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Machine learning-inspired techniques have emerged as a new paradigm for analysis of phase transitions in
quantum matter. In this work, we introduce a supervised learning algorithm for studying critical phenomena
from measurement data, which is based on iteratively training convolutional networks of increasing complexity,
and test it on the transverse field Ising chain and q = 6 Potts model. At the continuous Ising transition, we
identify scaling behavior in the classification accuracy, from which we infer a characteristic classification length
scale. It displays a power-law divergence at the critical point, with a scaling exponent that matches with the
diverging correlation length. Our algorithm correctly identifies the thermodynamic phase of the system and
extracts scaling behavior from projective measurements, independently of the basis in which the measurements
are performed. Furthermore, we show the classification length scale is absent for the q = 6 Potts model, which
has a first order transition and thus lacks a divergent correlation length. The main intuition underlying our
finding is that, for measurement patches of sizes smaller than the correlation length, the system appears to be at
the critical point, and therefore the algorithm cannot identify the phase from which the data was drawn.

Introduction. – Machine learning techniques have emerged
as a new tool for analyzing complex many-body systems [1,
2]. A particularly well-studied application of such techniques
is that of the identification and classification of phase tran-
sitions directly from data, assuming little to no prior knowl-
edge of the underlying physics [3–12]. Recent efforts have
expanded such explorations to a diverse range of systems
including disordered [13–15] and topologically ordered sys-
tems [16–20], as well as applications to experiments [21–23].

An often-voiced concern, however, is that machine learn-
ing methods appear as a black box and that it is difficult to
trust neural network classification without traditional support-
ing evidence. For example, in the study of phase transitions,
the phase boundary identified by a machine learning algo-
rithm may be affected by short-distance correlations, which
turn out to be irrelevant for the thermodynamic phase of the
system [8]. Instead, learning algorithms should ideally focus
on phase transition features which characterize the transition,
such as power-law divergences near the critical point of a sec-
ond order phase transition.

In this paper, we develop a machine learning algorithm in-
spired by this fundamental feature of critical phenomena, i.e.
the emergence of long-distance correlations and scale invari-
ance. The algorithm systematically analyzes critical behavior
near a suspected transition point, using only snapshot data, by
varying the functional form of a neural network. Specifically,
we restrict the architecture so the network can only access
patches of the snapshot at a time, and then vary the largest
patch size. The resulting architecture is similar to those in
Refs [10, 24–27]. We observe that, under these conditions,
we can extract information about the spatial growth of corre-
lations in the underlying data from the behavior of the classi-
fication probabilities.

∗ nmaskara@g.harvard.edu

Figure 1. Conceptual illustration of our method for a 1D spin-chain.
Snapshots near a second order phase transition reveal a characteristic
length scale ξcorr, over which spins are correlated, and which diverges
at the critical point. The modules mk are designed to only capture
correlations in the data up to a certain length scale `k, and their out-
puts are aggregated into Mk. On length scales shorter than ξcorr, the
algorithm cannot make a firm distinction between the two phases. As
the module size is increased, the prediction 〈Mk〉 is improved until
`k ∼ ξcorr, after which it quickly saturates.

Our main result is the identification of an emergent length
scale, which we extract from classification data, and which
displays scaling behavior. Physical arguments suggest that
this classification length scale reflects the system’s correla-
tion length, which diverges at the critical point according to a
power law with a universal exponent. We exemplify this on
the one-dimensional (1D) transverse field Ising model, whose
critical exponents are known, and compare the scaling of the
physical correlation length with the classification length. We
also consider a first order transition in the two-dimensional
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(2D) q = 6 Potts model, where, in-line with expectations, no
scaling of the classification length is observed.

The learning algorithm proves quite versatile, and neither
requires prior knowledge of the structure of the order pa-
rameter nor of the measurement data. We demonstrate this
by considering projective measurements in different measure-
ment bases, with which the thermodynamic phase and its or-
der parameter cannot be readily inferred from conventional
two-point correlation functions. Nevertheless, the algorithm is
capable of learning more complex correlations, and manages
to distinguish the two phases with a high degree of accuracy.
This is especially promising in light of studying phase tran-
sitions with non-local or hidden order, for which algorithms
based on purely local structures hardly gain access.

The Algorithm. – We start by introducing a supervised
learning algorithm that allows one to systematically add com-
plexity to a machine learning model. The model is composed
of a set of independent computational units, termed modules.
The algorithm takes and trains modules iteratively, and, by de-
sign, each new module learns correlations in the data that the
prior modules did not capture. Conceptually, complexity is
added by increasing the amount of correlations representable
by the model in each step. Here, we are interested in scal-
ing behaviour near critical points, so each subsequent module
is designed to capture spatial correlations at a larger length-
scale.

Each module mi : ~x → R, labeled with an index i, takes as
input a snapshot (projective measurement) ~x and maps it to a
scalar. Then, we apply an aggregation function Mk that aggre-
gates the outputs of the first k modules m1, ...,mk. In practice,
both the modules and the the aggregation function are imple-
mented through a neural network. The modules plus the ag-
gregation function constitute our combined machine learning
model Mk(m1, ...,mk) : ~x → R, mapping an input ~x to a cor-
responding classification target y. This model is then trained
to minimize a classification loss function L using the iterative
training algorithm described in pseudo-code in Algorithm 1:

Algorithm 1: Iterative Training Algorithm

input : Sequence of modules m1, ...,ml

input : Aggregate models Mk(m1, ...,mk), k ≤ l
input : Labeled dataset {(~xi, yi)}
input : Loss function L
Result: Trained set of models {Mk}, k = 1, ..., l
for k = 1, ..., l do
train Mk on dataset (~xi, yi) by minimizing
L(yi,Mk(xi));
freeze parameters of mk;

To understand the intuition behind this algorithm, it is help-
ful to consider an aggregation function which simply sums the
module outputs, Mk(~x) =

∑k
j=1 mk(~x), and a loss function like

mean-squared error, which only depends on the difference be-
tween the target dataset and model output. In this case, the
loss function can be written as

L
(
yi − Mk(~xi)

)
= L

(
ỹi − mk(~xi)

)
, (1)

where we define an effective target ỹi = yi −
∑k−1

j=1 m j(~xi). Cru-

cially, during the k-th step of training, the variational param-
eters (weights) of all the modules m j, j < k are frozen, and
hence mk is trained only on the residuals ỹi of all the prior
models. These residuals are the leftover errors from the pre-
vious training step, and each subsequent module only learns
features which prior modules did not capture. In our actual
implementation, we use a linear classifier for the aggregation
function and the binary cross-entropy for the loss function (see
below). As a result, our modules are not exclusively trained on
residuals, but the intuitive picture of subtracting prior features
from the cost function still approximately holds.

The Network. – In this section, we’ll provide more details
about our choice of neural networks. For the modules, we
develop a class of convolutional neural networks designed to
probe the spatial locality of correlations. Each module mk

takes the functional form

mk(~x) =
1
N

∑
j

mk
0(~x`k

j ) (2)

where mk
0 is a two layer neural network that acts on a subset

~x`k
j of the data ~x. The label `k indicates the size of a spatial

region corresponding to the subset (e.g., `k adjacent sites in
a one-dimensional lattice) and the index j enumerates all N
regions of size `k.

The aggregation function we choose is a linear classifier
LC, acting on the module outputs mk(~x).

MK(~x) = LC
(
m1(~x),m2(~x), ...mK(~x)

)
. (3)

The linear classifier is defined by LC({mi(~x)}) =

σ(
∑

i wimi(~x) − b), where σ is the sigmoid (or logistic)
function σ(z) = 1/(1 + e−z), and wi and b are free parameters.
The non-linearity σ maps the linear combination of module
outputs to a value between [0, 1], as expected for binary
classification. The loss function we use is the binary cross en-
tropy, L(yi,Mk(xi)) = 〈y log Mk(xi) + (1− y) log(1−Mk(xi))〉,
where yi is the target label yi ∈ {0, 1} and the expectation
value is taken over the training dataset.

Choosing a linear classifier ensures that the network can-
not capture additional, spurious correlations between mod-
ules. For example, for a linear classifier, the first module
that extracts information on a 5-site region will be the module
m5(~x). Instead, a non-linear classifier, which contained e.g.
terms quadratic in the arguments, would also include products
of the form m2(~x)m3(~x). This would include non-local infor-
mation about potentially disconnected 5-site regions, which
we exclude on purpose. Thus, in the remainder of the text, we
use M` instead of MK to denote an aggregate classifier with
largest convolution length `K = `.

The full model is naturally represented by a convolutional
neural network (CNN), which can be implemented using open
source machine learning libraries such as Keras [28] or Py-
Torch [29]. The resulting CNN architecture, with differ-
ent parallel convolutional modules, is similar to the corre-
lation probing neural network from Ref. [27], the network-
in-network architectures from Refs. [10, 24, 25], and to the
EDNN from Ref. [26]. However, to the best of our knowledge,
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Figure 2. (a) Average classification M`(x) as a function of the TFIM parameter g and the spatial extent ` of the model. Classifiers incorporating
longer range correlations can more reliably identify the phase of snapshots taken near the critical point, as evidenced by an increase in the
slope. (inset) Average module outputs 〈m`〉 also exhibit scaling with `, as one would expect from an order parameter. (b) Fitted classification
lengths ξnet on a log-log plot, from measurements in the z (basis = 0), x (basis = π/2), and two intermediate bases cos(0.18π)z + sin(0.18π)x
(basis = 0.18π) and (z + x)/

√
2 (basis = π/4), plotted on a log-log scale. For each basis, points are separate for approaching gc from above

(blue) or below (red). Data for g near gc is consistent with power-law behavior with exponent µ = 1, which are depicted by colored dotted lines.
Error bars are an estimate of the standard deviation in the fitted ξnet. (c) Correlation lengths ξnet are extracted by fitting the classification curves
〈M`〉g for each value of g, to an inverse exponential form. Fits are performed for classifiers with largest module size between 2 ≤ ` < 20, and
are shown in the same four bases. Notice in the intermediate bases, especially π/4, the classification curves behave erratically at very small `,
but exhibit scaling at intermediate ` > 5. The resulting lengthscales extracted by the exponential fits are consistent with universal scaling near
the critical point g ≈ gc (b).

scaling the convolution size by freezing the module parame-
ters iteratively, and observing the response via classification
accuracy to extract a lengthscale, has not appeared before in
the literature.

Applications. – To investigate the scaling of the classifi-
cation output of our model, we first analyze a second order
phase transition in the paradigmatic 1D transverse field Ising
model (TFIM). We then contrast this behaviour with a first
order transition in the 2D q = 6 Potts model.

The single-parameter Hamiltonian for the 1D TFIM with
open boundaries is

H(g) = −

L−1∑
i=1

σz
iσ

z
i+1 − g

N∑
i=1

σx
i , (4)

where σz,x
i are Pauli matrices for spin i. At critical value

gc = 1, the ground state of this model undergoes a phase tran-
sition from a disordered (paramagnetic) to an ordered (ferro-
magnetic) state, breaking the global Z2-symmetry. In what
follows we focus our attention on a region around g = gc.
To construct our dataset, we employ the matrix product state

based iTEBD algorithm [30] to numerically determine the
ground state as a function of g, and sample configurations for
a system size of L = 400. We then perform projective mea-
surements in multiple bases, including the z-basis (measuring
σz

i on each site), but also in the x-basis (measuring σx
i ) and

in a few intermediate basis, cos(θ)σz
i + sin(θ)σx

i . This is done
to illustrate that the classification algorithm does not rely on
the a priori choice of an optimal basis, which for experimental
measurements may be unknown.

Each snapshot is labelled with the phase it is drawn from,
e.g. ordered (g < gc) or disordered (g > gc). As a convention
we set the label equal to 1 if the snapshot x is drawn from the
ordered phase. The machine learning model is then trained by
minimizing the binary cross-entropy between the labels and
the prediction M`(x) (see The Network), on snapshots drawn
from the ground state of H(g) at 85 different values of g with
800 snapshots per g. Points were spread from g = 0 to 4.4,
but concentrated in the critical region near gc = 1, with a min-
imum separation of ∆g = 0.01. Module outputs, 〈m`〉g, and
phase classification 〈M`〉g, are computed on a separate vali-
dation dataset consisting of 200 snapshots per g, and with a
minimum separation of ∆g = 0.002 in the critical region. The
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value of 〈M`〉g is a measure of how accurately one can identify
the phase of the ground state of H(g) from local measurements
with maximum spatial extent `, and henceforth we call this the
classification accuracy.

Empirically, we find the classification accuracy improves as
the convolution size ` is increased, with the improvement most
dramatic for snapshots drawn near gc, as shown in Fig. 2a.
To rationalize this behavior, we notice that the problem of
identifying the phase from local measurements is intimately
connected to the correlations in the ground state. At the criti-
cal point, the ordered and disordered phases are indistinguish-
able, and the system is dominated by fluctuations with a di-
vergent correlation length ξcorr. This results in an ambiguous
prediction 〈M`〉gc = 0.5. As g moves away from the critical
point, characteristic correlations, indicating one of the possi-
ble phases, start to build up at distances larger than ξcorr, while
shorter distances remain dominated by fluctuations. Since
ξcorr ∼ |g − gc|

−ν follows a power-law, farther from the critical
point the classification accuracy improves for fixed `. Simi-
larly, as ` is increased, the accuracy of the classification 〈M`〉g
will improve, saturating to either 1 or 0 depending on g < gc
or g > gc respectively.

These arguments suggest the behavior of the classification
curves, 〈M`〉g can be used to detect a second order phase
transition. Indeed, the improvement of M` with ` is contin-
gent upon correctly partitioning the dataset close to the crit-
ical point, and is unique to the critical region. Away from
the critical point, the classification probabilities saturate at
some constant ` and no visible improvement for larger ` is
observed [31].

Associated with the behavior of 〈M`〉g is a characteristic
length scale, which we extract via an exponential fit 〈M∞ −
M`〉g ∼ exp(−l/ξnet), where ξnet is a g-dependent length scale.
Specifically, we set M∞ to 1 in the ordered phase and 0 in the
disordered phase, the saturation values in an ideal, infinitely
large system. It turns out to be sufficient to consider ` < 20
in order to obtain convincing prediction probabilities for dat-
apoints with |g − gc| ≥ 0.01. For our data, which is for an
L = 400 chain, this then emulates a thermodynamically large
system. We also exclude the smallest module (` = 1), which
only captures single-site observables. The resulting fit be-
tween 2 ≤ ` < 20 performs well in the z-basis ( 2c). How-
ever, in different bases, specifically the intermediate θ = π/4
basis, the classification accuracy exhibits erratic behavior for
small `. Nevertheless, at slightly larger ` ≈ 5, scaling with `
reappears, and the exponential fit extracts a meaningful length
scale ξnet capturing the scaling of 〈M`〉g.

Near the phase transition, the fitted correlation length ξnet
diverges as g approaches the critical point gc, and is well de-
scribed by a power-law (Fig. 2b). It is known that, for the 1D
TFIM, the physical correlation length scales as ξcorr ∼ |g−gc|

−ν

with ν = 1. Remarkably, the power-law scaling of the fit-
ted classification length ξnet ∼ |g − gc|

−νnet , is consistent with
νnet ≈ ν = 1 in any of the measured bases. This also in-
cludes the intermediate θ = π/4 basis, where the phases can-
not be reliably distinguished from conventional two-point or
string-like correlation functions [31]. These observations sug-
gests that the characteristic lengthscale we extracted by scal-
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Figure 3. Potts Model Data. (a) Predicted classifications 〈M`〉T for
the q = 6 Potts model do not exhibit scaling with system size, reflect-
ing the fact that the phase transition is first order. (b) The module
outputs 〈m`〉T , averaged over all snapshots at a given temperature,
are in sharp contrast to the second order transition from Fig. 2. (c)
Zooming in on the classifications 〈M`〉T near zero demonstrates the
lack of scaling with `.

ing the machine learning model reflects the underlying corre-
lation lengthscale, and hence can be used to probe the growth
of correlations near the critical point.

To contrast this, we also examine the q = 6 Potts model,
which exhibits a first-order phase transition in temperature
(T ), and hence does not feature a diverging correlation length
at the critical point [32]. As a result, we expect that spa-
tially local measurement data should be sufficient to distin-
guish the two phases, even arbitrarily close to the transition
point, since there are no long-range critical fluctuations. In-
deed, our numerical data reflects this intuition, since the clas-
sification 〈M`〉T do not exhibit improvement beyond ` = 2
(Fig. 3), regardless of distance to the transition point.

Discussion. – We have presented a flexible method for ex-
tracting a characteristic length scale ξnet inferred from mea-
surement data via scaling of the classification 〈M`〉g. Fur-
thermore, ξnet diverges with the same scaling exponent as the
physical correlation length ξcorr, suggesting the two quantities
coincide near the critical point. Above we gave physical argu-
ments for why this is the case, based on indistinguishability of
the phase at short distances dominated by critical fluctuations.
These arguments are quite general, and reflect the emergence
of universality at critical points. Indeed, it is widely believed
that at the critical point, the correlation length ξcorr is the sole
contributor to singular, thermodynamic quantities [33, 34]. As
long as the model and training data are sufficient to distin-
guish the two phases, the trained phase classification 〈M`〉g
should exhibit a discontinuitity at the critical point g = gc
in the thermodynamic limit ` → ∞, and ξcorr should be the
only length scale governing long-distance behavior of 〈M`〉g,
in agreement with our observations. As such, our scaling pro-
cedure makes few assumptions about the microscopic model,
and could be used to study any system with a continuous phase
transition.

Our analysis of the classification length scale ξnet, has been
performed for relatively small module sizes ` < 20 compared
to the size of the system L = 400. This mitigates any poten-
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tial finite size effects and yields a scaling of the classification
only with the correlation length. In general, however, when
the system size becomes comparable to the correlation length
ξcorr ∼ L, both length scales will be relevant for characteriz-
ing the classification curves 〈M`〉g. One could explore scaling
with both parameters, to extend our framework to finite size
systems. Such scenarios will likely be relevant for near-term
quantum simulators, where resources are limited.

The framework presented here for analyzing continuous
phase transitions shows more broadly that for classification
tasks, we can probe an underlying feature of interest by sys-
tematically varying the functional form of the models, and
measuring the response in the form of classification accu-
racy. In addition to the convolutional neural networks used
here, one could consider different classes of models, including
kernel methods [6, 35], or quantum machine learning mod-
els [36]. Such a concept could also be readily generalized to
different kinds of order. For example, dynamical critical ex-
ponents could be estimated by looking at time-series data, and
using a set of models which can represent observables span-
ning a finite-number of time-slices [15]. Similarly, phase tran-
sitions without conventional order parameters could be stud-
ied, perhaps by looking at loop-like observables of different

sizes as in Ref. [37]. The tools developed here are especially
timely, as quantum simulation technologies are rapidly ap-
proaching the point where exotic phases of quantum matter
can be directly studied in the lab. The ability of our algorithm
to characterize phase transitions and implicitly identify use-
ful correlations, directly from measurement data, makes it a
promising tool for analysis of future experiments.
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[11] F. Schäfer and N. Lörch, Physical Review E 99, 062107 (2019),

arXiv: 1812.00895.
[12] T. Mendes-Santos, X. Turkeshi, M. Dalmonte, and A. Ro-

driguez, Physical Review X 11 (2021), 10.1103/Phys-
RevX.11.011040.

[13] J. Venderley, V. Khemani, and E.-A. Kim, Physical Review
Letters 120, 257204 (2018), arXiv: 1711.00020.
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Supplementary material for “A learning algorithm with emergent scaling behavior for classifying
phase transitions”

I. NETWORK ARCHITECTURE

In this section, we provide a few additional details on our
neural network implementation. As explained in the main
text, each module mk is a two layer convolutional neural net-
work. The first convolution takes an `k sized input to a vec-
tor of 4`k features, and applies a ReLU non-linearity defined
by ReLU(x) = max(0, x). Then, the second convolution col-
lapses the 4`k features into a single value, and applies a tanh
activation function tanh(x) = ex−e−x

ex+e−x . The module outputs are
then combined using a linear classifier, described in the main
text. The network architecture for the third iteration k = 3 is
shown in Fig. S3. Note that in our implementation, for the
first module m1 we only apply a single convolution layer with
linear activation, which can approximate all mappings from a
binary input to a real valued output.

II. CORRELATION FUNCTIONS IN DIFFERENT BASIS

Here, we discuss correlations functions of the TFIM in dif-
ferent measurement basis. Conventionally two helpful corre-
lation functions in the Ising model are the two-point correla-
tion function C2(l) = 〈σz

m+lσ
z
m〉 and the string (parity) order

correlation function Cs(l) = 〈
∏l

m=1 σ
x
m〉, which both are sharp

indicators for the ordered (disordered) phase [38]. Note that
the parity correlation relies on the fact that the iTEBD algo-
rithm prepares the true ground state, which in a finite system
is the superposition of the two short-range correlated ground
states.

Generalized to an arbitrary measurement basis, which we
parametrize with the angle θ, the two-point correlation func-
tion Cθ

2(l) = 〈σθm+lσ
θ
m〉 and the string order correlation func-

tion Cθ
s(l) = 〈

∏l
m=1 σ

θ
m〉 are expressed as functions of the spin

σθl = cos(θ)σz
l + sin(θ)σx

l . For θ = 0 this corresponds to
correlation functions measured in the z basis while θ = π

2 cor-
respond to measurements in the x basis. We also consider
intermediate bases with θ = 0.18π, π/4, and 0.32π.

Correlation functions like Cθ
2,C

θ
s can be reconstructed from

individual snapshots (projective measurements) by averaging
over many different positions (due to translational invariance),
and are thus accessible to the machine learning algorithm as
well. Furthermore, in the z and x bases, these are sharp identi-
fiers of the corresponding phase, and also witness the scaling
with distance l. It is therefore likely that the algorithm learns
(a variant of) these correlation functions. However, these are
two of the simplest correlations functions one can consider,
and most generally the network can capture any linear combi-
nation of correlation functions constructed from σθ.

In Fig. S2, we display the correlation functions Cθ
2,C

θ
s for

a set of angles θ, obtained from the ground state for different
values of g. We observe that in the intermediate bases, the
contrast in these correlation functions on the two sides of
the transition is reduced. Most strikingly at θ = π

4 , both
correlation functions appear identical away from the critical
point, and only change qualitatively close to g = gc. Thus, the
two phases are not readily distinguishable by studying these
two “conventional” correlation functions in this basis, yet the
algorithm learns to distinguish them successfully.

III. DIFFERENT LABELLINGS

In the main text, we always partition our data into ordered
(1) and disordered (0) based on knowledge of the critical point
gc. However, in many experimental settings, the critical point
may not be known a priori. Hence, in this section, we present
some results where a different threshold gth was used to par-
tition the data. Specifically, we chose gth = 1.05, label snap-
shots from g < gth ordered, snapshots with g > gth disordered,
and repeat the same training procedures. However, when we
look at the classification 〈M`〉 on a validation set, we see the
the accuracy stops improving beyond ` ≈ 6, see Fig. S1. This
likely reflects the finite correlation length at gth = 1.05, versus
the divergent correlation at g = 1.00, which is what enabled
improvement at larger ` in main text Fig. 2. This also sug-
gests that scaling of M` could be combined with confusion
methods [3] to aide in identification of critical points.
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Figure S1. Classifications curves for the incorrectly chosen partition
gth = 1.05. Notice that the classification improves as we increase `
for ` < 5, but then saturates and stops improving. This is likely a
reflection of the finite correlation length at gth = 1.05.
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Figure S2. Two-point correlation function Cθ
2(l) (top row) and string order correlation function Cθ

s(l) (bottom row) obtained from the ground
state of the TFIM in different measurement basis (parametrized by θ). We see that C2(l) exhibits scaling with l in the z basis, but not in the x
basis, while the opposite is true for Cs(l). Away from the critical point, depending on the angle θ, at least one of the two correlation functions
unambiguously distinguishes the two phases. An exception is the peculiar behavior at θ = π

4 , which we discuss in the text.
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Figure S3. Network architecture at the third iteration, calculating the function denoted M3. The three modules m1,m2,m3 are convolutional
layers, added in parallel, and are combined by a standard linear classifier. The Lambda layer is a custom layer, added to simulate convolutions
which wrap around the periodic boundaries. The activation function for the first convolution (conv1d 1,conv1d 3) is a ReLU, while the
activation for the second convolution (conv1d 2,conv1d 4) is tanh. The final dense layer has a sigmoid activation. Higher iterations have more
modules added in parallel. For the Potts model, an equivalent architecture but with 2D convolutions was used.
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