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Abstract

In a preceding paper the theory of nonsymmetric Macdonald polyno-
mials taking values in modules of the Hecke algebra of type $A$ (Dunkl
and Luque SLC 2012) was applied to such modules consisting of poly-
nomials in anti-commuting variables, to define nonsymmetric Macdonald
superpolynomials. These polynomials depend on two parameters $\left(
q,t\right) $ and are defined by means of a Yang-Baxter graph. The
present paper determines the values of a subclass of the polynomials at
the special points $\left( 1,t,t"{2}% ,\ldots\right) $ or$\left( 1,t"{-1},t"{-
2}, \ldots\right) $. The arguments use induction on the degree and com-
putations with products of generators of the Hecke algebra. The resulting
formulas involve $\left( q,t\right) $-hookproducts. Evaluations are also
found for Macdonald superpolynomials having restricted symmetry an-
dantisymmetry properties
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1 Introduction

In the prequel [8] of this paper we defined a representation of the Hecke algebra
of type A on spaces of superpolynomials. By using the theory of vector-valued
nonsymmetric Macdonald polynomials developed by Luque and the author [6]
we constructed nonsymmetric Macdonald superpolynomials. The basic theory
including Cherednik operators, the Yang=Baxter graph method for computing
the Macdonald superpolynomials, and norm formulas were described. The norm
refers to an inner product with respect to which the generators of the Hecke alge-
bra are self-adjoint. The theory relies on relating the Young tableaux approach
to irreducible Hecke algebra modules to polynomials in anti-commuting vari-
ables. Also that paper showed how to produce symmetric and anti-symmetric
Macdonald superpolynomials, and their norms, by use of the technique of Baker
and Forrester [2]. In the present paper we consider the evaluation of the polyno-
mials at certain special points. The class of polynomials which lead to attractive
formulas in pure product form is relatively small. These values are expressed by
shifted ¢-factorials, both ordinary (positive integer labeled) and the type labeled
by partitions, and (g, t)-hook products.

In Section [2] one finds the necessary background on the Hecke algebra of
type A and its representations on polynomials in anti-commuting (fermionic)
variables and on superpolynomials which combine commuting (bosonic) and
anti-commuting variables. This section also defines the Cherednik operators,
a pairwise commuting set, whose simultaneous eigenvectors are called nonsym-
metric Macdonald superpolynomials. They are constructed starting from de-
gree zero by means of the Yang-Baxter graph. The necessary details from [8]
are briefly given. Section B presents the main results with proofs about the
evaluations; there are two types with similar arguments. The methods rely on
steps in the graph to determine the values starting from degree zero. Some of
the arguments are fairly technical computations using products of generators of
the Hecke algebra. The definition of (g, t)-hook products and their use in the
evaluation formulas are presented in Section @l The evaluations are extended
to Macdonald polynomials, of the types studied in the previous sections, with
restricted symmetry and antisymmetry properties in Section[d The conclusion



and ideas for further investigations in Section [6] conclude the paper.

2 Background

2.1 The Hecke algebra

The Hecke algebra Hy (t) of type Ay_1 with parameter ¢ is the associative
algebra over an extension field of Q, generated by {T1,...,Tn_1} subject to the
braid relations

T LT =TT, 1<i< N -1, (1a)
T;T; =115, |i—jl =2,
and the quadratic relations
(T; —t)(T; +1)=0, 1 <i <N, (2)

where t is a generic parameter (this means t" # 1 for 2 <n < N, and ¢t # 0).
The quadratic relation implies Ti_1 = % (T; + 1 —t). There is a commutative
set of Jucys-Murphy elements in Hy (t) defined by wy = 1,w; = t ' Tiw;1T;
for 1 <17 < N, that is,

Wi = ti_Nﬂﬂ+1 e TN—lTN—lTN—2 o 111

Simultaneous eigenvectors of {w;} form bases of irreducible representations
of the algebra. The symmetric group Sy is the group of permutations of
{1,2,...,N} and is generated by the simple reflections (adjacent transposi-
tions) {s; : 1 <i < N}, where s; interchanges 4,7+ 1 and fixes the other points
(the s; satisfy the braid relations and s? = 1).

2.2 Fermionic polynomials

Consider polynomials in N anti-commuting (fermionic) variables 61,65, ...,0N.
They satisfy 7 = 0 and 6;0;+0;60; = 0 for i # j. The basis for these polynomials
consists of monomials labeled by subsets of {1,2,..., N}:

¢E ::9i1-~-9im, E:{il,iQ,"' ,im},1§i1 <lg < v < SN

The polynomials have coefficients in an extension field of Q (¢,¢) with tran-
scendental q,t, or generic q,t satisfying ¢,t # 0 ¢* # 1,q%t™ # 1 for a € Z and
n#*23,...,N.

Definition 1 P :=span{¢g : E C {l,...,N}} and P,, := span {¢p : #E = m}
for 0 <m < N. The fermionic degree of ¢ is #E.

This is a brief description of the action of T; on P: suppose j € E; implies

j <t,and j € E5 implies j > ¢+ 1: then
E¢E19i0i+l¢E2 = —¢E19i9i+1¢E2,Ti¢E1¢E2 = t¢E1¢E27 (3)
Ti¢p,0i9E, = ¢8,0i+198,, Ti¢p,0iv108, = Ti¢r, (10; + (t — 1) 0i11) dp,.



Then {T; : 1 < i < N} satisfy the braid and quadratic relations.
There are two degree-changing linear maps which commute with the Hecke
algebra action.

Definition 2 {{For n € Z set o (n) := (=1)" and}} for E C {1,2,...,N},
1<4i< N set s(i,F) = #{j€E:j<i}. Define the operators 9; and 0;
by 0,0:65 = b5, divr = 0 and Oiop = b0 = (—1)°“" ¢pupy for i ¢ E,
while 8;¢p5 = 0 fori € E (also i € E implies ¢p = (—1)5(i’E) 0idp\qiy and
0P = (—l)s(i’E) bE\fiy ). Define M = sz\il 0; and D := Zfil t=19;.

1—t"
It is clear that D* =0 = M?. For n =0,1,2,... let [n], := I
Proposition 3 M and D commute with T; for 1 < i < N,and M D + DM =

[N, -

The spaces Pp, 0 := ker DN'Py, and Ppy41,1 := ker M NPy, are irreducible
Hn (t)-modules and are isomorphic under the map D : P11 — Pm,o and
are of isotype (N —m, 1™).The representations of Hx (t) occurring in this pa-
per correspond to reverse standard Young tableaus (RSYT) of hook shape (see
Dipper and James [5] for details of the representation theory) These are la-
beled by partitions (N —n,1™) of N and are graphically described by Ferrers
diagrams: boxes at {[1,i]: 1 <i < N —n}U{[j,1] : 2 < j <n}. The numbers
{1,2,..., N} are entered in the boxes in decreasing order in the row and in the
column. For a given RSYT Y let Y [a,b] be the entry at [a,b] and define the
content ¢ (Y [a,b],Y) := b — a. The vector [c(i,Y) :1<1i < NJ is called the
content vector of Y. It defines Y uniquely (trivially true for hook tableaux).
The representation of Hy (¢) is defined on the span of the RSYT’s of shape
(N —n,1™) in such a way that w;Y = t<@Y)Y for 1 < i< N. We use a space-
saving way of displaying an RSYT in two rows, with the second row consisting
of the entries Yz [2,1],Yx [3,1],..... Note that Y [1,1] = N always.

As example let N = 8,n = 3,

8 6 4 3 1
Y‘[-752} (4

and [¢ (4, Y)]°_, = [4,-3,3,2,-2,1,-1,0].

We showed [8] that P,, is a direct sum of the H y (¢)-modules corresponding
to (N —m,1™) and (N +1—m, 1’"_1) ; ker D NP, and ker M N P, respec-
tively.

~—

2.3 The module ker D NP,

The basis of ker DNP,, is described as follows: Let Yy := {E : #E =m+1,N € E}
and for E € Y let v = D¢p. Associate FE to the RSYT Yy which contains the
elements of E in decreasing order in column 1, that is, {[j,1]: 1 < j < m + 1},
and the elements of E in {[1,4] : 2 <i < N — m}. In the example Y = Yp with



E = {2,5,7,8}. The content vector of E is defined by ¢ (¢, F) = ¢ (¢, Yg). For
each F € )) there is a polynomial 7 € ker D NP, such that w;7g = te:B) rp
for 1 <i < N, and if inv (E) = k then 75 — t*¢p € span {¢p: : inv (E') < k}.
In particular if E = {N —m,N —m+1,...,N} then 75 = D¢g (and this is
one of the two cases that are used here). For example suppose N = 7,m = 3

then
7 3 2 1}

YE‘{- 6 5 4

(i, E))_, = [3,2,1,-3,—2,1,0], and 75 = D (04050607) = 13050607 —t04066+
5040507 — t50,0505.

2.4 The module ker M NP,

The basis of ker MNPy, is described as follows: Let Yy := {F : #F =m —1,N ¢ F'}
and for F' € Y let np = M¢p. Associate F' to the RSYT Y which contains
the elements of F' in decreasing order in column 1, that is, {[j,1] : 2 < j < m},
and the elements of F¢ in {[1,i]:1<i< N —m+11}. In the example (@)
Y = Yp with F = {2,5,7}. As before the content vector of F' is defined by
¢(i,F) = c(i,Yr). For each F' € ), there is a polynomial 7p € ker M N Py,
such that w;rp = t:Frp for 1 < i < N, and if inv (F) = k then 7p —
np € span{¢p :inv (F') > k}. Note that F € )y implies 0 < inv (F) <
(m—1)(N —m+ 1) and the maximum value occurs at F' = {1,2,...,m — 1}.
This case is the second of those to be studied here. For this set 7, = M¢p. As
example let N =7, m =5 then

Yr= [7 461 ?, 2 1} ’
[C (i, F)]Z:l = [—4, -3,—-2,—-1,2,1, 0], and 7 = 0102030, (6‘5 + 0g + 97)

2.5 Superpolynomials

We extend the polynomials in {6;} by adjoining N commuting variables 1, ...,z x5
(that is [x;, ;] = 0, [z;,6,] = 0,6;6; = —6,0; for all 4, j). Each polynomial is a

N
sum of monomials 2%¢r where E C {1,2,..., N} and a € N}/, z® := [] x%".
i=1

The partitions in NY¥ are denoted by Név’Jr A\ e NéV’Jr if and only if Ay >
A2 > ... > An). The fermionic degree of this monomial is #F and the bosonic
degree is |a| := sz\il a;. The symmetric group Sy acts on the variables by
(rw); = Zu(;) and on exponents by (wa), = -1 for 1 < i < N,w € Sy
(consider x as a row vector, a as a column vector and w as a permutation
matrix, w;; = 0; . (j), then xw = 2w and wa = wa). Thus (zw)® = xve.
Let sP,, := span {xo‘qﬁE ca e NY #E = m}. Then using the decomposition



Pm = F'm,0 @ Pm,l let

§Pm.0 = span {xo‘1/)E RS NéV,E € yo} )
§Pm1 = span {z°ng : « € N§', E € V1 }.
The Hecke algebra Hy (t) is represented on sPp,. This allows us to apply

the theory of nonsymmetric Macdonald polynomials taking values in Hy (t)-
modules (see [6] ).

Definition 4 Suppose p € sP,, and 1 <i < N then set

p(z;0) — p(ws:;0)

Tj — Ti41

Tip(z;0) := (1 —t) it

+ Tip (wsi30) - (5)

Note that T; acts on the 6 variables according to Formula (B]).
Definition 5 Let TW) = Ty _{Tn_o--- T} and forpe sPy, and1 <i< N

wp (117,9) = T(N)p (qu,Il,I2, v 7$N*1;9) ’
&ip (z;0) = ti_NTl-THl i TN,lel_sz_1 i ;llp (x;6).

The operators &; are Cherednik operators, defined by Baker and Forrester
[1] (see Braverman et al [3] for the significance of these operators in double
affine Hecke algebras). They mutually commute (the proof in the vector-valued
situation is in [6] Thm. 3.8]). The simultaneous eigenfunctions are called non-
symmetric Macdonald polynomials. They have a triangularity property with
respect to the partial order > on the compositions NY¥, which is derived from
the dominance order:

a<p @iajgiﬂj, 1<i< N, a#8,

j=1 j=1
a<df <= (la| =B A (e <BT)V (" =8TAa=<p)].

The rank function on compositions is involved in the formula for an NSMP.
Definition 6 For a € Név,l <i<N
ra (i) =#{jroy >ait+#{j:1<j<ia; =04},

and R, =

then ro € Sn. There is a shortest expression 1o = Si;Siy---Si

(T3, Tsy -~ Ty, )" € Hn (t) (that is, Ry =T (ro) ).

k

A consequence is that roa = a™, the nonincreasing rearrangement of a, for
any a € N | and r,, = I if and only if a € Név’+.



Theorem 7 ([6, Thm. 4.12]) Suppose o € N) and E € Yy, k = 0,1 then there
exists a (§;)-simultaneous eigenfunction

Mo g (2;0) = t2(@"E) 8@ ge R (15 (0)) + > 2008 (050.1) (6)
B<la

where Vo858 (0;9,t) € Pmi and its coefficients are rational functions of q,t.
Also &My g (730) = Co.p (i) My g (7;0) where Co.p (1) = q®it¢T=0)E) for 1 <

i < N. The exponents 3 (a) :== SN (%) ande (o™, E) := SN o (N —i+4c(i, E)).

2

The applications in the present paper require formulas for the transformation
(called a step) My g — M, o, when a;41 > ay:

1-1¢
1= Cap (i+1)/Car (i)

Mo (030) = (T, + )Mos o). (@)

and for the affine step:

o = (az,a3,...,an,a1 +1)
C@a,E = [Ca,E (2) s Ca,E (3) P 7Co¢,E (N) aQCa,E (1)]
Mq)ayE (:E) = :EN’UJMOHE (I) .

Two other key relations are (o5 (i + 1) = t¢s, g (¢) implies (T; +1) My g =0
and Ca,E' (’L + 1) = tilcayE (Z) implies (Tz — t) Ma,E =0.

3 Evaluations and Steps

We consider two types of evaluations: (0) z2(®) = (1,t,t2,...,tN_1), E =
{N—-mN—-m+1,...,N}, a € N) with a; =0 for N—m <i < N, and
Mo (29) =VO (a)7g; (1) 2@ = (1,¢7 4,72, t17N), F ={1,2,...,m},
a €N witha; =0form+1<i<N,and M, p (;C(l)) =y (@) TF.

Definition 8 Let Ny := {a € N)Y :i > N —m = a; = 0}, Ny := NonNNy" ™.
Let N7 := {aENéV:i>m:>o¢i:0},N1+ ::NlﬁNév’+.

Conceptually the two derivations are very much alike, but there are differ-
ences involving signs and powers of ¢ that need careful attention. We begin by
expressing V(© (a) and V(Y () in terms of V(© (o) and VM) (at). Since we
are concerned with evaluations the following is used throughout:

t—1
Definition 9 For a fived pointz € RY and 1 <i < N let b (x;i) = T —
— T/ Ti+1
(i # ®ip1). In particular if x;41 = t"x; then let K, := b(x;i) for n € Z\ {0}.
n 1
Ifn>1then k, = — and k_py = ———.
[n], [n],



In terms of b the evaluation formula for T'; is
Tip (x;0) =b(z;4) p(2;0) + (T; — b(2;0)) p (xsi;6) (8)
The following are used repeatedly in the sequel.

Lemma 10 Suppose for some i < N there is a polynomial p (z;6) and a point
y such that (T; +1)p =0 and y;41 = ty; then (T; + 1) p(y;6) = 0.

Proof. By hypothesis b (y;7) = t and thus (1 +¢) p (y;0)+(T; — t) p (ys;;6) = 0.
Then (1 +¢) (T + 1) p(y;:0) = = (Ti + D) (T; = t) p(ysi;6) = 0. =

Lemma 11 Suppose for some i < N there is a polynomial p (x;0) and a point
y such that (T; —t)p =0 and y; = tyi+1 then (T; —t)p (y;0) = 0.

Proof. By hypothesis b (y;4) = —1 and thus (=t — 1) p (y; 0)+(T; + 1) p (ys:;6) =
0. Then (1+ 1) (T; — &) p (43 6) = — (Ts — £) (Ts + 1) p (ys;:6) = 0. m

In type (0) (o5 (i) = '~ for N—m < i < N which implies (T'; + 1) My g =
0for N—m<i<N.

Lemma 12 Suppose M, g is of type (0) and x;41 = tz; for N—m < i < N then
Mo g (x) = cTg for some constant depending on x, and (T; —t) My g () =0
for1<i< N-—-m-—1.

Proof. From (T; + 1) M, g = 0 and Lemmal[I0lit follows that (T; + 1) My g (z) =
0 for N—m < i< N. Thus (wi—ti_N)MmE(:v;H) =0for N—m<i<N,
and this implies M, g (z;0) is a multiple of 7z (the contents [c (i,E’)]i]iN_m
determine E’ uniquely). Furthermore (7; —t)7g = 0for 1 <i < N—-m —1
(since 1,2,...,N —m — 1 are in the same row of Yg). =

Proposition 13 Suppose a € Ny and o; < a1 (implyingi+1 < N —m) and
z=C(a,p (i +1) [Ca,E (i) then

1-—t¢
M, 0 E (3:(0);9) = I ZMayE (:17(0);9) .
-2z

Proof. From (@) and (®) with b (2(9,i) =t it follows that
1-1¢
0).9) = (0). o 0)g..
My (2030) = <t+ : _Z> Mg (20:0) + (T = t) Mo, (25150

L= (50h0).
1—=2 ’

because (%) s;satisfies the hypotheses of the Lemma implying (T; — t) M, g (az(o)si; 0) =
0. m
The following products are used to relate V) (a) to V®) (at), k=0,1.



t—z 1—tz

Definition 14 Let ug (2) := T u (2) = 1 . Suppose B € N and
-z -z
E' €Ul and k=0,1 then
Re@ )= L (g el B 0.8)).

1<i<j<N, Bi<pB;

Note that the argument of wuy is (g (j) /(3,67 (1) and there are inv (8)
factors, where

inv (B) :=={(i,j) : 1 <i<j<N,B; <Bj}.
Lemma 15 IfB3; < Bit+1 then Ry, (ﬁ, El) = uj (CB,E” (Z + 1) /C,B,E” (z)) R (Siﬁ, El).

Proof. The only factor that appears in Ry (8, E’) but not in Ry (s;8, E’) is

uk (Cp.r (i +1) /Cp i (4)).
For the special case type (0) 1 < r, (i) < N —m we find ¢(r (i), FE) =
N —m —r4 (i) and

Ri (o, E) = I1 w (qaraitm(@%@) ,

1<i<j<N-—m, a;<aj
Proposition 16 Suppose o € Ny then My g (3:(0); 0) = VO (a)7g and
VO (a) =Ry (a, B) VO (o).

Proof. By Lemma Mu g (:v(o);H) is a multiple of 7. For the product

formula argue by induction on inv (a). If A € N(J)V’Jr then Ry (\, E) = 1. If
@; < @41 then

V(O) (Sza) —u (CQ,E (’L + 1)> . R1 (Ot, E)
VO () '\ GrG) ) Ri(siwE)

|
In type (1) (o (i) = V= for m+1 < i < N which implies (T; — t) My g =0
form+1<i<N.

Lemma 17 Suppose My, r is of type (1) and x; = tx;y1 form+1 <i < N then
Mo g (x) = et for some constant depending on x, and (T; + 1) My p (x) =0
for1<i<m.

Proof. From (T; — t) M, r = 0 and Lemmal[ITlit follows that (T; — ¢) M, r (z;0) =
Oform+1<4i< N. Thus (wi—tN_i)Ma,F(x;G) =0form+1<i<N,
and this implies My p (x;0) is a multiple of 77 (the contents [c (i,E’)]lN:erl
determine E’ uniquely). Thus (T; + 1) 77 = 0 for 1 <4 < m (since 1,2,...,m
are in the same column of Yr). ®



Proposition 18 Suppose a € Ni and a; < a;11 (so that i +1 < m) and
2= Ca,r (i +1) [Ca,r (i) then

Msia,F (x(l); 9) = - i —c

Mo, r (:C(l);H) .

Proof. From () and (8) with b (z1),i) = —1 it follows that

1—1¢
Ms,a.r (x(l);G) = <—1 + 1—> M, (:17(1);9) +(T; +1) My r (x(l)si;G)
—z
= = ZMmF (x(l);ﬁ) ,
1—2

because z(1s; satisfies the hypotheses of the Lemma implying (T; 4 1) M, ¢ (a:(l)si; 0) =
0. m

Proposition 19 Suppose o € Ny then My (:v(l);H) =v® (a) TF and
V) (a) = (~1)™ D Ry (a, F) ' VD (o).

Proof. By Lemma [I7 M, (a:(l);G) is a multiple of 7p. For the product

formula argue by induction on inv (a). If A\ € N then Ro (A, F) = 1. If
a; < 41 then

VW (s;0) » Car (i+1)\ _  Rola F)
VO (@) — P\ Gr() ) Ro(sioF)’

]

We will use induction on the last nonzero part of A € Név’Jr to derive V) (N).
Suppose Ay > 1 and \; =0 for ¢ > k where 1 <k < N —m — 1 in type (0) and
1 <k < m in type (1). Define compositions in N} by

N=(A1, . 1, A — 1,0,..0) (9)
o = ()\k — 17)\17-~7)\k—1707~~)
B=M, s A-1,0,..., )

n n+l
6—</\1,...,/\k1,0,...,)\k, o,o...) (10)
A=Ay M, A 0,100

where n = N —m — 1 in type (0) and n = m in type (1). The transitions from
N — «a and from § — X use Propositions[I6 and [[9 The affine step a — S and
the steps 8 — § require technical computations.

Proposition 20 Suppose A € N7 and N, a are given by (9) then

k=1 Xi=Xg+1pk—i

1—g¢
v (o) = v (X) H 1 — gri—Metlgh—itl’
i=1

10



Proof. The spectral vector of A has (v g (i) = ¢tV "™7% for 1 < i <
k, e (k) = @1 F while Co g (1) = Qv e (k) and (o5 (1) = Qv (1 = 1)
for 2 < ¢ < k. The product is Rq («, E)f1 . m

Proposition 21 Suppose A\ € & and 6 is as in ({I0) then

1 _ Akthmfk
VO () = —2

(0)
VO o).

Proof. The relevant part of (s g is (5,5 (1) = tN=m=i=l for p <{< N—m—2
and (5. p (N —m — 1) = g™tV =m=F_ Thus

N—m—2 N—m—k—2 :
) 1— qutJJr?
_ A +1—k\ __
Ri@E) = [ w )= [l —mpm
i=k j=0

and this product telescopes. m
Proposition 22 Suppose A\ € Nfr and N, « are given by () then

k-1 Xi=Ag+1pi—k
1 o 1—k 1—q™ 3 1 /
v (a) = (-1) I I 1 — g Antlgi—k—1 V(X
i=1

Proof. The spectral vector of X' has (v r (i) = ¢Nt!"1™™ for 1 < i <
m, (v, (k) = ¢~ HF 1 while (o @ (1) = Qv p (k) and (o (i) = Cu,p (i — 1)
for 2 <i <k. Also inv (a) = k — 1. Then

k—1 Xi—Ak+1lpi—k—1

k—1

) ; 1—gq

_ Ai—Ap+1pi—k) _ jk—1

Ro (o, F) = [ uo (M7 ="' ] T v T
i=1 i=1

Combine this with VO (a) = (=1)™“ Ry (o, F) ' VD (X).. m

Proposition 23 Suppose A € Nyt and 6 is as in ({I0) then

1= )\ktkfmfl
VO Q) = ("t

1 _ q)\kt71 V(l) (6) .

Proof. The relevant part of (5 p is (s p (i) = 7™ for k < i < m — 1 and
Gs.p (m) = @M tk=m=1 Thus

m—1 m—k—1

RO (6, E) _ H U (qkktk—i—l) — tm—k H

i=k =0

1_q>\kt—]—2
1—q>\kt7~j71
1— q)\ktkfmfl

and this product telescopes to W

The use of inv (§) = m — k

completes the proof. m

11



The methods used in these calculations are similar to those used in [7] for
evaluations of scalar valued Macdonald polynomials, however the following com-
putations (from « to J) are significantly different.

Each of the remaining transitions is calculated in its own subsection. The
following two lemmas will be used in both types. Recall tT"; Y—1—t+ T, for
any i.

Lemma 24 Suppose f = tTi_lg and b =b(x;1) then
(Ti = b) f(wsi) = (1 +b) (t = b) g (x) = b(T; — b) g (wsi) (11)
Proof. From g =t 'T; f we get

tg(x) =bf () + (T; = b) f (ws;)
f@)=Q0-t+b)g(z)+(T; —b)g(zs),

thus

(T, = b) f (ws;) = tg () = b(1 =t +b) g () — b(T; — b) g (ws;)
— (L4+5) (t—b)g(2) = (T, — b) g (wsy).

]
The next formula is a modified braid relation.

ac

T orig A bitLEZ\{0} then

Lemma 25 Suppose b =
(T; — a) (Tix1 = b) (T — ¢) = (Ti+1 — ) (Ti = b) (Tit1 — a)
(Ti — wj) (Tig1 — Kje) (Ti — w0) = (Tig1 — ko) (Ti — Kjpe) (Tig1 — k)

Proof. Expand

(T; —a) (Tix1 — b) (T; — ¢) + ¢I;Tiv1 + aTy 1 T + abe
=T, Ti1T; + acTis1 +b(a+c) T; — bT?

=TT T, —bt+acliy1 +bla+c—t+1)T;
=TT T; — bt + ac(Tit1 + T3) .

which is symmetric in T3, Ty since T3;Ti1T; = T 1 TiTiqp1. If a = k; and
c=rkrothenb=r;1¢. m

3.1 From a to ¢ for type (0)

Me—1j2N—m—ko1 L= T (0)

L 4 1—q)‘ktN_k Ma,E (:Z? )
Start with § (where §; = A; for 1 <i <k —1,0ny_m—1 = A\x and §; = 0 other-

wise). Let B(N="=1) = § and pU) = sj_lﬁ(j_l) for N—m < j < N (so that

BWN) = Bin @)). Abbreviate z = (s (N —m —1) = (g (k) = ¢tV

In this section we will prove Ms g (2(V) = ¢

12



IfTN-m-—1 S i < N then Cﬁ(i+1)7E (Z+ 1) = Z,Cﬁ(iﬁ»l)’E (Z) = ti+1_N. Set
pi (x) = Mg g (2;0) for N —m —1 <4< N, then

1—1t
pi () = (T n W) pist (2)

= (pasi) + iy ) i (0 (= b ) i (o).

To start set i = N —m — 1 and 2 = (9 (thus b (x(o);i) =1)

oot (a) = 1ozttt

1 ogm PN-m (iC(O))-F(TN—m—l —t)PN-m (CC(O)SN—m—l) -

(12)
Two series of points are used in the calculation: Define yy_,,—1 = a:(o), YN—m =
2O sy _m,yi = yi_15; for N—m+1<i<N —1; define vy_m_o = (@, v; =
v;—18; for N—m —1<¢< N —1. Thus

N—-—m—1 i
N-m—2 4N— N—m—1 4i N-1 ) —
Yi-1=|...,t " )t ma"'at " 7t17"'7t 7b(yi—lvl)_"<‘7i+m—N+lu

N—-—m-—1 4
N—-m—1 yN-— N—-m—2 4i N—-1 A
Vi—1 = ...,t m ,t m,...,t m ,tz,...,f ,b(Ui_l,Z)—Iii+m_N+2.

Lemma 26 Suppose N—m < j < N andT;p = —p then (T} — Kj—N4m+1) P (y;) =

j—N+m+2], J—N+m+3],
- - d(T; — Kj—N+m )= - i
[j—N—f—m—i—l]tp(yJ 1) and (T — Kj—N+m+2) p (v7) [j—N+m+2]tp(vJ 1)

for1 < j<i.

Proof. This follows from

(T = b(x;5)) p(ws5) = = (L+ b (z;5)) p (2)
with z = y;_1 so that zs; = y; = y;—1, and with z =v;_;. If n =1,2,... then
T+t +t" 1 +t"  [n+1],

1+, = =
1+t+---+tn1 [n],
Proposition 27 For N—-m <i< N
- 1 — ztmtl

PN-—m—1 (2°) = 1= (TN-—m —t) - (Tim1 — Ki—N+m) Pi (Yi—1) (13)
+ (Tn—m-1—1) (TN-m — K2) -+ (Tim1 — Ki=N+m+1) Pi (Vi-1) -

Proof. The formula is true for i = N —m by ([I2). Assume it holds for some ¢
then

pi (Yi-1) = (% + m+m_N+1> Pit1 (Yi-1) + (Ti = Kixm—N+1) Div1 (Vi)
(14)
1-1¢
pi (vie1) = (W + m‘+m—N+2> pit1 (vi-1) + (Ti = Kigm—N+2) pit1 (vi) ,
(15)

13



and
1-1¢ n 1—ztm
— Kidtm— - - . )
1 — zgN—i-1 Fme N (1 —2tN="=1)[i+m — N +1],
1—t¢ 1 — ztmt!
T N—ioT T Fitm-N+2 = N T :
1— 2tN—t (1—ztN==1)[i+m - N + 2],

Then p;y1 satisfies the hypotheses of Lemma 26 for N —m < j < ¢ and

(TNem —t) - (Tiz1 — KieN+m) Pi+1 (Yiz1) (16)
=y e R R ) ()

= (_1)1'7N+m [’L - N +m + 1]t Pi+1 (.I(O))

(TN—m-1—1) - (Ti21 — KicN+m+1) Pi (Vi—1) (18)
B i—N+m+1 12]; [3; i—N+m+2], ‘
= (Y R s (o) (19)

_ (_1)i7N+m+1 [’L — N —|— m + 2]t pi+1 (x(o)) .

The first part of the right side of (I4]) combined with [T6] gives

1 — ztmtl 1—2t™ N4
. 1) my N 11, p; ((o))
1 — ztm (1_ZtN—z—1)[i+m_N+1]t( ) [Z +m + ]t Pit1 | @
. 1—Ztm+1
_ 1—N+m 0
=(-1) i (+)

which cancels out the first part of the right side of (I5) combined with (I8]);
note the factor (—1)"~ V7!
formula fori+1. m

. The terms that remain are exactly the claimed

1— tm+1
Proposition 28 M; g (2(V;6) = T i o (Tn—m = 1) (Tn-1 — km) Mg 5 (yn—1;0).
—Z

Proof. Set i = N in ([I3). To complete the proof we need to show
(ITN-m—1—=1) (TN-m — k2) -+ (TN-1 — Fm+1) PN (VN-1) = 0.

By construction (vy—1), = t* and 4 (i) = i+1,(s,p (i) = 77N for N—m—1 <
i < N —1. This implies (T; +1)py = 0 and (T; + 1) py (vy-1) = 0 for
N—m-—1 S 1 < N—1. Let 1/)1 =D (9N7m719N,m s HN,l) then (Tz + 1) 1/)1 =0
for N—m —1 <14 < N — 1. This property defines ¥; up to a multiplicative
constant, and thus py (vy—1) = ctp1 (because o := TN —m-1TN-—m - Tn-1¢1
satisfies (T; +1)¢2 = 0 for N —m < j < N and thus o2 = 7). To set
up an inductive argument let m; 1= On_p—1---0;—16;41-- -0y and set fy :=
WNflafoj = (TN,J' — Kfm+27j)fN7j+1 for 1 < i <m+1. Then Tjﬂ'i = —T;

14



fN-m-1<j<i—-2o0ri+1<j <N, Tiim = m_1 and Tjm; =
(t — 1) m + tmiy1. Claim that

_]—1
. . l jtm-i-l—i L
In= 7TN]—i_mﬂL2—J l:o o
tm+1
The first step is fn—1 = (TN—1 — Km+1) TN = TnN—1 — ——7n. Note Kk, +
[m + 1],
1= % for n > 1. Suppose the formula is true for some j < m + 1, then
t
tm-l—l—j
fn—jo1=(TNn—jo1 = Fmi1—5) IN—j = TN —j1 = iy, ™
+ ;Ji (=1 Tt (ki — 1) TN
[m+2—j], < m -

1 J

R S (—1)iit iy
! [m+1— j]t ;

This proves the formula. Set j = m+1then fy_m—_1 = E;zgl (—1)m+1_i AR SN
By definition

N m-+1
D (mnOn) = Z ( L e TR YN G ) K A SN
j=N-m— =0

and 50 fx_m—1 =t""N2D (7n0y). Now py (vn_1) = o1 = ¢D (7)) Thus
(TN-m-1—t) (TN — K2) - (TN-1 — Em+1) D (7n)
=D{(Tn-m-1—t)(TN-m —K2) - (TN-1— Em+1) TN} = D (fnN—m-1) =0,

because D2 = 0. m

Next we consider the transition from « to S (see @) with the affine step
Mg g (7;0) = eywMe, g (25 0) (recall wp (z;60) = Ty 1 --- Tip (goN, 1, - - -, 2N —1;0)).
To get around the problem of evaluation at the g-shifted point we use & =
tl_NTlTQ ---TpN_jw thus

Mgs g (x;0) = aytN Tl (T]_Vl_l e T2_1T1_1§1MQ1E) (x;60)

where &My g = Cop (1) Mog = ¢ 4N "™"kM, p. From the previous for-
mula we see that we need to evaluate the right hand side at * = yxy_1 and
apply (TN—m —t) -+ (In—1 — km). Since (o.p (i) =N for N—m <i < N it
follows that (T'; + 1) My g =0 for N—m <i < N.

Definition 29 Let ro = My g and r; = tTi_lri_l for1 <i<N.
The corresponding evaluation formula is

ri(x) =1 —t+b(x;0) ric1 () + (Ti — b(x;4)) rim1 (z84) - (20)
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Proposition 30 Suppose 1 < i < N —m — 2 then r; (:C(O)) =79 (:C(O)) =
Ma,E (:E(O)) .
Proof. From (T; + 1) My g = 0for N—m < ¢ < N it follows that (T'; + 1) r; =
0if j < N—m—1. By @0) r¢ (:C(O)) = ro_ 1( (0)) (Ty —t)re—1 (x(O)Sg) )
Suppose £ < N —m — 1 then z(¥s, satisfies (z(?) sg), =t fori > N —mso
that b( () g, ) =tand (T; +1)re—1 (:1:(0 5g) =0, ro_q ( (0)52) is a multiple
of rg and (Ty —t) r4—1 ( (O)Sg) = 0. Thus 7y ( (0)) =71 ( (0)) and this holds
for1</<N-m-—-2. =

Recall the points y; given by yn_pm—1 = a:(o), Y = Yi—18; for N—m < i < N.
Define §; = yiSN—1SN—2 - Sit+1. for N—m —1 < ¢ < N. By the braid relations

Yit+1Si+1Si+2 = (yi—i-lSN—l cee 5i+2) Si415i42 = Yi+1SN—-1 " Si4+35i415i4+25i+1
(21)

= Yit1SiH1SN—1" " Si428i41 = YiSN—1"" " Si+1 = Yi-
These products are used in the proofs:
Py_j=TN-m—1) (TN-my1—r2)  (IN—j = Kmt1-j)
Py_j=(Tn-1—1t)(Ty—2 — ra2) -+ (Tn—j — ).
If i +1 < j then Py_; commutes with ﬁN_i.

Lemma 31 Suppose Tf = —f for N—j <i < N andu; =t~ for N—j+1<
1 < N then

Py_jf (usn—1sn—z---sn—) = (=1 [j + 1], f (u).
Proof. Let (™) = usy_; --- sy_, then ( (n= 1)) =N (a(n_l))N—n =
tN=m and b (u (n— D,N—n) = Kkp—1. Thus
(Tan - /fnfl) f (a(n)) - (Tan - /fnfl) f (a(nil)stn)

(1 + kn1) f (a<"—1>) - —%f (a<"—1>) .

N—n+1

Repeated application of this relation shows ]SN,jf (usN—18N—2---SN—j) =

(=1 g gt S (),

|+ 1 1
Tiy1 = t'xy then 1 + b(x;e) = - , 1 —t 4+ b(x;1) = —— an
If Jzy then 1+ b(x;i i+ 1 b(z:i d
[j]t [j]t
tlg+1], 17 —1
(14 b (a1)) (¢ = b(asi)) = LI 2T,
[]]t
Proposition 32 For2<j<m-+1
. +1), [m+1-7]
Pr1rnoy (uny) = -1 71 t Py v (YN —j 22
N-1rN—1 (Yn-1) mlm+z—g], NN i (Un—j) (22)
o tm _
+ (-1’ 1mPN j+2PN—j (TN—j+1 = Em) rN—j (Un—j) -
(23)
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Proof. Proceed by induction. By (LTI

Pn_1rn-1 (yn—1) = Pn—2 (Tn—1 — Km) -1 (YN—25N—-1)

_ t [m + E:,]?;][;n - 1]t PN72TN72 (nyz) — %PN72 (TN71 — I{m) TN—2 (yN72SN71)

and yv—1 = yn—28N—1 = Yn-1. Thus the formula is valid for j = 2 (with
Py = 1). Suppose it holds for some j < m, then b(ynv—1—-j; N — ) = Km+1—j
and

Pn_jrn—j (Yn—j) = Pn—j—1 (TN—j — Kmt1-5) TN —j (UN—1-jSN—;)

tm+2—j], [m—jl,
= Pn_j_1rNn—j—1 (Yyn—1—j)
2 j j J
[m+1— j];
thrlfj

_mPN—j—l (Tn—j = Kmt1—5) TN—j-1 (YN—;)

Combine with formula ([22]) to obtain

J [m + 1]t [m — ]]t _ _ _ "™ [m + 1]t . | |
t mPNﬁﬂrNﬁfl (yle)—mPNﬂle((igj)_

For the part in @23) b (yn—;; N — j) = k;—1 thus
1

rN—j (Yn-j) = o], N (Un—j) + (Tn—j — Kj—1) TN—j—1 (UN—jSN—;) -
t

The first part leads to

—17! —

SR e N}
[m]t [m—|—2—j]t lj— 1]15

ﬁijJrQPij (TN—j+1 = Em)TN—j—1 (UN—j)

Pn_jyaPn_jrn—j—1 (UN-jSN—j+1)

= (-1)

because b(gN,jSN,jJrl;N —J+ 1) = Ky and (Tijqu + l)TN,j,1 = 0. Then

f)ij+2PN7j"”N7j71 (UN—jSN—j+1) = PijﬁijquTijq (UN—jSN—1""*SN—j+2)
= (=1 [j = 1], Pn—jrn—j-1 (yn—j)

" [m + 1],

by Lemma[31] so combine to obtain ——*—
[m+2— J]t [m]t

PN,J"I”N,J',1 (nyj) which
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cancels the second term in (24]). The second part gives

o m ~ ~
G mPN—ﬂzPNﬂ' (Tn—jt+1 = km) (TN—j = Kj—1) rN—j—1 (UN—jSN—;)
t
(_1)3'*1 mo
= Tmta2—g)  N-rebNoia (TN—j = Fom—j+1)
t
X (Tn—j+1 = fim) (TN—j — Kj—1) TN—j—1 (YN—jSN—;)
(_1)3'*1 mo
= mPNﬁ‘J&PN—j—l (TN7j+1 - Hj—l)
t

X (Tn—j = km) (TN—j+1 — Km—j+1) TN—j—1 (UN—;SN—j)
(-1t m+2-j], ~
= Pyn_izoPn_i 1 (TN_izt1 — Ki_
L=, 2], NP 1 (TN—j1 = Kj-1)
X (IN—j = Km) TN—j—1 (YN—jSN—jS—j+1)
(17t

[m+1-— j]tPN_jHPN_j_l (Tn—j = fim) TN—j—1 (YN-1-;)

by Lemma 28] formula 2I) and b (yn—jsn—;; N —j+1) = km—jt11. W
Proposition 33 Py_1ry_1 (yn—1) = t"Mu.E (;E(O)).
Proof. Set j =m+1 in (22) thus

Pxoarn-1(ynv—1) = (=1)™ t" Py i1 (TN—m — Fm) "N—m—1 (N —m—1)

1 ~
= (=1)" t"Px—m { Tt "N —m=2 (YN—m—1) }
+ (Tmefl - lim+1) TN—m—2 (§N7m715N7m71)

By LemmalBI Py —mpr—m—2 (YN—m-15N—1 - $8—-m) = (=1)" [m + 1], "n_m—2 (Yn—m—1).
Furthermore

N—m-—1 N—m N—m+1
~ N-1 N—m—2 ;N—m-—1 N-2
YN—-m—1SN-m+1= | ---, ¢ T T et )

and thus (T; + 1) ry—m—2 = 0 and by LemmallO (7; + 1) rN—m—2 (IN—m—-1SN—m—1) =
0 for N —m < i < N. This implies 7y—m—2 (UN—m-1SN—m—1) = cTe. But
IBN,m,lrE = 0 and this is proved by an argument like the one used in Propo-
sition Let T = HN,m,l c '9i719i+1 N 9]\[ and set fo = WN,mfl,fj =

(TN—m—2+j — Km+2_j) fj—l for 1 <j<m+41. Claim

. 1 i1 i
fj = tJ7TN—m—1+j + m Z (—1)] t TN —m—1+i-
i=0

The first step is

fl - (Tmefl - Herl) TTN—m—1 — tﬂ'me + (t o ’im+1) TN—m——1
1

=t ey, — T
™ [m+1]t

TTN—m~—1-
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Suppose the formula is true for some j < m + 1 then

_ _ 4+l J
fit1 = (TN-m—14j — Bmt1—) i =T AN mgj + 8 (6 — 1 — Kimg1—j) TN—m—1+;

1 1

b (1= fmg1—5) Y (1 TN 14
[m +2- ]]t - i=0
1 el .
= i+l i S —Y | - J+ z S
TN-mts = m+1—j], N 1+J—’—m—l—l—j ; TNt
m—+1 1—
and this is the formula for j+1. Then frp1 = 3. (=1 tiny_m_14s and
=0
N _ .
D(nnOy)= 5t (=) N and thus frnyg = (—1)™ TN "m2D (an6y) =
i=N—-m-—1

Oand D (fint1) = 0. Asin Proposition28 this implies PN 1T N—m—2 (UN—m—1SN—m—1) =
0, and this completes the proof. m

3.2 Evaluation formula for type (0)

Recall the intermediate steps:

k-1 Xi—Ag+1pk—i

l—q
VO () = VO (X H o
i=1

Py irn-1(yn—1) = ( ©; 9)

Mg E (yn—-1;0) = Caq, ( )(yN 1)y "™N—1(yn=1)
1-—

Ms.p (@ ( 10) = 1— q)\ktN = v En-1Ms s (yn—1; 0)
1— q)‘ktN m—k
0 = 0
VO () = T VO ().

Proposition 34 Suppose A € N satisfies A\, > 1 and \; = 0 for i > k with
k < N —m then

AkfthN*mfkfl (1 — qkktN—m—k) (1 _ qkktN—]H_l)

k—1 .
1— qM—Ak-i-ltk—z ©) (v
X H 1 — ghi—Aetigh—itl V()
=1

where Ny = \j for j #k and X, = A\, — 1.

Proof. The leading factors are ™, g (1) (yn—1)y = tmg 1N —m=kN=m=1,

19



Corollary 35 Suppose A is as in the Proposition and \" satisfies \] = A; for
Jj#k and X} =0 then

(Azk)t)‘k (2N—m—k—1) (qtNimik; Q)kk (qtNikJrl; Q) s

VO N\ =gq 25
) (qt; )y, (atV %5 q)y, (25)
k=1 (,1k—i. k—it1.
% H (qt ’q)ki (qt i 7q))\i_)\k ) (\")
L1 (gt q)y, y, (@tF T ), '
=1 i T Ak i
Proof. This uses
A n.
I—kI (1— gh—tH1pm) = (qt"; 9),, (26)
pie) (q™:9)5, -,

withn=k—i,k—i+1. =
This formula can now be multiplied out over k, starting with A = 0, where
Mo g (z;0) = 75 (0).

Theorem 36 Suppose \ € /\/0+ then

1 (qthkJrl; q) "
(gt k5 q),,

N

—m— (qtjfiJrl; q))\ R
VO (3) = #Ope T '
k=1

I o

1<i<j<N—-m Ai— A
(27)
where (N) := vaz_lm_l (>‘21) and eg (A) := Zij\;;m_l Ai(2N —m—i—1).

Proof. For 1 < k < N —m define A(®) by /\Ek) =\ for1 <i<kand /\Ek) =0
for ¢ > k. Formula (25) gives the value of p; := V(© (A®)) /YO (\*=1)) For
fixed i < k the products (x;q), contribute

(@ "), (@), (),

(qt:9), (atN =% 0),, jgl (g7~ q)y,

(qthmfi; q)/\i (qtN—z'H; q) \ (qt; q)5, (qtN*mfi; q)/\ (qthiJrl; q)/\i

i

(qt;9),, (atN =% q),, (gth=i+1q),  (gth= 1 q),, (gtN 75 q),,

to p1pe - pr (the product telescopes). Each pair (i,j) with 1 < i < j < k

(7" q),
contributes — ~2 If Ay = 0 then py = 1 and thus k can be replaced
(th ks Q)Ai_xj
by N —m — 1 in the above formulas. The exponents on ¢, t follow easily from

Pr. A

Remark 37 Recall the leading term of My g (x;0), namely ¢°NtcElgA g (6),
where e (\, E) = Zﬁl Xi (N —i+¢(i,E)). By using c(i,E) = N —m —i for
1 <i< N —m one finds that eg (\) = Zfi}mfl Ai (N+c¢(i,E)—1) so that

o) —eNE) =SV (= 1) = n(A) and (2©) = 2O,
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There is a generalized (g, ¢, A)-Pochhammer symbol

N
aq, H tlz

i=1

and the k-product in ([Z7) can be written as (qtN; q, t)A / (qtN Lq, )A. In a later
section we will use a hook product formulation which incorporates a formula for

VO (a).

3.3 From «a to ¢ for type (1)

To adapt the results for type (0) to type (1) it almost suffices to interchange
m <+ N —m —1 and replace t by t~'. But there are signs and powers of ¢ , and
different formulas involving k_,, to worry about. The interchange occurs often
enough to get a symbol:

Definition 38 Suppose h (t,m) is a function of t,m (possibly also depending
on A or o) then set Zh(t,m) =h (t7',N —m — 1)

We will reuse some notations involving ¥;, p;,; and so forth, with mod-
ified definitions (but conceptually the same). In this section we will prove

1) — A=l N—m—k L — gt ¢Y) i
Ms. (a: ) =q t T N Mo (33 ) Start with § (where
q

S =Xifor1 <i<k—1,08_m_1 =M and §; = 0 otherwise). Let (™) =§
and BY) = s; 18U~ form+1< j < N (so that V) = B in (@)). Abbreviate
z= (o (m) = Gop (k) = ¢tF 1™ Ifm < i < N then (gas+n p(i+1) =
2, Cga+n) (i) = tN=i=1 Set p; (x) = Mg p (x;0) for m <1i < N, then

) = (Tis+ s e ) (28)

. 1-1¢ .
= (i) 4 Tt ) o (@) 4 (T3 = (a3 ) s (o).
These are analogs of the type (0) definitions, with m+1<i < N —1:
(1) (1)

Ym = T3 Ym+1 = L "Sm+1, Yi = Yi—154,

Om = W, 0 = vy,
Pi = (Tms1 4+ 1) (Tng2 — i-2) - (Ti = Km—i) -

In more detail

m i
Yi—1 = ( .. ,tlim, timil, e ,tim, tiz, e ,t1N> ,b (yifl; Z) = Km—i» (29)

m A
— —m—1 1— —1 1-N 2\ —
Ui1—<...,t m,t m ,...,t m,t Z,...,t >,b(vi1,z)—nmi1..
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Recall (50 p (i) = 2, (50 p (i 4+ 1) =tV for m < i < N.(The proof of
the following is mostly the same as that for Proposition 27 except for signs and
powers of t.)

Proposition 39 Form+1<i< N

)= L= 30

Pm (117 ) B T g i—1Di (Yi-1) (30)
+ (T + 1) (Trng1 — k—2) -+ - (Tim1 — Km—i) i (Vi—1) .

Proof. The transformation from p;11 to p; is in ([28). Specialize to i = m and

x =z so that b(z;4) = —1, 2Ws,, = vy, and

M) — 4 1— ztm—N T 1 _

DPm (517 ) = T mri N Pmt (ym) + (Tm + 1) pms1 (Vma) -

The values from 29) are b (yi—1;7) = Km—i, b (Vi—1;%) = km—i—1, G5 p (1) = 2.
Thus

1—t
pi (Yi-1) = <W + limz‘) Piv1 (Yio1) + (Ti — Km—i) piv1 (Yi—154)

1—-1¢
pi (vi—1) = (W + fim—i—1> Pit1 (Vi-1) + (T = Km—i—1) Pit1 (Vie154),
then
1—¢ 1— Ztm_N+1 ti—m
= . : :
1 — ztiH1=N 1 — 2zt 1N [i —m],
1—t 1—ztm=N gird-m

[ ot i-8 il = TN 1 1 ),

From the spectral vector of p;;1 it follows that (T'; —t) pi41 =0 for m < j <1
and (Tj — b (x5 7)) piv1 (ws;) = (t = b(;5)) pit1 (x). Thus (Tim1 — Kmt1-4) Pit1 (Yi-1) =

%piﬂ (Yi—2) and

(Trg1+1) - (Tim1 = Bma1—4) Pig1 Wi—1) = [i — M), Pis1 (Ym)
(Ton + 1) (Tong1 — k—2) - - (Tim1 — Bm—i) Pit1 (vie1) = [1 + 1 — m], pit1 (I(l)) .

Then p;11 (ym) appears in the expression for p,, (x(l)) with factor

1— ZtmfN 1— Ztm*NJrl tifm ) it 1em 1— ZtmfN
—t - , , [i—m], =t _—
1— ztm+1-N 1 —zti+1=N [ —m)], 1— ztitl-N

_ ZtmfN ti+17m

1 — 21N [ 41 —m)],
cancel out (y,,, = (1)). This proves the inductive step. m

and p;y1 (:1:(1)) with factor —

[i +1 —m], and the two
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1— ztm—N
—~ Pn-1pn (Yyn-1).

1— ztm+l

Proof. Seti = N in B80). Claim (T, + 1) (Ton41 — k—2) - (TN-1 — Em-n~N) PN (UN_1) =
0. From (vy_1); = t7% and (g,p (i) = t" "1 for m < i < N — 1 it follows

that (T; —¢) py (vny—1) = 0 for m < ¢ < N — 2. This implies py (vy—_1) =

cM (01605 - --0,,—10n) for some constant ( similarly to the argument in Propo-

sition h = TnToms1 - Tno1M (01 0—10N) satisfies (T; —t)h = 0 for
m+1<4i< N-—1implying h = ¢/7p). Let g = 6162---0,,—1 and fo = gOn

then define f; = (Tn—i — km—n~N+i—1) fi—1 for 1 <i < N —m. Use induction to

show

Proposition 40 M; r (x(l)) =—t

tN_m i—1

P = ti 0 B E On—;.
f gon [ 1 Z]t : 09 N—j
The start is

1 1
=90y = <TN1 + 7) 90N =tgON—1 + (t— 1+ 7) N
[N_m]t [N_m]t
N—m

=tg0N_1+ o
[N —m],

g@N.
Assume the formula is true for some 7 < N — m then

. . 1
i1 = (TN—ic1 — Bm-Nti) [i =t 0N i+t [t =14+ ) 9O
fir1 = (Tn—i=1 — Bm—N+i) [ 9ON_i—1 + ( +[N—m—i]t)gN

tN—m 1 i—1
I On_;
+[N—m+1—i]t{ +[N—m—i]t}zg N
Jj=0

tN—m

=t lgOn_i_ _ On_;
gun 1+[N—m—i]tj:ZOgNJ

(because t—l—ﬁ = %) Thus fy_m =tV ""g Z;-V:Bm On_j = (=) V="M (g)
and M (fy—m)=0. m

Next we consider the transition from « to S (see @) with the affine step
Mg r(2;0) = znywM, r(x;0) and as before the calculation is based on the

formula
Mg p(;0) = ant" " (TRl - T3 ' T & Mo r) (2;6)

where &xMo p = Cor (1) Mo p = ¢ 1m0, p. From the previous for-
mula we see that we need to evaluate Py_1 Mg r (yn—1). Since (o r (i) = V¢
for m+1<i < N it follows that (T; —t) Mo p =0form+1<4i<N.

Definition 41 Let rg = My p and r; = tT;lri,l for1<i < N.
Proposition 42 Suppose 1 < i < m — 1 then r; (:C(l)) = (—t)iro (x(l)) =
(—t)l Ma,F (x(l)) .
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Proof. From (T; — t) My r = 0 for m+1 < i < N it follows that (T; —t)r; =0
if j <m . By @0) ro (:C(l)) = —try_1 (x(l)) + (Te+1)re—1 (:C(l)Sg) . Suppose
¢ < N —m—1 then z(9s, satisfies (a:(l)se)i =t~ for i > m + 1 so that
b (x(O)Sg; z) =—land (T; —t)re—1 (:C(l)Sg) =0, r/—1 (:C(l)Sg) is a multiple of 7
and (Ty + 1t) 741 (a:(l)sz) = 0. Thus ry (3:(0)) = —trp_q (:1:(0)) and this holds
forl1</<m-1. =

Similarly to the type (0) computations let

Py ji=(Tn1+1)(Tn2— ko) (Tn—j — Kj)
YN—j—1 ‘= YN—j—1SN-1SN—-2 """ SN—j-
Lemma 43 Suppose T;f =tf for N—j <i < N andu; = ct'=* for N—j+1 <
1 < N then
(Tn-1+1) (Tn—2—k-2) -+ (Tn—j — ki) f (usn—15N—2---sn—j) = [§ + 1], f (u) .
Proof. Let 4 = usy_1---sy_j then (ﬂ(k’l)) =t-N, (ﬁ(kfl))
th=N and b (ﬂ(kfl);N — k) = k1_. Thus

N—k+1 N—k

(TN—k — K1-k) f (ﬁ(k)) =(ITN-r — Ki1-k) f (a(kfl)sz\r—k)
- k]
o 1) = (Bl
( “1“f(“ ) [k —1],
Repeated application of this formula shows

(Tn-1+1) - (Tn—j — k) [ (uSN—1SN—2- - SN—j) = ﬁ% b ;]1]t

=+ f(u).

f(w)

]
Proposition 44 For2<j < N -—m

i IN=m] [N=m-j],
Py irn_1(yn—1) =t [N—-m—1],[N-m+1-—j],

Pn_jrn—j (yn—j)

(31)
1 ~ _
N Tmrio j]tPN—j+2PN—j (TN—jt1 = Fmt1-N) TN—j (YN—j) -
(32)

Proof. Proceed by induction. By (I
Py_arn_1(ynv—1) = PN—2 (Tn-1 — Km-N41) TN—1 (YN—25N—1)
_t[N—=m], [N —m 2]
a [N —m—1];
1
TN w1,

LPN_orN—2 (yn—2)

Pn_o(TN-1— Em+1-N) "N—2 (YN—25N—1)

24



and yy_1 = yn—25N—1 = Yn—2. Thus the formula is valid for j = 2 (with ﬁN =
1). Suppose it holds for some j < N —m—2, then b (yn—1-;; N — j) = Kjtm—nN
and

Pn_jrn—j (yn—j) = Pn—j—1 (TN—j = Kjsm—nN) "N—j (YN—j—15N—j)
CtIN-m 41—, [N-m—1-}]
[N —m — j;

LPN_j1rN—j—1 (Yn—j—1)

1
+ [N —m — j] Pn_jo1(Tn—j = Kjym—nN) TN—j—1 (YN—j) -
t

Combine with formula (BI]) to obtain

AN —=m],[N—m—1-j]

J 14 . . .
t [N—m—l]t [N_m_j]tPN—]—er—]—l (yN—]—l) (33)

tj’l[N—m]t
[N—m—1],[N-m+1-j],

+ Pn_jrn—j—1 (Yn—j) - (34)

For the second line B2) b (yn—;; N — j) = k1—; thus

. ! ~ .
"N (UN=5) = =Nt ) & (T = R Pt (Ui sn—i)
t

The first part leads to

ti—1 ~
- Pn_jioPN—i (TN—j+1 — Km+1— _ic1 (Yn—y
[N_m+1_j]t[j_1]t N—j+2L°N J( N—j+1 Rm+1 N)TN i l(yN j)
[N —mj, vt

=— — Pn_jtaPN_iTn—j_1 UN—jSN—j+1
[IN—m—1,[N—m+1—j],j-1, 7" 5TN==1 (N8N —j41)

because b(gN_jSN_j_H;N —j+ 1) = Km+1-N and (TN_j+1 — t) 'N—j—1 = 0.
Then

Py_jroPn_jrn—jo1 (UN—jSN—j+1) = PN—jPn—jsorn—j—1 (YN—jSN—1 " SN—j+2)
=l =1, Pvjry—j-1(yn—j)
[N —m], (!

[N-m—1],[N-m+1-j],
which cancels the second term in [B3]). The second part gives (using the braid

by Lemmal43] so combine to obtain

Pn_jrN—j—1(yn—j)
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relations in (23])

1 = _
N —ma1—g], NP (TN—j1 = Emi1-N) (TN—j = K1-3) TN —j-1 (UN—jSN )
1 ~
= Pn_j1aPn_j-
[N—m+1—j, V7Nt

X (Tn—j = Kmtj—N) (TN—j+1 = Fmi1-N) (TN—j — K1) *N—j—1 (UN—jSN—j)
1

= Pn_jyaPn_j_
[N_m+1_j]t N—j4+2L' N—j5—-1

X (In—j1 — k1—j) (TN—j = kmt1-N) (TN—j+1 = Kmtj—N) TN—j—1 (UN—jSN—;)
[N-m+1-7j], >
= - —PNn_j2PN_j 1
[N=m+1—j],[N—-m-—j], a !
X (Tn—j+1 — k1—3) (TN—j — Bmt1-N) TN—j—1 (UN—jSN—jSN—j+1)

1

= mPijJrlPN—jfl (Tij - /ferl—N) TN—j—1 (gN—jfl)

by @2I) and b (yn—j-1;N —j +1) = Kmyj-n. ®
Proposition 45 Py_1ry_1 (yn—1) = (—1)"tN 1Mz (3;(1); 9).

Proof. Set j = N —m in (31

PNferfl (nyl) - Pm+2 (Tm+1 - ’{m+1fN) T'm (gm) - Pm+1Tm (gm)

and b (Ym;m) = km—n (n0te 4y, = W sn_1sy_o9--- Sm+1) thus

~ tN-—m ~

Pm-l—l'r'm (gm) = _7Pm+lrm—l (E’jm)""Pm—i-l (Tm - lim—N) Tm—1 (gmsm) .
[N —m],
(m) (m+1)

Now o = | ..., t1 7™, ¢1=N ¢=m 42N | thus ¥, satisfies the hypothesis

of Lemma (3 with j = N —m — 1 and
(In-1+1)(ITn-—2—F-2) (Tms1 = Fmt1-N) "'m—1 (I(1)5N71SN72 e Sm+1)
=[N —m], rm-1 (x(l)) .

(m+1)
Since Ypmsm = [ ..., 1N ttmm e 27N ) and (T — ) 1 = 0 for m +

1 <4 < N it follows that (T; — t) Tym—1 (JmSm) = 0 for the same i values and
hence r,—1 (JmSm) = ¢t (with F = {1,2,...,m} because m+1,m+2,...,N
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lie in the same row of Yr). Take 77 = M (61 ---6,,) and g = 61 -+ - 0,,,_1 then

1
Tm — km— em = em T~ 1 9m7
( km-N) (90m) =g LR g
(Tn+1 — Em41-N) (T — Em—n) (90m) = gOm+2 + m99m+1
+ (t + ! ) L g0
[N-m-1],) [N—m],” ™
1
= g0 —— g (n Om) ,
g +2+[N_m_1]tg( +1+ )
because t + ﬁ = [j[f]lf]t. Continue this process to obtain

(Tn-1 = K1)+ (T = Emn) (90m) = g (O + -+ + ) = (—1)" " M (g)
thus (Txy—1 —k-1) " (Trn — km—nN) "m—1 (Jmsm) = 0 because M? = 0. Thus
PN_17°N—1 (yN—l) = —tN_mT'm_l ($(1)) = (_1)m tN_lTQ (l'(l)) | |

3.4 Evaluation formula for type (1)

Recall the intermediate steps:

k—1 i
1— )\if)\kJrltzfl

1 1 k H q 1
V( ) ( 1— q)\i—)\k"rlti—k—l V( ) (/\/)

" (20:0)

(=
Mg r (yn-1;0) = Ca.r (1) (yn—1)y ™N-1 (Yn—-1)
)xktk N—-1

M&F( 1)79 = WPNflMﬁyp(nyl;o)

Py_irn—1 (yn—-1)

1= )\ktkfmfl
VO ) = ()"t

1 _ q)\kt71 V(l) (6) .

Proposition 46 Suppose A € Ni satisfies A\, > 1 and \; = 0 for i > k with
k <m then

v () = Ae—1yN—m-— k(l —qut’“*mfl) (1 _qutkafl)
' (1= t71) (1= gth=N)

i Lk @ ¢y
XH >\ “Aptlpik— iV (A,

where \; = \; for j #k and N, = A\, — 1.

Proof. The leading factors are tNTm=2kF1¢, (1) (yny_1)y = tN " Fgr—1,
since (o, r (1) = g™ HF~17m and (yn_1)y =t™™. =
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Corollary 47 Suppose A is as in the Proposition and \" satisfies \] = X; for
Jj#k and X} =0 then
(at"""Yq), (" ha),,
(gt~ 9),, (qt’“‘N; @)z,
k=1 (, 4i—k. i—k—1.
(a5 a)y (@500 o).

X -
il;[l (@t F:q),, -y, (@F 1)y,

VO (A) = q(F) e =m=h)

Proof. This uses formula (26). =
This formula can now be multiplied out over k, starting with A = 0, where
Mo, r (z;0) = 77 (0).

Theorem 48 Suppose \ € /\/1+ then

m k—N-—1 tz 1-1.
V(N = ¢F N H (at ’q)xk (a | 1),
k=1 tk N7Q))\k (qtz_]vq))\if)w

1<i<j<m

where 5 (N) := Zfi}m% (>‘21) and e1 (N) :== 31" N (N —m — ).

Proof. This is the same argument used in Theorem [B6] by the application of =
.

Remark 49 Recall the leading term of My r (x;0), namely ¢°NteMF)pArp (9),
where e (A, F) = Z;NzlAi (N—i+c(i,F)). By using c(i,F) = i—m —1
for 1 < i < m one finds that e; (X\) = Yo N\ (N +¢ (i, F) —2i+1) so that

er(N)—eNF)==3" X(G—1)=-n(\) and (x(l)))\ =t ),

4 Hook product formulation

Recall the definition of the (g, t)-hook product
hat (N =[] (1 _ aqarmu,j;ntleg(i,j;m) 7
(4,5)EX

where arm (¢, 7; A) = \; —j and leg (4, j; A\) = # {l: i <1< L(X\),j < A}, where
the length of A\ is £ (A\) = max {i : A; > 1}. The terminology refers to the Ferrers
diagram of A which consists of boxes at {(i,7): 1 <i<£(N),1 <j<\}

Proposition 50 Suppose A € Név’Jr and £ (A) < L for some fixed L < N then

(qtj‘i;q)x_k. L 1
—Aj z:l

1<i<j<L
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Proof. The argument is by implicit induction on the last box to be added to
the Ferrers diagram of A\. Suppose \; = 0 for 7 > k and A\ > 1. Define \ by
A, = \; for all i except A} = A — 1. Denote the product on the left side of (B5l)
by A (A), then

N—Mp+lgh—i+l Lo grtIk

A ()\/ 1— in—kk-i—ltk—i 1— quti—k-i-l

IO =
)~ 11
i=1 j=k+1

1— q’\kt kfll . q,\i—,\k+1tk—i+1

T 1= etk 1— ghi—detigh—i

i=1
the j-product telescopes. Adjoining a box at (k, Ax) to the diagram of )\’ causes
these changes: leg (i, \i; A) = leg (i, \g; V) + 1 for 1 < i < k, arm (k,j; \) =
arm (k, j; N)+1 = A\y—j for 1 < j < A,. The calculation also uses arm (i, Ag; \) =
arm (4, \g; N) = A — Ag; leg (k, 7; N) = leg (k,7; \) = 0. Thus

k-1 2

hyt (qt; A 1 —ghimdntighmitl
M = (1—¢*t) H 1 XNi—Xe+1gk—i
hq.’t (qt;)\ ) i1 1 — q T k t

because the change in the product for row #k is

Ak Ar—1 1
H (1 - qthk_j) H (1 - qthk_l_j)_ =1- q’\"t.
Jj=1 Jj=1

Denote the second product in (B5) by B () then

BN (" "ha), 1

B(/\’) - (th_k—H?Q)Ak - 1_q>\ktL—;g+1-

AN hgil(gt;\) BV

AN)  hgt (g N)B(X)
e e R Sk

then A (\) = Hj:2 1—qti 1 —gqtt’

(1 — th)_l. This completes the proof. m
L

Hence . To start the induction let A = (1,0,...,0),

while hq (gt; ) =1 — ¢t and B (\) =

Note that H (qth—ir, q)/\l = (qt"; ¢, t), (the generalized (g, t)-Pochhammer
i=1
symbol). Setting L = N —m—1 in the Proposition leads to another formulation:

Theorem 51 Suppose \ € /\/OJr then

N. N—m-—1.
()\)teo()\) (qt 4, t))\ (qt 74, t))\
(qtN=1q,t) 5 hae (qt; N)

The same method can be applied to V(1) (X) by using = (Definition B8).

VO Q) =¢°
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Theorem 52 Suppose A €N1+ then

—N. -1 —m. —1
(gt=N5q,t71) (gt ™5 q,t )A'
(gt =Nsq,t7 1)\ hgaye (@5 )

There is a modified definition of leg-length for arbitrary compositions a €
N

48] \) = QB(A)tel(k)

leg (i,j;0) =#{r:r>i,j <o <o} +#{r:r<i,j<a-+1<a;}.
Suppose a;+1 > «; then
B (gt 5i0) 1= g asgrali=ralit) G +D\ g
= - - = U _—
hai(gt,0) — T—tgeeri—eara@—ralGil = ¢, 5 (7)
from [6, p.15,Prop. 5] (the argument relates to the box at (i + 1, a; + 1) in the
Ferrers diagram of o and the change in its leg-length) so that

byt (qt; a+) =R (o, E)f1 hgt (qt; @) .

Suppose a € Nj then from V© (a) = Ry (o, E) " V© (o) (see Prop. [6) and
1) we obtain

qt™iq.t)  (gtN T gt)
(qtN=15q,t) o1 b (gt;F)

There is a slight complication for type (1) V1) (a) = (—1)inv(°‘) Ro (o, F) 'V (o)

gyt (gt~ a7)
hgiye (gt )

V(O) (OZ) — qﬁ(a)ta‘o(a+) (

V(l) (Of) — (_t)—il’lV(Ot) V(l) (Oer)

Start with (, p (1) = ¢t =1=" for 1 < < m (because c (i, F) =i —m —1)
and then C‘z;i%)l) = g¥it1—igra (i) =ra(d) - Quppose ai+1 > «; and apply = in
(8) to obtain

hgase (g1, sicx) 1 — goir1—aigra i+ —ra () (CQ,E (i+1) > -
5=t (2E )

hq,l/t (qt—l7 a) = 11— t—lqai+1_aitTa(i+l)_T(¥(7’ Ca,E (Z)

combine with V() (s;0) = —ug (4‘2:71(;;;)1)) VW (a) and then

VW (@) hgaye (gt a) = =tV (si) hyaye (gt si00)
Thus VO (a) hy 10 (gt~ @) = (=)™ @ VO () hy 11 (g1, at), and
ﬂ(a)teo(a+) (qt_N; ¢ t_l)a+ (qt_m; q, t_l)a+
O A N PR VAU )

We have shown that the values of certain Macdonald superpolynomials at special
points (1, t,... ,tN’l) or (1, T2 ,tl’N) are products of linear factors of
the form 1 — ¢%t® where a € Nand —N < b < —N.

VO (a) = (=)™ g
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5 Restricted symmetrization and antisymmetriza-
tion

A type of symmetric Macdonald superpolynomial has been investigated by Blon-
deau et al[3]. The operators used in their work to define Macdonald polynomials
are significantly different from ours. There are results on evaluations for these
polynomials found by Gonzilez and Lapointe [9]. In this section we consider
symmetrization over a subset of the coordinates, and associated evaluations.

Fix A € N and consider the sum p3 = Y {csMp g : BT =\, 8 € Ny} sat-
isfying (T; —t)p3 = 0for 1 <i < N —m — 1. In this section we determine
p3 (2(9;0). Similarly fix A € N;" and consider the sum p§ = 3" {csMp p: BT =\, B € N1}
satisfying (T; + 1) p§ = 0 for 1 <4 < m, then evaluate p} (:C(l); 9).

Lemma 53 Suppose 3 € NYY, E' € Yo Uy and B; < Bit1 for some i. Let

. . t—z
z = Cﬁ,E' (’L—|— 1) /Cﬁ,E/ (’L) and letp = COMsiﬁ,E/ + ClMg_’E/. If cp = -2

Co

—tz

1
then(Tl—t)p:O andif@lz—l Co then(Tl—i-l)p:O

-z

Proof. The general transformation rules are given in matrix form with respect
to the basis [MﬁyE/, Msiﬁ,E/]

1t (1—tz)(t2—z)
| T1= 12
T;= 1 z(1—1) '

11—z

One directly verifies that,

-k
—2z | = ..
1 O

Definition 54 For A € N set p5 (;0) == > Rol(a,E) Mg (2;0).
a€Np,at=X\

(T; —t) [%i] = m (T +1)

Proposition 55 Suppose A € N then p3 (x;0) satisfies (T; —t)py\ = 0 for
1<i<N-m-—1.

Proof. Fix i. If « € Np,a™ = X and a; = ;41 then (T; —t) My g = 0
because 1 (1 + 1) = rq (1) + 1 and thus (u g (1) = tla, (i + 1). Otherwise take
a; < a1 and 2 = (g (1 + 1) /¢ r (7), then set

Pa,i = Ro (SiOé, E) Msioz,E—"RO (Oé, E) Ma,E =Ry (sia, E) {Msioz,E + ug (Z) Ma,E}
t—
by Lemma [I5] and ug (z) = 1—Z By Lemma B3] (T'; — t) pa,i = 0. For each ¢
—Z

the sum for p splits into singletons (« : oy = a;+1) and pairs (8, s;6 : 8; < Bit+1)-
Each piece is annihilated by T'; —¢. m
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There is now enough information on hand to find p§ (:C(O); 9) ,since

DX (x(o);6‘> = Z Ro (o, E) My g (:C(O);H)

OtEN(),Oﬂ’:)\

Rl B) (0).
O‘eNo,Za+_)\ Ri (o, E) M g (a: 0 ’9) .

This sum can be evaluated using the norm formula established in [8]. This
formula applies to arbitrary A € Név "+ and arbitrary sets B € Yy U Y1, In the
present context which uses only « € Ny with a™ = A the formula is used with
N replaced by N —m — 1 and the reverse A\~ of A is replaced by

N—m—1
RO/\=</\N—m—1,---,)\2= A1 70-'-70>-

For n = 0,1,2,... define [n],! = [] [i],- For A € ;" and j < Ay let n; (A) =
i=1
#{l:l <N —m,)\ =j}. The formula from [§] specializes to

Ro(a,E) [N—m—1],! 1
QGN%;_A Ri(o,E) IA_[ s () R1(RoM E) (37)
j=0

Note that the multiplier is a type of t-multinomial symbol. It is straightforward
to show

1— in*Ajtj*iJrl
Ri1i(Ro\ E) = H T— Nt
1<i<j<N-—m
>\'L>>\j

This product can be combined with the (i, j)-product in (1) to show:

s (00). 2\ _ BN ey N —m —1]1 (¢t":q,1),
Al =T ™ i)
I1 [n; (V]! T
Jj=0

thferl, q)Ai,qu

(@7, @)5,— 5,1

< 11

1<i<j<N—m

TE(Q).

Ai >N
Also by (I8)
N —-—m—1],!
i (#0:0) = SO (o) 7.0
11 [n; (V]!
7=0

Definition 56 Fory € RN="~1 [gt y(o):(yl, YN, tN T N2 tN_l) .
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Lemmal[I2lapplies to each M, g in the sum for p§ (y(o); 9) thus (T; — t) p§ (y(o); 9) =
Ofor1<i<N-m-—1.
Proposition 57 p3 (y(o);G) is symmetric in y. In particular p3 (x(o)u;G) =
D5 (x(o); 0) for any permutation u of {1,2,...,N —m — 1} (that isu € SN_m—1X
Idm—i—l)

Proof. Suppose 1 < i< N —m — 1 then
w3 (y:0) = T (40)
i () + (104
o i) (0]« (00

(=60, (57:0) = (1= (5.2)) 5 (4.

The latter is a polynomial identity (after multiplying by y; — y;+1) and thus
holds for all ¥, and hence p3 (y©s;;0) = p3 (y©;6). =m

Next we consider asymmetric polynomials in type (1). Recall « € N7 implies
Cor (1) = qit"e@=m=1if | < <m and (o r (i) =tV 0 if § > m.

Definition 58 For A € Nit setpt (z:0):= S (=1)™ Ry (o, F) Mo p (236).
OtEN1,0t+:)\

Proposition 59 Suppose A € N then p$ (z;0) satisfies (T; +t)pS = 0 for
1<i<m.

Proof. Fixi. If « € Mj,a™ = X and a; = ;41 then (T;+t) Myr = 0
because 1, (i + 1) = 74 (i) + 1 and thus (o p (i) = t71Cu.r (i +1). Otherwise
take a; < a1 and 2 = (o 5 (i + 1) /Co g (i), then set

Pa,i = (_1)inv(sio¢) Rl (sia, F) Msia,F + (_1)inv(a) Rl (a, F) Ma,F
= (_1)inV(Sia) Rl (Siau F) {Msia,F — Ui (Z) Ma,F}

1-1¢
by Lemma [[5 and u; (2) = 1 c
-z

the sum for p¢ splits into singletons (« : oy = a;+1) and pairs (8, ;6 : 8; < Bit+1)-
Each piece is annihilated by T'; +1. m

Similarly to the symmetric case we can determine p$ (a:(l);G) ,since (by
Proposition [T9])

ps (3:(1); 9) = Z (—l)inv(a) Ri(a, F) Mq.r (3:(1); 9)
aeNT,at=X

- Rl (Oé,F) .
= X R ()
aeENy,at=

. By Lemma B3] (T'; + 1) pa.i = 0. For each 4
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Formula (87) can be adapted to find the sum by applying E and chasing powers

of t (in [n; (A)],! for example). The typical term in g;gzg is
1_ tqo‘j_ait”"(j)_c"‘(i) . 1— qaj—aitra(j)—ca(i)"'l
t— qajfaitra(j)fca(i) - 1— qaj*aitra(j)*ca(i)*l

and applying = yields

1— qaj—aitra(i)—ca(j)—l U (2)

1 — qaj—aitra(i)*ca(j)Jrl o U (Z)

with z = ¢~ @it7e()=cali) the typical term in % (after the interchange

m <— N —m —1). Thus

Rl(oz,F)iz Ro (o, )
Z 730(04,F)_HZ R(l)(a,E)'

at=\

[m]l/t' A [m],!
)\1 >\1 ’
(s (M) IT [ (N)]!
7=0 7=0
__m m—1) n; (A) (nj (A) = 1)
A=+ 2
j=0
1 1 1 1
j=0
Now let R1\ = <)\m, Am—1y---3A1,0.. ., O) and consider
t— qki_kjti_j inv(R1A) 1- in_)\jti_j_l
Ro (B F) = H T 2N H PRI
1i<j< 1i<j<m
)\i.)\j )\i»)\j
and the transformed
_ 1 _ q>\i—>\jti—j—l
=R (oM E) = [ — PRV VI
1i<j<m
)\1>\]
=t ™IBNR, (RN F).
This results in
Z Ri (o, F) — pA+inv(RiN) [m]t! 1 '
VY RQ (Oé,F) RO (Rl)\,F)

A1
T s 001
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We find

A1 2 A1
inv (R ) = Z n; (A)nj (A) = % (Z n; (/\)) — Zm ()\)2

1<i<j<A i=1 =1
A1
1 1
= §m2 — 5 n; ()\)2 = —A,
=1
and we have shown
! 1
7 (=V:8) = - Ro (R F) T (a0)
I1 [y (01,
j=0
-1
A1
inv(R1 A
= ()™ ] ST Iy V] VO (R 7 (6)
=0

Similarly to type (0) this formula can be further developed:

B 1— )\if)\jtifj . 1— )xif)\jtifj
1 _ q _ 4—inv(R1 ) q
Ro (A F) ~ = H P Y t ' H T— g N1
1<i<j<m 1<i<j<m
)\1>)\J >\'L>>\j

Thus (from Theorem M8

—N. -1
75 (0:0) = #VpA ), (et Via,t7),

1<i<j<N-—m (qtiij’q)h—/\j—l
>\'L>>\j
AN =D X (N=m—i)—inv(Ri)),
=1

A1

1 1

inv (R1A) = §m2 ~3 an (A)?.
i=1

Definition 60 For y € R™ let y(l):(yl, Y, T 2N tl_N)

Lemma[Tapplies to each M, ¢ in the sum for p§ (y(l); 9) thus (T; + 1) p% (y(l); 9) =
Ofor1 <i<m

Proposition 61 p§ (y(l);H) is symmetric in y. In particular p§ (x(l)u;H) =
P (x(l); 9) for any permutation u of {1,2,...,m} (that is u € Sp, X Idn_p) -
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Proof. Suppose 1 < i < m then
5 (yV:0) = Tavss (v50)
=b (y(l),i) Py (y(”; 9) + (T —b (y(”, z)) p
s (100) - (40 (.0)s
(o) 420) = (o) 5.

The latter is a polynomial identity (after multiplying by y; — y;+1) and thus
holds for all y(*), and hence s’ (y(l)si; 9) =ps (y(l)si; 9). [

(y(l)si;e)

j
(y(1)5i§9)

a
A

6 Conclusion and Future Directions

We established formulas for evaluating a relatively restrictive class of nonsym-
metric polynomials at special points. The values have product form, whose
typical terms are 1 — ¢?t® where a,b € Z and |b| < N. The labels E’ of the
Macdonald polynomials M, g have only two possibilities out of many, (anl)
for the isotype (N —m,1™). Computational experiments suggest there are no
other evaluations with this simple form. Perhaps there are formulas combining
sums and products, but we have no conjectures to offer. However there are other
evaluations to be studied: these relate to singular polynomials. This refers to the
situation where the parameters g, t satisfy a relation like ¢®t* = 1 and a polyno-
mial M, g satisfies §; Mo 57 = wiMq, g for 1 < i < N The Jucys-Murphy oper-
ators on sP,, are defined in terms of {T;} (see ()): wy = 1,w; = t 1 T;w; 11T
for 1 <4 < N. Of course finding these singular parameters (g, t) is already a
research problem by itself. For small N and degree we can find some examples
(with computer algebra) and test evaluations. It appears there are interesting
results to find.

Consider N = 6 and P10, = (1,1,0,0,0,0) (of isotype (5,1)). The spectral
vector of M, (56} is (qt, qt,2,¢,t=1,1) Let

T = (xl,xg,tz,t,tfl, 1) .
The polynomial M, (5 ¢y is singular for gt =1 and

Ma,{5,6} (I, 9) = t16 (.Il — 1) (.IQ — 1) (t496 — t595) y
T{S,G} = t496 - t595.

Similarly M, 14,6} is singular at qt3 = 1; its spectral vector is (qt4, qt3,t2,t7 1 t, 1)
and for ' = (£C1,$2,t2,t_1,t, 1)

My qa6y (2/30) = "% (1 — 1) (22 — 1) T(a,6} (6)
5

t
T{4,6} = —t%0, + 1 (05 + 06) .

+t
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As well M, (3} is singular at qt3 = 1; its spectral vector is (qt4, qt3, t 2, t, 1)
and for z” = (xl,xg,t_l,t2,t, 1)
Mo qs6y (2";0) = 10 (21 = 1) (22 — 1) (5.6 (6) ,

6
1+t+1t2
For an example with higher degree consider N = 6, P41 and § = (2,1,0,0,0,0), F =
{1,2,3} (the isotype is (3,1%)) Then (g = (¢*~3,qt=2,t71,1%,¢,1) and Mg p
is singular for ¢ = . At @ = (z1,x2,¢7*,¢%,¢,1) we find

T{3,6} = —t793 + (04 + 05 + 66) .

Mg r(x;0) = 18 (1 — txe) (x1 — 1) (22 — 1) 7R,
TF = —919293 (94 + 95 —+ 96) .

We would expect an evaluation formula involving the elements of the spectral
vector for which a; = 0 and with as many free variables as nonzero elements
of a. There is a nice necessary condition for a singular value: the t-exponents
of the specialized spectral vector have to agree with the content vector of an
RSYT. For example set ¢ = t2 in (g,r with the result (t, 1,t71, 82, ¢, 1), and
[1,0,—1,2,1,0] is the content vector of

6 5 4

3 2 1|
Then M, r with v = (2,1,0,0,0,0) can not be singular at ¢ = t*: the spectral
vector (y p = (1,t, =12t 1) and [0,1,—1,2,1,0] is not the content vector of
any RSYT.

There are interesting results dealing with singular Macdonald superpolyno-
mials waiting to be found.
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