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The spectral density of bound pairs in ideal 1D, 2D and Bethe lattices is computed for weak and strong interac-
tions. The computations are performed with Green’s functions by an efficient recursion method in real space.
For the range of interaction strengths within which bound states are predominantly single pairs, the spectral
profiles guide to the energy bandwidths where the bound pairs can be maximized.
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1. Introduction

For the Hubbard model [1] in lattices, formation of composite objects can be observed for both
attractive and repulsive interactions [2]. A doublon is such a composite object formed from two fermions.
In Auger spectroscopy, certain lines and lineshapes in the spectra can be explained within the formalism
of formation of bound pairs [3–5]. In general, pairs formed from interacting particles show the properties
different from constituent individual particles. For strongly interacting particles, their lifetimes are
generally high [6] and depend on interaction strengths. These strongly correlated pairs are now realized
and observed in optical lattices within broad range of tuneable interaction strengths [7]. Recently, the
pairing phenomena have been also observed in optical lattices for spin excitations [8] which are relevant
for excited states near the ground ferromagnetic state. The bound states that arise in lattices from onsite
and nearest neighbour interactions are also related to solitons [9, 10].

Two interacting particles show nonclassical correlations depending on the statistics of the parti-
cles [11]. The interaction changes the effective statistics between particles. However, a clear mathemat-
ical account on this is yet expected to emerge. The constraints of the two-particle density matrices are
also not known [12]. One can study the correlations from quantum walk experiments and simulations
which are fundamental building blocks of many-body systems. The dynamics of particles in lattices
changes significantly depending on the binding. The quantum walk of correlated particles has promising
applications in quantum technologies [13–15].

A general understanding on the mechanism of superconductivity is also still unresolved. The Hubbard
model with onsite and nearest neighbour interactions is mostly used for explaining the phenomena. Pairing
of fermions with attractive interaction is known to cause the mechanism [16, 17]. In two-dimensional
Hubbard model, the super-exchange in quasi two-dimensional oxides and nearest neighbour coulomb
interaction between polarons in organics [18] is known to be responsible for the phenomena. It is
suggestive that an unified approach to the mechanisms may have relations to the two-particle bands with
weak and strong interactions within the range where two-particle bound pairs have a higher density than
the bound states with a larger number of particles.

The effects of magnetic fields on single particles or excitations in two-dimensional lattices are well
known from Hofstadter’s approach [19]. The density of states for two particles for various interaction
strengths had also been computed before [20]. In optical lattices, the external magnetic fields can be
synthesized with periodic modulation of the lattice potentials [21–23]. This article specifically looks at
the density of bound pairs for both zero and non-zero magnetic fields at different interaction strengths. In
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the context of condensed matter, the effective fields can also be realized through doping with isotropic
magnetic impurities.

The solution for the two-particle states are known exactly for strong interaction cases which are
described with continuum and bound states [24]. Within many particle environment, there can be several
bound states and interplay of these bound states with the continuum states are highly complex. These
many-particle bound states can appear at different energy windows with different densities. Green’s
functions provide a direct approach to study these states at different interaction strengths. Recursion
methods [25] are known for efficient computation of these Green’s functions. Several other methods have
also been applied recently for such computations, e.g., exact diagonalization with the method of Lanczos
[26], DMRG [27] and so on. In this article, the Green’s functions are computed using Berciu’s approach
[28] which is best described in the original article. A brief description is given in the method section for
the reader. With Berciu’s method, the Green’s functions can be computed efficiently for the cases of zero
and non-zero external magnetic fields as well as for disordered systems [29]. The bound pairs can be found
in general graph architectures where the quantum transport may prove relevant to quantum technologies.
The Bethe lattice is one such graph for which the density of bound pairs at different interaction strengths
is considered in this article. The Bethe lattice which is important for its mathematical form, also has
presence in cores of several photosynthetic complexes.

2. Method

In this article the density of a bound pair of two interacting spinless particles is studied. The particles
are taken as hardcore bosons in 1D and 2D lattices and softcore bosons in Bethe lattice. The case of
hardcore bosons is similar to two spinless fermions. In 1D and 2D lattices, the particles get bound with
nearest neighbour interactions. For the models with zero nearest neighbour interaction and non-zero onsite
interaction, the same bound pairs appear for spin paired particles. The simplified model Hamiltonian
is that of extended Hubbard model H𝑒H with the hopping limited to the nearest neihbour sites on the
lattices.

H𝑒H =
∑︁
𝑚

𝜖𝑚𝑎
†
𝑚𝑎𝑚 +

∑︁
<𝑚𝑛>

𝑡 |𝑚−𝑛 |𝑎
†
𝑚𝑎𝑛 +

∑︁
𝑚

𝑈𝑎†𝑚𝑎
†
𝑚𝑎𝑚𝑎𝑚 +

∑︁
<𝑚𝑛>

𝑉𝑚𝑛𝑎
†
𝑚𝑎

†
𝑛𝑎𝑛𝑎𝑚. (2.1)

The onsite interaction term is taken as infinite in 1D and 2D cases. The nearest neighbour interaction
term is neglected for the Bethe lattice. Onsite energies are scaled to zero for regular lattice systems.

For a Hamiltonian H , the Fourier transformed Green’s function is defined as

𝐺 (𝜔) = 1
𝜔 −H , (2.2)

where 𝜔 = 𝐸 + i[ is a complex number with [ a very small positive real number. In real space, the two
particle Green’s function 𝐺2(𝑚, 𝑛, 𝜔) = 〈𝑚𝑛|𝐺 (𝜔) |𝑚′𝑛′〉 is the propagator for two particles from sites
𝑚′, 𝑛′ to sites 𝑚, 𝑛 in a lattice, where |𝑚𝑛〉 = 𝑐

†
𝑚𝑐

†
𝑛 |0〉 and the initial site indices 𝑚′, 𝑛′ are omitted for

brevity. The bound pair spectral density can be calculated for the bound state from the Green’s function
𝐺2(𝑚′, 𝑛′, 𝜔) in real space with initial distance |𝑚′ − 𝑛′ | = 0 and 1 for softcore and hardcore bosons,
respectively

𝐴(𝑚′, 𝑛′, 𝐸) = −1
π

Im[𝐺2(𝑚′, 𝑛′, 𝐸 + i[)] . (2.3)

The total density of states (DOS) is obtained with summing over densities of all the states

DOS(𝐸) = 1
2

∑︁
𝑚′,𝑛′

𝐴(𝑚′, 𝑛′, 𝐸 + i[). (2.4)

On the graphs with translational symmetry, a few states with increasing relative distance ( |𝑚′−𝑛′ |) prove
sufficient for converging results.
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Substituting equation (2.1) in equation (2.2) generates the recursion relations between the Green’s
functions

(𝜔 − 𝜖𝑚 − 𝜖𝑛 −𝑈𝛿𝑚𝑛 −𝑉𝑚𝑛𝛿𝑚𝑛±1)𝐺2(𝑚, 𝑛, 𝜔) = 𝛿𝑚,𝑚′𝛿𝑛,𝑛′ + 𝛿𝑚,𝑛′𝛿𝑛,𝑚′ − 𝑡𝑚−1,𝑚𝐺2(𝑚 − 1, 𝑛, 𝜔)
−𝑡𝑚,𝑚+1𝐺2(𝑚 + 1, 𝑛, 𝜔) − 𝑡𝑛,𝑛+1𝐺2(𝑚, 𝑛 + 1, 𝜔) − 𝑡𝑛−1,𝑛𝐺2(𝑚, 𝑛 − 1, 𝜔) (2.5)

for every site indices 𝑚, 𝑛 of the two particles. The Green’s functions with constant 𝑚+𝑛 are then grouped
with a vector V𝑅 (𝑅 = 𝑚 + 𝑛) which forms a 1D chain and generates the recursion equation

V𝑅 = α𝑅V𝑅−1 + β𝑅V𝑅+1 + C , (2.6)

with C ≠ 0 for 𝑅 = 𝑚′ + 𝑛′ = 𝑅′ containing the initial state. The hopping matrices α𝑅, β𝑅 connect
Green’s functions between nearest neighbour vectors with the hopping integrals. Solving this equation,
any Green’s function can be computed for a finite lattice. At the boundaries, equation (2.6) becomes

V0 = β0V1 and V𝐿 = α𝐿V𝐿−1 , (2.7)

where 0 and 𝐿 are the minimum and maximum indices for 𝑅. The recursion modifies to this general form

V𝑅 = A𝑅V𝑅−1 and V𝑅 = B𝑅V𝑅+1, for 𝑅 ≠ 𝑅′, (2.8)

with
B𝑅 = [1 − α𝑅B𝑅−1]−1 β𝑅 and A𝑅 = [1 − β𝑅A𝑅+1]−1 α𝑅 . (2.9)

These A𝑅 and B𝑅 matrices can be computed recursively starting from equation (2.7) before one reaches
𝑅 = 𝑅′ from both sides of the chain with

V𝑅′ = [1 − α𝑅′B𝑅′−1 − β𝑅′A𝑅′+1]−1 C (2.10)

at 𝑅 = 𝑅′. Once V𝑅′ is found, all other V𝑅 are given by equation (2.8). The procedure accounts the full
self-energy term which can be obtained from renormalized perturbation expansion [30] on any ordered
or disordered lattice. This method can also be used for the cases where sites have internal structures.

In presence of external magnetic field, a gauge field appears in the Hofstadter Hamiltonian with the
hopping terms which is known as Peierls substitution [31].

H𝐻 𝑓 =
∑︁
𝑚

(
𝑡e2iπ 𝑝

𝑞
𝑚2𝑎

†
𝑚1+1𝑎𝑚1 + 𝑡𝑎

†
𝑚2+1𝑎𝑚2 + ℎ.𝑐.

)
+

∑︁
𝑚

𝑈𝑎†𝑚𝑎
†
𝑚𝑎𝑚𝑎𝑚 +

∑︁
<𝑚𝑛>

𝑉|𝑚−𝑛 |𝑎
†
𝑚𝑎

†
𝑛𝑎𝑛𝑎𝑚 . (2.11)

For an ideal 2D lattice, the onsite energy terms can be scaled to zero with 𝑞 = ∞ in the phase for zero
magnetic field. The phase term contributes with the hopping on one of the axes of 2D lattice for non-zero
magnetic field. The subscripts 1, 2 of the site index 𝑚 denotes coordinates of two axes of site 𝑚. These
terms are simulated in optical lattices with periodic modulation of lattice potentials [22]. The essence of
the method depends on the classical Floquet theory where the momentum terms gain phases.

3. Results

The spectral density of bound pairs can be obtained from Green’s functions computed using a
recursion method or Chebyshev polynomials or exact diagonalization. The density of states had been
computed before by Rausch et al. [32], Halpap et al. [33] and others for one dimensional regular lattices.
The density of states for two-dimensional ideal lattices had been computed before by Barelli et al. [20].
I use the method of recursion that has been formulated recently[28] by Berciu et al. for the computation
of the spectral density of bound pairs at any interaction strength. In 1D, the recursive method provides
converging results for the Green’s functions with lattices of size in the order of 𝑁 = 100 sites. The Green’s
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Figure 1. (Colour online) Density of states of two interacting particles (dotted lines) and spectral density
of bound pairs (straight lines) for a 1D lattice of 𝑁 = 500 computed from equation (2.3) and equation
(2.4) to an arbitrary scale with [ = 0.01.

functions are computed for an 1D lattice with 𝑁 = 500 sites and 𝑁 = 20 × 21 sites in 2D. For the Bethe
lattice which resembles the structure of recursion, 𝐿 = 8 levels are considered. The value of hopping
elements are fixed with 𝑡 = 1 while the interaction elements 𝑈 and 𝑉 are varied in the calculations.

The bound pair spectra in 1D have been recently studied by Rausch et. al for strong interactions.
I obtained the results for weak interactions using the recursion which gives converging results at the
band edges. The bound pairs within continuum can have different transport properties because of the
scattering with the continuum states which I do not discuss in this article. The density of bound pairs at
𝑇 = 0 is maximum near 𝐸 = 𝑉 . The density of pairs at 𝑉 = 0 for noninteracting case is much smaller
than for interacting 𝑉 ≠ 0 cases. The bound state splits from the continuum at 𝑉 = 𝑊/2 where 𝑊 is
the bandwidth of the two-particle continuum spectra. The bound state shows a sharp peak near 𝐸 = 𝑉

for weak interaction strengths (𝑉 < 𝑊/2). For strong interaction cases, the density reflects the cosine
dispersion curve of bound states [24] near 𝐸 = 𝑉 . The total density of states is similar to the density of
states that is obtained analytically for the noninteracting single particles in 2D lattices [30] except the
satellite peaks which are clearly observed for the strong interaction cases.

The bound pair density shows a similar structure of one bound state in 2D lattices in presence of
interaction. The density profiles are very similar to that of 1D lattice for 𝑉 = 0. For weak interaction
strengths, the pair density reaches the maximum within a range of the bandwidth rather than a sharp
peak and decays to the band edge afterwords. For strong interactions, the pair density shows a sharp
maximum at𝑉 > 𝑊/2. In presence of external gauge fields, splitting in the spectra can be observed from
figure 2. The details of the spectra then depend on the flux per plaquette 𝑝

𝑞
. At half flux per plaquette for

the non-interacting cases, the pair density is reminiscent of Kondo profile. At strong interactions with
half flux per plaquette, the density is regular dome-shaped while at non-half fluxes, the density is highly
irregular. At weak interaction, the maximum density is shifted to higher 𝐸 . These density profiles will
be reflected symmetrically about 𝐸 = 0 with changes of sign in the interaction term 𝑉 → −𝑉 .

The bound pair state shows non-trivial features on Bethe lattices. At zero onsite interaction𝑈 = 0, the
spectra show discontinuity and multiple sharp peaks. At strong interactions, these peaks merge within
a single envelope. The pair density in figure 3 is obtained for two bosons, and the interactions between
particles at different nodes are neglected. The initial states are prepared at the root layer 𝐿 = 0 with two
bosons on the node (𝐿 = 0, 𝑛 = 1). For two particles, the recursion can be performed with 𝑅 = 𝐿1 + 𝐿2
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Figure 2. Spectral density of bound pairs on a 2D lattice of 𝑁 = 20 × 21 with 𝑝 = 1 computed from
equation (2.3) for the Hofstadter Hamiltonian in equation (2.11) with𝑈 = ∞, 𝑡1 = 1, 𝑡2 = 1 and [ = 0.06.

-5 0 5 10
E

0

0.5

1

A
(E

)

U = 0
U = 5
U = 10

(0,1)

(4,8)(4,8)

Figure 3. (Colour online) Spectral density of bound pairs at various onsite interaction strengths on a Bethe
lattice of 𝐿 = 8 with [ = 0.1. The Bethe lattice is depicted on the right.

adding layer indices for the two particles on the Bethe lattice. For single particles, the recursion vectors
map directly to the branches of each layer divided as 𝐿 and 𝐿 as depicted in figure 3. The Green’s
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functions can be then efficiently computed for any initial superposition of states on these vectors, e.g.,
the rectangular box on the graph will be the vector V1 in the recursion. The discontinuities of the spectra
for weak interactions within small energy width suggest tunable control of bound pair transport on these
graphs.

4. Conclusion

In this article the doublon spectra of regular 1D, 2D and Bethe lattices have been computed from real
space Green’s functions. In two dimensions, the effects of external magnetic fields on the spectra have
been computed for weak and strong nearest neighbour interactions between two hardcore bosons. For
weak interactions, the gauge fields enhance the density at few bandwidths. In Bethe lattices, the spectra
show discontinuities for weak interactions within the band. This work points to energy windows where
maximum bound pairs can be found in 1D, 2D and Bethe lattice systems with the change of interaction
strengths between particles. The work might be helpful for understanding the many-particle states where
bound pairs can lead to the difference in responses, e.g., conductivity and spectroscopy of the lattice
systems. The scattering and dissipation of the bound pairs within continuum should also be analyzed. This
work computes the spectral profiles which provide insights into the mechanism of interacting particles
when two particle bound pair densities are much higher than the bound states with a larger number of
particles. Many-particle bound states with a larger number of particles at different energies should be
studied further which can also be important for the systems with strong interactions.
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Спектральна густина взаємодiючих пар у низьковимiрних
скiнчених гратках

T. Чаттарай
Унiверситет Британської Колумбiї (UBC), Ванкувер, Канада

Обчислено спектральну густину зв’язаних пар в iдеальних одно-, двовимiрних i Бете гратках для слабких та
сильних взаємодiй. Обчислення здiйснено з допомогоюфункцiй Грiна ефективним рекурентнимметодом
в реальному просторi. Для дiапазону сил взаємодiї, в межах якого зв’язанi стани є переважно одинарними
парами, спектральнi профiлi скерованi на таку пропускну здатнiсть енергiї, де зв’язанi пари можуть бути
максимiзованi.

Ключовi слова: квазiчастинки та колективнi збудження, переходи метал-iзолятор, дублони, зв’язанi
стани
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