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Abstract

In a preceding paper the theory of nonsymmetric Macdonald polyno-
mials taking values in modules of the Hecke algebra of type $A$ (Dunkl
and Luque SLC 2012) was applied to such modules consisting of poly-
nomials in anti-commuting variables, to define nonsymmetric Macdonald
superpolynomials. These polynomials depend on two parameters $\left(
q,t\right) $ and are defined by means of a Yang-Baxter graph. The
present paper determines the values of a subclass of the polynomials at
the special points $\left( 1,t,tˆ{2}% ,\ldots\right) $ or$\left( 1,tˆ{-1},tˆ{-
2},\ldots\right) $. The arguments use induction on the degree and com-
putations with products of generators of the Hecke algebra. The resulting
formulas involve $\left( q,t\right) $-hookproducts. Evaluations are also
found for Macdonald superpolynomials having restricted symmetry an-
dantisymmetry properties
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1 Introduction

In the prequel [8] of this paper we defined a representation of the Hecke algebra
of type A on spaces of superpolynomials. By using the theory of vector-valued
nonsymmetric Macdonald polynomials developed by Luque and the author [6]
we constructed nonsymmetric Macdonald superpolynomials. The basic theory
including Cherednik operators, the Yang=Baxter graph method for computing
the Macdonald superpolynomials, and norm formulas were described. The norm
refers to an inner product with respect to which the generators of the Hecke alge-
bra are self-adjoint. The theory relies on relating the Young tableaux approach
to irreducible Hecke algebra modules to polynomials in anti-commuting vari-
ables. Also that paper showed how to produce symmetric and anti-symmetric
Macdonald superpolynomials, and their norms, by use of the technique of Baker
and Forrester [2]. In the present paper we consider the evaluation of the polyno-
mials at certain special points. The class of polynomials which lead to attractive
formulas in pure product form is relatively small. These values are expressed by
shifted q-factorials, both ordinary (positive integer labeled) and the type labeled
by partitions, and (q, t)-hook products.

In Section 2 one finds the necessary background on the Hecke algebra of
type A and its representations on polynomials in anti-commuting (fermionic)
variables and on superpolynomials which combine commuting (bosonic) and
anti-commuting variables. This section also defines the Cherednik operators,
a pairwise commuting set, whose simultaneous eigenvectors are called nonsym-
metric Macdonald superpolynomials. They are constructed starting from de-
gree zero by means of the Yang-Baxter graph. The necessary details from [8]
are briefly given. Section 3 presents the main results with proofs about the
evaluations; there are two types with similar arguments. The methods rely on
steps in the graph to determine the values starting from degree zero. Some of
the arguments are fairly technical computations using products of generators of
the Hecke algebra. The definition of (q, t)-hook products and their use in the
evaluation formulas are presented in Section 4. The evaluations are extended
to Macdonald polynomials, of the types studied in the previous sections, with
restricted symmetry and antisymmetry properties in Section 4. The conclusion
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and ideas for further investigations in Section 6 conclude the paper.

2 Background

2.1 The Hecke algebra

The Hecke algebra HN (t) of type AN−1 with parameter t is the associative
algebra over an extension field of Q, generated by {T1, . . . , TN−1} subject to the
braid relations

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i < N − 1, (1a)

TiTj = TjTi, |i− j| ≥ 2,

and the quadratic relations

(Ti − t) (Ti + 1) = 0, 1 ≤ i < N, (2)

where t is a generic parameter (this means tn 6= 1 for 2 ≤ n ≤ N , and t 6= 0).
The quadratic relation implies T−1

i = 1
t (Ti + 1− t). There is a commutative

set of Jucys-Murphy elements in HN (t) defined by ωN = 1, ωi = t−1Tiωi+1Ti
for 1 ≤ i < N , that is,

ωi = ti−NTiTi+1 · · ·TN−1TN−1TN−2 · · ·Ti

Simultaneous eigenvectors of {ωi} form bases of irreducible representations
of the algebra. The symmetric group SN is the group of permutations of
{1, 2, . . . , N} and is generated by the simple reflections (adjacent transposi-
tions) {si : 1 ≤ i < N}, where si interchanges i, i+ 1 and fixes the other points
(the si satisfy the braid relations and s2i = 1).

2.2 Fermionic polynomials

Consider polynomials in N anti-commuting (fermionic) variables θ1, θ2, . . . , θN .
They satisfy θ2i = 0 and θiθj+θjθi = 0 for i 6= j. The basis for these polynomials
consists of monomials labeled by subsets of {1, 2, . . . , N}:

φE := θi1 · · · θim , E = {i1, i2, · · · , im} , 1 ≤ i1 < i2 < · · · < im ≤ N.

The polynomials have coefficients in an extension field of Q (q, t) with tran-
scendental q, t, or generic q, t satisfying q, t 6= 0 qa 6= 1, qatn 6= 1 for a ∈ Z and
n 6= 2, 3, . . . , N .

Definition 1 P := span {φE : E ⊂ {1, . . . , N}} and Pm := span {φE : #E = m}
for 0 ≤ m ≤ N . The fermionic degree of φE is #E.

This is a brief description of the action of Ti on P : suppose j ∈ E1 implies
j < i, and j ∈ E2 implies j > i+ 1: then

TiφE1θiθi+1φE2 = −φE1θiθi+1φE2 , TiφE1φE2 = tφE1φE2 , (3)

TiφE1θiφE2 = φE1θi+1φE2 , TiφE1θi+1φE2 = TiφE1 (tθi + (t− 1) θi+1)φE2 .

3



Then {Ti : 1 ≤ i < N} satisfy the braid and quadratic relations.
There are two degree-changing linear maps which commute with the Hecke

algebra action.

Definition 2 {{For n ∈ Z set σ (n) := (−1)n and}} for E ⊂ {1, 2, . . . , N},

1 ≤ i ≤ N set s (i, E) := # {j ∈ E : j < i}. Define the operators ∂i and θ̂i
by ∂iθiφE = φE , ∂iφE = 0 and θ̂iφE = θiφE = (−1)s(i,E)

φE∪{i} for i /∈ E,

while θ̂iφE = 0 for i ∈ E (also i ∈ E implies φE = (−1)s(i,E)
θiφE\{i} and

∂iφE = (−1)s(i,E)
φE\{i}). Define M :=

∑N
i=1 θ̂i and D :=

∑N
i=1 t

i−1∂i.

It is clear that D2 = 0 =M2. For n = 0, 1, 2, . . . let [n]t :=
1− tn

1− t
.

Proposition 3 M and D commute with Ti for 1 ≤ i < N,and MD +DM =
[N ]t .

The spaces Pm,0 := kerD∩Pm and Pm+1,1 := kerM ∩Pm+1 are irreducible
HN (t)-modules and are isomorphic under the map D : Pm+1,1 → Pm,0 and
are of isotype (N −m, 1m).The representations of HN (t) occurring in this pa-
per correspond to reverse standard Young tableaus (RSYT) of hook shape (see
Dipper and James [5] for details of the representation theory) These are la-
beled by partitions (N − n, 1n) of N and are graphically described by Ferrers
diagrams: boxes at {[1, i] : 1 ≤ i ≤ N − n} ∪ {[j, 1] : 2 ≤ j ≤ n}. The numbers
{1, 2, . . . , N} are entered in the boxes in decreasing order in the row and in the
column. For a given RSYT Y let Y [a, b] be the entry at [a, b] and define the
content c (Y [a, b] , Y ) := b − a. The vector [c (i, Y ) : 1 ≤ i ≤ N ] is called the
content vector of Y . It defines Y uniquely (trivially true for hook tableaux).
The representation of HN (t) is defined on the span of the RSYT’s of shape
(N − n, 1n) in such a way that ωiY = tc(i,Y )Y for 1 ≤ i ≤ N . We use a space-
saving way of displaying an RSYT in two rows, with the second row consisting
of the entries YE [2, 1] , YE [3, 1] , . . ... Note that Y [1, 1] = N always.

As example let N = 8, n = 3,

Y =

[
8 6 4 3 1
· 7 5 2

]
(4)

and [c (i, Y )]8i=1 = [4,−3, 3, 2,−2, 1,−1, 0].
We showed [8] that Pm is a direct sum of the HN (t)-modules corresponding

to (N −m, 1m) and
(
N + 1−m, 1m−1

)
; kerD ∩ Pm and kerM ∩ Pm respec-

tively.

2.3 The module kerD ∩ P
m

The basis of kerD∩Pm is described as follows: Let Y0 := {E : #E = m+ 1, N ∈ E}
and for E ∈ Y0 let ψE = DφE . Associate E to the RSYT YE which contains the
elements of E in decreasing order in column 1, that is, {[j, 1] : 1 ≤ j ≤ m+ 1},
and the elements of EC in {[1, i] : 2 ≤ i ≤ N −m}. In the example Y = YR with
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E = {2, 5, 7, 8}. The content vector of E is defined by c (i, E) = c (i, YE). For
each E ∈ Y0 there is a polynomial τE ∈ kerD ∩ Pm such that ωiτE = tc(i,E)τE
for 1 ≤ i ≤ N , and if inv (E) = k then τE − tkψE ∈ span {ψE′ : inv (E′) < k}.
In particular if E = {N −m,N −m+ 1, . . . , N} then τE = DφE (and this is
one of the two cases that are used here). For example suppose N = 7,m = 3
then

YE =

[
7 3 2 1
· 6 5 4

]
,

[c (i, E)]
7
i=1 = [3, 2, 1,−3,−2,−1, 0], and τE = D (θ4θ5θ6θ7) = t3θ5θ6θ7−t4θ4θ6θ7+

t5θ4θ5θ7 − t6θ4θ5θ6.

2.4 The module kerM ∩ P
m

The basis of kerM∩Pm is described as follows: Let Y1 := {F : #F = m− 1, N /∈ F}
and for F ∈ Y1 let ηF = MφF . Associate F to the RSYT YF which contains
the elements of F in decreasing order in column 1, that is, {[j, 1] : 2 ≤ j ≤ m},
and the elements of FC in {[1, i] : 1 ≤ i ≤ N −m+ 11}. In the example (4)
Y = YF with F = {2, 5, 7}. As before the content vector of F is defined by
c (i, F ) = c (i, YF ). For each F ∈ Y1 there is a polynomial τF ∈ kerM ∩ Pm

such that ωiτF = tc(i,F )τF for 1 ≤ i ≤ N , and if inv (F ) = k then τF −
ηF ∈ span {ψF ′ : inv (F ′) > k}. Note that F ∈ Y1 implies 0 ≤ inv (F ) ≤
(m− 1) (N −m+ 1) and the maximum value occurs at F = {1, 2, . . . ,m− 1}.
This case is the second of those to be studied here. For this set τF =MφF . As
example let N = 7,m = 5 then

YF =

[
7 6 5
· 4 3 2 1

]
,

[c (i, F )]
7
i=1 = [−4,−3,−2,−1, 2, 1, 0], and τF = θ1θ2θ3θ4 (θ5 + θ6 + θ7).

2.5 Superpolynomials

We extend the polynomials in {θi} by adjoiningN commuting variables x1, . . . , xN
(that is [xi, xj ] = 0, [xi, θj ] = 0, θiθj = −θjθi for all i, j). Each polynomial is a

sum of monomials xαφE where E ⊂ {1, 2, . . . , N} and α ∈ NN
0 , x

α :=
N∏
i=1

xαi

i .

The partitions in NN
0 are denoted by N

N,+
0 (λ ∈ N

N,+
0 if and only if λ1 ≥

λ2 ≥ . . . ≥ λN ). The fermionic degree of this monomial is #E and the bosonic

degree is |α| :=
∑N

i=1 αi. The symmetric group SN acts on the variables by
(xw)i = xw(i) and on exponents by (wα)i = αw−1(i) for 1 ≤ i ≤ N,w ∈ SN
(consider x as a row vector, α as a column vector and w as a permutation
matrix, w̃i,j = δi,w(j), then xw = xw̃ and wα = w̃α). Thus (xw)α = xwα.

Let sPm := span
{
xαφE : α ∈ NN

0 ,#E = m
}
. Then using the decomposition
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Pm = Pm,0 ⊕ Pm,1 let

sPm,0 = span
{
xαψE : α ∈ NN

0 , E ∈ Y0
}
,

sPm,1 = span
{
xαηE : α ∈ NN

0 , E ∈ Y1
}
.

The Hecke algebra HN (t) is represented on sPm. This allows us to apply
the theory of nonsymmetric Macdonald polynomials taking values in HN (t)-
modules (see [6] ).

Definition 4 Suppose p ∈ sPm and 1 ≤ i < N then set

T ip (x; θ) := (1− t)xi+1
p (x; θ) − p (xsi; θ)

xi − xi+1
+ Tip (xsi; θ) . (5)

Note that Ti acts on the θ variables according to Formula (3).

Definition 5 Let T (N) = TN−1TN−2 · · ·T1 and for p ∈ sPm and 1 ≤ i ≤ N

wp (x; θ) := T (N)p (qxN , x1, x2, . . . , xN−1; θ) ,

ξip (x; θ) := ti−N
T iT i+1 · · ·TN−1wT

−1
1 T

−1
2 · · ·T

−1
i−1p (x; θ) .

The operators ξi are Cherednik operators, defined by Baker and Forrester
[1] (see Braverman et al [3] for the significance of these operators in double
affine Hecke algebras). They mutually commute (the proof in the vector-valued
situation is in [6, Thm. 3.8]). The simultaneous eigenfunctions are called non-
symmetric Macdonald polynomials. They have a triangularity property with
respect to the partial order ⊲ on the compositions NN

0 , which is derived from
the dominance order:

α ≺ β ⇐⇒
i∑

j=1

αj ≤
i∑

j=1

βj , 1 ≤ i ≤ N, α 6= β,

α⊳ β ⇐⇒ (|α| = |β|) ∧
[(
α+ ≺ β+

)
∨
(
α+ = β+ ∧ α ≺ β

)]
.

The rank function on compositions is involved in the formula for an NSMP.

Definition 6 For α ∈ NN
0 , 1 ≤ i ≤ N

rα (i) := # {j : αj > αi}+# {j : 1 ≤ j ≤ i, αj = αi} ,

then rα ∈ SN . There is a shortest expression rα = si1si2 . . . sik and Rα :=

(Ti1Ti2 · · ·Tik)
−1 ∈ HN (t) (that is, Rα = T (rα)

−1).

A consequence is that rαα = α+, the nonincreasing rearrangement of α, for
any α ∈ NN

0 , and rα = I if and only if α ∈ N
N,+
0 .

6



Theorem 7 ([6, Thm. 4.12]) Suppose α ∈ NN
0 and E ∈ Yk, k = 0, 1 then there

exists a (ξi)-simultaneous eigenfunction

Mα,E (x; θ) = te(α
+,E)qβ(α)xαRα (τE (θ)) +

∑

β⊳α

xβvα,β,E (θ; q, t) (6)

where vα,β,E (θ; q, t) ∈ Pm,k and its coefficients are rational functions of q, t.
Also ξiMα,E (x; θ) = ζα,E (i)Mα,E (x; θ) where ζα,E (i) = qαitc(rα(i),E) for 1 ≤

i ≤ N. The exponents β (α) :=
∑N

i=1

(
αi

2

)
and e (α+, E) :=

∑N
i=1 α

+
i (N − i+ c (i, E)).

The applications in the present paper require formulas for the transformation
(called a step) Mα,E →Msiα,E when αi+1 > αi:

Msiα,E (x; θ) =

(
T i +

1− t

1− ζα,E (i+ 1) /ζα,E (i)

)
Mα,E (x; θ) . (7)

and for the affine step:

Φα = (α2, α3, . . . , αN , α1 + 1)

ζΦα,E = [ζα,E (2) , ζα,E (3) , . . . , ζα,E (N) , qζα,E (1)]

MΦα,E (x) = xNwMα,E (x) .

Two other key relations are ζα,E (i+ 1) = tζα,E (i) implies (T i + 1)Mα,E = 0
and ζα,E (i+ 1) = t−1ζα,E (i) implies (T i − t)Mα,E = 0.

3 Evaluations and Steps

We consider two types of evaluations: (0) x(0) =
(
1, t, t2, . . . , tN−1

)
, E =

{N −m,N −m+ 1, . . . , N} , α ∈ NN
0 with αi = 0 for N −m ≤ i ≤ N , and

Mα,E

(
x(0)

)
= V (0) (α) τE ; (1) x

(1) =
(
1, t−1, t−2, . . . , t1−N

)
, F = {1, 2, . . . ,m},

α ∈ NN
0 with αi = 0 for m+ 1 ≤ i ≤ N , and Mα,F

(
x(1)

)
= V (1) (α) τF .

Definition 8 Let N0 :=
{
α ∈ NN

0 : i ≥ N −m =⇒ αi = 0
}
, N+

0 := N0∩N
N,+
0 .

Let N1 :=
{
α ∈ NN

0 : i > m =⇒ αi = 0
}
, N+

1 := N1 ∩ N
N,+
0 .

Conceptually the two derivations are very much alike, but there are differ-
ences involving signs and powers of t that need careful attention. We begin by
expressing V (0) (α) and V (1) (α) in terms of V (0) (α+) and V (1) (α+). Since we
are concerned with evaluations the following is used throughout:

Definition 9 For a fixed point x ∈ RN and 1 ≤ i < N let b (x; i) =
t− 1

1− xi/xi+1

(xi 6= xi+1). In particular if xi+1 = tnxi then let κn := b (x; i) for n ∈ Z\ {0}.

If n ≥ 1 then κn =
tn

[n]t
and κ−n = −

1

[n]t
.
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In terms of b the evaluation formula for T i is

T ip (x; θ) = b (x; i) p (x; θ) + (Ti − b (x; i)) p (xsi; θ) (8)

The following are used repeatedly in the sequel.

Lemma 10 Suppose for some i < N there is a polynomial p (x; θ) and a point
y such that (T i + 1) p = 0 and yi+1 = tyi then (Ti + 1) p (y; θ) = 0.

Proof. By hypothesis b (y; i) = t and thus (1 + t) p (y; θ)+(Ti − t) p (ysi; θ) = 0.
Then (1 + t) (Ti + 1) p (y; θ) = − (Ti + 1) (Ti − t) p (ysi; θ) = 0.

Lemma 11 Suppose for some i < N there is a polynomial p (x; θ) and a point
y such that (T i − t) p = 0 and yi = tyi+1 then (Ti − t) p (y; θ) = 0.

Proof. By hypothesis b (y; i) = −1 and thus (−t− 1) p (y; θ)+(Ti + 1) p (ysi; θ) =
0. Then (1 + t) (Ti − t) p (y; θ) = − (Ti − t) (Ti + 1) p (ysi; θ) = 0.

In type (0) ζα,E (i) = ti−N forN−m ≤ i ≤ N which implies (T i + 1)Mα,E =
0 for N −m ≤ i < N .

Lemma 12 SupposeMα,E is of type (0) and xi+1 = txi for N−m ≤ i < N then
Mα,E (x) = cτE for some constant depending on x, and (Ti − t)Mα,E (x) = 0
for 1 ≤ i < N −m− 1.

Proof. From (T i + 1)Mα,E = 0 and Lemma 10 it follows that (Ti + 1)Mα,E (x) =
0 for N −m ≤ i < N . Thus

(
ωi − ti−N

)
Mα,E (x; θ) = 0 for N −m ≤ i ≤ N ,

and this implies Mα,E (x; θ) is a multiple of τE (the contents [c (i, E′)]
N
i=N−m

determine E′ uniquely). Furthermore (Ti − t) τE = 0 for 1 ≤ i < N −m − 1
(since 1, 2, . . . , N −m− 1 are in the same row of YE).

Proposition 13 Suppose α ∈ N0 and αi < αi+1 (implying i+1 < N −m) and
z = ζα,E (i+ 1) /ζα,E (i) then

Msiα,E

(
x(0); θ

)
=

1− tz

1− z
Mα,E

(
x(0); θ

)
.

Proof. From (7) and (8) with b
(
x(0), i

)
= t it follows that

Msiα,E

(
x(0); θ

)
=

(
t+

1− t

1− z

)
Mα,E

(
x(0); θ

)
+ (Ti − t)Mα,E

(
x(0)si; θ

)

=
1− tz

1− z
Mα,E

(
x(0); θ

)
,

because x(0)sisatisfies the hypotheses of the Lemma implying (Ti − t)Mα,E

(
x(0)si; θ

)
=

0.
The following products are used to relate V (k) (α) to V (k) (α+) , k = 0, 1.
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Definition 14 Let u0 (z) :=
t− z

1− z
, u1 (z) :=

1− tz

1− z
. Suppose β ∈ NN

0 and

E′ ∈ Y0 ∪ Y1 and k = 0, 1 then

Rk (β,E
′) :=

∏

1≤i<j≤N, βi<βj

uk

(
qβj−βitc(rβ(j),E

′)−c(rβ(i),E′)
)
.

Note that the argument of uk is ζβ,E′′ (j) /ζβ,E′′ (i) and there are inv (β)
factors, where

inv (β) := {(i, j) : 1 ≤ i < j ≤ N, βi < βj} .

Lemma 15 If βi < βi+1 then Rk (β,E
′) = uk (ζβ,E′′ (i+ 1) /ζβ,E′′ (i))Rk (siβ,E

′).

Proof. The only factor that appears in Rk (β,E
′) but not in Rk (siβ,E

′) is
uk (ζβ,E′′ (i+ 1) /ζβ,E′′ (i)).

For the special case type (0) 1 ≤ rα (i) < N − m we find c (rα (i) , E) =
N −m− rα (i) and

R1 (α,E) =
∏

1≤i<j<N−m, αi<αj

u1

(
qαj−αitrα(i)−rα(j)

)
.

Proposition 16 Suppose α ∈ N0 then Mα,E

(
x(0); θ

)
= V (0) (α) τE and

V (0) (α) = R1 (α,E)
−1
V (0)

(
α+
)
.

Proof. By Lemma 12 Mα,E

(
x(0); θ

)
is a multiple of τE . For the product

formula argue by induction on inv (α). If λ ∈ N
N,+
0 then R1 (λ,E) = 1. If

αi < αi+1 then

V (0) (siα)

V (0) (α)
= u1

(
ζα,E (i+ 1)

ζα,E (i)

)
=
R1 (α,E)

R1 (siα,E)
.

In type (1) ζα (i) = tN−i for m+1 ≤ i ≤ N which implies (T i − t)Mα,E = 0
for m+ 1 ≤ i < N .

Lemma 17 Suppose Mα,F is of type (1) and xi = txi+1 for m+1 ≤ i < N then
Mα,E (x) = cτF for some constant depending on x, and (Ti + 1)Mα,F (x) = 0
for 1 ≤ i < m.

Proof. From (T i − t)Mα,F = 0 and Lemma 11 it follows that (Ti − t)Mα,F (x; θ) =
0 for m + 1 ≤ i < N . Thus

(
ωi − tN−i

)
Mα,F (x; θ) = 0 for m + 1 ≤ i ≤ N ,

and this implies Mα,F (x; θ) is a multiple of τF (the contents [c (i, E′)]
N
i=m+1

determine E′ uniquely). Thus (Ti + 1) τF = 0 for 1 ≤ i < m (since 1, 2, . . . ,m
are in the same column of YF ).
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Proposition 18 Suppose α ∈ N1 and αi < αi+1 (so that i + 1 ≤ m) and
z = ζα,F (i+ 1) /ζα,F (i) then

Msiα,F

(
x(1); θ

)
= −

t− z

1− z
Mα,F

(
x(1); θ

)
.

Proof. From (7) and (8) with b
(
x(1), i

)
= −1 it follows that

Msiα,F

(
x(1); θ

)
=

(
−1 +

1− t

1− z

)
Mα,F

(
x(1); θ

)
+ (Ti + 1)Mα,F

(
x(1)si; θ

)

= −
t− z

1− z
Mα,F

(
x(1); θ

)
,

because x(1)si satisfies the hypotheses of the Lemma implying (Ti + 1)Mα,F

(
x(1)si; θ

)
=

0.

Proposition 19 Suppose α ∈ N1 then Mα,F

(
x(1); θ

)
= V (1) (α) τF and

V (1) (α) = (−1)inv(α)R0 (α, F )
−1
V (1)

(
α+
)
.

Proof. By Lemma 17 Mα,F

(
x(1); θ

)
is a multiple of τF . For the product

formula argue by induction on inv (α). If λ ∈ N
N,+
0 then R0 (λ, F ) = 1. If

αi < αi+1 then

V (1) (siα)

V (1) (α)
= −u0

(
ζα,F (i+ 1)

ζα,F (i)

)
= −

R0 (α, F )

R0 (siα, F )
.

We will use induction on the last nonzero part of λ ∈ N
N,+
0 to derive V (∗) (λ).

Suppose λk ≥ 1 and λi = 0 for i > k where 1 ≤ k ≤ N −m− 1 in type (0) and
1 ≤ k ≤ m in type (1). Define compositions in NN

0 by

λ′ = (λ1, . . . , λk−1, λk − 1, 0, . . .) (9)

α = (λk − 1, λ1, . . . , λk−1, 0, . . .)

β = (λ1, . . . , λk−1, 0, . . . , λk)

δ =

(
λ1, . . . , λk−1, 0, . . . ,

n

λk,
n+1
0 , 0 . . .

)
(10)

λ = (λ1, . . . , λk−1, λk, 0, . . .) ,

where n = N −m− 1 in type (0) and n = m in type (1). The transitions from
λ′ → α and from δ → λ use Propositions 16 and 19. The affine step α→ β and
the steps β → δ require technical computations.

Proposition 20 Suppose λ ∈ N+
0 and λ′, α are given by (9) then

V (0) (α) = V (0) (λ′)
k−1∏

i=1

1− qλi−λk+1tk−i

1− qλi−λk+1tk−i+1
.
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Proof. The spectral vector of λ′ has ζλ′,E (i) = qλitN−m−i for 1 ≤ i <
k, ζλ′,E (k) = qλk−1tN−m−k while ζα,E (1) = ζλ′,E (k) and ζα,E (i) = ζλ′,E (i− 1)

for 2 ≤ i ≤ k. The product is R1 (α,E)
−1
.

Proposition 21 Suppose λ ∈ N+
0 and δ is as in (10) then

V (0) (λ) =
1− qλk tN−m−k

1− qλkt
V (0) (δ) .

Proof. The relevant part of ζδ,E is ζδ,E (i) = tN−m−i−1 for k ≤ i ≤ N −m− 2
and ζδ,E (N −m− 1) = qλk tN−m−k. Thus

R1 (δ, E) =

N−m−2∏

i=k

u1
(
qλk ti+1−k

)
=

N−m−k−2∏

j=0

1− qλk tj+2

1− qλk tj+1

and this product telescopes.

Proposition 22 Suppose λ ∈ N+
1 and λ′, α are given by (9) then

V (1) (α) = (−t)1−k
k−1∏

i=1

1− qλi−λk+1ti−k

1− qλi−λk+1ti−k−1
V (1) (λ′) .

Proof. The spectral vector of λ′ has ζλ′,F (i) = qλiti−1−m for 1 ≤ i <
m, ζλ′,F (k) = qλk−1tk−1−m while ζα,F (1) = ζλ′,F (k) and ζα,F (i) = ζλ′,F (i− 1)
for 2 ≤ i ≤ k. Also inv (α) = k − 1. Then

R0 (α, F ) =

k−1∏

i=1

u0
(
qλi−λk+1ti−k

)
= tk−1

k−1∏

i=1

1− qλi−λk+1ti−k−1

1− qλi−λk+1ti−k
.

Combine this with V (1) (α) = (−1)inv(α)R0 (α, F )
−1
V (1) (λ′)..

Proposition 23 Suppose λ ∈ N+
1 and δ is as in (10) then

V (1) (λ) = (−t)m−k 1− qλktk−m−1

1− qλk t−1
V (1) (δ) .

Proof. The relevant part of ζδ,F is ζδ,F (i) = ti−m for k ≤ i ≤ m − 1 and
ζδ,E (m) = qλktk−m−1. Thus

R0 (δ, E) =

m−1∏

i=k

u0
(
qλktk−i−1

)
= tm−k

m−k−1∏

j=0

1− qλk t−j−2

1− qλk t−j−1

and this product telescopes to
1− qλk tk−m−1

1− qλk t−1
. The use of inv (δ) = m − k

completes the proof.
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The methods used in these calculations are similar to those used in [7] for
evaluations of scalar valued Macdonald polynomials, however the following com-
putations (from α to δ) are significantly different.

Each of the remaining transitions is calculated in its own subsection. The
following two lemmas will be used in both types. Recall tT−1

i = 1− t+ T i for
any i.

Lemma 24 Suppose f = tT−1
i g and b = b (x; i) then

(Ti − b) f (xsi) = (1 + b) (t− b) g (x)− b (Ti − b) g (xsi) (11)

Proof. From g = t−1
T if we get

tg (x) = bf (x) + (Ti − b) f (xsi)

f (x) = (1− t+ b) g (x) + (Ti − b) g (xsi) ,

thus

(Ti − b) f (xsi) = tg (x)− b (1− t+ b) g (x)− b (Ti − b) g (xsi)

= (1 + b) (t− b) g (x) − b (Ti − b) g (xsi) .

The next formula is a modified braid relation.

Lemma 25 Suppose b =
ac

a+ c+ 1− t
or j, ℓ, j + ℓ ∈ Z\ {0} then

(Ti − a) (Ti+1 − b) (Ti − c) = (Ti+1 − c) (Ti − b) (Ti+1 − a)

(Ti − κj) (Ti+1 − κj+ℓ) (Ti − κℓ) = (Ti+1 − κℓ) (Ti − κj+ℓ) (Ti+1 − κj)

Proof. Expand

(Ti − a) (Ti+1 − b) (Ti − c) + cTiTi+1 + aTi+1Ti + abc

= TiTi+1Ti + acTi+1 + b (a+ c)Ti − bT
2
i

= TiTi+1Ti − bt+ acTi+1 + b (a+ c− t+ 1)Ti

= TiTi+1Ti − bt+ ac (Ti+1 + Ti) .

which is symmetric in Ti, Ti+1 since TiTi+1Ti = Ti+1TiTi+1. If a = κj and
c = κℓ then b = κj+ℓ.

3.1 From α to δ for type (0)

In this section we will proveMδ,E

(
x(0)

)
= qλk−1t2N−m−k−1 1− q

λk tN−k+1

1− qλk tN−k
Mα,E

(
x(0)

)
.

Start with δ (where δi = λi for 1 ≤ i ≤ k − 1, δN−m−1 = λk and δi = 0 other-
wise). Let β(N−m−1) = δ and β(j) = sj−1β

(j−1) for N −m ≤ j ≤ N (so that
β(N) = β in (9)). Abbreviate z = ζδ,E (N −m− 1) = ζλ,E (k) = qλk tN−m−k.
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If N − m − 1 ≤ i < N then ζβ(i+1),E (i+ 1) = z, ζβ(i+1),E (i) = ti+1−N . Set
pi (x) =Mβ(i),E (x; θ) for N −m− 1 ≤ i ≤ N , then

pi (x) =

(
T i−1 +

1− t

1− ztN−i−1

)
pi+1 (x)

=

(
b (x; i) +

1− t

1− ztN−i−1

)
pi+1 (x) + (Ti − b (x; i)) pi+1 (xsi) .

To start set i = N −m− 1 and x = x(0) (thus b
(
x(0); i

)
= t)

pN−m−1

(
x(0)

)
=

1− ztm+1

1− ztm
pN−m

(
x(0)

)
+(TN−m−1 − t) pN−m

(
x(0)sN−m−1

)
.

(12)
Two series of points are used in the calculation: Define yN−m−1 = x(0), yN−m =
x(0)sN−m, yi = yi−1si for N −m + 1 ≤ i ≤ N − 1; define vN−m−2 = x(0), vi =
vi−1si for N −m− 1 ≤ i ≤ N − 1. Thus

yi−1 =

(
. . . ,

N−m−1

tN−m−2, tN−m, . . . ,
i

tN−m−1, ti, . . . , tN−1

)
, b (yi−1; i) = κi+m−N+1,

vi−1 =

(
. . . ,

N−m−1

tN−m−1, tN−m, . . . ,
i

tN−m−2, ti, . . . , tN−1

)
, b (vi−1; i) = κi+m−N+2.

Lemma 26 Suppose N−m ≤ j < N and T jp = −p then (Tj − κj−N+m+1) p (yj) =

−
[j −N +m+ 2]t
[j −N +m+ 1]t

p (yj−1) and (Tj − κj−N+m+2) p (vj) = −
[j −N +m+ 3]t
[j −N +m+ 2]t

p (vj−1)

for 1 ≤ j ≤ i.

Proof. This follows from

(Tj − b (x; j)) p (xsj) = − (1 + b (x; j)) p (x)

with x = yj−1 so that xsj = yj = yj−1, and with x = vj−1. If n = 1, 2, . . . then

1 + κn =
1 + t+ · · ·+ tn−1 + tn

1 + t+ · · ·+ tn−1
=

[n+ 1]t
[n]t

.

Proposition 27 For N −m ≤ i ≤ N

pN−m−1

(
x0
)
=

1− ztm+1

1− ztm
(TN−m − t) · · · (Ti−1 − κi−N+m) pi (yi−1) (13)

+ (TN−m−1 − t) (TN−m − κ2) · · · (Ti−1 − κi−N+m+1) pi (vi−1) .

Proof. The formula is true for i = N −m by (12). Assume it holds for some i
then

pi (yi−1) =

(
1− t

1− ztN−i−1
+ κi+m−N+1

)
pi+1 (yi−1) + (Ti − κi+m−N+1) pi+1 (yi)

(14)

pi (vi−1) =

(
1− t

1− ztN−i−1
+ κi+m−N+2

)
pi+1 (vi−1) + (Ti − κi+m−N+2) pi+1 (vi) ,

(15)
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and

1− t

1− ztN−i−1
+ κi+m−N+1 =

1− ztm

(1− ztN−i−1) [i+m−N + 1]t
,

1− t

1− ztN−i−1
+ κi+m−N+2 =

1− ztm+1

(1− ztN−i−1) [i+m−N + 2]t
.

Then pi+1 satisfies the hypotheses of Lemma 26 for N −m ≤ j < i and

(TN−m − t) · · · (Ti−1 − κi−N+m) pi+1 (yi−1) (16)

= (−1)i−N+m [2]t
[1]t

[3]t
[2]t
· · ·

[i−N +m+ 1]t
[i−N +m]t

pi+1 (yN−m−1) (17)

= (−1)i−N+m
[i−N +m+ 1]t pi+1

(
x(0)

)

(TN−m−1 − t) · · · (Ti−1 − κi−N+m+1) pi (vi−1) (18)

= (−1)i−N+m+1 [2]t
[1]t

[3]t
[2]t
· · ·

[i−N +m+ 2]t
[i−N +m+ 1]t

pi+1 (vN−m−2) (19)

= (−1)i−N+m+1
[i−N +m+ 2]t pi+1

(
x(0)

)
.

The first part of the right side of (14) combined with 16 gives

1− ztm+1

1− ztm
1− ztm

(1− ztN−i−1) [i+m−N + 1]t
(−1)i−N+m

[i−N +m+ 1]t pi+1

(
x(0)

)

= (−1)i−N+m 1− ztm+1

1− ztN−i−1
pi+1

(
x(0)

)

which cancels out the first part of the right side of (15) combined with (18);

note the factor (−1)i−N+m+1
. The terms that remain are exactly the claimed

formula for i + 1.

Proposition 28 Mδ,E

(
x(0); θ

)
=

1− ztm+1

1− ztm
(TN−m − t) · · · (TN−1 − κm)Mβ,E (yN−1; θ).

Proof. Set i = N in (13). To complete the proof we need to show

(TN−m−1 − t) (TN−m − κ2) · · · (TN−1 − κm+1) pN (vN−1) = 0.

By construction (vN−1)i = ti and rβ (i) = i+1, ζβ,E (i) = ti+1−N forN−m−1 ≤
i ≤ N − 1 . This implies (T i + 1) pN = 0 and (Ti + 1) pN (vN−1) = 0 for
N−m−1 ≤ i < N−1. Let ψ1 = D (θN−m−1θN−m · · · θN−1) then (Ti + 1)ψ1 = 0
for N − m − 1 ≤ i < N − 1. This property defines ψ1 up to a multiplicative
constant, and thus pN (vN−1) = cψ1 (because ψ2 := TN−m−1TN−m · · ·TN−1ψ1

satisfies (Tj + 1)ψ2 = 0 for N − m ≤ j < N and thus ψ2 = c′τE). To set
up an inductive argument let πi := θN−m−1 · · · θi−1θi+1 · · · θN and set fN :=
πN−1, fN−j := (TN−j − κm+2−j) fN−j+1 for 1 ≤ j ≤ m + 1. Then Tjπi = −πi
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if N − m − 1 ≤ j ≤ i − 2 or i + 1 ≤ j < N , Ti−1πi = πi−1 and Tiπi =
(t− 1)πi + tπi+1. Claim that

fN−j = πN−j +
1

[m+ 2− j]t

j−1∑

i=0

(−1)i−j
tm+1−iπN−i.

The first step is fN−1 = (TN−1 − κm+1)πN = πN−1 −
tm+1

[m+ 1]t
πN . Note κn +

1 =
[n+1]

t

[n]
t

for n ≥ 1. Suppose the formula is true for some j < m+ 1, then

fN−j−1 = (TN−j−1 − κm+1−j) fN−j = πN−j−1 −
tm+1−j

[m+ 1− j]t
πN−j

+
1

[m+ 2− j]t

j−1∑

i

(−1)i−j
tm+1−i (−κm+1−j − 1)πN−i

= πN−j−1 +
1

[m+ 1− j]t

j∑

i

(−1)i−j−1
tm+1−iπN−i.

This proves the formula. Set j = m+1 then fN−m−1 =
∑m+1

i=0 (−1)m+1−i
tm+1−iπN−i.

By definition

D (πNθN ) =
N∑

j=N−m−1

(−1)j−N+m+1 tj−1πj =
m+1∑

i=0

(−1)m+1−i tN−1−iπN−i

and so fN−m−1 = tm−N+2D (πNθN ). Now pN (vN−1) = cψ1 = cD (πN )Thus

(TN−m−1 − t) (TN−m − κ2) · · · (TN−1 − κm+1)D (πN )

= D {(TN−m−1 − t) (TN−m − κ2) · · · (TN−1 − κm+1)πN} = D (fN−m−1) = 0,

because D2 = 0.
Next we consider the transition from α to β (see 9) with the affine step

Mβ,E (x; θ) = xNwMα,E (x; θ) (recallwp (x; θ) = TN−1 · · ·T1p (qxN , x1, . . . , xN−1; θ)).
To get around the problem of evaluation at the q-shifted point we use ξ1 =
t1−N

T 1T 2 · · ·TN−1w thus

Mβ,E (x; θ) = xN t
N−1

(
T

−1
N−1 · · ·T

−1
2 T

−1
1 ξ1Mα,E

)
(x; θ)

where ξ1Mα,E = ζα,E (1)Mα,E = qλk−1tN−m−kMα,E. From the previous for-
mula we see that we need to evaluate the right hand side at x = yN−1 and
apply (TN−m − t) · · · (TN−1 − κm). Since ζα,E (i) = ti−N for N −m ≤ i ≤ N it
follows that (T i + 1)Mα,E = 0 for N −m ≤ i < N .

Definition 29 Let r0 =Mα,E and ri = tT−1
i ri−1 for 1 ≤ i < N .

The corresponding evaluation formula is

ri (x) = (1− t+ b (x; i)) ri−1 (x) + (Ti − b (x; i)) ri−1 (xsi) . (20)
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Proposition 30 Suppose 1 ≤ i ≤ N − m − 2 then ri
(
x(0)

)
= r0

(
x(0)

)
=

Mα,E

(
x(0)

)
.

Proof. From (T i + 1)Mα,E = 0 for N−m ≤ i < N it follows that (T i + 1) rj =
0 if j < N − m − 1. By (20) rℓ

(
x(0)

)
= rℓ−1

(
x(0)

)
+ (Tℓ − t) rℓ−1

(
x(0)sℓ

)
.

Suppose ℓ < N −m− 1 then x(0)sℓ satisfies
(
x(0)sℓ

)
i
= ti−1 for i ≥ N −m so

that b
(
x(0)sℓ; i

)
= t and (Ti + 1) rℓ−1

(
x(0)sℓ

)
= 0, rℓ−1

(
x(0)sℓ

)
is a multiple

of τE and (Tℓ − t) rℓ−1

(
x(0)sℓ

)
= 0. Thus rℓ

(
x(0)

)
= rℓ−1

(
x(0)

)
and this holds

for 1 ≤ ℓ ≤ N −m− 2.
Recall the points yi given by yN−m−1 = x(0), yi = yi−1si for N−m ≤ i < N .

Define ỹi = yisN−1sN−2 · · · si+1. for N −m− 1 ≤ i < N . By the braid relations

ỹi+1si+1si+2 = (yi+1sN−1 · · · si+2) si+1si+2 = yi+1sN−1 · · · si+3si+1si+2si+1

(21)

= yi+1si+1sN−1 · · · si+2si+1 = yisN−1 · · · si+1 = ỹi.

These products are used in the proofs:

PN−j = (TN−m − t) (TN−m+1 − κ2) · · · (TN−j − κm+1−j)

P̃N−j = (TN−1 − t) (TN−2 − κ2) · · · (TN−j − κj) .

If i+ 1 < j then PN−j commutes with P̃N−i.

Lemma 31 Suppose T f = −f for N−j ≤ i < N and ui = ti−1 for N−j+1 ≤
i ≤ N then

P̃N−jf (usN−1sN−2 · · · sN−j) = (−1)j [j + 1]t f (u) .

Proof. Let ũ(n) = usN−1 · · · sN−n then
(
ũ(n−1)

)
N−n+1

= tN−1,
(
ũ(n−1)

)
N−n

=

tN−n and b
(
ũ(n−1);N − n

)
= κn−1. Thus

(TN−n − κn−1) f
(
ũ(n)

)
= (TN−n − κn−1) f

(
ũ(n−1)sN−n

)

= − (1 + κn−1) f
(
ũ(n−1)

)
= −

[n]t
[n− 1]t

f
(
ũ(n−1)

)
.

Repeated application of this relation shows P̃N−jf (usN−1sN−2 · · · sN−j) =

(−1)j 1
[2]t

[2]t
[3]t
· · ·

[j+1]t
[j]t

f (u).

If xi+1 = tjxii then 1 + b (x; i) =
[j + 1]t
[j]t

, 1 − t + b (x; i) =
1

[j]t
and

(1 + b (x; i)) (t− b (x; i)) =
t [j + 1]t [j − 1]t

[j]
2
t

.

Proposition 32 For 2 ≤ j ≤ m+ 1

PN−1rN−1 (yN−1) = tj−1 [m+ 1]t [m+ 1− j]t
[m]t [m+ 2− j]t

PN−jrN−j (yN−j) (22)

+ (−1)j−1 tm

[m+ 2− j]t
P̃N−j+2PN−j (TN−j+1 − κm) rN−j (ỹN−j) .

(23)
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Proof. Proceed by induction. By (11)

PN−1rN−1 (yN−1) = PN−2 (TN−1 − κm) rN−1 (yN−2sN−1)

=
t [m+ 1]t [m− 1]t

[m]2t
PN−2rN−2 (yN−2)−

tm

[m]t
PN−2 (TN−1 − κm) rN−2 (yN−2sN−1)

and yN−1 = yN−2sN−1 = ỹN−1. Thus the formula is valid for j = 2 (with

P̃N = 1). Suppose it holds for some j ≤ m, then b (yN−1−j;N − j) = κm+1−j

and

PN−jrN−j (yN−j) = PN−j−1 (TN−j − κm+1−j) rN−j (yN−1−jsN−j)

=
t [m+ 2− j]t [m− j]t

[m+ 1− j]2t
PN−j−1rN−j−1 (yN−1−j)

−
tm+1−j

[m+ 1− j]t
PN−j−1 (TN−j − κm+1−j) rN−j−1 (yN−j)

Combine with formula (22) to obtain

tj
[m+ 1]t [m− j]t
[m]t [m+ 1− j]t

PN−j−1rN−j−1 (yN−j−1)−
tm [m+ 1]t

[m]t [m+ 2− j]t
PN−jrN−j−1 (yN−j) .

(24)
For the part in (23) b (ỹN−j;N − j) = κj−1 thus

rN−j (ỹN−j) =
1

[j − 1]t
rN−j−1 (ỹN−j) + (TN−j − κj−1) rN−j−1 (ỹN−jsN−j) .

The first part leads to

(−1)j−1 tm

[m+ 2− j]t [j − 1]t
P̃N−j+2PN−j (TN−j+1 − κm) rN−j−1 (ỹN−j)

= (−1)j
[m+ 1]t
[m]t

tm

[m+ 2− j]t [j − 1]t
P̃N−j+2PN−jrN−j−1 (ỹN−jsN−j+1)

because b (ỹN−jsN−j+1;N − j + 1) = κm and (TN−j+1 + 1) rN−j−1 = 0. Then

P̃N−j+2PN−jrN−j−1 (ỹN−jsN−j+1) = PN−jP̃N−j+2rN−j−1 (yN−jsN−1 · · · sN−j+2)

= (−1)j [j − 1]t PN−jrN−j−1 (yN−j)

by Lemma 31, so combine to obtain
tm [m+ 1]t

[m+ 2− j]t [m]t
PN−jrN−j−1 (yN−j) which
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cancels the second term in (24). The second part gives

(−1)j−1 tm

[m+ 2− j]t
P̃N−j+2PN−j (TN−j+1 − κm) (TN−j − κj−1) rN−j−1 (ỹN−jsN−j)

=
(−1)j−1 tm

[m+ 2− j]t
P̃N−j+2PN−j−1 (TN−j − κm−j+1)

× (TN−j+1 − κm) (TN−j − κj−1) rN−j−1 (ỹN−jsN−j)

=
(−1)j−1

tm

[m+ 2− j]t
P̃N−j+2PN−j−1 (TN−j+1 − κj−1)

× (TN−j − κm) (TN−j+1 − κm−j+1) rN−j−1 (ỹN−jsN−j)

=
(−1)j tm [m+ 2− j]t

[m+ 1− j]t [m+ 2− j]t
P̃N−j+2PN−j−1 (TN−j+1 − κj−1)

× (TN−j − κm) rN−j−1 (ỹN−jsN−js−j+1)

=
(−1)j tm

[m+ 1− j]t
P̃N−j+1PN−j−1 (TN−j − κm) rN−j−1 (ỹN−1−j)

by Lemma 25, formula (21) and b (ỹN−jsN−j;N − j + 1) = κm−j+1.

Proposition 33 PN−1rN−1 (yN−1) = tmMα,E

(
x(0)

)
.

Proof. Set j = m+ 1 in (22) thus

PN−1rN−1 (yN−1) = (−1)m tmP̃N−m+1 (TN−m − κm) rN−m−1 (ỹN−m−1)

= (−1)m tmP̃N−m

{ 1
[m+1]

t
rN−m−2 (ỹN−m−1)

+ (TN−m−1 − κm+1) rN−m−2 (ỹN−m−1sN−m−1)

}

By Lemma 31 P̃N−mpr−m−2 (yN−m−1sN−1 · · · sN−m) = (−1)m [m+ 1]t rN−m−2 (yN−m−1).
Furthermore

ỹN−m−1sN−m+1 =

(
. . . ,

N−m−1

tN−1 ,
N−m

tN−m−2,
N−m+1

tN−m−1, . . . , tN−2

)
,

and thus (T i + 1) rN−m−2 = 0 and by Lemma 10 (Ti + 1) rN−m−2 (ỹN−m−1sN−m−1) =
0 for N − m ≤ i < N . This implies rN−m−2 (ỹN−m−1sN−m−1) = cτE . But

P̃N−m−1τE = 0 and this is proved by an argument like the one used in Propo-
sition 28. Let πi := θN−m−1 · · · θi−1θi+1 · · · θN and set f0 := πN−m−1, fj :=
(TN−m−2+j − κm+2−j) fj−1 for 1 ≤ j ≤ m+ 1. Claim

fj = tjπN−m−1+j +
1

[m+ 2− j]t

j−1∑

i=0

(−1)j−i
tiπN−m−1+i.

The first step is

f1 = (TN−m−1 − κm+1)πN−m−1 = tπN−m + (t− 1− κm+1)πN−m−−1

= tπN−m −
1

[m+ 1]t
πN−m−1.
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Suppose the formula is true for some j < m+ 1 then

fj+1 = (TN−m−1+j − κm+1−j) fj = tj+1πN−m+j + tj (t− 1− κm+1−j)πN−m−1+j

+
1

[m+ 2− j]t
(−1− κm+1−j)

j−1∑

i=0

(−1)j−i
tiπN−m−1+i

= tj+1πN−m+j −
1

[m+ 1− j]t
tjπN−m−1+j +

1

[m+ 1− j]t

j−1∑

i=0

(−1)j+1−i
tiπN−m−1+i,

and this is the formula for j+1. Then fm+1 =
m+1∑
i=0

(−1)m+1−i tiπN−m−1+i and

D (πNθN ) =
N∑

i=N−m−1

ti−1 (−1)i−N+m+1
πi, and thus fm+1 = (−1)m+1

tN−m−2D (πNθN ) =

0 andD (fm+1) = 0. As in Proposition 28 this implies P̃N−m−1rN−m−2 (ỹN−m−1sN−m−1) =
0, and this completes the proof.

3.2 Evaluation formula for type (0)

Recall the intermediate steps:

V (0) (α) = V (0) (λ′)

k−1∏

i=1

1− qλi−λk+1tk−i

1− qλi−λk+1tk−i+1

PN−1rN−1 (yN−1) = tmMα,E

(
x(0); θ

)

Mβ,E (yN−1; θ) = ζα,E (1) (yN−1)N rN−1 (yN−1)

Mδ,E

(
x(0); θ

)
=

1− qλk tN−k+1

1− qλk tN−k
PN−1Mβ,E (yN−1; θ)

V (0) (λ) =
1− qλk tN−m−k

1− qλk t
V (0) (δ) .

Proposition 34 Suppose λ ∈ N+
0 satisfies λk ≥ 1 and λi = 0 for i > k with

k < N −m then

V (0) (λ) = qλk−1t2N−m−k−1

(
1− qλk tN−m−k

) (
1− qλktN−k+1

)

(1− qλk t) (1− qλk tN−k)

×
k−1∏

i=1

1− qλi−λk+1tk−i

1− qλi−λk+1tk−i+1
V (0) (λ′) ,

where λ′j = λj for j 6= k and λ′k = λk − 1.

Proof. The leading factors are tmζα,E (1) (yN−1)N = tmqλk−1tN−m−ktN−m−1.
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Corollary 35 Suppose λ is as in the Proposition and λ′′ satisfies λ′′j = λj for
j 6= k and λ′′k = 0 then

V (0) (λ) = q(
λk
2 )tλk(2N−m−k−1)

(
qtN−m−k; q

)
λk

(
qtN−k+1; q

)
λk

(qt; q)λk
(qtN−k; q)λk

(25)

×
k−1∏

i=1

(
qtk−i; q

)
λi

(
qtk−i+1; q

)
λi−λk

(qtk−i; q)λi−λk
(qtk−i+1; q)λi

V (0) (λ′′) .

Proof. This uses

λk∏

l=1

(
1− qλi−l+1tn

)
=

(qtn; q)λi

(qtn; q)λi−λk

(26)

with n = k − i, k − i + 1.
This formula can now be multiplied out over k, starting with λ = 0, where

M0,E (x; θ) = τE (θ).

Theorem 36 Suppose λ ∈ N+
0 then

V (0) (λ) = qβ(λ)te0(λ)
N−m−1∏

k=1

(
qtN−k+1; q

)
λk

(qtN−k; q)λk

∏

1≤i<j<N−m

(
qtj−i+1; q

)
λi−λj

(qtj−i; q)λi−λj

(27)

where β (λ) :=
∑N−m−1

i=1

(
λi

2

)
and e0 (λ) :=

∑N−m−1
i=1 λi (2N −m− i− 1).

Proof. For 1 ≤ k < N −m define λ(k) by λ
(k)
i = λi for 1 ≤ i ≤ k and λ

(k)
i = 0

for i > k. Formula (25) gives the value of ρk := V (0)
(
λ(k)

)
/V (0)

(
λ(k−1)

)
. For

fixed i ≤ k the products (∗; q)λi
contribute

(
qtN−m−i; q

)
λi

(
qtN−i+1; q

)
λi

(qt; q)λi
(qtN−i; q)λi

k∏

j=i+1

(
qtj−i; q

)
λi

(qtj−i+1; q)λi

=

(
qtN−m−i; q

)
λi

(
qtN−i+1; q

)
λi

(qt; q)λi
(qtN−i; q)λi

(qt; q)λi

(qtk−i+1; q)λi

=

(
qtN−m−i; q

)
λi

(
qtN−i+1; q

)
λi

(qtk−i+1; q)λi
(qtN−i; q)λi

to ρ1ρ2 · · · ρk (the product telescopes). Each pair (i, j) with 1 ≤ i < j ≤ k

contributes

(
qtj−i+1; q

)
λi−λj

(qtj−i; q)λi−λj

. If λk = 0 then ρk = 1 and thus k can be replaced

by N −m − 1 in the above formulas. The exponents on q, t follow easily from
ρk.

Remark 37 Recall the leading term ofMλ,E (x; θ), namely qβ(λ)te(λ,E)xλτE (θ),

where e (λ,E) =
∑N

i=1 λi (N − i+ c (i, E)). By using c (i, E) = N −m − i for

1 ≤ i < N −m one finds that e0 (λ) =
∑N−m−1

i=1 λi (N + c (i, E)− 1) so that

e0 (λ)− e (λ,E) =
∑N−m−1

i=1 λi (i− 1) = n (λ) and
(
x(0)

)λ
= tn(λ).
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There is a generalized (q, t, λ)-Pochhammer symbol

(a; q, t)λ :=

N∏

i=1

(
at1−i; q

)
λi

and the k-product in (27) can be written as
(
qtN ; q, t

)
λ
/
(
qtN−1; q, t

)
λ
. In a later

section we will use a hook product formulation which incorporates a formula for
V (0) (α).

3.3 From α to δ for type (1)

To adapt the results for type (0) to type (1) it almost suffices to interchange
m↔ N −m− 1 and replace t by t−1. But there are signs and powers of t , and
different formulas involving κ−n to worry about. The interchange occurs often
enough to get a symbol:

Definition 38 Suppose h (t,m) is a function of t,m (possibly also depending
on λ or α) then set Ξh (t,m) = h

(
t−1, N −m− 1

)

We will reuse some notations involving yi, pi, ri and so forth, with mod-
ified definitions (but conceptually the same). In this section we will prove

Mδ,F

(
x(1)

)
= qλk−1tN−m−k 1− q

λk tk−N−1

1− qλktk−N
Mα,F

(
x(1)

)
. Start with δ (where

δi = λi for 1 ≤ i ≤ k − 1, δN−m−1 = λk and δi = 0 otherwise). Let β(m) = δ
and β(j) = sj−1β

(j−1) for m+1 ≤ j ≤ N (so that β(N) = β in (9)). Abbreviate
z = ζδ,F (m) = ζλ,F (k) = qλk tk−1−m. If m ≤ i < N then ζβ(i+1),F (i+ 1) =

z, ζβ(i+1),F (i) = tN−i−1. Set pi (x) =Mβ(i),F (x; θ) for m ≤ i ≤ N , then

pi (x) =

(
T i−1 +

1− t

1− zti+1−N

)
pi+1 (x) (28)

=

(
b (x; i) +

1− t

1− zti+1−N

)
pi+1 (x) + (Ti − b (x; i)) pi+1 (xsi) .

These are analogs of the type (0) definitions, with m+ 1 ≤ i ≤ N − 1:

ym = x(1), ym+1 = x(1)sm+1, yi = yi−1si,

vm = x(1)sm, vi = vi−1si,

Pi := (Tm+1 + 1) (Tm+2 − κ−2) · · · (Ti − κm−i) .

In more detail

yi−1 =

(
. . . ,

m

t1−m, t−m−1, . . . ,
i

t−m, t−i, . . . , t1−N

)
, b (yi−1; i) = κm−i, (29)

vi−1 =

(
. . . ,

m

t−m, t−m−1, . . . ,
i

t1−m, t−i, . . . , t1−N

)
, b (vi−1; i) = κm−i−1..
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Recall ζδ(i),F (i) = z, ζδ(i),F (i+ 1) = tN−i−1 for m ≤ i < N.(The proof of
the following is mostly the same as that for Proposition 27 except for signs and
powers of t.)

Proposition 39 For m+ 1 ≤ i ≤ N

pm

(
x(1)

)
= −t

1− ztm−N

1− ztm+1−N
Pi−1pi (yi−1) (30)

+ (Tm + 1) (Tm+1 − κ−2) · · · (Ti−1 − κm−i) pi (vi−1) .

Proof. The transformation from pi+1 to pi is in (28). Specialize to i = m and
x = x(1) so that b (x; i) = −1, x(1)sm = vm, and

pm

(
x(1)

)
= −t

1− ztm−N

1− ztm+1−N
pm+1 (ym) + (Tm + 1) pm+1 (vmi) .

The values from (29) are b (yi−1; i) = κm−i, b (vi−1; i) = κm−i−1, ζδ(i),F (i) = z.
Thus

pi (yi−1) =

(
1− t

1− zti+1−N
+ κm−i

)
pi+1 (yi−1) + (Ti − κm−i) pi+1 (yi−1si)

pi (vi−1) =

(
1− t

1− zti+1−N
+ κm−i−1

)
pi+1 (vi−1) + (Ti − κm−i−1) pi+1 (vi−1si) ,

then

1− t

1− zti+1−N
+ κm−i = −

1− ztm−N+1

1− zti+1−N

ti−m

[i−m]t
,

1− t

1− zti+1−N
+ κm−i−1 = −

1− ztm−N

1− zti+1−N

ti+1−m

[i+ 1−m]t

From the spectral vector of pi+1 it follows that (T j − t) pi+1 = 0 for m ≤ j < i
and (Tj − b (x; j)) pi+1 (xsj) = (t− b (x; j)) pi+1 (x). Thus (Ti−1 − κm+1−i) pi+1 (yi−1) =
[i−m]t

[i−m−1]t
pi+1 (yi−2) and

(Tm+1 + 1) · · · (Ti−1 − κm+1−i) pi+1 (yi−1) = [i−m]t pi+1 (ym)

(Tm + 1) (Tm+1 − κ−2) · · · (Ti−1 − κm−i) pi+1 (vi−1) = [i+ 1−m]t pi+1

(
x(1)

)
.

Then pi+1 (ym) appears in the expression for pm
(
x(1)

)
with factor

(
−t

1− ztm−N

1− ztm+1−N

)(
−
1− ztm−N+1

1− zti+1−N

ti−m

[i−m]t

)
[i−m]t = ti+1−m 1− ztm−N

1− zti+1−N

and pi+1

(
x(1)

)
with factor −

1− ztm−N

1− zti+1−N

ti+1−m

[i+ 1−m]t
[i+ 1−m]t and the two

cancel out (ym = x(1)). This proves the inductive step.
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Proposition 40 Mδ,F

(
x(1)

)
= −t

1− ztm−N

1− ztm+1−N
PN−1pN (yN−1).

Proof. Set i = N in (30). Claim (Tm + 1) (Tm+1 − κ−2) · · · (TN−1 − κm−N ) pN (vN−1) =
0. From (vN−1)i = t−i and ζβ,F (i) = tN−i−1 for m ≤ i ≤ N − 1 it follows
that (Ti − t) pN (vN−1) = 0 for m ≤ i ≤ N − 2. This implies pN (vN−1) =
cM (θ1θ2 · · · θm−1θN ) for some constant ( similarly to the argument in Propo-
sition 28 h = TmTm+1 · · ·TN−1M (θ1 · · · θm−1θN ) satisfies (Ti − t)h = 0 for
m + 1 ≤ i ≤ N − 1 implying h = c′τF ). Let g = θ1θ2 · · · θm−1 and f0 = gθN
then define fi = (TN−i − κm−N+i−1) fi−1 for 1 ≤ i ≤ N −m. Use induction to
show

fi = tigθN−i +
tN−m

[N −m+ 1− i]t

i−1∑

j=0

gθN−j.

The start is

f1 = gθN =

(
TN−1 +

1

[N −m]t

)
gθN = tgθN−1 +

(
t− 1 +

1

[N −m]t

)
gθN

= tgθN−1 +
tN−m

[N −m]t
gθN .

Assume the formula is true for some i < N −m then

fi+1 = (TN−i−1 − κm−N+i) fi = ti+1gθN−i−1 + ti
(
t− 1 +

1

[N −m− i]t

)
gθN−i

+
tN−m

[N −m+ 1− i]t

{
t+

1

[N −m− i]t

} i−1∑

j=0

gθN−j

= ti+1gθN−i−1 +
tN−m

[N −m− i]t

i∑

j=0

gθN−j

(because t+ 1
[n]

t
=

[n+1]
t

[n]t ). Thus fN−m = tN−mg
∑N−m

j=0 θN−j = (−1)m−1
tN−mM (g)

and M (fN−m) = 0.
Next we consider the transition from α to β (see 9) with the affine step

Mβ,F (x; θ) = xNwMα,F (x; θ) and as before the calculation is based on the
formula

Mβ,F (x; θ) = xN t
N−1

(
T

−1
N−1 · · ·T

−1
2 T

−1
1 ξ1Mα,F

)
(x; θ)

where ξ1Mα,F = ζα,F (1)Mα,F = qλk−1tk−m−1Mα,F . From the previous for-
mula we see that we need to evaluate PN−1Mβ,F (yN−1). Since ζα,F (i) = tN−i

for m+ 1 ≤ i ≤ N it follows that (T i − t)Mα,F = 0 for m+ 1 ≤ i < N .

Definition 41 Let r0 =Mα,F and ri = tT−1
i ri−1 for 1 ≤ i < N .

Proposition 42 Suppose 1 ≤ i ≤ m − 1 then ri
(
x(1)

)
= (−t)i r0

(
x(1)

)
=

(−t)iMα,F

(
x(1)

)
.
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Proof. From (T i − t)Mα,F = 0 form+1 ≤ i < N it follows that (T i − t) rj = 0
if j < m . By (20) rℓ

(
x(1)

)
= −trℓ−1

(
x(1)

)
+ (Tℓ + 1) rℓ−1

(
x(1)sℓ

)
. Suppose

ℓ < N − m − 1 then x(0)sℓ satisfies
(
x(1)sℓ

)
i
= t−i− for i ≥ m + 1 so that

b
(
x(0)sℓ; i

)
= −1 and (Ti − t) rℓ−1

(
x(1)sℓ

)
= 0, rℓ−1

(
x(1)sℓ

)
is a multiple of τF

and (Tℓ + 1t) rℓ−1

(
x(1)sℓ

)
= 0. Thus rℓ

(
x(0)

)
= −trℓ−1

(
x(0)

)
and this holds

for 1 ≤ ℓ ≤ m− 1.
Similarly to the type (0) computations let

P̃N−j := (TN−1 + 1) (TN−2 − κ−2) · · · (TN−j − κ−j)

ỹN−j−1 := yN−j−1sN−1sN−2 · · · sN−j.

Lemma 43 Suppose T if = tf for N−j ≤ i < N and ui = ct1−i for N−j+1 ≤
i ≤ N then

(TN−1 + 1) (TN−2 − κ−2) · · · (TN−j − κ−j) f (usN−1sN−2 · · · sN−j) = [j + 1]t f (u) .

Proof. Let ũ(k) = usN−1 · · · sN−k then
(
ũ(k−1)

)
N−k+1

= t1−N ,
(
ũ(k−1)

)
N−k

=

tk−N and b
(
ũ(k−1);N − k

)
= κ1−k. Thus

(TN−k − κ1−k) f
(
ũ(k)

)
= (TN−k − κ1−k) f

(
ũ(k−1)sN−k

)

= (t− κ1−k) f
(
ũ(k−1)

)
=

[k]t
[k − 1]t

.

Repeated application of this formula shows

(TN−1 + 1) · · · (TN−j − κ−j) f (usN−1sN−2 · · · sN−j) =
1

[2]t

[2]t
[3]t
· · ·

[j + 1]t
[j]t

f (u)

= [j + 1]t f (u) .

Proposition 44 For 2 ≤ j ≤ N −m

PN−1rN−1 (yN−1) = tj−1 [N −m]t [N −m− j]t
[N −m− 1]t [N −m+ 1− j]t

PN−jrN−j (yN−j)

(31)

+
1

[N −m+ 1− j]t
P̃N−j+2PN−j (TN−j+1 − κm+1−N) rN−j (ỹN−j) .

(32)

Proof. Proceed by induction. By (11)

PN−1rN−1 (yN−1) = PN−2 (TN−1 − κm−N+1) rN−1 (yN−2sN−1)

=
t [N −m]t [N −m− 2]t

[N −m− 1]
2
t

PN−2rN−2 (yN−2)

+
1

[N −m− 1]t
PN−2 (TN−1 − κm+1−N) rN−2 (yN−2sN−1)
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and yN−1 = yN−2sN−1 = ỹN−2. Thus the formula is valid for j = 2 (with P̃N =
1). Suppose it holds for some j ≤ N−m−2, then b (yN−1−j ;N − j) = κj+m−N

and

PN−jrN−j (yN−j) = PN−j−1 (TN−j − κj+m−N ) rN−j (yN−j−1sN−j)

=
t [N −m+ 1− j]t [N −m− 1− j]t

[N −m− j]2t
PN−j−1rN−j−1 (yN−j−1)

+
1

[N −m− j]t
PN−j−1 (TN−j − κj+m−N ) rN−j−1 (yN−j) .

Combine with formula (31) to obtain

tj
[N −m]t [N −m− 1− j]t
[N −m− 1]t [N −m− j]t

PN−j−1rN−j−1 (yN−j−1) (33)

+
tj−1 [N −m]t

[N −m− 1]t [N −m+ 1− j]t
PN−jrN−j−1 (yN−j) . (34)

For the second line (32) b (ỹN−j;N − j) = κ1−j thus

rN−j (ỹN−j) = −
tj−1

[j − 1]t
rN−j−1 (ỹN−j) + (TN−j − κ1−j) rN−j−1 (ỹN−jsN−j) .

The first part leads to

−
tj−1

[N −m+ 1− j]t [j − 1]t
P̃N−j+2PN−j (TN−j+1 − κm+1−N) rN−j−1 (ỹN−j)

= −
[N −m]t

[N −m− 1]t

tj−1

[N −m+ 1− j]t [j − 1]t
P̃N−j+2PN−jrN−j−1 (ỹN−jsN−j+1)

because b (ỹN−jsN−j+1;N − j + 1) = κm+1−N and (TN−j+1 − t) rN−j−1 = 0.
Then

P̃N−j+2PN−jrN−j−1 (ỹN−jsN−j+1) = PN−jP̃N−j+2rN−j−1 (yN−jsN−1 · · · sN−j+2)

= [j − 1]t PN−jrN−j−1 (yN−j)

by Lemma 43, so combine to obtain
[N −m]t

[N −m− 1]t

(−1) tj−1

[N −m+ 1− j]t
PN−jrN−j−1 (yN−j)

which cancels the second term in (33). The second part gives (using the braid
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relations in (25))

1

[N −m+ 1− j]t
P̃N−j+2PN−j (TN−j+1 − κm+1−N ) (TN−j − κ1−j) rN−j−1 (ỹN−jsN−j)

=
1

[N −m+ 1− j]t
P̃N−j+2PN−j−1

× (TN−j − κm+j−N ) (TN−j+1 − κm+1−N) (TN−j − κ1−j) rN−j−1 (ỹN−jsN−j)

=
1

[N −m+ 1− j]t
P̃N−j+2PN−j−1

× (TN−j+1 − κ1−j) (TN−j − κm+1−N ) (TN−j+1 − κm+j−N ) rN−j−1 (ỹN−jsN−j)

=
[N −m+ 1− j]t

[N −m+ 1− j]t [N −m− j]t
P̃N−j+2PN−j−1

× (TN−j+1 − κ1−j) (TN−j − κm+1−N ) rN−j−1 (ỹN−jsN−jsN−j+1)

=
1

[N −m− j]t
P̃N−j+1PN−j−1 (TN−j − κm+1−N ) rN−j−1 (ỹN−j−1)

by (21) and b (ỹN−j−1;N − j + 1) = κm+j−N .

Proposition 45 PN−1rN−1 (yN−1) = (−1)m tN−1Mβ,F

(
x(1); θ

)
.

Proof. Set j = N −m in (31)

PN−1rN−1 (yN−1) = P̃m+2 (Tm+1 − κm+1−N) rm (ỹm) = P̃m+1rm (ỹm)

and b (ỹm;m) = κm−N (note ỹm = x(1)sN−1sN−2 · · · sm+1) thus

P̃m+1rm (ỹm) = −
tN−m

[N −m]t
P̃m+1rm−1 (ỹm)+P̃m+1 (Tm − κm−N) rm−1 (ỹmsm) .

Now ỹm =

(
. . . ,

(m)

t1−m,
(m+1)

t1−N , t−m, . . . , t2−N

)
thus ỹm satisfies the hypothesis

of Lemma 43 with j = N −m− 1 and

(TN−1 + 1) (TN−2 − κ−2) · · · (Tm+1 − κm+1−N) rm−1

(
x(1)sN−1sN−2 · · · sm+1

)

= [N −m]t rm−1

(
x(1)

)
.

Since ỹmsm =

(
. . . , t1−N ,

(m+1)

t1−m , t−m, . . . t2−N

)
and (T i − t) rm−1 = 0 for m+

1 ≤ i < N it follows that (Ti − t) rm−1 (ỹmsm) = 0 for the same i values and
hence rm−1 (ỹmsm) = cτF (with F = {1, 2, . . . ,m} because m+1,m+2, . . . , N
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lie in the same row of YF ). Take τF =M (θ1 · · · θm) and g = θ1 · · · θm−1 then

(Tm − κm−N ) (gθm) = gθm+1 +
1

[N −m]t
gθm,

(Tm+1 − κm+1−N ) (Tm − κm−N ) (gθm) = gθm+2 +
1

[N −m− 1]t
gθm+1

+

(
t+

1

[N −m− 1]t

)
1

[N −m]t
gθm

= gθm+2 +
1

[N −m− 1]t
g (θm+1 + θm) ,

because t+ 1
[j−1]

t
=

[j]
t

[j−1]
t
. Continue this process to obtain

(TN−1 − κ−1) · · · (Tm − κm−N ) (gθm) = g (θN + · · ·+ θm) = (−1)m−1
M (g)

thus (TN−1 − κ−1) · · · (Tm − κm−N ) rm−1 (ỹmsm) = 0 because M2 = 0. Thus
PN−1rN−1 (yN−1) = −tN−mrm−1

(
x(1)

)
= (−1)m tN−1r0

(
x(1)

)
.

3.4 Evaluation formula for type (1)

Recall the intermediate steps:

V (1) (α) = (−t)1−k
k−1∏

i=1

1− qλi−λk+1ti−i

1− qλi−λk+1ti−k−1
V (1) (λ′)

PN−1rN−1 (yN−1) = (−1)m tN−1Mα,F

(
x(1); θ

)

Mβ,F (yN−1; θ) = ζα,F (1) (yN−1)N rN−1 (yN−1)

Mδ,F

(
x(1); θ

)
= −t

1− qλktk−N−1

1− qλk tk−N
PN−1Mβ,F (yN−1; θ)

V (1) (λ) = (−t)m−k 1− qλktk−m−1

1− qλk t−1
V (1) (δ) .

Proposition 46 Suppose λ ∈ N+
1 satisfies λk ≥ 1 and λi = 0 for i > k with

k ≤ m then

V (1) (λ) = qλk−1tN−m−k

(
1− qλk tk−m−1

) (
1− qλk tk−N−1

)

(1− qλk t−1) (1− qλk tk−N )

×
k−1∏

i=1

1− qλi−λk+1ti−k

1− qλi−λk+1ti−k−1
V (1) (λ′) ,

where λ′j = λj for j 6= k and λ′k = λk − 1.

Proof. The leading factors are tN+m−2k+1ζα,F (1) (yN−1)N = tN−m−kqλk−1,
since ζα,F (1) = qλk−1tk−1−m and (yN−1)N = t−m.
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Corollary 47 Suppose λ is as in the Proposition and λ′′ satisfies λ′′j = λj for
j 6= k and λ′′k = 0 then

V (1) (λ) = q(
λk
2 )tλk(N−m−k)

(
qtk−m−1; q

)
λk

(
qtk−N−1; q

)
λk

(qt−1; q)λk
(qtk−N ; q)λk

×
k−1∏

i=1

(
qti−k; q

)
λi

(
qti−k−1; q

)
λi−λk

(qti−k; q)λi−λk
(qti−k−1; q)λi

V (1) (λ′′) .

Proof. This uses formula (26).
This formula can now be multiplied out over k, starting with λ = 0, where

M0,F (x; θ) = τF (θ).

Theorem 48 Suppose λ ∈ N+
1 then

V (1) (λ) = qβ(λ)te1(λ)
m∏

k=1

(
qtk−N−1; q

)
λk

(qtk−N ; q)λk

∏

1≤i<j≤m

(
qti−1−1; q

)
λi−λj

(qti−j ; q)λi−λj

where β (λ) :=
∑N−m−1

i=1

(
λi

2

)
and e1 (λ) :=

∑m
i=1 λi (N −m− i).

Proof. This is the same argument used in Theorem 36 by the application of Ξ
.

Remark 49 Recall the leading term ofMλ,F (x; θ), namely qβ(λ)te(λ,F )xλτF (θ),

where e (λ, F ) =
∑N

i=1 λi (N − i+ c (i, F )). By using c (i, F ) = i − m − 1
for 1 ≤ i ≤ m one finds that e1 (λ) =

∑m
i=1 λi (N + c (i, F )− 2i+ 1) so that

e1 (λ)− e (λ, F ) = −
∑m

i=1 λi (i− 1) = −n (λ) and
(
x(1)

)λ
= t−n(λ).

4 Hook product formulation

Recall the definition of the (q, t)-hook product

hq,t (a;λ) =
∏

(i,j)∈λ

(
1− aqarm(i,j;λ)tleg(i,j;λ)

)
,

where arm (i, j;λ) = λi− j and leg (i, j;λ) = # {l : i < l ≤ ℓ (λ) , j ≤ λl}, where
the length of λ is ℓ (λ) = max {i : λi ≥ 1}. The terminology refers to the Ferrers
diagram of λ which consists of boxes at {(i, j) : 1 ≤ i ≤ ℓ (λ) , 1 ≤ j ≤ λi}.

Proposition 50 Suppose λ ∈ N
N,+
0 and ℓ (λ) ≤ L for some fixed L ≤ N then

∏

1≤i<j≤L

(
qtj−i; q

)
λi−λj

(qtj−i+1; q)λi−λj

= hq,t (qt;λ)
L∏

i=1

(
qtL−i+1; q

)−1

λ1
. (35)
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Proof. The argument is by implicit induction on the last box to be added to
the Ferrers diagram of λ. Suppose λi = 0 for i > k and λk ≥ 1. Define λ′ by
λ′i = λi for all i except λ

′′
k = λk − 1. Denote the product on the left side of (35)

by A (λ), then

A (λ)

A (λ′)
=

k−1∏

i=1

1− qλi−λk+1tk−i+1

1− qλi−λk+1tk−i

L∏

j=k+1

1− qλktj−k

1− qλk ti−k+1

=
1− qλkt

1− qλk tL−k+1

k−1∏

i=1

1− qλi−λk+1tk−i+1

1− qλi−λk+1tk−i
;

the j-product telescopes. Adjoining a box at (k, λk) to the diagram of λ′ causes
these changes: leg (i, λk;λ) = leg (i, λk;λ

′) + 1 for 1 ≤ i < k, arm (k, j;λ) =
arm(k, j;λ′)+1 = λk−j for 1 ≤ j < λk. The calculation also uses arm (i, λk;λ) =
arm(i, λk;λ

′) = λi − λk; leg (k, j;λ′) = leg (k, j;λ) = 0. Thus

hq,t (qt;λ)

hq,t (qt;λ′)
=
(
1− qλk t

) k−1∏

i=1

1− qλi−λk+1tk−i+1

1− qλi−λk+1tk−i
,

because the change in the product for row #k is

λk∏

j=1

(
1− qtqλk−j

) λk−1∏

j=1

(
1− qtqλk−1−j

)−1
= 1− qλkt.

Denote the second product in (35) by B (λ) then

B (λ)

B (λ′)
=

(
qtL−k+1; q

)
λk−1

(qtL−k+1; q)λk

=
1

1− qλk tL−k+1
.

Hence
A (λ)

A (λ′)
=

hq,t (qt;λ)B (λ)

hq,t (qt;λ′)B (λ′)
. To start the induction let λ = (1, 0, . . . , 0),

then A (λ) =
∏L

j=2

1− qtj−1

1− qtj
=

1− qt

1− qtL
, while hq,t (qt;λ) = 1− qt and B (λ) =

(
1− qtL

)−1
. This completes the proof.

Note that

L∏

i=1

(
qtL−i+1; q

)
λ1

=
(
qtL; q, t

)
λ
(the generalized (q, t)-Pochhammer

symbol). Setting L = N−m−1 in the Proposition leads to another formulation:

Theorem 51 Suppose λ ∈ N+
0 then

V (0) (λ) = qβ(λ)te0(λ)
(
qtN ; q, t

)
λ

(
qtN−m−1; q, t

)
λ

(qtN−1; q, t)λ hq,t (qt;λ)
.

The same method can be applied to V (1) (λ) by using Ξ (Definition 38).
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Theorem 52 Suppose λ ∈ N+
1 then

V (1) (λ) = qβ(λ)te1(λ)
(
qt−N ; q, t−1

)
λ

(
qt−m; q, t−1

)
λ

(qt1−N ; q, t−1)λ hq,1/t (qt
−1;λ)

.

There is a modified definition of leg-length for arbitrary compositions α ∈
NN

0 :

leg (i, j;α) = # {r : r > i, j ≤ αr ≤ αi}+# {r : r < i, j ≤ αr + 1 ≤ αi} .

Suppose αi+1 > αi then

hq,t (qt, siα)

hq,t (qt, α)
=

1− qαi+1−αitrα(i)−rα(i+1)

1− tqαi+1−αitrα(i)−rα(i+1)
= u1

(
ζα,E (i+ 1)

ζα,E (i)

)−1

(36)

from [6, p.15,Prop. 5] (the argument relates to the box at (i+ 1, αi + 1) in the
Ferrers diagram of α and the change in its leg-length) so that

hq,t
(
qt;α+

)
= R1 (α,E)−1 hq,t (qt;α) .

Suppose α ∈ N0 then from V (0) (α) = R1 (α,E)
−1
V (0) (α+) (see Prop. 16) and

(27) we obtain

V (0) (α) = qβ(α)te0(α
+)
(
qtN ; q, t

)
α+

(
qtN−m−1; q, t

)
α+

(qtN−1; q, t)α+ hq,t (qt;α+)
.

There is a slight complication for type (1) V (1) (α) = (−1)inv(α)R0 (α, F )
−1 V (1) (α+)

V (1) (α) = (−t)−inv(α)
V (1)

(
α+
) hq,1/t

(
qt−1;α+

)

hq,1/t (qt−1;α)
.

Start with ζα,F (i) = qαitrα(i)−1−m for 1 ≤ i ≤ m (because c (i, F ) = i−m− 1)

and then
ζα,F (i+1)
ζα,F (i) = qαi+1−αitrα(i+1)−rα(i). Suppose αi+1 > αi and apply Ξ in

(36) to obtain

hq,1/t
(
qt−1, siα

)

hq,1/t (qt−1, α)
=

1− qαi+1−αitrα(i+1)−rα(i)

1− t−1qαi+1−αitrα(i+1)−rα(i)
= tu0

(
ζα,E (i+ 1)

ζα,E (i)

)−1

;

combine with V (1) (siα) = −u0
(

ζα,E(i+1)
ζα,E(i)

)
V (1) (α) and then

V (1) (α) hq,1/t
(
qt−1, α

)
= −t−1V (1) (siα)hq,1/t

(
qt−1, siα

)
.

Thus V (1) (α) hq,1/t
(
qt−1, α

)
= (−t)−inv(α)

V (1) (α+) hq,1/t
(
qt−1, α+

)
, and

V (1) (α) = (−t)−inv(α)
qβ(α)te0(α

+)
(
qt−N ; q, t−1

)
α+

(
qt−m; q, t−1

)
α+

(qt1−N ; q, t−1)α+ hq,1/t (qt−1;α)
.

We have shown that the values of certain Macdonald superpolynomials at special
points

(
1, t, . . . , tN−1

)
or
(
1, t−1, t−2, . . . , t1−N

)
are products of linear factors of

the form 1− qatb where a ∈ N and −N ≤ b ≤ −N .
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5 Restricted symmetrization and antisymmetriza-
tion

A type of symmetric Macdonald superpolynomial has been investigated by Blon-
deau et al[3]. The operators used in their work to define Macdonald polynomials
are significantly different from ours. There are results on evaluations for these
polynomials found by González and Lapointe [9]. In this section we consider
symmetrization over a subset of the coordinates, and associated evaluations.

Fix λ ∈ N+
0 and consider the sum psλ =

∑
{cβMβ,E : β+ = λ, β ∈ N0} sat-

isfying (T i − t) psλ = 0 for 1 ≤ i < N − m − 1. In this section we determine
psλ
(
x(0); θ

)
. Similarly fix λ ∈ N+

1 and consider the sum paλ =
∑
{cβMβ,F : β+ = λ, β ∈ N1}

satisfying (T i + 1) paλ = 0 for 1 ≤ i < m, then evaluate paλ
(
x(1); θ

)
.

Lemma 53 Suppose β ∈ NN
0 , E

′ ∈ Y0 ∪ Y1 and βi < βi+1 for some i. Let

z = ζβ,E′ (i+ 1) /ζβ,E′ (i) and let p = c0Msiβ,E′ + c1Mβ,E′. If c1 =
t− z

1− z
c0

then (T i − t) p = 0 and if c1 = −
1− tz

1− z
c0 then (T i + 1) p = 0.

Proof. The general transformation rules are given in matrix form with respect
to the basis [Mβ,E′ ,Msiβ,E′ ]

T i =

[
− 1−t

1−z
(1−tz)(t−z)

(1−z)2

1 z(1−t)
1−z

]
.

One directly verifies that,

(T i − t)

[ t− z
1− z
1

]
=

[
0
0

]
, (T i + 1)

[
−
1− tz

1− z
1

]
=

[
0
0

]
..

Definition 54 For λ ∈ N+
0 set psλ (x; θ) :=

∑
α∈N0,α+=λ

R0 (α,E)Mα,E (x; θ).

Proposition 55 Suppose λ ∈ N+
0 then psλ (x; θ) satisfies (T i − t) p′λ = 0 for

1 ≤ i < N −m− 1.

Proof. Fix i. If α ∈ N0, α
+ = λ and αi = αi+1 then (T i − t)Mα,E = 0

because rα (i+ 1) = rα (i) + 1 and thus ζα,E (i) = tζα,E (i+ 1). Otherwise take
αi < αi+1 and z = ζα,E (i + 1) /ζα,E (i) , then set

pα,i := R0 (siα,E)Msiα,E+R0 (α,E)Mα,E = R0 (siα,E) {Msiα,E + u0 (z)Mα,E}

by Lemma 15, and u0 (z) =
t− z

1− z
. By Lemma 53 (T i − t) pa,i = 0. For each i

the sum for p′λ splits into singletons (α : αi = αi+1) and pairs (β, siβ : βi < βi+1).
Each piece is annihilated by T i − t.
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There is now enough information on hand to find psλ
(
x(0); θ

)
,since

psλ

(
x(0); θ

)
=

∑

α∈N0,α+=λ

R0 (α,E)Mα,E

(
x(0); θ

)

=
∑

α∈N0,α+=λ

R0 (α,E)

R1 (α,E)
Mλ,E

(
x(0); θ

)
.

This sum can be evaluated using the norm formula established in [8]. This

formula applies to arbitrary λ ∈ N
N,+
0 and arbitrary sets E′ ∈ Y0 ∪ Y1, In the

present context which uses only α ∈ N0 with α+ = λ the formula is used with
N replaced by N −m− 1 and the reverse λ− of λ is replaced by

R0λ =

(
λN−m−1, . . . , λ2,

N−m−1

λ1 , 0 . . . , 0

)
.

For n = 0, 1, 2, . . . define [n]t! =
n∏

i=1

[i]t. For λ ∈ N+
0 and j ≤ λ1 let nj (λ) =

# {l : l < N −m,λl = j}. The formula from [8] specializes to

∑

α∈N0,α+=λ

R0 (α,E)

R1 (α,E)
=

[N −m− 1]t!
λ1∏
j=0

[nj (λ)]t!

1

R1 (R0λ,E)
. (37)

Note that the multiplier is a type of t-multinomial symbol. It is straightforward
to show

R1 (R0λ,E) =
∏

1≤i<j<N−m
λi>λj

1− qλi−λj tj−i+1

1− qλi−λj tj−i
.

This product can be combined with the (i, j)-product in (27) to show:

psλ

(
x(0); θ

)
= qβ(λ)te0(λ)

[N −m− 1]t!
λ1∏
j=0

[nj (λ)]t!

(
qtN ; q, t

)
λ

(qtN−1; q, t)λ

×
∏

1≤i<j<N−m
λi>λj

(
qtj−i+1, q

)
λi−λj−1

(qtj−i, q)λi−λj−1

τE (θ) .

Also by (16)

psλ

(
x(0); θ

)
=

[N −m− 1]t!
λ1∏
j=0

[nj (λ)]t!

V (0) (R0λ) τE (θ)

Definition 56 For y ∈ RN−m−1 let y(0)=
(
y1, . . . , yN−m−1, t

N−m−1, . . . , tN−2, tN−1
)
.
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Lemma 12 applies to eachMα,E in the sum for psλ
(
y(0); θ

)
thus (Ti − t) psλ

(
y(0); θ

)
=

0 for 1 ≤ i < N −m− 1.

Proposition 57 psλ
(
y(0); θ

)
is symmetric in y. In particular psλ

(
x(0)u; θ

)
=

psλ
(
x(0); θ

)
for any permutation u of {1, 2, . . . , N −m− 1} (that is u ∈ SN−m−1×

Idm+1) .

Proof. Suppose 1 ≤ i < N −m− 1 then

tpsλ

(
y(0); θ

)
= T ip

s
λ

(
y(0); θ

)

= b
(
y(0), i

)
psλ

(
y(0); θ

)
+
(
Ti − b

(
y(0), i

))
psλ

(
y(0)si; θ

)

= b
(
y(0), i

)
psλ

(
y(0); θ

)
+
(
t− b

(
y(0), i

))
psλ

(
y(0)si; θ

)
..

(
t− b

(
y(0), i

))
psλ

(
y(0); θ

)
=
(
t− b

(
y(0), i

))
psλ

(
y(0)si; θ

)
.

The latter is a polynomial identity (after multiplying by yi − yi+1) and thus
holds for all y(0), and hence psλ

(
y(0)si; θ

)
= psλ

(
y(0); θ

)
.

Next we consider asymmetric polynomials in type (1). Recall α ∈ N1 implies
ζα,F (i) = qαitrα(i)−m−1 if 1 ≤ i ≤ m and ζα,F (i) = tN−i if i > m.

Definition 58 For λ ∈ N+
1 set paλ (x; θ) :=

∑
α∈N1,α+=λ

(−1)inv(α)R1 (α, F )Mα,F (x; θ).

Proposition 59 Suppose λ ∈ N+
1 then paλ (x; θ) satisfies (T i + t) paλ = 0 for

1 ≤ i < m.

Proof. Fix i. If α ∈ N1, α
+ = λ and αi = αi+1 then (T i + t)Mα,F = 0

because rα (i+ 1) = rα (i) + 1 and thus ζα,F (i) = t−1ζα,F (i+ 1). Otherwise
take αi < αi+1 and z = ζα,E (i+ 1) /ζα,E (i) , then set

pα,i := (−1)inv(siα)R1 (siα, F )Msiα,F + (−1)inv(α)R1 (α, F )Mα,F

= (−1)inv(siα)R1 (siα, F ) {Msiα,F − u1 (z)Mα,F }

by Lemma 15, and u1 (z) =
1− tz

1− z
. By Lemma 53 (T i + 1) pa,i = 0. For each i

the sum for paλ splits into singletons (α : αi = αi+1) and pairs (β, siβ : βi < βi+1).
Each piece is annihilated by T i + 1.

Similarly to the symmetric case we can determine paλ
(
x(1); θ

)
,since (by

Proposition 19)

paλ

(
x(1); θ

)
=

∑

α∈N1,α+=λ

(−1)inv(α)R1 (α, F )Mα,F

(
x(1); θ

)

=
∑

α∈N1,α+=λ

R1 (α, F )

R0 (α, F )
Mλ,F

(
x(1); θ

)
.
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Formula (37) can be adapted to find the sum by applying Ξ and chasing powers

of t (in [ni (λ)]t! for example). The typical term in R1(α,F )
R0(α,F ) is

1− tqαj−αitrα(j)−cα(i)

t− qαj−αitrα(j)−cα(i)
= t−1 1− q

αj−αitrα(j)−cα(i)+1

1− qαj−αitrα(j)−cα(i)−1

and applying Ξ yields

t
1− qαj−αitrα(i)−cα(j)−1

1− qαj−αitrα(i)−cα(j)+1
=
u0 (z)

u1 (z)

with z = qαj−αitrα(i)−cα(j), the typical term in R0(α,E)
R1(α,E) (after the interchange

m←→ N −m− 1). Thus

∑

α∈N1,α+=λ

R1 (α, F )

R0 (α, F )
= Ξ

∑

α+=λ

R0 (α,E)

R1 (α,E)
.

From Ξ [n]t = [n]1/t = t1−n [n]t and nj (λ) = # {l : l ≤ m,λl = j} it follows
that

[m]1/t!

λ1∏
j=0

[nj (λ)]1/t!

= tA
[m]t!

λ1∏
j=0

[nj (λ)]t!

,

A = −
m (m− 1)

2
+
∑

j≥0

nj (λ) (nj (λ)− 1)

2

= −
1

2
m2 +

1

2
m+

1

2

∑

j≥0

nj (λ)
2 −

1

2
m.

Now let R1λ =

(
λm, λm−1, . . . ,

m

λ1, 0 . . . , 0

)
and consider

R0 (R1λ, F ) =
∏

1ℓi<j≤m
λi.λj

t− qλi−λj ti−j

1− qλi−λjti−j = tinv(R1λ)
∏

1ℓi<j≤m
λi.λj

1− qλi−λj ti−j−1

1− qλi−λjti−j

and the transformed

ΞR1 (R0λ,E) =
∏

1ℓi<j≤m
λi.λj

1− qλi−λj ti−j−1

1− qλi−λjti−j

= t−inv(R1λ)R0 (R1λ, F ) .

This results in

∑

α∈N1,α+=λ

R1 (α, F )

R0 (α, F )
= tA+inv(R1λ)

[m]t!
λ1∏
j=0

[nj (λ)]t!

1

R0 (R1λ, F )
.
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We find

inv (R1λ) =
∑

1≤i<j≤λ1

ni (λ)nj (λ) =
1

2





(
λ1∑

i=1

ni (λ)

)2

−
λ1∑

i=1

ni (λ)
2





=
1

2
m2 −

1

2

λ1∑

i=1

ni (λ)
2
= −A,

and we have shown

paλ

(
x(1); θ

)
=

[m]t!
λ1∏
j=0

[nj (λ)]t!

1

R0 (R1λ, F )
Mλ,F

(
x(1); θ

)

= (−1)inv(R1λ) [m]t!





λ1∏

j=0

[nj (λ)]t!





−1

V (1) (R1λ) τF (θ)

Similarly to type (0) this formula can be further developed:

R0 (R1λ, F )
−1

=
∏

1≤i<j≤m
λi>λj

1− qλi−λj ti−j

t− qλi−λj ti−j
= t−inv(R1λ)

∏

1≤i<j≤m
λi>λj

1− qλi−λj ti−j

1− qλi−λj ti−j−1
.

Thus (from Theorem 48)

paλ

(
x(1); θ

)
= qβ(λ)tA(λ) [m]t!

λ1∏
j=0

[nj (λ)]t!

(
qt−N ; q, t−1

)
λ

(qt1−N ; q, t−1)λ

×
∏

1≤i<j<N−m
λi>λj

(
qti−j−1, q

)
λi−λj−1

(qti−j , q)λi−λj−1

τF ,

A (λ) =
m∑

i=1

λi (N −m− i)− inv (R1λ) ,

inv (R1λ) =
1

2
m2 −

1

2

λ1∑

i=1

ni (λ)
2 .

Definition 60 For y ∈ Rm let y(1)=
(
y1, . . . , ym, t

−m, . . . , t2−N , t1−N
)

Lemma 17 applies to eachMα,F in the sum for paλ
(
y(1); θ

)
thus (Ti + 1) paλ

(
y(1); θ

)
=

0 for 1 ≤ i < m

Proposition 61 paλ
(
y(1); θ

)
is symmetric in y. In particular paλ

(
x(1)u; θ

)
=

paλ
(
x(1); θ

)
for any permutation u of {1, 2, . . . ,m} (that is u ∈ Sm × IdN−m) .
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Proof. Suppose 1 ≤ i < m then

−paλ

(
y(1); θ

)
= T ip

a
λ

(
y(1); θ

)

= b
(
y(1), i

)
psaλ

(
y(1); θ

)
+
(
Ti − b

(
y(1), i

))
paλ

(
y(1)si; θ

)

= b
(
y(1), i

)
paλ

(
y(1); θ

)
−
(
1 + b

(
y(1), i

))
paλ

(
y(1)si; θ

)

(
1 + b

(
y(1), i

))
paλ

(
y(1); θ

)
=
(
1 + b

(
y(1), i

))
paλ

(
y(1)si; θ

)
.

The latter is a polynomial identity (after multiplying by yi − yi+1) and thus
holds for all y(1), and hence pasλ

(
y(1)si; θ

)
= paλ

(
y(1)si; θ

)
.

6 Conclusion and Future Directions

We established formulas for evaluating a relatively restrictive class of nonsym-
metric polynomials at special points. The values have product form, whose
typical terms are 1 − qatb where a, b ∈ Z and |b| ≤ N . The labels E′ of the
Macdonald polynomials Mα,E′ have only two possibilities out of many,

(
N−1
m

)

for the isotype (N −m, 1m). Computational experiments suggest there are no
other evaluations with this simple form. Perhaps there are formulas combining
sums and products, but we have no conjectures to offer. However there are other
evaluations to be studied: these relate to singular polynomials. This refers to the
situation where the parameters q, t satisfy a relation like qatb = 1 and a polyno-
mialMα,E′ satisfies ξiMα,E′ = ωiMα,E′ for 1 ≤ i ≤ N The Jucys-Murphy oper-
ators on sPm are defined in terms of {T i} (see (5)): ωN = 1,ωi = t−1

T iωi+1T i

for 1 ≤ i < N . Of course finding these singular parameters (q, t) is already a
research problem by itself. For small N and degree we can find some examples
(with computer algebra) and test evaluations. It appears there are interesting
results to find.

Consider N = 6 and P1,0, α = (1, 1, 0, 0, 0, 0) (of isotype (5, 1)). The spectral
vector of Mα,{5,6} is

(
qt4, qt3, t2, t, t=1, 1

)
.Let

x =
(
x1, x2, t

2, t, t−1, 1
)
.

The polynomial Mα,{5,6} is singular for qt3 = 1 and

Mα,{5,6} (x; θ) = t16 (x1 − 1) (x2 − 1)
(
t4θ6 − t

5θ5
)
,

τ{5,6} = t4θ6 − t
5θ5.

SimilarlyMα,{4,6} is singular at qt
3 = 1; its spectral vector is

(
qt4, qt3, t2, t−1, t, 1

)

and for x′ =
(
x1, x2, t

2, t−1, t, 1
)

Mα,{4,6} (x
′; θ) = t16 (x1 − 1) (x2 − 1) τ{4,6} (θ) ,

τ{4,6} = −t6θ4 +
t5

1 + t
(θ5 + θ6) .
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As wellMα,{3,6} is singular at qt3 = 1; its spectral vector is
(
qt4, qt3, t−1, t2, t, 1

)

and for x′′ =
(
x1, x2, t

−1, t2, t, 1
)

Mα,{3,6} (x
′′; θ) = t16 (x1 − 1) (x2 − 1) τ{3,6} (θ) ,

τ{3,6} = −t7θ3 +
t6

1 + t+ t2
(θ4 + θ5 + θ6) .

For an example with higher degree considerN = 6,P4,1 and β = (2, 1, 0, 0, 0, 0) , F =
{1, 2, 3} (the isotype is

(
3, 13

)
) Then ζβ,F =

(
q2t−3, qt−2, t−1, t2, t, 1

)
and Mβ,F

is singular for q = t2. At x =
(
x1, x2, t

−1, t2, t, 1
)
we find

Mβ,F (x; θ) = t8 (x1 − tx2) (x1 − 1) (x2 − 1) τF ,

τF = −θ1θ2θ3 (θ4 + θ5 + θ6) .

We would expect an evaluation formula involving the elements of the spectral
vector for which αi = 0 and with as many free variables as nonzero elements
of α. There is a nice necessary condition for a singular value: the t-exponents
of the specialized spectral vector have to agree with the content vector of an
RSYT. For example set q = t2 in ζβ,F with the result

(
t, 1, t−1, t2, t, 1

)
, and

[1, 0,−1, 2, 1, 0] is the content vector of
[
6 5 4
3 2 1

]
.

Then Mγ,F with γ = (2, 1, 0, 0, 0, 0) can not be singular at q = t2: the spectral
vector ζγ,F =

(
1, t, t−1, t2, t, 1

)
and [0, 1,−1, 2, 1, 0] is not the content vector of

any RSYT.
There are interesting results dealing with singular Macdonald superpolyno-

mials waiting to be found.
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