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One-dimensional gapped phases that avoid any symmetry breaking have drawn enduring atten-
tion. In this paper, we study such phases in a bond-alternating spin-1 K-Γ chain built of a Kitaev
(K) interaction and an off-diagonal Γ term. In the case of isotropic bond strength, a Haldane phase,
which resembles the ground state of a spin-1 Heisenberg chain, is identified in a wide region. A
gapped Kitaev phase situated at dominant ferromagnetic and antiferromagnetic Kitaev limits is
also found. The Kitaev phase has extremely short-range spin correlations and is characterized by
finite Z2-valued quantities on bonds. Its lowest entanglement spectrum is unique, in contrast to
the Haldane phase, whose entanglement spectrum is doubly degenerate. In addition, the Kitaev
phase shows a double-peak structure in the specific heat at two different temperatures. In the pure
Kitaev limit, the two peaks are representative of the development of short-range spin correlation
at Th ' 0.5680 and the freezing of Z2 quantities at Tl ' 0.0562, respectively. By considering bond
anisotropy, regions of Haldane phase and Kitaev phase are enlarged, accompanied by the emergence
of dimerized phases and three distinct magnetically ordered states.

I. INTRODUCTION

The Kitaev honeycomb model [1], consisting of bond-
dependent Ising couplings of spin-1/2 degrees of free-
dom, is a rare example which not only is exactly solv-
able but also hosts a quantum spin liquid (QSL) ground
state with fractionalized excitations, e.g., itinerant Ma-
jorana fermions and localized fluxes [2]. These excita-
tions account for the double-peak specific heat anomaly
at two different energy scales [3]. During the last decade,
a large family of rare-earth magnets which could realize
bond-directional interactions have garnered huge inter-
est, providing avenues for the exploration of exotic phases
of matter and emergent phenomena (for a review, see
Refs. [4, 5]). According to the Jackeli-Khaliullin mech-
anism [6], it was suggested that the Kitaev interaction
with Jeff = 1/2 moment could be realized in the 4d/5d-
electron honeycomb compounds by the interplay of spin-
orbit coupling and electron correlations. Recently, new
scenarios for the Kitaev interaction in f -electron sys-
tems have also been proposed (see Ref. [7] and references
therein). This theoretical progress as well as relevant
material realizations, paves the way for hunting Kitaev
QSLs; yet this is hindered by several essential non-Kitaev
terms, such as Heisenberg coupling and symmetric off-
diagonal Γ interaction [8, 9].

Aligning with the efforts to study the ground state
and thermodynamical properties in the spin-1/2 Kitaev
honeycomb model [1–3, 10, 11], high-spin analogs have
also generated much interest [12–14], inciting the mate-
rialization of Kitaev interaction in magnetic compounds
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with S > 1/2 [15]. Recently, it has been suggested that
strong spin-orbit coupling between anion sites together
with strong Hund’s coupling in the eg orbital might be
a practical way to achieve the spin-1 Kitaev interaction
in real materials [16]. In spite of there being no exact
solution for higher-spin counterparts, local conserved Z2

quantities could still be constructed [12], and several in-
teresting phenomena of the spin-1/2 model, including the
double-peak specific heat [17] and field-induced interme-
diate gapless QSL [18–20], could also be retained at least
for the spin-1 case.

Notwithstanding the bidimensionality of real materi-
als, quantum spin chains also play vital roles in under-
standing peculiar quantum phenomena in two dimensions
as they promote strong quantum fluctuations [21–28].
Over the past few decades, quantum spin chains have at-
tracted broad attention for their ability to host unconven-
tional quantum criticality [29, 30] and topological phases
[31, 32]. The Haldane phase in the antiferromagnetic
(AFM) spin-1 Heisenberg chain is a paramount exam-
ple which falls beyond Landau’s paradigm of symmetry
breaking, and is now recognized as a symmetry-protected
topological (SPT) phase protected by time-reversal sym-
metry, bond-centered inversion symmetry, and/or a di-
hedral group of π rotations about cubic axes [33, 34].
Its ground state is unique under the periodic boundary
condition (PBC), while it is four-fold degenerate under
the open boundary condition (OBC) as a result of two
spin-1/2 edge states [35]. Nevertheless, a novel “Kitaev”
phase, the ground state of the spin-1 Kitaev spin chain
[36, 37], emerges as another interesting phase which is
also gapped and has the same ground-state degeneracy
pattern as that of the Haldane phase.

In this respect, a couple of attractive questions are
naturally raised. First of all, although the Kitaev phase
owns all the three symmetries that protect the Haldane
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phase [37], the origin of the edge states that contribute
to the ground-state degeneracy is still unclear. To under-
stand whether it is a SPT phase or not, the entanglement
spectrum is a useful quantity to clarify the puzzle. Next,
in the Kitaev phase, degeneracy of the lowest-lying ex-
cited state goes with the increase in system size, exhibit-
ing a large density of states just above the excitation
gap. This phenomenon has been demonstrated to trigger
double-peak specific heat anomalies in several frustrated
systems [38, 39]. Hence, it is necessary to check the low-
temperature behavior of the specific heat. Finally, in the
spin-1/2 analogy, the ferromagnetic (FM) Kitaev limit is
known to be a multicritical point as a confluence of sev-
eral topological quantum phase transitions (QPTs) [27].
By contrast, a spin-1 FM Kitaev point should survive
against competing interactions, giving rise to a possible
region of the Kitaev phase.

In this paper, we study the quantum phase diagram of
a bond-alternating spin-1 K-Γ chain using the density-
matrix renormalization group (DMRG) method [40–42].
For this model, it is composed of two bond-directional
frustrated interactions, allowing us to explore the rich
phase diagram by tuning both the interaction intensity
and the bond strength relatively. Throughout the phase
diagram, we identify the Kitaev phase and the Haldane
phase in the vicinity of the Kitaev and Γ limits, respec-
tively. The natures of phases are revealed by excita-
tion gaps, spin-spin correlations, the nonlocal string or-
der parameter (SOP) [43], and Z2 quantities on bonds.
Near the FM Kitaev limit, there is a first-order Kitaev–
Haldane QPT at nonzero Γ/|K|, while a magnetically
ordered state intervenes in the AFM Kitaev region. We
also calculate thermodynamic quantities (e.g., specific
heat and thermal entropy) of the Kitaev phase using the
transfer-matrix renormalization group (TMRG) method
[44, 45].

The remainder of the paper is organized as follows. In
Sec. II we introduce the theoretical model and present
the quantum phase diagram. In Sec. III we study the
excitations of the Haldane phase and Kitaev phase in the
isotropic K-Γ chain. Effects of anisotropic bond strength
are studied in Sec. IV, with an emphasis on the Haldane–
dimer transition and three magnetically ordered states.
In Sec. V, we confirm the double-peak specific heat in the
Kitaev phase, and explain the physical origins of the two
peaks. Finally, a brief conclusion is presented in Sec. VI.
Further information about the specific heat in the spin-
1/2 and spin-1 Kitaev chains is given in Appendices A
and B.

II. MODEL AND METHOD

The K-Γ spin model is defined on the zigzag chain as
illustrated in Fig. 1(a), where the spins sit on the edges
of each bond. The full Hamiltonian is composed of two

analogical terms,

H =

L/2∑
l=1

gxH(x)
2l−1,2l(θ) + gyH(y)

2l,2l+1(θ), (1)

where L is the chain length and gx (gy) is the strength
of the odd (even) bond. The exchange part contains the
Kitaev (K) interaction and the off-diagonal Γ interaction,
which is given by

H(γ)
i,j (θ) = KSγi S

γ
j + Γ(Sαi S

β
j + Sβi S

α
j ). (2)

Here, γ could be either x or y and it refers to the type
of bond that connects spins i and j, see Fig. 1(a). The
triad of {α, β, γ} is {y, z, x} on the x bond and {z, x, y}
on the y bond, respectively. Following a U6 rotation with
a period of six sites, all the cross terms in Eq. (2) are
eliminated, leading to the following form [22]

H̃(γ)
i,j (θ) = −KS̃γi S̃

γ
j − Γ(S̃αi S̃

α
j + S̃βi S̃

β
j ) (3)

where the bonds γ = x̃, ỹ, and z̃ circularly, as depicted
in Fig. 1(b). In light of Eq. (3), it can instantly be found
that SU(2) symmetry recovers along two lines K = ±|Γ|.

FIG. 1: (a) Sketch of the bond structure in the original form.
Here, x (red bonds) and y (green bonds) stand for the γ-index
and bond widths indicate their strengths relatively. (b) Pic-
torial bond structure of the rotated Hamiltonian. The shaded
region represents a period of six sites in the U6 rotation.

As demonstrated in Ref. [27], the Hamiltonian in
Eq. (1) possesses two peculiar properties concerning sym-
metries in the parameter space. One is a self-dual rela-
tion, which implies that the eigenvalue E of H satisfies
E(g) = gE(1/g) where g ≡ gy/gx is the relative bond
strength. The other is a mirror symmetry with respect
to the Γ axis, i.e., E(K,Γ) = E(K,−Γ). These relations
cause us to consider the phase diagram mainly in the
right half circle of Fig. 2(a), where Γ ≥ 0 and g ∈ [0, 1].

The interactions are parameterized as K = sin θ and
Γ = cos θ with θ ∈ (−π, π], and the ground-state phase
diagram is mapped out by the DMRG method [40–42].
In the DMRG calculation, we mainly adopt the PBC to
remove the edge effect, while the OBC is also used to
study edge excitations. Given the structure of the unit
cell in the U6 rotated basis, we choose the chain length
L to be strictly a multiple of six. In addition, up to 2000
block states are kept so as to maintain a small truncation
error of ∼ 10−7 at most.

Figure 2(a) depicts the full phase diagram within the
region g ∈ [0, 2] and θ ∈ (−π, π] for the bond-alternating
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FIG. 2: (a) Quantum phase diagram of the bond-alternating
spin-1 K-Γ chain with K = sin θ and Γ = cos θ. The green
dotted line marked by 1○ denotes the isotropic case of g = 1.
Black solid circles at θ = π/4 and −π/4 represent the hidden
SU(2) FM and AFM Heisenberg chains, respectively. In the
right half circle, there is a Haldane phase, a gapped Kitaev
phase whose two regions are distinguished as Kitaev-I (FM
Kitaev region) and Kitaev-II (AFM Kitaev region) domains,
two dimerized phases located at g < 1 and g > 1, respectively,
and three magnetically ordered states termed FMU6 ,MI and
MO (see text for details). (b) Zoom-in region of 0.10π ≤ θ ≤
0.18π.

spin-1 K-Γ chain. In either the FM or AFM Kitaev limit,
there is a gapped Kitaev phase, whose regions shall be
distinguished as the Kitaev-I phase and the Kitaev-II
phase, respectively, for the sake of clarity. The Kitaev
phases in the two regions share the same ground-state
and thermodynamic properties, although the former is
more fragile against Γ interaction. Remarkably, such an
asymmetric stability of the Kitaev phases in the FM and
AFM Kitaev limits also persists in the spin-1/2 analogy
and may be a general feature of the K-Γ model. For ex-
ample, in the spin-1/2 K-Γ chain, it is found that the FM
Kitaev limit is merely a multicritical point while there is
a finite region near the AFM Kitaev side [22, 24, 27]. In
the spin-1/2 honeycomb-lattice K-Γ model, the region
of the FM Kitaev QSL is considerably shrunken when
compared with its AFM counterpart [8]. Of note is that
the asymmetry is proposed to come from the interplay

of two flux-pair hopping processes, whose magnitudes
depend crucially on the sign of the Kitaev interaction
[46]. Going back to the spin-1 K-Γ chain, by increas-
ing Γ interaction from the isotropic FM Kitaev limit,
the Kitaev-I phase survives up to |Γ|/K = −0.10(1), fol-
lowed by a Haldane phase which holds a nonlocal SOP,
a finite excitation gap, and also two gapless edge modes.
The Haldane phase exists in a wide anisotropic region of
0.60 . g . 1.70, and two partially dimerized phases are
then induced via continuous QPTs. The difference be-
tween the dimerized phases lies in that there is a stronger
x (y)-type bond in the inner (outer) circle of g = 1. Op-
positely, the Kitaev-II phase near the AFM Kitaev limit
is more robust and occupies a larger territory. When
K and |Γ| are comparable, a magnetically ordered state
with eight-fold ground-state degeneracy is favored. In
addition, two narrow regions of extra magnetic orderings
are induced at modest anisotropy [see Fig. 2(b)].

III. ISOTROPIC K-Γ CHAIN

A. Characters of Haldane phase

First of all, let us consider the isotropic spin-1 K-Γ
chain with g = 1, which is amenable to the revealment
of crucial features of the entire phase diagram. The
(K = −1,Γ = 1) point at θ = −π/4 is a hidden SU(2)
AFM Heisenberg point whose ground state is the Hal-
dane phase [31]. For this phase, it owns a (bulk) excita-
tion gap ∆e ' 0.410479 [47, 48] and possesses a nonlocal
SOP defined as [43]

OzH = − lim
|q−p|→∞

〈
S̃zp

( ∏
p<r<q

eiπS̃
z
r

)
S̃zq

〉
(4)

where spins are situated in the U6 rotated basis. The
gapped Haldane phase could survive against competing
interactions with θ 6= −π/4 since it is a SPT phase which
usually undergoes a QPT with a closure of its excitation
gap. To estimate the region of the Haldane phase, we
calculate the SOP OzH in the range of θ ∈ [−π/2, π/2],
as presented in Fig. 3(a). Except for the accidental FM
point at θ = π/4 where OzH is equal to the saturated
value, OzH is robust and suffers from a tiny finite-size ef-
fect in a wide region of −0.4685(5) < θ/π < 0.1270(5).
Here, the transition points and the corresponding error
bars are estimated from the vanishing points of SOP.
These values are consistent with the independent esti-
mate which shall be shown later. With increasing θ, OzH
slowly grows deep in the Haldane phase. Specially, the
value of OzH is 0.4935(2) in the pure Γ limit of θ = 0,
which is larger than the value of 0.3743(1) for the AFM
Heisenberg chain [47]. Near phase boundaries, OzH has a
jump at θt,1 = −0.4685(5) and varies smoothly around
θt,2 = 0.1270(5), indicative of a first-order and a contin-
uous QPT, respectively.
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FIG. 3: (a) SOP OzH of the Haldane phase and (b) sublattice
magnetization (a, b, c) of the MO phase in the isotropic K-Γ
chain with g = 1. The length L of the chain is 48, and the
results for L = 96 are extremely close (not shown) except for
regions around transition points.

In the vicinity of the FM SU(2) point, there is a mag-
netically ordered phase with an eight-fold ground-state
degeneracy. These degenerate states could be unified by
the so-called η-notation [49], from which the spins within
the six-site unit cell are

〈S̃1〉=

 ηxa
ηyb
ηzc

 , 〈S̃2〉=

 ηxa
ηyc
ηzb

 , 〈S̃3〉=

 ηxc
ηya
ηzb

 (5)

and

〈S̃4〉=

 ηxb
ηya
ηzc

 , 〈S̃5〉=

 ηxb
ηyc
ηza

 , 〈S̃6〉=

 ηxc
ηyb
ηza

 . (6)

Here, a, b, c (≥ 0) satisfy the restriction
√
a2 + b2 + c2 ≤

S with S = 1, while ηx, ηy, ηz (= ±1) are the Ising vari-
ables. The three η’s are free to choose either 1 or −1
without altering the energy, giving rise to the degener-
ate manifold. Figure 3(b) shows the values of (a, b, c)
in the same parameter region as Fig. 3(a). a and b are
equal as a reminiscence of g = 1, and they compete with
c when changing the relative value of K and Γ. Since
c is always different from a and b, the phase exhibits an
out-of-plane spin structure (cf. Eqs. (5) and (6)) [27] and
thus is termed the MO phase. The MO phase is found
to exist in the parameter range of θt,2 < θ < θt,3 where
θt,3 = 0.3845(5).

The Haldane phase is known to carry a finite excitation
gap, which is the key point of Haldane’s conjecture [31].
We find that finite-size effects of the energy of the ground
state and low-lying excited states are less pronounced in

the PBC, and the numerical result suggests that the Hal-
dane phase indeed possesses a nonzero excitation gap in
the whole region (not shown). Taking the isotropic Γ-
chain (θ = 0) as an example, our result indicates that
the ground-state energy eg = −0.96226390(3) and the
excitation gap ∆e = 0.229135(7). Noteworthily, the en-
tanglement spectrum [50] is two-fold (four-fold) degen-
erate for the lowest-lying levels under the OBC (PBC),
which is a hallmark of the SPT phase [51].

FIG. 4: Relative energy ευ = Eυ − Ē among the four quasi-
degenerate ground states of the Haldane phase under an open
chain with L = 24. The lowest energy level E0 (black asterisk)
is unique while higher ones are partially degenerate.

In addition, the Haldane phase also acquires two free
edge spin-1/2s which account for the four-fold degener-
ate ground state in the thermodynamical limit under the
OBC [47]. In the isotropic spin-1 Heisenberg chain with
an even number of sites, the spin-1/2 edge modes are
coupled with an effective AFM interaction. Accordingly,
the four-fold degeneracy is split into a single state and a
Kennedy triplet state for finite-size systems [35]. How-
ever, this picture partially breaks down if |K| 6= |Γ|. To
explain this, we have calculated the first four energy lev-
els Eυ (υ = 0–3) under an open chain with L = 24.
For the sake of comparison, we use the average energy
Ē = (E0 + E1 + E2 + E3)/4 as a reference scale and
introduce a relative energy as ευ = Eυ − Ē. Figure 4
presents ευ in the window of θ/π ∈ [−0.5, 0.2]. Through-
out the Haldane phase, the lowest energy level (black
asterisk) is always unique, while higher ones are par-
tially degenerate. When θ < −π/4 (i.e., K < −|Γ|), the
quasi-degenerate states are of “1+2+1” structure, How-
ever, they are of “1+1+2” structure when θ > −π/4 (i.e.,
K > −|Γ|). Higher levels recover as a Kennedy triplet
state once θ = −π/4 where the model is reduced to the
spin-1 SU(2) Heisenberg chain.

For the spin-1 Heisenberg chain, the existence of two
edge spin-1/2s could be measured numerically by calcu-

lating the on-site magnetization 〈S̃zl 〉 in the S̃ztot = 1
subspace, which is found to decay exponentially towards
the middle of the chain [47, 52]. Notably, the edge states
can also be probed by a couple of experimental methods
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(see Ref. [53] and references therein). Unfortunately, de-
tecting the edge modes is more intractable in our case
for the lack of U(1) symmetry. In this regard, we adopt

a cumulant correlation function Czn = 〈S̃z1→nS̃zL−n+1→L〉,
where S̃z1→n =

∑n
l=1 S̃

z
l and S̃zL−n+1→L =

∑n
l=1 S̃

z
L+1−l

are the accumulated magnetization on the left and right
edges, respectively [54]. The Czn represents the correla-
tion between two edge spin-1/2s regardless of the singlet
or triplet sector. We calculate the cumulant correlation
function Czn on an open chain with 128 sites, the size
of which is far larger than the correlation length of the
Haldane phase. The behaviors of Czn in the Heisenberg
chain (θ = −π/4) and Γ-chain (θ = 0) are shown in
Fig. 5. While both curves have strong oscillations when
n is small, they saturate to −1/4 and −1/6 or so, respec-
tively, as n & 20. We note that, for the lack of Kitaev
interaction, the correlator Czn in the Γ-chain is thus only
two-thirds of that in the Heisenberg chain. Given the
discrepancy between the saturated values of the correla-
tor, we confirm that there are two spin-1/2 edge modes
which interact antiferromagnetically with each other as
revealed by the minus sign of Czn.

FIG. 5: The cumulant correlator Czn = 〈S̃z1→nS̃zL−n+1→L〉
as a function of segment n in the Haldane phase under an
open chain with L = 128. Czn approaches to −1/4 for the
Heisenberg chain (θ = −π/4, red circle) and around −1/6 for
the Γ-chain (θ = 0, blue square).

B. Unusual excitations of Kitaev phase

We now turn to studying the nature of the Kitaev
phase in the vicinity of two Kitaev limits. In the spin-1
Kitaev spin chain, the bond-directional Ising interactions
allow for the existence of many Z2 quantities that com-
mute with the Hamiltonian. To this end, it is natural
to introduce an on-site operator Σαl = eiπS

α
l [36], which

mutually commutes with each other and happens to be
I−2(Sαl )2 for the spin-1 case. The bond-parity operators

Ŵl on the odd/even bonds [37],

Ŵ2l−1 = Σy2l−1Σy2l, Ŵ2l = Σx2lΣ
x
2l+1 (7)

commute with the Hamiltonian of the Kitaev spin chain
with eigenvalues being ±1 (which explains the Z2 na-
ture). In the Kitaev limit, the ground state is unique

under the PBC and lies in the sector with all Ŵl = +1
[36]. It is gapped with an extremely short correlation
length ξ ' 1 since the spin-spin correlation beyond the
nearest-neighbor bonds is extremely small. The first ex-
cited state corresponds to flipping the eigenvalue of any
of the bond parity operators to −1 while leaving the
rest unchanged, generating an L-fold degenerate first ex-
cited state [37]. We find that the ground-state energy
of the isotropic Kitaev chain is -0.603560592(3)1, which
matches perfectly with a previous estimate by exact di-
agonalization method [36]. Also of interest is that the
energy is very close to that of the two-dimensional spin-1
Kitaev honeycomb model [55].

FIG. 6: (a) Bond density W b and (b) excitation gap ∆e of
the Kitaev phase in the isotropic K-Γ chain with g = 1. The
length L of the chain is 24 (red circle), 48 (green triangle),
and 72 (blue square). The inset of (a) shows the first-order
derivative of W b with L = 24, while the inset of (b) presents
the entanglement spectrum of the Kitaev phase (θ = −0.50π
and −0.49π) and Haldane phase (θ = −0.40π) with L = 48.

To capture the QPT driven by Γ interaction, we define
the averaged bond density

W b =
1

L

L∑
l=1

〈Ŵl〉, (8)

1 The ground-state energy under OBC is eg = −0.6035606(2),
in accordance with the estimated value under PBC within the
numerical precision.
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which should still be +1 for the ground state in the Ki-
taev limit. Figure 6(a) shows W b as a function of θ for
different length L in both FM and AFM Kitaev limits.
In the left panel, W b experiences a dramatic jump at
θt,1/π = −0.4685(5) (i.e., |Γ|/K ' −0.10), favoring the
first-order QPT as revealed by the SOP of the neighbor-
ing Haldane phase (cf. Fig. 3(a)). However, W b varies
smoothly as θ decreases from π/2. To locate the transi-
tion point, we take the first-order derivative of W b with
respect to θ (see inset). It can be observed that there is
a peak whose position is θt,3/π = 0.3845(5). In Fig. 6(b)
we show the excitation gap ∆e = E1−Eg, defined as the
energy difference between the ground state (Eg) and the
first excited state (E1), around the transition points. In
the range of −0.50π ≤ θ ≤ −0.40π, both Kitaev-I phase
and Haldane phase are gapped, and transition at θt,1 is
of first order due to the level crossing. In addition, exci-
tation gap of the Kitaev-II phase at θ = 0.50π is equal to
that of the Kitaev-I phase at θ = −0.50π, with a value
of ∆e = 0.17634970(2). Within the Kitaev-II phase, ∆e

decreases gradually and is vanishingly small when ap-
proaching the phase boundary of the Kitaev-II to MO

transition.

So far, we have shown that the Kitaev–Haldane tran-
sition at θt,1/π = −0.4685(5) is a topological first-order
transition which can be recognized by the jumps in non-
local SOP and Z2 quantities. Both of the two are gapped
with unique ground states. The Haldane phase, in partic-
ular, is a preeminent example of SPT phase with short-
range entanglement. By contrast, the Kitaev phase is
not a SPT phase since its lowest entanglement spectrum
is unique rather than doubly degenerate. The entangle-
ment spectrum is a quantity which encodes the spectral
information of the subsystem A with a reduced density
matrix ρA. It is defined as − lnλυ where λυ is the eigen-
value of ρA with

∑
υ λυ = 1 [50]. The entanglement

spectrum of the Haldane phase is universally known to
be doubly degenerate; it is two-fold degenerate under the
OBC, while it is four-fold degenerate under the PBC [51].
As shown in the inset of Fig. 6(b), the Haldane phase
at θ = −0.40π indeed has a four-fold degeneracy entan-
glement spectrum under PBC. However, spectra of the
Kitaev phase at θ = −0.50π and −0.48π are unique, in
contradiction to the character of a SPT phase.

In the case of the OBC, the Haldane phase has a four-
fold degenerate ground state owing to the two spin-1/2
edge states. Interestingly, the ground state of the Ki-
taev phase under the OBC is also four-fold degenerate,
relating to the breakdown of two marginal Z2 quantities
Ŵ1 and ŴL−1, see the inset of Fig. 7(a). Here, both
quantities are situated at odd bonds and their eigen-
values are fractional, while the remaining Z2 quanti-
ties are +1. Regarding values of Ŵ1 and ŴL−1 on the
four-fold degenerate ground state, they are somewhat
random as a consequence of arbitrary superpositions,
and one of the computation on a 48-site open chain in-
dicates that 〈Ŵ1〉 ∈ {0.6965,−0.8076,−0.8307, 0.9418}
and 〈ŴL−1〉 ∈ {0.8647,−0.5202, 0.5520,−0.8965}. The

FIG. 7: Distribution of excitation energy ωl in the whole
system (L = 48) under the OBC with (a) g = 1.0 and (b)
g = 1.2, respectively. The inset of (a) shows the positions

of bond-dependent Z2 quantities Ŵl in a L-site chain. (c)
Excitation gap ∆e as a function of anisotropy g under OBC
(red circle) and PBC (blue square) in the thermodynamic
limit (L→∞).

nontrivial observation is that summations of both 〈Ŵ1〉
and 〈ŴL−1〉 within the degenerate ground state are ex-
tremely close to zero, which resemble those of zero edge
modes. Above the ground state, the lowest excitations
come from flipping further Z2 quantities Ŵ3 and ŴL−3

near the boundaries. To detect the trails of excitations,
we define the local excitation energy ωl as

ω2l−1 = 〈Sx2l−1S
x
2l〉e − 〈Sx2l−1S

x
2l〉g,

ω2l = 〈Sy2lS
y
2l+1〉e − 〈S

y
2lS

y
2l+1〉g, (9)

where 〈·〉g and 〈·〉e represent the expectation values with
respect to the first and fifth energy levels, respectively.
Figure 7(a) shows the distribution of excitation energy ωl
for the isotropic Kitaev spin chain (g = 1) under OBC.
It can be found that the excitation energy is indeed lo-
calized at the very boundary parts, with ωl being zero in
the central region. The total excitation gap ∆e =

∑
l ωl

is 0.11594909(2), which is roughly 2/3 of the bulk gap
0.17634970(2) reserved in the PBC case.

We propose that the loss of excitation gap is attributed
to Ising-type couplings and short correlation length ξ ' 1
of the Kitaev spin chain. Because of the OBC imposed,
correlations within the marginal x-type bonds of (1, 2)
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and (L − 1, L) are enhanced, leading to effective x-type
couplings among these four sites. Hence, the excita-
tions are entangled and the marginal Z2 quantities are
no longer conserved. Because of the extremely short cor-
relation length, the excitations are gathered at edges of
the chain. Unfortunately, the emergent Sx1S

x
L correlation

does not contribute to the energy. Instead, it trammels
the excitations and thus reduce the excitation gap. Our
analysis implies that, if excitations are not bounded at
the edges, then excitation gap ∆e would not depend on
the boundary condition severely. To check the conjec-
ture, we consider a stronger y-type bond, say g = 1.2. We
show the distribution of excitation energy ωl in Fig. 7(b),
and it is clearly found that the excitation comes from the
very middle of the chain. More importantly, discrepancy
of the excitation gap between the OBC and PBC is in-
significant. We have shown the excitation gap ∆e as a
function of anisotropy g under both OBC (red circle) and
PBC (blue square) in Fig. 7(c). When g . 1.06, the ex-
citations are localized at edges and the excitation gap
under OBC is somewhat smaller.

IV. EFFECT OF IMBALANCED BOND
STRENGTH

A. Haldane–Dimer transition

In this section we study the effect of imbalanced bond
strength with g 6= 1. We recall that our model (1) is
reduced to the bond-alternating spin-1 Heisenberg chain
when θ = −π/4, which undergoes a Haldane–dimer tran-
sition at g = 0.587(2) that belongs to the Gaussian uni-
versality class with a central charge c = 1 [56–59]. The
dimerized phase is characterized by a stable alternation
of nearest-neighbor spin-spin correlations, which is equiv-
alent to the difference of 〈S̃zi S̃zj 〉 between the odd bonds
and even bonds within the six-site unit cell, namely

OzD =
∑

l=1,2,3

∣∣〈S̃z2l−1S̃
z
2l〉
∣∣− ∣∣〈S̃z2lS̃z2l+1〉

∣∣. (10)

Due to the inherent bond alternation, the transitional
symmetry of the neighboring sites is broken innately.
When g < 1, the x-type bond is stronger than the y-type,
and vice versa. Hence, the ground state of the dimerized
phase is unique with a finite energy gap.

Figure 8(a) shows the energy gap ∆e for three different
length L = 48, 96, and 144. As g goes from 0 to 2, ∆e

exhibits two remarkable valleys where the value becomes
smaller and smaller as L is increased. We make a lin-
ear extrapolation of the series of minimal values around
each valley marked by a pink diamond (g < 1) or a cyan
pentagram (g > 1), and it is shown in the inset that the
excitation gap ∆e indeed closes at the transition point in
the thermodynamic limit. Noteworthy, we find that the
transition points are gt,1 = 0.613(2) and gt,2 = 1.633(2),
satisfying the self-dual relation as gt,1 · gt,2 ' 1. In

FIG. 8: (a) Excitation gap ∆e of the dimerized phase and
the Haldane phase in the pure Γ chain with θ = 0. The
length L of the chain is 48 (red circle), 96 (green triangle),
and 144 (blue square). Inset: Extrapolations of the minimal
excitation gaps around the transition points marked by the
diamond and pentagram, respectively. (b) SOP OzH of the
Haldane phase (filled symbols) and dimer order parameter
OzD of the dimerized phase (open symbols) as a function of g.

Fig. 8(b), the SOP OzH (see Eq. (4), filled symbols) of
the Haldane phase and the dimer order parameter OzD
(see Eq. (10), open symbols) of the dimerized phase are
plotted in the window of g ∈ [0, 1]. It is found that OzH
is finite when g > 0.613(2) and is vanishingly small oth-
erwise. Although OzD is nonzero as long as g 6= 1, it
changes abruptly on the brink of the Haldane phase. We
have taken the first-order derivative of OzD (not shown),
and the peak position coincides with the critical point
gc = 0.613(2) where the SOP of the Haldane phase nicely
vanishes.

B. Magnetically ordered phases

As demonstrated, the dimerized phase is favored
by sufficient bond alternation. In the case of strong
anisotropy where g . 0.4 or g & 2.5, there is a di-
rect transition between the dimerized phase and theMO

phase. Otherwise an intermediate region is stabilized as
a consequence of the interplay between competing inter-
actions and modest bond alternation. A more careful in-
spection shows that it harbors two magnetically ordered
states (see Fig. 2(b)) with distinct spin patterns. On the
side near the dimerized phase, it is a FMU6

phase whose
spins align along one specific direction of ±x̂, ±ŷ, or ±ẑ.
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For example, it could be(
〈S̃1〉, 〈S̃2〉, 〈S̃3〉; 〈S̃4〉, 〈S̃5〉, 〈S̃6〉

)
=
(
c, b, b; c, a, a

)
ẑ (11)

where a, b and c are intensities of the magnetization along
the ẑ direction and a, b, c ≤ 1. The other is an in-plane
magnetic phase (termedMI) where one of the spin com-
ponents is zero. We find that spins within the magnetic
unit cell reads

〈S̃1〉=

 c
0
c

 , 〈S̃2〉=

 a
0
b

 , 〈S̃3〉=

 a
0
b

 (12)

and

〈S̃4〉=

 b
0
a

 , 〈S̃5〉=

 b
0
a

 , 〈S̃6〉=

 c
0
c

 . (13)

For this phase, the value of a, b, c should be bounded by√
a2 + b2 ≤ 1 and c ≤ 1/

√
2.

FIG. 9: Sublattice magnetization (a, b, c) of the FMU6 phase,
MI phase, andMO phase in a 72-site K-Γ chain with g = 2.

The series of QPTs between the magnetically ordered
states could be signified by the magnetization of (a, b,
c). In this regard, we focus on the line of g = 2.0 (which
is equivalent to g = 0.5 because of the self-dual relation)
and calculate these values from the spin-spin correlation
functions on a chain of length L = 72. Figure 9 shows
the values of (a, b, c) as a function of θ in the range
0.10π ≤ θ ≤ 0.18π. Due to the finite-size effect, a, b,
and c are nonzero but very tiny when θ/π < 0.1345(5).
We have checked that they will eventually go to zero in
the thermodynamic limit. As θ exceeds 0.1345(5), the
system enters into the FMU6

phase whose values of (a, b,
c) are accidentally bigger than 1/2. Afterwards, the sys-
tem undergoes another two first-order QPTs at which the
ground state evolves from the MI phase to MO phase,
respectively.

V. DOUBLE-PEAK SPECIFIC HEAT IN THE
KITAEV PHASE

In this section we go beyond the ground-state study
by calculating thermodynamic quantities in the spin-1
Kitaev chain to elucidate the unusual excitations of the
Kitaev phase. We recall that specific heat Cv of the
spin-1/2 Kitaev honeycomb model is well-recognized to
exhibit a double-peak structure at two different energy
scales, signifying two kinds of Majorana fermions re-
sulting from fractionalization of spin degrees of freedom
[2]. The high-temperature peak relates to the enhance-
ment of short-range spin-spin correlations while the low-
temperature peak comes from freezing of fluxes [3]. In
addition, the thermal entropy displays an approximately
half plateau with the value 1

2 ln 2kB per site in the in-
termediate crossover region, in accordance with a half
release of entropy around each peak. Moreover, exis-
tence of double-peak specific heat is also reported in the
spin-1 Kitaev honeycomb model, yet precise position of
the low-temperature peak is blurry because of the strong
finite-size effect [17]. We note in passing that there has
been a renascent interest in the thermodynamics of the
Kitaev QSL quite recently [60–63].

In contrast to the spin-1/2 Kitaev chain which only
possesses a sole peak in the specific heat (see Appendix
A for detail), our study unambiguously suggests that the
spin-1 Kitaev chain displays a double-peak specific heat.
To illustrate this, we begin by introducing the partition
function Ξ = Tre−βH with β = 1/kBT (herein, the Boltz-
mann constant kB = 1), which is generally the start-
ing point to calculate thermodynamic quantities. Con-
sequently, the free energy is F = −β−1 ln Ξ and the in-
ternal energy is U = −∂ ln Ξ

∂β . The specific heat is thus

calculated by

Cv =
1

N

(
∂U

∂T

)
V

= −β
2

N

∂U

∂β
, (14)

and the thermal entropy is given by

S =
β

N
(U − F ) = S0 +

∫ T

0

Cv(T
′)

T ′
dT ′, (15)

with S0 being the residual entropy at zero temperature.
The direct way to calculate the partition function Ξ is

by diagonalizing the Hamiltonian from which the entire
energy spectrum {Eυ} is readily available. Needless to
say, this route is strongly limited by the system size and
we consider a six-site closed chain for simplicity. Surpris-
ingly, physical quantities such as Cv and S suffer from a
weak finite-size effect and the results are fairly close to
those in the thermodynamic limit. The first few energy
levels are shown in Tab. I, and their degeneracies ρυ are
{1, 6, 6, 2, · · · }.

A more reliable way to obtain Ξ is by virtue of
finite-temperature computational techniques such as the
TMRG method [44, 45], which is an extension of the
DMRG method to finite temperature (T 6= 0). The
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TABLE I: Energy spectrum of the spin-1 Kitaev spin model
on a six-site closed chain. The first four columns are energy
level index υ, energy Eυ, degeneracy ρυ, and energy gap ∆υ =
Eυ−E0. The last column (∆̃υ) represents the approximation
of the energy gap ∆υ in a unit of ∆κ ≈ 0.18018574.

υ Eυ ρυ ∆υ ∆̃υ/∆κ

0 -3.63027662 1 0.00000000 0

1 -3.45009088 6 0.18018574 1

2 -3.38928222 6 0.24099440 ∼ 4/3

3 -3.33005874 2 0.30021788 ∼ 5/3

4 · · · · · · · · · · · ·

TMRG method relies on the quantum-classical corre-
spondence by way of the Trotter-Suzuki decomposition,
and represents the partition function as a trace of a series
of transfer matrices. It deals directly with an infinite spin
chain and the errors come from the Trotter-Suzuki step
τ = β/M (M is the Trotter-Suzuki number) and trun-
cated number of states m [44, 45]. We note that an ad-
ditional reorthogonalization procedure is applied so that
more block states can be kept [64]. The TMRG method
has been successfully applied to various quantum spin
chains where several thermodynamic quantities such as
specific heat and magnetic susceptibility could be calcu-
lated with high precision [65–68]. For the sake of accu-
racy, we fix τ = 0.01 and m = 1024, which is enough to
give a satisfactory precision in our simulation down to
the lowest temperature of 0.0033.

Figure. 10(a) shows the specific heat Cv as a func-
tion of temperature T up to 10. Here, exact result on
an extremely small system size of L = 6 (black dotted
line) and the TMRG calculation on an infinite size sys-
tem (red solid line) are shown. It can be found that
Cv is almost system-size independent as the difference
between the two limit cases is quite small. The spe-
cific heat Cv acquires two peaks at a low temperature
Tl ' 0.0582 and a high temperature Th ' 0.5860, respec-
tively. The low-temperature peak is more pronounced
and we propose that it relates to the large degeneracy
of the low-lying excited states. To demonstrate this, we
firstly consider a two-level system which consists of the
ground state and the first excited state out of the six-
site closed chain (see Tab. I). The degeneracies of the
two states are ρ0 = 1 and ρ1 = 6, respectively, with an
energy gap ∆κ ≈ 0.18018574 between them. For this sys-
tem, the partition function Ξ = ρ0 + ρ1e

−β∆κ , and the
specific heat is

Cv =
ρ1

ρ0

(β∆κ)2(
eβ∆κ/2 + ρ1

ρ0
e−β∆κ/2

)2 , (16)

which depends on the energy gap ∆κ and relative degen-
eracy ρ1/ρ0 = 6. The specific heat in Eq. (16) shows
a peak at the extreme temperature Tp = ∆κ/xp, where
xp = 3.23565205 · · · is determined by the transcenden-

FIG. 10: Temperature dependencies of (a) specific heat Cv,
(b) thermal entropy S, and (c) expectation values of W b and
Sb obtained by TMRG method. Results on a six-site closed
chain (dotted line, black) are also shown in panel (a) and
(b) for comparison. Based on the energy spectrum shown
in Tab. I, panel (a) also presents the specific heat of two-
level (pink dashed) and four-level (blue dash-dotted) systems
around the low-T peak.

tal equation x−2
x+2e

x = ρ1/ρ0 = 6. This yields the ex-
treme temperature Tp ≈ 0.0557, which is fairly close to
Tl ' 0.0582. The drawback of this oversimplified approx-
imation is that intensity of the specific heat is smaller
than the actual value. However, the intensity could be
significantly improved by considering a four-level system
with a partition function

Ξ = ρ0 + ρ1e
−β∆κ + ρ2e

−4β∆κ/3 + ρ3e
−5β∆κ/3. (17)

The corresponding specific heat is also shown in
Fig. 10(a) (blue dash-dotted line), and position and ex-
tremum are both close to the TMRG result on the in-
finite system. With increasing system size, the dimen-
sion of the Hilbert space will enlarge exponentially, and
a further multi-level system should be considered to re-
produce the low-T peak (see Appendix B for a discussion
on a 12-site closed chain).

Figure. 10(b) shows the behavior of entropy S defined
in Eq. (15). The entropy decreases from its saturated
value of ln 3 rapidly with the lowering of the tempera-
ture in the neighborhood of Th and Tl. The 1/2-plateau
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FIG. 11: Temperature dependencies of (a) specific heat Cv
and (b) entropy S of the anisotropic spin-1 Kitaev chain in
the infinite-size system. The anisotropy g is 1.0 (red), 1.2
(cyan), 1.5 (pink), 1.8 (blue), and 2.0 (green).

of the entropy is smeared out in the intermediate region
between the two temperature scales. Instead, a shoulder
in entropy is observed and the entropy becomes ∼ 1

2 ln 3
at a temperature of Tm ' 0.20. Interestingly, it is ex-
actly the same temperature at which specific heat shows
its local minimum. To understand physical mechanisms
of the double-peak structure in the specific heat, we cal-
culate the averaged bond density W b (see Eq. (8)) and
the averaged nearest-neighbor correlator

Sb =
1

L

∑
〈ij〉γ

〈Sγi S
γ
j 〉. (18)

The results of W b and Sb are shown in Fig. 10(c). Below
the low-T peak at Tl, W b is almost unchanged with a
value of ∼ 1. It then decreases to 1/9 successively with
the increase in temperature in the intermediate region2.
Therefore, the low-T peak originates from the local con-
served quantity. On the other hand, the high-T peak
is closely related to the growth of short-range spin-spin
correlations. Above the high-T peak at Th, Sb is very
small, signifying a paramagnetic phase. It is then en-
hanced dramatically by decreasing the temperature and

2 In the high-T paramagnetic phase, we have (Sxl )2 = (Syl )2 =

(Szl )2 = 2/3 for ∀ l in the spin-1 system. The bond-parity oper-

ator Ŵl is also uniformly distributed. Taking the x-type operator
for instance, Ŵl = (Σxl )2 = [1− 2(Sxl )2]2 = 1/9.

is stabilized around 0.60, which is merely the absolute
value of the ground-state energy of the isotropic spin-1
Kitaev chain.

We would emphasize that the double-peak specific heat
is a universal behavior of the Kitaev phase in spite of
anisotropy g. For this purpose, we have calculated the
specific heat and entropy for several different g up to
2.0, see Fig. 11. It can be found that the high-T peak
is very pronounced while the low-T peak is shifted to
a lower temperature as g is increased. As can be seen
from Fig. 11(b), there is a 1

2 ln 2-plateau of entropy in
the middle region, and the plateau will last for a larger
temperature scale with increasing anisotropy. Thus, in
the large anisotropy limit where g is infinity (or equiv-
alently, g → 0), the low-T peak vanishes and there is
a residual entropy at the zero temperature due to the
2L/2-fold ground-state degeneracy. In this circumstance,
a spin-1 Ising bond of either x-type or y-type is capable
of revealing the residual entropy. The energy spectrum
of this two-site model is {−1, 0, 1}, with a degeneracy
of {2, 5, 2}, respectively. Thus, the partition function is
known to be Ξ = 4 cosh(βK) + 5. According to Eq. (15),
we arrive at the entropy

S =
1

2
ln
(
4 cosh(βK) + 5

)
− 2(βK) cosh(βK)

4 cosh(βK) + 5
. (19)

For large enough temperature, the entropy in Eq. (19)
is expected to yield ln 3. As T becomes infinitely small,
we find that S(T → 0) = 1

2 ln 2. In this circumstance,
the low-temperature peak in the specific heat disappears,
and the sole peak locates at T ' 0.3896 with the maximal
value C̄v ' 0.4974.

VI. CONCLUSION

In this paper, we studied a bond-alternating spin-1 K-
Γ chain, focusing on the nonmagnetic Haldane phase and
Kitaev phase that exhibit unusual excitations. The Hal-
dane phase is an outstanding example of a SPT phase
which is gapped with short-range entanglement, while
the Kitaev phase is a one-dimensional incarnation of the
Kitaev QSL and is not a SPT phase since its lowest entan-
glement spectrum is unique. Whereas both of the phases
have unique ground states under the PBC, the degenera-
cies of the first-excited states are different. It is triplet
degenerate for the former, while it is L-fold degenerate
with L being the chain length for the latter as a result of
the bond-resolved Z2 quantities. Interestingly, they both
possess four-fold degenerate ground states in the case of
the OBC. The degeneracy in the Haldane phase comes
from the spin-1/2 edge states, while it originates from two
marginal Z2 quantities in the Kitaev phase. On top of
the degenerate ground state in the Kitaev phase, the spa-
tial profile of the excitations highly relies on the relative
bond strength g ≡ gy/gx. The excitations are confined at
the boundaries of the chain when g . 1.06 and locate at
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the very middle otherwise. In the former case, the exci-
tations at edges are entangled, weakening the excitation
gap as compared with its PBC counterpart. The quan-
tum phase diagram also contains two dimerized phases
which undergo continuous QPTs to the Haldane phase
when tuning the anisotropy g. In addition, three mag-
netically ordered states are identified, of which the MO

phase is the most energetically favored and is situated
alongside the AFM Kitaev phase.

We also investigated the thermodynamic behaviors of
the Kitaev phase, which is found to exhibit a fascinating
double-peak structure in the specific heat. During the
low-temperature and high-temperature crossover region,
the entropy is released gradually without generating a
plateau. Pertaining to the origin of the double peaks, we
propose that the high-temperature peak relates to the en-
hancement of nearest-neighbor spin correlation while the
low-temperature peak comes from freezing of Z2 quan-
tities and is relevant to the highly degenerate low-lying
excited states. We also find that the double-peak specific
heat is robust against anisotropy g, although the low-
temperature peak is shifted to lower temperature steadily
as g deviates from 1. Notably, a 1

2 ln 2-plateau of entropy
appears in the crossover region.

In closing, we would like to make some remarks on the
connection between the Kitaev phase and the sought-
after QSL in the spin-1 Kitaev honeycomb model [17–
20]. The spin-1 Kitaev QSL has been gaining much at-
tention over the years because of the growing interest in
high-spin Kitaev materials [16]. For both phases, there
is no spontaneously symmetry breaking in the ground
states, and they are gapped with extremely short-range
spin-spin correlations. Noteworthily, they both exhibit
anomalous double peaks in their specific heat. However,
the intrinsic nature of the one-dimensional gapped Kitaev
phase remains to be explored in future works. For exam-
ple, it would be intriguing to know to which class the
Kitaev phase belongs from the perspective of symmetry
fractionalization [69]. Also, calculation of the low-energy
excitation spectrum from the dynamic structure factor
is capable of probing elementary excitations [70]. On all
counts, by using a high-precision numerical study of the
Kitaev phase, our work would offer some insights into the
spin-1 Kitaev QSL on the honeycomb lattice.
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FIG. 12: (a) Specific heat Cv of the isotropic (g = 1) spin-
1/2 Kitaev chain on a closed chain of length L = 6 (red), 8
(green), 10 (blue), and 12 (pink). The filled circles mark the
extreme subleading peaks C̄v at given chain length. The thick
solid line represents the exact specific heat (see Eq. (A3)) in
the thermodynamic limit. (b) Linear extrapolation of the
subleading peaks C̄v to the infinite-size limit.

Appendix A: Specific heat of spin-1/2 Kitaev chain

The Hamiltonian of the Kitaev spin chain reads [71, 72]

HK =

L/2∑
l=1

(
gxS

x
2l−1S

x
2l + gyS

y
2lS

y
2l+1

)
(A1)

where Sl = (Sxl , S
y
l , S

z
l ) is the spin-1/2 operator at site

l, and L is the total number of sites. By using a spin
duality transformation, it could be rewritten as [10]

HK =

L∑
l=1

(
gxS̃

x
2lS̃

x
2l+2 +

gy
2
S̃y2l

)
, (A2)

which is a diluted transverse field Ising model. For this
model, the specific heat is exactly known as [73]

Cv =
1

2

∫ π

0

dk

π

(βεk
2

)2

sech2
(βεk

2

)
(A3)
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FIG. 13: Specific heat Cv of the isotropic (g = 1) spin-1 Ki-
taev chain. The thick black line represents the TMRG result
on an infinite-size system. Based on the energy spectrum of
a 12-site closed chain, the specific heat on a two-level ansatz
(with the first 13 energy levels, red dot-dashed line) and a
nine-level ansatz (with the first 103 energy levels, blue dotted
line) is shown around the low-temperature peak.

where β = 1/(kBT ), and the dispersion energy is εk =

gx
√

1 + g2 + 2g cos k/2 with g = gy/gx. We note that
the prefactor 1/2 in Eq. (A3) comes from the fact that
only one half of the spins (i.e., spins at even sites) are
involved in the Hamiltonian of Eq. (A2).

Figure 12(a) shows the specific heat Cv of the isotropic
(g = 1) spin-1/2 Kitaev chain at finite-size system of
L = 6 (red), L = 8 (green), L = 10 (blue), and L = 12
(pink). It can be found that there is a pronounced peak at
T ' 0.3162, below which there is a subleading peak at a
lower temperature which becomes smaller and smaller as
L is increased. We emphasize that the low-temperature
peak is a finite-size effect and it will disappear as L
goes to infinity (see the thick black line). As shown in
Fig. 12(b), a linear extrapolation of the subleading peaks
indeed gives a zero value when L→∞. In the low tem-

perature region where T . 0.1, the specific heat is subject
to the asymptotic behavior Cv(T ) ' πT/6 [74], signify-
ing a gapless system. This, in turn, demonstrates the
dramatic difference between the spin-1/2 and spin-1 Ki-
taev chains as the latter is gapped and presents a stable
double-peak structure in the specific heat.

Appendix B: Low-temperature peak in a 12-site
spin-1 Kitaev chain

In Fig. 10(a), we have demonstrated that the low-T
peak of the specific heat in the spin-1 Kitaev chain re-
lates to the large degeneracy of the low-lying excited
states. To further strengthen such a conclusion, we now
show the evolution of the low-T peak by increasing the
number of energy levels in a 12-site closed chain. For
this system, the ground state is unique while the first-
excited state is 12-fold degenerate, separated by an ex-
citation gap ∆κ ≈ 0.17630343. Furthermore, the de-
generacies of the first nine energy levels are successively
{1, 12, 12, 12, 6, 12, 12, 24, 12}. Figure 13 shows the low-T
peak based on a two-level ansatz (with the first 13 energy
levels, red dot-dashed line) and a nine-level ansatz (with
the first 103 energy levels, blue dotted line). The TMRG
result (thick black line) is also shown for comparison. We
find that the two-level system could roughly recover the
low-T peak, although the position and height of the peak
deviate from the TMRG result. However, the nine-level
system with 103 energy levels could significantly improve
the result. We note that the number of energy levels is
only a rather small portion (∼ 2 × 10−4 ) of the whole
energy spectrum whose dimension is 312 = 531441. With
the increase in the system size, we believe that an even
smaller portion of the whole energy levels will nicely pro-
duce the low-T peak. In this sense, we highlight the
importance of the degenerate low-lying excited states in
generating the low-temperature peak of the specific heat.
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