
would arguably lead to significant reduction of phonon-
induced decay of the bright exciton, even with a vanishing
decay at zero temperature, as is the case for Mo-based
transition-metal dichalcogenides, where the K − Λ exci-
ton is below the direct K-exciton in the absence of strain.

C. Non-Markovian treatment of residual excitons
using chain mapping

In some situations, e.g. for small lateral confinement
scales, it may be necessary to account for non-Markovian
effects in the interaction with the residual excitonic envi-
ronment. This can be done by extracting additional reac-
tion coordinates from the residual environment, thereby
extending the system Hilbert space to include the most
important environmental degrees of freedom. Since the
exciton reaction coordinate Hamiltonian in Eq. (26) is
structurally equivalent to the original Hamiltonian, we
can iterate the procedure of extracting reaction coordi-
nates, thereby generating a one-dimensional chain of cou-
pled modes, as illustrated in Fig. 6. This strategy has
been formally studied in the literature71,73; here, we de-
rive it iteratively, starting from the reaction coordinate
transformation. First, we re-write Eq. (26) by adding
the superscript ‘(0)’ to the residual modes and quantities
related to them,

Ĥx,0 =h̄Ω0B̂
†
0B̂0 +

∑
i>0

h̄Ω̃
(0)
i

ˆ̃B
(0)†
i

ˆ̃B
(0)
i

+
∑
i>0

h̄λ̃
(0)
i B̂0

ˆ̃B
(0)†
i + h̄λ̃

(0)∗
i B̂†0

ˆ̃B
(0)
i .

(64)

The superscript ‘(0)’ indicates that the residual environ-

ment is coupled to the reaction coordinate B̂0. Corre-

spondingly, we label the spectral density of the B̂
(0)
i -
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modes by J
(0)
res =

∑
i>0 |λ̃

(0)
i |

2
δ(ω − Ω̃

(0)
i ). We can now

define a new reaction coordinate

B̂1 =
[∑
i>0

|λ̃(0)
i |

2]−1/2∑
i>0

λ̃
(0)
i

ˆ̃B
(0)
i . (65)

By repeating the procedure of defining a new residual
reservoir and re-diagonalising it, as in Sec. III, we obtain

Ĥx,0 = h̄Ω0B̂
†
0B̂0 + h̄Ω1B̂

†
1B̂1 + h̄G1(B̂0B̂

†
1 + B̂†0B̂1)

+
∑
i>0

h̄Ω̃
(1)
i

ˆ̃B
(1)†
i

ˆ̃B
(1)
i + h̄λ̃

(1)
i B̂1

ˆ̃B
(1)†
i + h̄λ̃

(1)∗
i B̂†1

ˆ̃B
(1)
i ,

(66)

where G1 =

√∑
i>0 |λ̃

(0)
i |

2
=

√∫
dω J

(0)
res (ω) and Ω1 =∫

dω ωJ
(0)
res (ω)/

∫
dω J

(0)
res (ω). Thus, from the residual

exciton spectral density, we can extract a new collec-
tive mode with frequency Ω1 that couples to B̂0 with
strength G1 and to a new residual exciton environment
with spectral density generated by Eq. (31) (cf. Fig. 6b).
This process can be iterated indefinitely, thereby gener-
ating a one-dimensional chain of coupled modes. We al-

ready know that the first residual spectral density J
(0)
res (ω)

is related to the original exciton spectral density J(ω)
through Eq. (31). Thus, the iterative procedure of ex-
tracting new reaction coordinates generates a sequence
of residual spectral densities through the recurrence re-
lation

J (n)
res (ω) =

G2
nJ

(n−1)
res (ω)

Φ2
n−1(ω) + π2[J

(n−1)
res (ω)]2

, n ≥ 0, (67)

where J
(−1)
res (ω) := J(ω), Gn =

√∫
J

(n−1)
res (ω) dω is the

coupling strength between the modes n and n− 1, and

Φn(ω) =
1

2
lim
`→0+

∫ b

a

J (n)
res (ν)

[
1

ω − ν − i`
+

1

ω − ν + i`

]
.

(68)

The corresponding mode frequencies are Ωn =∫
J

(n−1)
res (ω)ω dω /

∫
J

(n−1)
res (ω) dω, and the Hamiltonian

at the n’th iteration of the prodedure is thus

Ĥn = h̄ωcâ
†â+ h̄G0(â†B̂0 + aB̂†0) + Ŵ

+

n∑
i=0

h̄ΩiB̂
†
i B̂i +

n−1∑
i=0

h̄Gi+1(B̂†i B̂i+1 + B̂iB̂
†
i+1) +H ′n,

(69)

where

Ĥ ′n =
∑
j

Ω̃
(n)
j B̂

(n)†
j

ˆ̃B
(n)
j + λ̃

(n)
j B̂nB̂

(n)†
j + λ̃

(n)∗
j B̂†n

ˆ̃B
(n)
j

(70)

describes interactions with the n’th residual exciton en-
vironment.

...

a.

b.

c.

c

c

c

FIG. 6. Illustration of the chain mapping technique. a.
Schematic of the single-mode reaction coordinate mapping,
which generates a single reaction coordinate (B̂0) coupled to

a residual exciton environment with mode operators ˆ̃B
(0)
i . b.

When the reaction coordinate mapping is repeated, a new
reaction coordinate, B1, is extracted from the residual envi-
ronment. This reaction coordinate is then coupled to a new

residual environment with operators ˆ̃B
(1)
i . c. After n repeti-

tions of the mapping, the excitons are represented as a chain
with n + 1 bosonic modes and a residual excitonic environ-
ment.

A possible strategy for making the non-Markovian time
evolution tractable is to neglect the nth residual environ-
ment, thereby truncating the chain at the nth level,

H̃n = Ĥn − Ĥ ′n. (71)

This procedure converges towards the exact result as
n → ∞, and the number of chain links required to ob-
tain an error that is low enough for the method to be
useful depends on the specific system studied. For ex-
ample, it was previously found that structures with Fano
interference effects are very challenging to capture with
a one-dimensional chain representation82. Furthermore,
the error of a particular n-truncation depends on the time
scale over which one is interested in the dynamics: If the
chain is initially unpopulated, population will flow from
the resonator mode through the chain. This is the rele-
vant situation in the present case because the initial state
is the thermal state at or below room temperature where
there are no excitons. At longer times, a larger portion of
the chain is explored by non-vanishing populations and
thus more chain links are necessary to resolve the evolu-
tion. In the time evolution of the truncated chain sys-
tem we also include dissipation of the electromagnetic
field and excitonic line broadening effects of the reaction
coordinate as discussed in Sec. IV B 2, by evolving the
density operator of the resonant field and n chain modes
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FIG. 7. Comparison between truncated chain mapping and
exact solution for WS2 coupled to a Gaussian resonator mode
with L = 4 nm, Lz = 200 nm, 2h̄γc = 6.6 meV. a. Time
evolution of the resonator population for the exact solution
(black solid) and the chain mapping with truncation after n
links (dashed lines) for different values of n. For reference, the
time evolution calculated using the Markovian master equa-
tion, Eq. (62) is also shown (grey dotted line). b. Relative
error of the n-truncated chain mappings as a function of n.
The dotted grey line indicates the error of the Markovian mas-
ter equation, Eq. (62). c. Maximum population of the last
chain site over the evolution time span as a function of the
truncation length n.

with the master equation

dρ̂

dt
=− i

h̄
[H̃n, ρ̂] + 2γcD(â, ρ̂)

+ 2γxD(B̂0, ρ̂) + 2γ′xD(B̂†0B̂0, ρ̂).

(72)

Although beyond the scope of this article, we note that
the one-dimensional chain is amenable to numerically
efficient and exact renormalisation-group methods83–88.
Here we shall discuss how the time evolution within a
limited time window can be accurately captured by us-
ing a truncated chain mapping with a finite number of
sites.

1. Benchmarking

To test the precision of a given truncation n, we can
consider the situation in Sec. IV A, where the drive is

turned off and the electromagnetic resonator is initialised
in a single-excitation state. In this case, we can bench-
mark the truncated chain expansion against the exact
time evolution and evaluate the error. An example of
such a comparison is presented in Fig. 7. The time evo-
lution in Fig. 7a demonstrates that a chain with more
links allows one to evolve the system further in time be-
fore the error becomes pronounced. This is further sup-
ported in Fig. 7b, which shows that the relative error
of the truncated chain mapping, as defined in Eq. (63),
decreases when more links are included. Here, the error
of the Markovian master equation, Eq. (62) is indicated
with a dotted grey line, demonstrating that it is possible
to go below this error and thus resolve non-Markovian
effects in the residual exciton environment. Addition-
ally, Fig. 7c shows that the maximum population of the
last chain link during the evolution time decreases mono-
tonically with the number of chain links. To carry out
this analysis, we have neglected excitonic line broaden-
ing effects by setting γx and γ′x to zero, since these effects
are not compatible with the exact strategy described in
Sec. IV A. We do, however, note that the influence of the
residual exciton environment is expected to be less im-
portant when additional decay channels are present. As
such, we should think of the error in Fig. 7b as an up-
per bound on the truncation error that is expected when
excitonic line broadening effects are included.

For reference, the numerical benchmark calculations of
the Markovian master equations and the chain-mapped
master equation have also been performed with a larger
resonator linewidth and at higher temperature of 300
K, which means that the phonon-induced broadening is
more pronounced. These calculations can be found in
Appendix E and show the same overall behaviour as the
calculations presented here. However, the effect of the
residual excitons is seen to be smaller, which is attributed
to the increased dissipation into the other decay channels,
i.e. through resonator losses and phonon-induced exciton
decay.

2. Pulsed driving in the linear regime

One of the benefits of the chain-mapping technique
is the simplicity of introducing driving with a time-
dependent amplitude, F (t). For the Markovian mas-
ter equation derived in Sec. IV B, this would result in
a decay term, K, which is explicitly time dependent.
Here, we use the chain mapping to study the response of
the exciton-resonator system to a short laser pulse that
weakly perturbs the system. By making sure that the
initially induced population of the resonant field is far be-
low unity, the nonlinear exciton–exciton interaction can
be neglected, while the interactions with the residual ex-
citon modes are captured by the chain of bosonic modes.
The Hamiltonian for the truncated chain in a frame ro-
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FIG. 8. Response to a short driving pulse in the linear regime
for WS2 coupled resonantly (ωc = Ω0) to a Gaussian optical
mode with L = 10 nm and 4 nm, respectively, and Lz =
200 nm, 2h̄γc = 6.6 meV, n2

x +n2
y = 0.2. The temperature is

set to 4 K, leading to h̄γx = 2.1 meV, h̄γ′x = 0.11 meV, and
the optical pulse parameters are ∆ = 0.2/G0, A = 0.1/∆ and
ωd = Ω0 = ωc. The resonator (orange) and exciton reaction
coordinate (blue) populations for the full system calculated
with an n = 30 chain mapping are shown with solid lines.
The corresponding time evolution obtained by ignoring the
residual excitons altogether is shown with dots.

tating at the driving frequency is

ˆ̃Hn(t) = h̄F (t)(âc + â†c) + h̄(ωc − ωd)â†câc

+ h̄G0(â†cB̂0 + âcB̂
†
0)

+

n∑
i=0

h̄(Ωi − ωd)B̂†i B̂i +

n∑
i=1

h̄Gi(B̂
†
i B̂i−1 + B̂iB̂

†
i−1),

(73)

and we shall focus on a Gaussian pulse amplitude of the
form

F (t) = Ae−(t−t0)2/∆2

. (74)

We also re-instate the excitonic line broadening effects
described in Sec. IV B 2 with the rates γx and γ′x.

In Fig. 8, the dynamics of the electromagnetic field (or-
ange solid) and exciton reaction coordinate (blue solid) is
plotted for two different lateral length scales of the elec-
tromagnetic resonator and compared to the correspond-
ing evolution obtained by ignoring the residual excitons
(dots). As the lateral length scale decreases, the exciton
cutoff frequency ξ increases as 1/L2, effectively increas-
ing the interaction between the reaction coordinate and
the residual exciton modes. For L = 4 nm, we find a
relative error of 0.8% in the resonator field evolution and
0.4% for the exciton reaction coordinate evolution, when
the residual excitons are ignored. This means that we
can justify the use of a Markovian theory with a single
exciton mode when L > 4 nm for the given parameters.
In the next section, we shall investigate the nonlinear
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FIG. 9. Nonlinear response of the system due to exciton–
exciton interactions. The solid lines show the resonator (or-
ange) and exciton reaction coordinate (blue) populations cal-
culated from the full Hamiltonian including exciton–exciton
interactions. The dots and dashed lines show the correspond-
ing time evolution when the exciton–exciton interaction is ne-
glected. Parameters: A = 1/∆, and otherwise as in Fig. 8.

response in this regime. As we shall see, there is a pa-
rameter regime where L is large enough (here above 4nm)
to neglect the residual exciton modes, yet small enough
that the nonlinear interactions become pronounced.

3. Pulsed driving in the nonlinear regime

To investigate the nonlinear response of the system,
we include exciton interactions in the local exciton re-
action coordinate through the term Ŵ0, as described in
Sec. III B. To see the nonlinear response, we need to in-
crease the amplitude A of the driving pulse. In practice,
this means that we need to resolve a higher number of ex-
citations in the system, whereby it becomes significantly
more challenging to include a higher number of chain
sites. At this point, therefore, we choose the lateral size of
the mode to be sufficiently large that the residual modes
can be neglected (L ≥ 4 nm for the parameters in Fig. 8).
As before, we show in Fig. 9 the time evolution of the sys-
tem (solid lines) for different lateral optical confinement
lengths, L. We compare the evolution with the linear
response, as obtained by removing the interaction term
Ŵ0 from the Hamiltonian (dots, dashed lines), thereby
uncovering the role of exciton–exciton interactions in the
dynamical evolution. Due to the increase of the nonlin-
earity as L is decreased, a larger deviation between the
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full dynamics and the linear response is observed. The
dominating nonlinear effect is a reduced energy transfer
from the resonant field to the exciton reaction coordinate,
which arises because the transition from one to two exci-
tons is shifted away from resonance due to the nonlinear
interactions. This is a signature of a polariton blockade
process, i.e. the inhibition of multi-polariton excitations.
The dynamics in Fig. 9 shows that there exists a param-
eter regime, where the lateral confinement length is suf-
ficiently small that the nonlinear interactions influence
the dynamics, yet large enough that the residual exci-
tons can be ignored. In Ref. 89, we study the impact of
the nonlinear interactions in terms of polariton blockade
in detail and establish the conditions for reaching block-
ade. Most importantly, we find that polariton blockade
is reached when the nonlinear interaction strength, W ′0,
exceeds the polariton dephasing generated by γ′x.

V. SEMICLASSICAL LIMIT

As an alternative to the reaction-coordinate approach
to exciton–resonator interactions, we now develop a semi-
classical description of the interaction of the electromag-
netic field with the excitons in terms of the excitonic
dielectric response. This allows us to connect the fun-
damental material parameters to the dielectric function,
which has been experimentally measured for several ma-
terials59,60. Furthermore, it allows us to carry out an
independent classical reference calculation, which we ex-
pect to agree with the result of our microscopic theory in
the weak-excitation limit of linear response. This refer-
ence calculation thus serves as an important consistency
check of the microscopic theory.

A. Exciton susceptibility

In a purely classical framework, we can model the elec-
tromagnetic response of a two-dimensional material in
the plane z = z0 as a thin polarizable sheet of thickness
d with a relative permittivity distribution given by

εR(r, ω) =

{
1 + χ(ω) for |z − z0| < d/2,

1 otherwise.
(75)

In cases where the sheet is illuminated by an incoming
electromagnetic field, we can calculate the total electric
field by use of the Lippmann-Schwinger equation. For the
present analysis, we can confine the discussion to the case
of normal incidence and consider incoming electric fields
of the general form Ein(r, ω) = Ein(z, ω)n, where n is a
unit polarization vector, taken to be linear for simplicity.
The total field can then be calculated as the solution to

the equation

Etot(z, ω) = Ein(z, ω)

+ k2
0

∫ z0+d/2

z0−d/2
dz′GB(z, z′, ω)χ(ω)Etot(z

′, ω),

(76)

in which k0 = ω/c is the ratio of the angular fre-
quency to the speed of light, and GB(z, z′, ω) =
i exp[ik0|z − z′|]/(2k0) is the one-dimensional electric
field Green function of the homogeneous background. For
sufficiently thin materials, we can assume the integrand
to be approximately constant, wherefore we can solve the
equation to find

Etot(z0, ω) =
Ein(z0, ω)

1− k2
0dGB(z0, z0, ω)χ(ω)

. (77)

In order to establish a link between the fundamental
excitonic properties and the corresponding susceptibility,
we consider the total field generated by weakly driving
the excitons with a set of normal-incidence plane waves
of the form

fµ(r) =
eiωµz/c

√
SZ

n, (78)

where Z is the depth of the quantization volume. To cal-
culate the total field, we use the full interaction Hamilto-
nian with non-rotating wave terms, Eq. (11), and follow
Refs. 90–92 to derive a Lipmann-Schwinger equation for
the vector potential operator Â(z, ω) = nÂ(z, ω), ex-
pressed in terms of the incoming vector potential opera-
tor Â(0)(z, ω) = nÂ(0)(z, ω), of the form

Â(z, ω) = Â(0)(z, ω) +

∫
dz′G(z, z′, ω)V (z′, ω)Â(z′, ω),

(79)

where V (z, ω) = V0(ω)δ(z − z0),

V0(ω) =
∑
α

2Se2
0|pαcv · n|

2

πh̄ε0m2
0c

2a2
B

(
1

ω − ω0
− 1

ω + ω0

)
, (80)

and we have ignored a possible source term for the vec-
tor potential, because we consider a scattering problem,
where no excitons are initially excited. The Green’s func-
tion entering Eq. (79) is related to GB as G(z, z′, ω) =
−GB(z, z′, ω)/S. We can solve Eq. (79) to find

Â(z0, ω) =
Â(0)(z0, ω)

1 +GB(z0, z0, ω)V0(ω)/S
, (81)

and since the electric field is the derivative of the vector
potential, we find that the same equation holds for the
electric field, under the substitutions Â→ Ê and Â(0) →
Ê(0).

By comparing Eqs. (77) and (81), we can directly see
that the two expressions are equivalent, when k2

0dχ(ω) =
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−V0(ω)/S. This requirement yields the expression for
the exciton susceptibility,

χ(ω) =
∑
α

2e2
0|pαcv · n|

2

πh̄ε0m2
0c

2a2
Bd

1

ω2

(
1

ω + ω0
− 1

ω − ω0

)
.

(82)

To connect to susceptibility measurements in the lit-
erature, we note that the exciton line broadening due to
non-radiative decay and phonon interactions should also
be taken into account in the susceptibility. We include
these effects by a complex shift of the poles of the sus-
ceptibility at ω = ±ω0 into the lower part of the complex
plane by the total line broadening Γx = γx + γ′x. The re-
sulting susceptibility, which serves as a model of what one
would measure in linear-response measurements, then
takes the form

χ(ω) =
∑
α

2e2
0|pαcv · n|

2

πh̄ε0m2
0c

2a2
Bd

1

ω2

×
(

1

ω + ω0 + iΓx
− 1

ω − ω0 + iΓx

)
,

(83)

The poles of interest are both located in the lower part
of the complex plane, as they should be due to causality
of the electromagnetic response in the time domain, and
one of the poles is at negative real frequencies, where-
fore it can often be neglected. When more exciton tran-
sitions are present, a generalization gives an expression
with multiple pole terms. Combining these pairwise and
dropping small terms of order Γ2

x, we find the familiar
form

χ(ω) =
∑
m

fm
ω2

0,m − ω2 − 2iωΓx,m
, (84)

where the oscillator strengths, fm, are given by

fm =
∑
α

4e2
0

∣∣pαcv,m · n
∣∣2

πh̄ε0m2
0ω0,ma2

Bd
. (85)

With the assumption that the field polarisation is in the
plane, such that n2

x + n2
y = 1, we can write the oscillator

strength as

fm =
4e2

0p
2
cv,m

πm2
0ε0h̄ω0a2

Bd
. (86)

This dielectric parameter fm has been measured for sev-
eral 2D materials and provides a very useful means to de-
termine the exciton Bohr radius from experiments59,60.
For WS2, using the parameters in Table I and the ex-
perimentally obtained value for the 1s exciton h̄2f0 =
1.9 eV2 from Ref. 59 yields the exciton Bohr radius
aB = 1.95 nm.
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FIG. 10. a. Exciton spectral density (blue solid) and resid-
ual spectral density (green dashed, scaled up by a factor of
5 × 104) for a single quasi-normal mode of a gold nanorod
coupled to a monolayer sheet of WS2, as illustrated in Fig. 1.

The projected field profile, |F̃ x
c (r, 0)| 2+|F̃ y

c (r, 0)| 2 is shown in
the inset. b. Excitation spectrum of the system when driven
by an external laser field, calculated with semiclassical the-
ory, I(ωd) (blue circles), and the microscopic quantum model
using the Markovian master equation, nss(ωd) (orange solid
line). In order to compare the semiclassical spectrum (calcu-
lated as the field intensity in the middle of the nanorod) with
the quantum spectra (calculated as the steady-state expecta-
tion value of the resonator population), the spectra have been
scaled with their maximum values. The light-matter coupling
strength calculated from the quantum theory (Eq. (36)) is
h̄G0 = 35.1 meV.

B. Reference calculation

We are now in a position to compare the microscopic
theory to a semiclassical reference calculation. To this
end, we consider a gold nanorod coupled to a mono-
layer of WS2 and calculate the linear excitation spectrum
when driving with an external laser at different frequen-
cies. The nanorod is modeled as a cylinder with spher-
ical end caps, as depicted in Fig. 1, a diameter of 30
nm, and a total length of 90 nm. For convenience, we
define a coordinate system in which the nanorod is ori-
ented in the x-direction, and its center is at the position
(x, y, z) = (0, 0, 20 nm). For these calculations, we use a
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Drude permittivity model of the form

εR(r, ω) = 1−
ω2

p

ω(ω + iγ)
, (87)

with h̄ωp = 6.9 eV and h̄γ = 0.2 eV.
The numerical QNM calculations were carried out with

the boundary-element method “MNPBEM”93 and with
the iterative search method of Ref. 94, see Ref. 44 for de-
tails. Mesh generation using triangular surface elements
was done by the open source mesh generator “Gmsh”95.
The dipolar QNM of interest has a complex resonance
frequency of ω̃c`0/2πc = 0.1625(2) − 0.00920(2)i. When
the field is scaled to unity at the position r0 = (0, 0, 0)
the complex inverse norm of the QNM is found to be
`30f̃

2
c (r0)/〈〈f̃c(r)|f̃c(r)〉〉 = 1.246(2) − 0.0307(5)i. Here,

`0 = 100 nm is a fixed length scale that is used to express
the QNM frequency and norm in dimensionless units. In
the single-QNM approximation, it can be shown that the
normalization factor Sc appearing in the derivations in
Ref. 45 always takes the value Sc = 1, which is the value
that we used for the calculations in this work. The exci-
ton spectral density, J(ω) and the residual spectral den-
sity, Jres(ω) (green dashed), are shown in Fig. 10a along
with the absolute value of the in-plane components of the
field profile F̃c, as derived from the fundamental dipolar
QNM and discussed in Appendix A. The dipolar nature
of the field profile results in a non-trivial in-plane dis-
tribution of the electric field as shown in the inset of
Fig. 10 for the case of z = z0. It follows from the analy-
sis in Sec. III A that this is the field distribution defining
the exciton reaction coordinate and the coupling constant
G0, recall Eq. (36). Running a benchmark calculation
as described in Sec. IV B 1, we find that the relative er-
ror obtained by neglecting the residual exciton modes is
less than one in a thousand, wherefore we neglect the
residual excitons in the analysis. We then calculate the
excitation spectrum as the steady-state photon number,
nss(ωd) := Tr

[
â†câcρ̂ss(ωd)

]
where ρ̂ss(ωd) is the steady-

state density operator of Eq. (62) with constant driving
(frequency ωd and driving strength F ). For these calcu-
lations, the driving strength h̄F was set to a very low
value of 36µeV to ensure that the system is in the linear-
response regime.

As a semiclassical reference calculation, we can also
calculate the excitation spectrum through a solution of
the classical electromagnetic problem, where the WS2

monolayer is modelled as a sheet of thickness d =
0.618nm with a dielectric function corresponding to
Eq. (84) with experimentally measured parameters59,
h̄2f0 = 1.9 eV2, h̄ω0 = 2.014 eV, and the exciton
linewidth h̄Γx = 16.1 meV, calculated from Table II us-
ing T = 300 K. The reference calculations were done
with MNPBEM and the same mesh for the nanorod as
was used for the QNM calculations; additional scattering
from the 2D material was included by the use of the ap-
propriate background Green function96 corresponding to
a thin sheet with a single Drude-Lorentz pole. In prac-
tical experiments, the sample will rest on a substrate

and there will be additional contributions to the optical
response of the WS2-material and other similar correc-
tions, which will lead to shifts in the resonance frequen-
cies of the nanorod and possibly the 2D material. In
Appendix C, we investigate the effect of a substrate on
the electromagnetic response and show that the nanorod
can always be tuned into resonance with the excitons by
various means, for example by varying the length of the
nanorods. In order to simplify the model and focus on the
dominating physics, we have left out these effects here.

The driving laser field was modeled as an incoming
plane wave with frequency ωd, and for each value of this
frequency, the resonator excitation was measured as the
field intensity in the middle of the nanorod, I(ωd). In or-
der to compare the field intensity I(ωd) and the steady-
state photon number nss(ωd), we normalise both to their
maximum values and plot them together in Fig. 10b.
The asymmetry in the semiclassical spectrum can be at-
tributed to a frequency-dependent incoupling factor be-
tween the external driving field and the resonator field
term, which can be derived from coupled-mode theory44,
but which is not accounted for in the present approach.
The remaining discrepancy is attributed to the non-
retarded coupling and the approximation that only a sin-
gle QNM is taken into account in the microscopic model.
Importantly, we find that the calculated splitting of the
spectrum in the two independent calculation methods dif-
fer only by 0.5%. In combination with the general qual-
itative agreement between the two spectra, we interpret
this as a demonstration of consistency between the mi-
croscopic quantum model and the semiclassical theory
based on measurements of the linear exciton susceptibil-
ity. In this limit of linear response, it is an interesting
fact that one can also treat the problem from a purely
electromagnetic point of view and model the response by
use of two quasi-normal modes, as was recently presented
in Ref. 97.

In closing, we emphasize that the general microscopic
model is applicable also beyond the linear, semiclassical
regime, when nonlinear effects and few-exciton statistics
become important, as discussed in Secs. III B and IV C 3,
as well as in Ref. 89.

VI. CONCLUSION

In conclusion, we have developed a microscopic quan-
tum theory for the interaction between an electromag-
netic resonator and excitons in a pristine sheet of 2D
semiconductor material. In particular, by invoking a ba-
sis change of the exciton continuum, we have identified
a collective exciton mode, termed the exciton reaction
coordinate, that effectively accounts for the light-matter
interaction. We have derived analytic expressions for the
coupling strength between the resonant electromagnetic
field and the reaction coordinate, thereby showing that
it is independent of the lateral confinement of the field.

To calculate the dynamical evolution of the system,
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we have introduced and analyzed several Markovian and
non-Markovian approaches and assessed their regimes of
validity. Using these strategies, we have evaluated the
importance of the residual exciton environment, which
is coupled to the reaction coordinate. We find that
the influence of the residual excitons becomes more pro-
nounced when the lateral optical mode dimensions be-
come smaller. In many cases, however, the residual exci-
tons can be ignored altogether. For the extreme regime
where the electromagnetic field is laterally confined to
a characteristic length scale of a few nanometers, it be-
comes necessary to account for the residual excitons. We
have developed an iterative chain-representation of the
residual exciton environment, which is able to resolve
non-Markovian effects and thus to go beyond the Marko-
vian master equation.

We have also derived the linear dielectric response of
the excitons, which allows one to connect the material
parameters to the dielectric function and to consistently
interface the microscopic theory with a semiclassical ap-
proach. Furthermore, we have calculated the nonlinear
interaction strength of the excitons within the reaction
coordinate and found that it scales as the inverse area
of the electromagnetic field in the 2D material, mean-
ing that laterally confined electromagnetic fields lead to
stronger exciton-exciton interactions. In this context,
we have found that there exists an interesting param-
eter regime, where the lateral confinement length scale is
large enough that the residual excitons can be ignored,
but small enough that nonlinear effects are significant.
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Appendix A: Electric-field operators outside the
resonator

Expansions based on QNMs can often provide a good
approximation to the electromagnetic field at positions
inside or close to electromagnetic resonators. In the
present case of a single QNM approximation, in particu-

lar, we can expand the electric-field operator as

Ê(r, ω) = i

√
h̄ωc

2ε0
f̃c(r, ω̃c)âc(ω) + H.c., (A1)

where â†c and âc are bosonic raising and lowering oper-
ators obeying the commutation relation [âc(t), â†c(t)] =
145. At positions far away from the resonator, the QNM
expansions in general are expected to fail44, and this
poses a challenge for the application at hand, which in-
volves infinitely extended sheets of 2D materials. Since
the electric-field operator obeys Maxwell’s equations,
however, we can calculate the field operator at general
positions r by use of the three-dimensional electric-field
equivalent of Eq. (79),

Êtot(r, ω) = Ê0(r, ω)

+
(ω

c

)2
∫

d3r′G(r, r′, ω)∆ε(r′, ω)Êtot(r
′, ω),

(A2)

where G(r, r′, ω) is the electric-field Green tensor of the
homogeneous background material of permittivity εB,
and ∆ε(r, ω) = εR(r, ω)− εB is the change in the relative
permittivity defining the electromagnetic resonator.

The first term in Eq. (A2) represents the free-space
electric-field operator in the absence of the resonator and
therefore does not contribute to the resonant field dy-
namics that we aim to describe. For these calculations,
therefore, we drop this term and rewrite the expression
by substituting the QNM expansion of the electric-field
operator in Eq. (A1) as

Ê(r, ω) = i

√
h̄ωc

2ε0
F̃c(r, ω)âc(ω), (A3)

where

F̃c(r, ω) =
(ω

c

)2
∫
V

d2r′G(r, r′, ω)∆ε(r′, ω)f̃c(r′) (A4)

is the analytical continuation of the electric field QNM
onto the real axis65. Equation (A3) represents the fully
retarded electric-field operator pertaining to the field of
interest in the electromagnetic resonator. In the tempo-
ral dynamics, the retardation becomes explicitly evident
as the convolution in Eq. (6). When coupling to very lo-
calized excitons, however, we can simplify the expression
considerably by evaluating F̃c(ω) at ω = ωc to focus on
the instantaneous response only. In the same spirit, we
restrict the analysis to the local dynamics by replacing
G(r, r′, ω) in Eq. (A4) by the quasistatic Green tensor.
In doing so, we ensure that the integral defining the cou-
pling strength in Eq. (36) is convergent.

Appendix B: Exciton dissipator

The derivation of the exciton dissipator follows the
standard approach as described in detail in Ref. 75. In
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this Appendix, we apply the approach to the present sit-
uation, where the resonator and exciton reaction coor-
dinate are treated as an open quantum system, which
is coupled to an environment consisting of the residual
exciton modes. Starting from Eq. (57), we decompose

the interaction Hamiltonian as ĤSR = h̄(Ŝ1R̂1 + Ŝ2R̂2),
where

Ŝ1 = B̂†0, R̂1 =
∑
i>0

λ̃∗i
ˆ̃Bi (B1)

and Ŝ2 = Ŝ†1, R̂2 = R̂†1. To simplify the expression for
the interaction-picture time evolution, we introduce the
eigenstate-projected system operators

Ŝi(ω) :=
∑
E′−E=ω

Π(E)ŜiΠ(E ′), (B2)

with i ∈ {1, 2}, where Π(E) is the projector onto the

system subspace with eigenenergy E with respect to ĤS,

Π(E) =
∑
ωl=E

|l〉〈l| , ĤS |l〉 = h̄ωl |l〉 . (B3)

We distinguish between Ŝ†i (ω) and [Ŝi(ω)]†, such that the

former expression refers to
∑
E′−E=ω Π(E)Ŝ†iΠ(E ′) and

the latter to
∑
E′−E=ω[Π(E)ŜiΠ(E ′)]† = Ŝ†i (−ω). The

interaction-picture time evolution of the projected sys-
tem operators is then

eiĤSt/h̄Ŝi(ω)e−iĤSt/h̄ = Ŝi(ω)e−iωt. (B4)

Using the completeness of the eigenstates of ĤS, we find

Ŝi =
∑
ω

Ŝi(ω) =
∑
ω

Ŝi(−ω), (B5)

Ŝi(t) =
∑
ω

Ŝi(ω)e−iωt =
∑
ω

Ŝi(−ω)eiωt, (B6)

and the dissipator due to the residual excitons can thus
be written as

K[ρ̂] = −
∑
ij

∑
ωω′

∫ ∞
0

dτ Λij(τ)eiω′τ [Ŝi(−ω), Ŝj(ω
′)ρ̂]

+

∫ ∞
0

dτ Λji(−τ)e−iω′τ [ρ̂Ŝj(−ω′), Ŝi(ω)],

(B7)

where Λij(τ) = TrR

{
R̂ie
−iĤRτ/h̄R̂je

+iĤRτ/h̄ρ̂0
R

}
is a

residual excitonic correlation function. Here, ρ̂0
R is the

initial density operator of the residual exciton environ-
ment, which is taken to be the vacuum state as a good
approximation to the thermal state of a semiconductor.
As described in Ref. 75, a so-called secular approxima-
tion is enforced by keeping only terms with ω = ω′ in the
summation, which is justified by the fact that a factor of
exp{i(ω − ω′)t} appears in the sum for the interaction-
picture time evolution of the reduced density operator;

if ω 6= ω′, the exponential is assumed to average out
to zero. In addition to simplifying the expression, the
secular approximation ensures that the dynamics gener-
ated by the master equation is completely positive and
trace preserving75,98. Noting that, due to ρ̂0

R being the
vacuum state, the only nonzero correlation function is
Λ12(τ) =

∑
i>0 |λ̃i|2 exp{−i(Ω̃i − ωd)τ}, the secularised

residual exciton dissipator becomes

K[ρ̂] = −
∑
ω

{
Γres(ω)D[B̂0(ω), ρ̂]

− i∆res(ω)[(B̂0(ω))†B̂0(ω), ρ̂]
}
,

(B8)

where

Γres(ω) = 2 Re

{∫ ∞
0

dτ Λ12(τ)eiωτ
}
, (B9)

∆res(ω) = Im

{∫ ∞
0

dτ Λ12(τ)eiωτ
}
. (B10)

The second term in Eq. (B8) amounts to a shift of the
resonance energies and will be neglected here. The re-
maining part describes exciton dissipation with a rate
that can be written in terms of the residual spectral den-
sity as in Eq. (59).

Appendix C: Effect of dielectric substrate

In order to simplify the model and highlight the
dominating physics, the reference calculations in Sec-
tion V B were performed for a gold nanorod above a thin
sheet of material characterized by a single Drude-Lorentz
pole. Additional corrections to the model will serve pri-
marily to shift the resonance frequency of the nanorod
or the excitonic transitions. These effects, therefore, are
not so different from unknown perturbations in practical
experiments, which can be compensated by tuning of the
material system to bring it into resonance. In Fig. 11, we
illustrate how such a tuning can be performed by chang-
ing the nanorod length, similar to the approach of Wen et
al.3,9. The left panel of Fig. 11 shows calculations identi-
cal to those in Fig. 10 of the main text, except for the use
of nanorods of different lengths ranging from L = 75 nm
to L = 95 nm. Clearly, by changing the length of the
nanorods, one is able to tune the system into resonance.
The right panel of Fig. 11 shows the situation when the
system is changed by introducing a substrate with per-
mittivity εsubs = 2.12 extending infinitely downwards
from just below the thin sheet of two-dimensional mate-
rial. Notably, we did not include an encapsulation layer,
since typical experiments of this sort are performed with-
out3–10. Furthermore, the full experimentally measured
response of WS2 is included with all poles, correspond-
ing to not only the lowest-lying A1s-exciton, but also the
higher-lying exciton states, as detailed in Ref. 59. In this
case, the resonance condition has changed, so that it is
now fulfilled by nanorods of approximately 85 nm length,
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FIG. 11. Semiclassical excitation spectrum of gold nanorod
coupled to monolayer WS2 as in Fig. 10, calculated without
(left panel, blue) and with (right panel, red) dielectric sub-
strate, and for nanorod lengths between 75 nm and 95 nm as
indicated with text.

but the general anti-crossing trend in the curves is un-
changed, since the dominating physics is still that of two
strongly coupled harmonic oscillators.

Appendix D: Variation of coupling strength for
nanorods of different length

In order to substantiate the claim that the coupling
strength G0 is largely independent of the lateral con-
finement length scale, we explicitly compare the value
of G0 for gold nanorods of different lengths ranging from
L = 75 nm to L = 95 nm, but otherwise identical to the
one that was investigated in Sec. V B, see also App. C.
Fig. 12a shows G0 as a function of the nanorod length,
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FIG. 12. a. Coupling strength G0 of a nanorod resonator
coupled to monolayer WS2 as in Sec. V B, for varying lengths
of the nanorod, L. b. Relative deviation of the coupling
strength as compared to L = 90 nm. The blue data points
and lines show the deviation of the raw coupling strength, G0,
whereas the orange datapoints and lines show the coupling
strength corrected for the shift in resonance frequency that
accompanies the change in the resonator length,

√
ωcG0.

L, and the relative difference compared to L = 90 nm is
shown in Fig. 12b (blue data points and lines). While
the coupling strength increases as a function of length,
this effect is mainly due to the change in the resonance
frequency ωc, which decreases with increasing length, as
seen in Fig. 11. In Eq. (36), a factor of 1/

√
ωc appears in

the coupling strength. Thus, to make a meaningful com-
parison of the effect of the spatial mode distribution on
the coupling strength, we should multiply the coupling
strength by

√
ωc to correct for the shift in resonance fre-

quency. This comparison is shown in Fig. 12b with or-
ange data points and lines and reveals that the change
in resonator length by 20% generates a vanishing shift in√
ωcG0 of around 1%.

Appendix E: Comparison of time-evolution methods
with increased dissipation and decoherence

In Sec. IV, three different approaches for calculating
the time evolution of the exciton-resonator system were
presented and compared, in order to assess their valid-
ity. For completeness, we present the same comparison
calculations with the only difference that the resonator
decay rate has been increased to 2h̄γc = 20 meV, and
the temperature has been increased to 300 K; the result-
ing phonon-induced exciton decay rate is h̄γx = 7.7 meV,
and the dephasing is h̄γ ′x = 8.4 meV. Figure 13 corre-
sponds to Fig. 5 and shows the comparison of the Marko-
vian master equations with the exact calculation. Fig-
ure 14 corresponds to Fig. 7 and shows the comparison
of the chain-mapped master equation with the exact cal-
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,

FIG. 13. Error calculation of the Markovian master equations
corresponding to Fig. 5, but with the resonator decay rate
increased to 2h̄γc = 20 meV.

culation. We remind that excitonic line broadening due
to phonon interactions is not included in these bench-
mark calculations, since the exact memory-kernel equa-
tion, Eq. (53), is incompatible with these effects. Fig-
ure 15 corresponds to Fig. 8 and shows the comparison
between the chain-mapped master equation and the case
where the residual exciton environment is neglected for
pulsed driving. Here, phonon-induced broadening has
been included.
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