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Abstract

A C*-algebra satisfies the Universal Coefficient Theorem (UCT) of
Rosenberg and Schochet if it is equivalent in Kasparov’s K K-theory to
a commutative C*-algebra. This paper is motivated by the problem
of establishing the range of validity of the UCT, and in particular,
whether the UCT holds for all nuclear C*-algebras.

We introduce the idea of a C*-algebra that “decomposes” over
a class C of C*-algebras. Roughly, this means that locally, there are
approximately central elements that approximately cut the C*-algebra
into two C*-subalgebras from C that have well-behaved intersection.
We show that if a C*-algebra decomposes over the class of nuclear,
UCT C*-algebras, then it satisfies the UCT. The argument is based on
a Mayer-Vietoris principle in the framework of controlled K K-theory;
the latter was introduced by the authors in earlier work. Nuclearity is
used via Kasparov’s Hilbert module version of Voiculescu’s theorem,
and Haagerup’s theorem that nuclear C*-algebras are amenable.

We say that a C*-algebra has finite complexity if it is in the small-
est class of C*-algebras containing the finite-dimensional C*-algebras,
and closed under decomposability; our main result implies that all C*-
algebras in this class satisfy the UCT. The class of C*-algebras with
finite complexity is large, and comes with an ordinal-number invariant
measuring the complexity level. We conjecture that a C*-algebra of



finite nuclear dimension and real rank zero has finite complexity; this
(and several other related conjectures) would imply the UCT for all
separable nuclear C*-algebras. We also give new local formulations of
the UCT, and some other necessary and sufficient conditions for the
UCT to hold for all nuclear C*-algebras.
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1 Introduction

Our aim in this paper is to present some new techniques to establish the Uni-
versal Coefficient Theorem in C*-algebra K-theory, and some new necessary
and sufficient conditions for the Universal Coefficient Theorem to hold for
all nuclear C*-algebras.

Unless otherwise stated, anything in this introduction called A or B is a
separable C*-algebra.

1.1 The Universal Coefficient Theorem

A C*-algebra A satisfies the Universal Coefficient Theorem (UCT) of Rosen-
berg and Schochet [55] if for any C*-algebra B, there is a canonical short
exact sequence

0 — Ext(K,(A), K+(B)) — KK(A, B) — Hom(K,(A), K.(B)) — 0.

Equivalently (see [55, page 456] or [60, Proposition 5.2]), A satisfies the UCT
if it is K K-equivalent to a commutative C*-algebra.
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The UCT is known to hold for a large class of C*-algebras. The fun-
damental examples are the C*-algebras in the bootstrap class N. This is
the smallest collection of separable, nuclear C*-algebras that contains all
type I C*-algebras, and that is closed under the following operations: ex-
tensions; stable isomorphisms; inductive limits; and crossed products by R
and Z. Rosenberg and Schochet [55] showed that any C*-algebra in N sat-
isfies the UCT. Another important class of examples was established by Tu
in [64, Proposition 10.7]: building on the work of Higson and Kasparov [35]
on the Baum-Connes conjecture for a-T-menable groups, Tu showed that
the groupoid! C*-algebra of any a-T-menable groupoid satisfies the UCT.
In particular, Tu’s work applies to the groupoid C*-algebras of amenable
groupoids.

There has been other significant work giving sufficient conditions for the
UCT to hold, and in some cases also necessary conditions: as well as the
work mentioned already, one also has for example [60, Proposition 5.2], [53,
Corollary 8.4.6], [21], [43, Remark 2.17], [6, Theorem 4.17|, [4], and [5].
Nonetheless, the bootstrap class and the class of C*-algebras of a-T-menable
groupoids, which are defined in terms of global properties of the C*-algebras
involved, remain the most important classes of C*-algebras known to satisfy
the UCT.

On the other hand, Skandalis [60, page 571] has shown? that there are C*-
algebras that do not satisfy the UCT. Skandalis’s examples are quite concrete:
they are reduced group C*-algebras of countably infinite hyperbolic groups
with property (T), and in particular are exact [44, Section 6.E|. Looking
to more exotic examples, failures of exactness can also be used to produce
non-UCT C*-algebras: see for example [14, Remark 4.3].

Despite these counterexamples, there are no known nuclear C*-algebras
that do not satisfy the UCT. Whether or not the UCT holds for all nuclear
C*-algebras is a particularly important open problem. One reason for this is

ITo be more precise, we need standard assumptions so that the groupoid C*-algebra
is defined and separable: here, appropriate assumptions are that the groupoid is locally
compact, Hausdorff, and second countable, and that it admits a Haar system.

2See also the exposition in [34, Sections 6.1 and 6.2].



the spectacular recent progress (see for example [42, 50, 26, 27, 24, 23, 63, 11])
in the Elliott program [22] to classify simple, separable, nuclear C*-algebras
by K-theoretic invariants. Establishing the range of validity of the UCT is
now the only barrier to getting the ‘best possible’ classification result in this
setting.

On the other hand, work inspired by the Elliott program has led to recent,
and again spectacular, success in the general structure theory of nuclear C*-
algebras, including the recent solution of a large part of the Toms-Winter
conjecture [13, 12]. Our motivation in the current paper is to try to bridge
the gap between properties that are relevant in this structure theory — in
particular the theory of nuclear dimension [70] introduced by Winter and
Zacharias — and properties that imply the UCT. In particular, our aim is to
give local conditions that imply the UCT, in contrast to the global conditions
from the work of Rosenberg and Schochet [55] and Tu [64] mentioned above.

1.2 Decompositions and the main theorem

We now introduce our sufficient condition for the UCT. For the statement
below, if X is a metric space, S is a subset of X, x € X, and € > 0 we write
“v e, 57 if there exists s € S with d(x,s) < e.

Definition 1.1. Let C be a class of unital C*-algebras. A unital C*-algebra®
A decomposes over C if for every finite subset X of the unit ball of A and
every € > ( there exist C*-subalgebras C', D, and E of A that are in the class
C and contain 14, and a positive contraction h € E such that:

(i) [k, z]| <€ for all x € X;
(ii)) he e C, (1 —h)xe. D, and h(l — h)z €. F for all z € X;

(iii) for all e in the unit ball of £, e €. C' and e €, D.

3Not necessarily separable. For applications to the UCT, only the separable case is
relevant, but the definition admits interesting examples in the non-separable case, and it
seems plausible there will be other applications.



One should think of C' and D as being approximately (unitizations of)
ideals in A such that C'+ D = A, and FE being approximately equal to (the
unitization of) C'n D. We will discuss examples later.

Here is our main theorem, which was inspired partly by our earlier work
on the Kiinneth formula (partly in collaboration with Oyono-Oyono) [48, 67],
and partly by our earlier work on finite dynamical complexity (in collabora-
tion with Guentner) [31]*. See Corollary 7.5 below for the proof.

Theorem 1.2. If A is a separable, unital C*-algebra that decomposes over
the class of separable, nuclear C*-algebras that satisfy the UCT, then A is
nuclear and satisfies the UCT.

One can thus think of decomposability as an addition to the closure op-
erations that are used in the definition of the bootstrap class N.

1.3 (*-algebras with finite complexity

Following the precedent established by [30] in coarse geometry, the notion of
decomposability suggests a complexity hierarchy on C*-algebras.

Definition 1.3. Let D denote a class of unital C*-algebras. For an ordinal
number «:

(i) if @ = 0, let Dy be the class of C*-algebras D that are locally® in D;

(ii) if @ > 0, let D, be the class of C*-algebras that decompose over C*-
algebras in J;_, Ds-

A unital C*-algebra D has finite complexity relative to D if it is in D, for
some «. If D is the class of finite-dimensional C*-algebras, we just say that
D has finite complezity.

4This was in turn inspired by the work of Guentner, Tessera, and the second author
on the stable Borel conjecture for groups with finite decomposition complexity [29].

5A C*-algebra is locally in a class D if for any finite subset X of D and any € > 0 there
is a C*-subalgebra C of D that is in D, and such that x €. C for all z € X.



If a unital C*-algebra D has finite complexity relative to D, the complexity
rank of D relative to D is the smallest a such that D is in D,. If D is the
class of finite-dimensional C*-algebras, we just say the complexity rank of D
with no additional qualifiers.

The following result is equivalent to Theorem 1.2 above. However, we
think the reframing in terms of complexity is quite suggestive.

Theorem 1.4. Let C be a class of separable, unital, nuclear C*-algebras that
satisfy the UCT. Then the class of separable, unital C*-algebras that have
finite complezity relative to C consists of nuclear C*-algebras that satisfy the
UCT.

In particular, every separable C*-algebra of finite complexity is nuclear
and satisfies the UCT.

We can now give some non-trivial examples of C*-algebras that decom-

pose over natural, simpler, classes.

Examples 1.5. (i) In Proposition A.1, we show that for 2 < n < oo, the
Cuntz algebra O,, has complexity rank one.

(ii) In [31], Guentner and the authors introduced “finite dynamical com-
plexity” for groupoids, which also comes with a notion of complexity
rank. In Proposition A.8 we show that if G is a locally compact, Haus-
dorff, étale, principal, ample groupoid with compact base space, then
the complexity rank of C*(G) is bounded above by that of G. The
class of groupoids with finite dynamical complexity is quite large: see
Examples A.9 and A.11 below.

Combining part (i) above with Theorem 1.4 gives a new proof of the
UCT for the groupoid C*-algebras of a large class of groupoids. However,
we cannot claim any genuinely new examples: this is because the groupoids
involved are all amenable, so the UCT for their C*-algebras also follows from
Tu’s theorem [64] (see Remark A.13 below for more details).



1.4 Kirchberg algebras

Generalizing the Cuntz algebras from (i) above, recall that a Kirchberg alge-
bra is a separable, nuclear C*-algebra A such that for any non-zero a € A,
there are b,c € A such that bac = 1,4. Kirchberg algebras are closely con-
nected to the UCT problem for nuclear C*-algebras thanks to the following
theorem of Kirchberg: see [53, Corollary 8.4.6] or [43, Remark 2.17].

Theorem 1.6 (Kirchberg). To establish the UCT for all separable, nuclear
C*-algebras, it suffices to establish the UCT for any Kirchberg algebra with
zero K-theory. O

Theorems 1.4 and 1.6 imply that if any Kirchberg algebra with zero K-
theory has finite complexity, then the UCT holds for all separable, nuclear
C*-algebras. Conversely, if the UCT holds for all separable, nuclear C*-
algebras, then from the Kirchberg-Phillips classification theorem [42, 50] (see
also [53, Corollary 8.4.2] for the precise statement we want here), any unital
Kirchberg algebra with zero K-theory will be isomorphic to the Cuntz algebra
O,, and so will have complexity rank one by Examples 1.5, part (i). We

summarize this discussion in the theorem below.
Theorem 1.7. The following are equivalent:

(i) Any Kirchberg algebra with zero K -theory has complezity rank one.

1 separable nuclear C*-algebras satisfy the :
All bl lear C*-algeb fy the UCT 0

Generalizing Example 1.5, part (i) above Jaime and the first author show
in [37] that a Kirchberg algebra that satisfies the UCT has complexity rank
one if and only if its K group is torsion free, and that moreover any UCT
Kirchberg algebra has complexity rank at most two. From Theorem 1.7, if
one could prove this without the UCT assumption, then the UCT for all
separable nuclear C*-algebras would follow.

The paper [37] also discusses several other connections between complex-
ity rank, real rank zero, and nuclear dimension. We will not go into this any
more deeply here; suffice to say that these other connections inspired us to

make the following conjectures.



Conjecture 1.8. Any separable unital C*-algebra with real rank zero and
finite nuclear dimension has finite complexity.

Conjecture 1.9. Any separable unital C*-algebra with finite nuclear di-
mension has finite complexity relative to the class of subhomogeneous® C*-
algebras.

Thanks to Theorem 1.7 and the fact that all Kirchberg algebras have
nuclear dimension one (see [9, Theorem G|) and real rank zero (see [72]),
either of these conjectures implies the UCT for all separable, nuclear C*-
algebras. There are many other related conjectures one could reasonably
make that imply the UCT for all nuclear C*-algebras. About the strongest
such conjecture would be that any separable, nuclear C*-algebra with real
rank zero has finite complexity’. One of the weakest is that any Kirchberg
algebra with zero K-theory has finite complexity.

1.5 A local reformulation of the UCT

We now discuss the methods that go into the proof of Theorem 1.2.

In our earlier work [68], we introduced controlled K K-theory groups
KK (X, B) associated to a C*-algebra B, a finite subset X of a C*-algebra
A and a constant € > 0. Very roughly (we give more details below), one
defines these by representing A in “general position” inside the stable mul-
tiplier algebra M (B ® K) of B. The group K K (X, B) then consists of the
“part of the K-theory of B that commutes with X, up to €”.

To be more precise about this, assume that A and B are C*-algebras,
and assume for simplicity® that A is unital. Let 7 : A - M(B® K) be a

6Recall that a C*-algebra C is subhomogeneous if there is N € N and a compact
Hausdorff space X such that C' is a C*-subalgebra of My (C(X)): see for example [8,

IV.1.4] for background.
"It would also be natural to drop the real rank zero assumption, and then only ask for

finite complexity relative to the subhomogeneous C*-algebras, or even just relative to the

type I C*-algebras.
8The theory also works for C*-algebras that are not unital, but the definitions are a

little more complicated.



faithful, unital, and strongly unitally absorbing” representation. Fixing such
a representation, identify A with a diagonal subalgebra of My(M (B ® K))
via the representation m @ w. For a finite subset X of the unit ball of A and
e > 0, define P.(X, B) to be the set of projections in My(M (B ® K)) such
that p— (; 3) is in My(B®K), and such that |[p,z]| < e for all z € X. The

associated controlled K K -theory group™ is then defined to be the set
KK(X,B) := m(P(X, B))

of path components in P.(X, B). One can show that this group is determined
up to canonical isomorphism by the subset inclusion X < A, by B, and by
e: it does not depend on the choice of representation.

Note that if X = &, then KK?(&, B) is canonically isomorphic to the
usual K-theory group Ko(B) (for any €): this is what we mean when we say
KK.(X,B) consists of the “part of the K-theory of B that commutes with
X, up to €”.

Now, if 0 < d < e and if Y 2 X are finite subsets of Ay, then there is an
inclusion Ps(Y, B) < P.(X, B) that induces a “forget control map”

KKs(Y,B) —» KK.(X, B)

In [68, Theorem 1.1], we showed that there is a short exact ‘Milnor sequence’
relating the inverse system built from these forget control maps to the usual
K K-group KK (A, B): see Theorem 2.13 below for details. This sequence
is an analogue of the Milnor sequence appearing in Schochet’s work [56, 57];
however, unlike Schochet’s version, it is local in nature, and does not require
the UCT.

Our first goal in this paper is to use the Milnor sequence to establish the
following ‘local reformulation’ of the UCT.

9Roughly, a strongly unitally absorbing representation is one that satisfies the con-
clusion of Voiculescu’s theorem for all representations of A on Hilbert B-modules; for
the current discussion, it is just important that such a representation always exists. See
Definition 2.5 below for details.

101t is canonically a group, with the operation given by Cuntz sum in an appropriate

sense.
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Theorem 1.10. Let A be a unital C*-algebra. Then the following are equiv-
alent:

(i) A satisfies the UCT.

(i1) Let B be a separable C*-algebra such that K.(B) =0, and let 7 : A —
M(SB®K) be a strongly unitally absorbing representation into the sta-
ble multiplier algebra of the suspension of B. Then for any finite subset
X of A and any € > 0 there exists a finite subset Y of A containing X

and § < € such that the canonical forget control map
KK;(Y,SB) > KK.(X,SB)
for the suspension of B s zero.

This is a key ingredient in our main results, but we hope it will prove to
be useful in its own right. Note in particular that there are no assumptions
on A other than that it is separable and unital'’.

There is a technical variation of Theorem 1.10 that applies to nuclear
C*-algebras, and that plays an important role in our arguments. The key
point is one of order of quantifiers: condition (ii) from Theorem 1.10 starts

with quantifiers of the form
“YBVm VX Ve dY 30....7

If A is nuclear, the same statement is true with the order of quantifiers
replaced with
“Ye 40 VB Vr VX JY...7

i.e. 0 depends only on € and not on any of the other choices involved. To
establish this, we adapt an averaging argument due to Christensen, Sin-
clair, Smith, White, and Winter [17, Section 3], which is in turn based on
Haagerup’s theorem that nuclear C*-algebras are amenable [33].

1Unitality is not really necessary - we do not do it in this paper, but similar tech-
niques establish the result above for non-unital separable C*-algebras, with appropriately
reformulated controlled K K-groups.

11



1.6 Strategy for the proof of the main theorem

Assume that A is a nuclear, unital C*-algebra that decomposes with respect
to the class of nuclear UCT C*-algebras as in the statement of Theorem
1.2. Assume moreover that K,(B) = 0. Thanks to Theorem 1.10 above, to
establish the UCT for A it suffices to show that for any finite subset X of
the unit ball A; of A, and any € > 0 there exist Y 2 X and § < € such that
the canonical forget control map

KK(Y,SB) —» KK°(X,SB)

is zero.

Our approach to this is inspired directly by our earlier work with several
collaborators: this includes the work on the Kiinneth formula of Oyono-
Oyono and the second author [48], and separately by the first author [67];
the work of Guentner and the authors on the Baum-Connes conjecture for
transformation groupoids with finite dynamical complexity [31]; and the work
of Guentner, Tessera, and the second author on the stable Borel conjecture
for groups of finite decomposition complexity [29]. These other papers all
use controlled K-theory as opposed to K K-theory; the seminal result along
these lines is the second author’s work on the Novikov conjecture for groups
with finite asymptotic dimension [71].

In the current context, we use decomposability and a Mayer-Vietoris ar-
gument. Let v > 0 be a very small constant, which is in particular smaller
than e. Then any suitably small'? § > 0 will have the following property. Let
h and C, D, and E be nuclear UCT algebras as in the definition of decom-
posability for the given set X and parameter §. Let Yz, Yp and Y be finite
subsets of the unit balls Cy, Dy, and E; respectively that contain hX U {h},
(1—h)X U {h} and h(1 — h)X U {h} respectively up to d-error, and so that
Yo and Yp both contain Yz up to d-error. Let Y = Yo uYp uYgu X. Then

12The size of v depends linearly on € and the size of § depends linearly on «y; the constants
involved are very large.
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one can construct a diagram'® of the form:

KKO(Y, SB)"“ 22 K KO (Yo, SB) @ K K%(Yp, SB) ,

l

KK, (Y, $*°B) —2~ KK°(X, SB)
(1)
where the vertical arrow is the canonical forget control map. This diagram

has the “exactness” property that if [p] goes to zero under the map
ke @ kp : KKQ(Y,B) - KK%(Ye,SB) ® KKY%(Yp, SB) (2)
then the image of [p] under the forget control map K KY(Y, SB) — KK?(X,SB)

is in the image of the map
0: KK, (Yg, S*B) - KK?(X, SB). (3)

However, as K,(B) = 0, if 7 and ¢ are small enough, one can use Theorem
2.15 (in the stronger form for nuclear C*-algebras) to choose Y¢, Yp, and Y
large enough so that the maps in lines (2) and (3) are zero. This completes
the proof.

In the detailed exposition below we structure the proof to give it as ‘local’
a flavor as possible, partly as we suspect that the ideas might be useful in
other contexts. The two main ‘local’(ish) technical results are recorded as
Propositions 7.1 and 7.2 below.

The argument above is directly inspired by the classical Mayer-Vietoris
principle. Indeed, assume that C' and D are nuclear ideals in A with intersec-
tion E, and such that A = C' + D. Then there is'* an exact Mayer-Vietoris

sequence

. — KK°(E,SB) - KK°(A,B) - KK°(C,B)® KK°(D,B) — --- .

13The form of this diagram is not new: the basic idea is modeled on [29, Diagram
(5.8)] from the work of the Guentner, Tessera, and the second author on the stable Borel
conjecture for groups with finite decomposition complexity. See also [31, Proposition 7.6]
from work of the Guentner and the authors in a more closely related context.

141t is not in the literature as far as we can tell. For nuclear C*-algebras, it can be derived
from the usual long exact sequence in K K-theory using, for example, the argument of [69,
Proposition 2.7.15].
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In particular if the groups at the left and right are zero, then the group in
the middle is also zero. Our analysis of the diagram in line (1) is based
on a concrete construction of this classical Mayer-Vietoris sequence that can
be adapted to our controlled setting. The idea has its roots in algebraic
K-theory, going back at least as far as [46, Chapter 2]. Having said this,
there is significant work to be done adapting these classical ideas to the
analytic superstructure that we built in [68], and the resulting formulas and
arguments end up being quite different.

Remark 1.11. It would be very interesting to remove the nuclearity hypoth-
esis from Theorem 1.2, or at least to replace it with something weaker such
as exactness. Let us explain how nuclearity is used in the proof of Theorem
1.2, in the hope that some reader will see a way around it.

The first use of nuclearity is to show that any nuclear, unital C*-algebra
admits strongly unitally absorbing representations whose restriction to any
nuclear, unital C*-subalgebra is also strongly unitally absorbing: see Corol-
lary 2.7 below. The proof of this is based on Kasparov’s version of Voiculescu’s
theorem for Hilbert modules [40, Section 7]. It seems plausible from the dis-
cussion in Remark 2.8 below that some form of nuclearity is necessary for
this to hold, but we do not know this.

The second place nuclearity is used is via an averaging argument due
to Christensen, Sinclair, Smith, White, and Winter [17, Section 3|; this is
applicable to nuclear C*-algebras thanks to Haagerup’s theorem that nuclear
C*-algebras are always amenable [33]. This lets us prove a stronger version
of Theorem 1.10: see Corollary 2.22 below. We do not know if this result
holds without nuclearity: see Remark 2.19 for a more detailed discussion.

1.7 Notation and conventions

For a subset S of a metric space X, x € X and € > 0, we write “z €. S” if
there is s € S with d(z,s) < e. For elements x,y of a metric space X, we
write “z ~ y” if d(x,y) < e.

We write (2 for *(N). Throughout, the letters A and B are reserved for
separable C*-algebras. The letter C' will refer to a possibly non-separable

14



C*-algebra. The unit ball of C' (or a more general normed space) is denoted
by (1, its unitization is C'", its multiplier algebra is M (C'), its suspension is
SC, and its n-fold suspension is S™C. We write M,, or M, (C) for the n x n
matrices, and M, (C) for the n x n matrices over a C*-algebra C'.

Our conventions on Hilbert modules follow those of Lance [45]. We will
write Hg := (> ® B for the standard Hilbert B-module, and £Lp, respectively
Kp, as shorthand for the C*-algebra L(Hp) of adjointable operators on Hp,
respectively the C*-algebra KC(Hpg) of compact operators on Hg. We will
typically identify L5 with the “diagonal subalgebra” 1, ® Lp of M,,QLp =
M,(Lp). Thus we might write “[z,y]” for the commutator of x € Lp and
y € M,(Lp), when it would be more strictly correct to write something like
“Mar, @z, y]”.

The symbol “®” always denotes a completed tensor product: either the
external tensor product of Hilbert modules (see [45, Chapter 4] for back-
ground on this), or the minimal tensor product of C*-algebras (see for ex-
ample [10, Chapter 3]).

We will sometimes write 0,, and 1,, for the zero matrix and identity ma-
trix of size n when this seems helpful to avoid confusion, although we will
generally omit the subscripts to avoid clutter. If n < m, we will also use
1, € M,,(C) for the rank n projection with n ones in the top-left part of the
diagonal and zeros elsewhere. Given an n x n matrix a and an m x m matrix
b, a ® b denotes the “block sum” (n +m) x (n +m) matrix defined by

a 0
b= .
a® (O b)

Finally, K,(A) := Ky(A) ® K;(A) denotes the graded K-theory group of
a C*-algebra, and KK*(A, B) := KK°(A, B)®KK'(A, B) the graded K K-
theory group. We will typically just write K K (A, B) instead of KK°(A, B).

1.8 QOutline of the paper

Section 2 gives our reformulation of the UCT in terms of a concrete vanishing
condition for controlled K K-theory. The key ingredients for this are the

15



Milnor sequence from [68, Theorem 1.1], and some ideas around the Mittag-
Leffler condition from the theory of inverse limits (see for example [66, Section
3.5]). We also show that a stronger vanishing result holds for nuclear, UCT
C*-algebras using an averaging argument of Christensen, Sinclair, Smith,
White, and Winter [17, Section 3]; the averaging argument is in turn based
on Haagerup’s theorem [33] that nuclearity implies amenability.

Section 3 discusses our controlled K K°-groups. We introduced these in
[68], but we need a technical variation here. This is essentially because in
[68] we were setting up general theory, and for this it is easier to work with
projections in a fixed C*-algebra. In this paper we are doing computations
with concrete algebraic formulas, where it is more convenient to work with
general idempotents, and to allow taking matrix algebras. We will, however,
use both versions in this paper, as we need to relate our work back here to
the general theory of [68]. We also introduce controlled K K'-groups in a
concrete formulation using invertible operators: in our earlier work [68] we
(implicitly) defined controlled K K'-groups using suspensions, but here we
also need the more concrete version.

Section 4 collects together some technical facts. These are all analogues
for controlled K K-theory of well-known results from K-theory: for example,
we prove “controlled versions” of the statements that homotopic idempotents
are similar, and that similar idempotents are homotopic (up to increasing
matrix sizes). Some arguments in this section are adapted from the work of
Oyono-Oyono and the second author [47] on controlled K-theory.

Section 5 revisits the vanishing conditions of Section 2. Using the tech-
niques of Section 4, we reformulate these results in the more flexible setting
allowed by Section 3. This gives us the vanishing conditions that are the first
main technical ingredient needed for Theorem 1.2.

Section 6 establishes the second main technical ingredient needed for The-
orem 1.2. Here we construct a “Mayer-Vietoris boundary map” for controlled
K K-theory, and prove that it has an exactness property. The construction
is an analogue of the usual index map of operator K-theory (see for example
[54, Chapter 9]), although concrete formulas for the Mayer-Vietoris bound-
ary map unfortunately seem to be missing from the C*-algebra literature.
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The formulas we use are instead inspired by classical formulas from algebraic
K-theory [46, Chapter 2], adapted to reflect our analytic setting.

Finally in the main body of the paper, Section 7 puts everything together
and gives the proofs of Theorem 1.2 and Theorem 1.4. We also include
technical ‘local” vanishing results that we hope elucidate the structure of the
proof, and might be useful in other contexts.

The paper concludes with Appendix A, which gives examples of C*-
algebras with finite complexity. We first use a technique of Winter and
Zacharias [70, Section 7] to show that the Cuntz alegbras O,, with 2 < n < o
have complexity rank one. We then use our joint work with Guentner on dy-
namic complexity [31] to show that ample, principal, étale groupoids with fi-
nite dynamical complexity and compact base space have C*-algebras of finite
complexity; we also get a similar result without the ampleness assumption
if we allow C*-algebras with finite complexity relative to subhomogeneous

C*-algebras.
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2 Reformulating the UCT

In this section (as throughout), if B is a separable C*-algebra, then L5 and
K are respectively the adjointable and compact operators on the standard
Hilbert B-module ? @ B.
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Our goal in this section is to recall the definition of the controlled K K-
theory groups, and then to reformulate the universal coefficient theorem in
these terms.

We first recall the definition of the controlled K K-theory groups from
[68]: to be precise, we need the version from [68, Sections A.1 and A.2] that
is specific to unital C*-algebras. We need a definition.

Definition 2.1. Let B be a separable C*-algebra. Choose a unitary iso-
morphism ¢? =~ C?® (? ® (2, which induces a unitary isomorphism (> ® B =~
(C’® (*® (?) ® B of Hilbert B-modules. With respect to this isomorphism,

10
let e € L be the projection corresponding to 0 0 ® legrer. We call e

the neutral projection. A subset X of Lp is called large if every x € X is of
the form 1czge ®y for some y € L((*® B) with respect to this decomposition.

Definition 2.2. Let B be a separable C*-algebra. Let ¢ > 0, let X be a
finite, large, subset of the unit ball of Lg and let ¢ € L be the neutral
projection as in Definition 2.1. Let P.(X, B) consist of those projections p
in Lp such that:

(i) p—ee Kp; and
(ii) ||[p, x]| < € for all x € X.

Define K K. (X, B) to be the set my(P(X, B)) of path components of P.(X, B).
We write [p] € KK (X, B) for the class of p € P.(X, B).

Choose now isometries t1,t, € B(¢?) satisfying the Cuntz relation t,t7 +
toty = 1, and define s; := 12 ® t; ® legp € Lp. Define an operation on
KK (X, B) by the Cuntz sum

[p] + [q] := [s1ps] + s2q55].

The same proof as [68, Lemma A.4] shows that K K (X, B) is an abelian
group, with identity element given by the class [e] of the neutral projection.
We finish this subsection with two ancillary lemmas. The first is ex-
tremely well-known; we include an argument for completeness as we do not

know a convenient reference.
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Lemma 2.3. Let a and b be elements of a unital C*-algebra with b normal.
Then any z in the spectrum of a is contained within distance |a — b|| of the
spectrum of b.

Proof. We need to show that if z is further than |a — b| from the spectrum
of b, then a — z is invertible. Indeed, in this case the continuous functional

calculus implies that ||(b — 2)7| < |a — b|~!. Hence
l(a=2)b—2)"" =1 <l(a—2) = (b—2)l(b—2)""] <1,
whence (a — 2)(b — z)™! is invertible, and so a — z is invertible too. O

Lemma 2.4. Let B be a separable C*-algebra, let € > 0, and let X be a
finite, large, subset of the unit ball of Lg. With notation as in Definition
2.2, the group KK (X, B) is countable.

Proof. As B is separable Kp is separable, and so the set P.(X, B) is also
separable. Let S be a countable dense subset of P.(X, B). It suffices to show
that the map S — KK (X, B) defined by p — [p] is surjective.

Let p € P.(X, B) be arbitrary, and define

§ += min { (e — max |[p. 2]]), 1/2}.

Let g € S be such that |p —q|| < 6, and let p, := (1 — t)p + tq for t € [0, 1].
Then for each ¢ € [0,1], |p: — p| < 9, so Lemma 2.3 and that p; is a positive
contraction implies that the spectrum p, is contained in [0,d) U (1 -4, 1]. Let
X be the characteristic function of (1/2,00). Then |x(p;) — pif| < 0 for all ¢,
whence [|x(p:) — p| < 20 for all ¢, from which it follows that |[x(p:), ]| < €
for all t and all x € X. As p, — e € Kp for all t, it follows from the fact that
Kp is an ideal in Lp that x(p;) — e € Kp too. Hence (x(pt))iefoq] is a path
connecting p and ¢ within P.(X, B) so [p] = [¢], and we are done. O

2.1 The general case

We need a special class of representations on Hilbert B-modules, essentially
taken from work of Thomsen [62, Definition 2.2] (see also [68, Definition
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A.11]). We do not need the details of the definition below, and only include
it for completeness: all we really need are the facts about existence of such

representations in Lemma 2.6 below.

Definition 2.5. Let A be a separable, unital C*-algebra, and let B be a
separable C*-algebra. A representation o : A — Lg is unitally absorbing if
for any unital completely positive map ¢ : A — Lp there exists a sequence
of isometries (v,) in Lp such that |vio(a)v, — ¢(a)| — 0 as n — oo, and
such that vio(a)v, — ¢(a) € Kp for all n e N.

For a representation o : A — Lz = L(Hp), let ¢® : A — L(HE™)
be its infinite amplification, which we identify with a representation o* :
A — Lp via a choice of unitary isomorphism (¢2)®® =~ (? as in the string of
identifications below

L(HE®) = L((?® B)®®) = L(((*)®* ® B) =~ L((*® B) = L

(all of the identifications labeled “=" are canonical). A unital representation
m . A — Lp is strongly unitally absorbing if there is a unitally absorbing
representation o : A — Lp such that 7 = ¢©%.

Note that a (strongly) unitally absorbing representation is faithful. The
following result is essentially due to Thomsen and Kasparov. Our main use
of part (ii) occurs much later in the paper.

Lemma 2.6. Let A be a separable, unital C*-algebra, and let B be a separable
C*-algebra. Then:

(1) There exists a strongly unitally absorbing representation m: A — Lp.

(ii) Assume in addition that A or B is nuclear. Let o : A — B({?) be
any faithful unital representation, let v : B((*) — Lp be the canonical
inclusion arising from the decomposition Hgp = (?® B, and let m : A —
Lp be the infinite amplification of 1 o 0. Then 7 is strongly unitally

absorbing.

20



Proof. For part (i), Thomsen shows in [62, Theorem 2.4] that a unitally
absorbing representation o : A — Lp exists under the given hypotheses. Its
infinite amplification 7 is then strongly unitally absorbing.

For part (ii), note first that identifying (10 0)® with (10 (69%°))* we may
assume o is the infinite amplification of some faithful unital representation
A — B(¢*). Having made this assumption, note that o(A) n K(¢?) = {0}. In
[40, Theorem 5], Kasparov shows that if A is a separable, unital C*-algebra
and 0 : A — B(£?) is a faithful representation such that o(A) n K(¢?) = {0},
and moreover if either A or B is nuclear, then the composition ¢ o o satisfies
the condition Thomsen gives in [62, Theorem 2.1, condition (4)]. Comparing
(62, Theorem 2.1] and Definition 2.5, we see that ¢ o ¢ is unitally absorbing.
Hence 7 = (1 0 0)®® is strongly unitally absorbing. ]

The following corollary is immediate from part (ii) of Lemma 2.6.

Corollary 2.7. Let A be a separable, unital, nuclear C*-algebra, and let B
be a separable C*-algebra. Then there exists a strongly unitally absorbing
representation w : A — Lp such that the restriction of m to any unital,
nuclear C*-subalgebra of A is also strongly unitally absorbing. ]

Remark 2.8. Corollary 2.7 is one of the two places nuclearity is used in the
proof of Theorem 1.2, so it would be interesting to establish the corollary
under some weaker assumption than nuclearity. The following observation
shows that the method we used to establish Corollary 2.7 cannot extend
beyond the nuclear case, however.

Let A be a separable, unital C*-algebra, and let A = B. Let 0 : A —
B(?) be a unital representation, and let 7 := 100 : A — L4 be as in Lemma
2.6 part (ii). We claim that if 7 is unitally absorbing, then A is nuclear'.
Let ¢ : A — L4 be the *-homomorphism a — 1, ® a. If 7 is unitally
absorbing then for any € and finite subset X of A there is an isometry v € L4
such that |[v*m(a)v — @(a)|| < € for all @ € X. For each n, let p, € B((?)
be the orthogonal projection onto £2({1,...,n}), and let ¢, := p, ® 14 € L4.

15The following argument is inspired by [60, Théoréme 1.5, Definition 1.6, and Remarque
1.7].
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Note that ¢ £4q; identifies canonically with A, and up to this identification
q¢(a)q = a for all a € A, so in particular |gv*m(a)vgy — al| < € for all
a€ X. As (g,) converges strictly to the identity in L4, and as q1v € K4, we
have moreover that ¢v*g,m(a)q,vq; converges in norm to g v*m(a)v*q, so
there is n such that |qv*g,m,(a)g,vqr — al| < € for all a € X. We thus have
ucp maps

A a—>qnm(a)gn qn(B(€2)®1A)qn . Mn((C) b—qrv¥bugy A

whose composition agrees with the identity on X to within € error. As X and
e were arbitrary, this implies nuclearity of A (see for example [10, Chapter

2]).

To state the main result of [68], we need some more definitions.

Definition 2.9. Let A be a separable, unital C*-algebra, and let B be a
separable C*-algebra. A representation m : A — Lp is large if there is a
unitally absorbing representation o : A — Lp such that with respect to the
choice of isomorphism 2 ® B =~ C2® (> ® > ® B of Definition 2.1, we have
m(a) = le2ge: ® o(a) for all a € A.

Lemma 2.6 part (i) implies that large representations exist for any (sepa-
rable) A and B. Note that if 7 is large in the sense of Definition 2.9 then for
any X < A, the subset 7(X) < Lp is large in the sense of Definition 2.1. In
particular, if we identify X with 7(X), the group KK (X, B) of Definition
2.2 makes sense.

Definition 2.10. Let C' be a C*-algebra, and let X consist of all pairs of
the form (X, ¢) where X is a finite subset of C, and ¢ > 0. Put a partial
order on X¢ by stipulating that (X, ¢€) < (Y,0) if 0 < ¢, and if for all z € X
there exists y € Y with |z — y|| < (e — ).

A good approzimation of C' is a cofinal sequence'® ((X,,€,))%_; of ele-
ments of X..

16 A sequence (s,,)*_; in a partially ordered set S is cofinal if s; < s2 < s3 < --- and if
for all s € S there is n such that s < s,,.
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Note that if X € Y and § < ¢, then (X,¢) < (Y,0); in particular, this
implies that X is a directed set. Note also that good approximations exist if

and only if C'is separable: if (¢,) is a decreasing sequence that tends to zero,

o]

and (X,,) is an increasing sequence with dense union in C, then ((X,, €,))r_,

is a good approximation; and if ((X,,€,)*_; is a good approximation, then
UZO:l X,, is a countable dense subset of (.

Definition 2.11. Let B be a separable C*-algebra, and let X, be the
directed set from Definition 2.10 above for the C*-algebra Lg. If (X, ¢) <
(Y,;0) and X and Y are both large in the sense of Definition 2.1, then with

notation as in Definition 2.2 there is an inclusion
Ps(Y,B) < P.(X, B). (4)
We call the canonical map
KKs(Y,B) > KK. (X, B)
induced by the inclusion in line (4) above a forget control map.

We now briefly recall some terminology from homological algebra: see
for example [66, Section 3.5] or [58, Section 3] for more background on this
material'”. An inverse system of abelian groups consists of a sequence of

abelian groups and homomorphisms

N Pn An dn—1 Anfl Pn—2 P2 A2 1 Al '

Associated to such a system is a homomorphism

¢ : HAn - nAm (an) = (Pn(ani1)).

neN neN

The inverse limit, denoted lim A,,, is defined to be the kernel of id — ¢,
and the lim'-group, denoted lim'A,,, is defined to be the cokernel of id — ¢.

Note that if m > n, there is a canonical homomorphism A,, — A, defined as
OPnOPni10---0¢,m_1. The inverse system satisfies the Mittag-Leffler condition
if for any n there is N > n such that for all m > N, the image of the canonical
map A,, — A, equals the image of the canonical map Ay — A,.

1"Readers interested in a more sophisticated and general treatment can also see [38].
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Proposition 2.12. Let (A,) be an inverse system of abelian groups. If
(A,) satisfies the Mittag-Leffler condition, then lilnlAn = 0. Conwversely, if
lim'A,, = 0 and each A, is countable, then the inverse system satisfies the
ﬂ}ittag—LeﬁCler condition.

Proof. 1t is well-known that the Mittag-Leffler condition implies vanishing
of lim'A,, = 0: see for example [66, Proposition 3.5.7]. The converse in the

case of countable groups follows from [28, Proposition on page 242]. O

Now, let A be a separable, unital C*-algebra, let B be a separable C*-
algebra, and use a large representation 7 : A — Lp (see Definition 2.9) to
identify A with a C*-subalgebra of Lp. Let ((X,,€,))s; be a good approx-
imation of A as in Definition 2.10, so the forget control maps of Definition

2.11 form an inverse system
--— KK (X,,B)— KK, (X,-1,B)— - — KK, (X1, B)

from which we define lim KK, (X,, B) and lim' K K, (X,, B) as above.
The following is [68, Proposition A.10].

Theorem 2.13. Let A and B be separable C*-algebras with A unital. Let
m: A — Lpg be a large representation, and use this to identify A with a
C*-subalgebra of Lp. Let ((X,,€,))_, be a good approzimation for A. Then

there is a short exact sequence
0 —lim'KK,, (X,,SB) » KK(A,B) - limKK,, (X,,B) =0 0.

We are now almost ready to state and prove our reformulation of the
UCT. It will be convenient to use the following well-known reformulation of
the UCT: see [55, Page 457] or [60, Proposition 5.3] for a proof.

Theorem 2.14. A separable C*-algebra A satisfies the UCT if and only if for
any separable C*-algebra B such that K,(B) = 0 we have that KK (A, B) =
0. O

Theorem 2.15. Let A be a separable C*-algebra. The following are equiva-
lent:
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(i) A satisfies the UCT.

(ii) Let B be a separable C*-algebra with K,(B) = 0. Let m: A — Lgp be
a large representation, and use this to identify A with a C*-subalgebra
of Lsg. Then for any (X,v) in the set X4 of Definition 2.10, there is
(Z,€) € Xa with (X,v) < (Z,€) and so that the forget control map

KK (Z,SB) - KK,(X,SB)
of Definition 2.11 1is zero.

Proof. Assume first that A satisfies condition (i), and let X, ¢, B and 7
be as in condition (ii). Let ((X,,e€n));"; be a good approximation of A
with X; = X and ¢ = . As A satisfies the UCT and as K,(B) = 0, we
have KK(A, B) = 0. Hence using Theorem 2.13, liianKen(Xn,SB) = 0.

Lemma 2.4 implies that the groups KK, (X,,, SB) are all countable, whence
by Proposition 2.12; the inverse system (KK, (X,,SB))r_, satisfies the
Mittag-Leffler condition. On the other hand, as A satisfies the UCT and
K,.(SB) = 0, we have KK(A,SB) = 0 by Theorem 2.14. Hence by Theo-
rem 2.13 again, lim K K, (X, SB) = 0, whence the definition of the inverse

limit implies that for any n,

(] mage(K K., (X, SB) > KK.,(X,,SB)) = 0.

m=n

The Mittag-Leffler condition implies that there is N > n such that
() Image(K K., (X, SB) > KK, (X,,SB))
m=n
= Image(KKeN(XN, SB) - KK, (X,, SB))
so we may conclude that the forget control map

KK ., (Xn,SB) - KK, (X,,SB)

is zero. In particular, such an N exists for n = 1, and we may set Z = Xy

and € = ey.
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Conversely, say A satisfies condition (ii). Using Theorem 2.14, it suf-
fices to show that if B is a separable C*-algebra with K,(B) = 0, then
KK(A,B) = 0. Let my : A — Lg2p (respectively, m3 : A — Lgsp) be a
large representation, and use this to identify A with a C*-subalgebra of Lg2p
(respectively, Lg3p). Using condition (ii) we may construct a good approxi-
mation ((X,,€,))s, for A in the sense of Definition 2.10 such that for any

n the maps

KK%H(XHH,S:‘B) — KK, (X,,S°B) (5)
and

KK%H(XHH,SQB) — KK, (X,,S*B) (6)

are zero. As the maps in line (5) are all zero, the inverse system (K K., (X,,, S*B))®_,
satisfies the Mittag-Leffler condition, whence by Proposition 2.12 we have

that lim' K K., (X, S*B) = 0. On the other hand, the fact that the maps in

line (63 are all zero and the definition of the inverse limit immediately imply

that limK K, (X,,,S?B) = 0. Hence in the short exact sequence

0— lim'KK., (X, S°B) » KK(A, $*B) — lim KK, (X,,S?B) — 0

from Theorem 2.13 the left and right groups are zero, whence K K (A, S?B) =
0. Hence by Bott periodicity, K K (A, B) = 0 as desired. ]

We include the following remark as the comparison to the existing liter-
ature might help orient some readers; it also gives a sense of why Corollary
2.7 is useful (our main use of that corollary will come later in the paper).

Remark 2.16. Theorem 2.15 can be used to deduce a weak version of a the-
orem of Dadarlat [21, Theorem 1.1]. Dadarlat shows that if A is a separable
nuclear C*-algebra such for any finite subset X of A and any ¢ > 0, one has
a UCT subalgebra C' of A such that z €. C for all z € X, then A satisfies
the UCT. Theorem 1.2 implies the special case of Dadarlat’s theorem where
the subalgebras C' can also be taken nuclear.

To see this, note first that as a C*-algebra satisfies the UCT (respectively,
is nuclear) if and only if its unitization satisfies the UCT (respectively, is

nuclear) by [55, Proposition 2.3 (a)] (respectively, by [10, Exercise 2.3.5]), we

26



may assume that A is unital. We aim to establish the condition in Theorem
2.15 part (ii). Let then B be a separable C*-algebra with K,(B) = 0. Using
Corollary 2.7, there exists a large representation 7 : A — Lgp such that the
restriction of 7 to any unital nuclear C*-subalgebra of A is also large. Let
X be a finite subset of Ay, and let € > 0. Let C' be a nuclear, unital, UCT
C*-subalgebra of A such that z €./5 C for all z € X. Let X' be a finite subset
of C; such that for each x € X there is 2/ € X’ such that |z — 2| < 2¢/5.
Then the forget control map

KK s(X',SB) — KK.(X, B) (7)

of Definition 2.11 is defined. As C satisfies the UCT, and as the restriction
of m to C' is also large, condition (ii) from Theorem 2.15 gives a finite subset
Y of C; and 6 > 0 such that the forget control map

KK;5(Y,SB) — KK, 5(X', SB) (8)

is defined and zero. Composing the forget control maps in lines (7) and (8),
we have established the condition from Theorem 2.15 part (ii) for A, and are
done.

It would be interesting if one could use these techniques to recover Dadar-
lat’s theorem without the extra nuclearity assumption on the UCT subalge-
bras. This would seem to require better control over the representations

involved, however: compare Remark 2.8 above.

2.2 The nuclear case

In this section, we prove a stronger version of Theorem 2.15 in the special
case that the C*-algebra A is nuclear. The key ingredient for this is an
averaging argument due to Christensen, Sinclair, Smith, White, and Winter
[17, Section 3], which in turn relies on Haagerup’s theorem [33] that nuclear
C*-algebras are amenable.

Let us recall some terminology about bimodules.

Definition 2.17. Let A be a unital C*-algebra. An A-bimodule is a Banach
space E equipped with left and right module actions of A such that 14e =
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ely = e for all e € E, and such that |jae| g < |a]|a]e|r and |ea|r < |le]zllal 4
forallae Aand ee E.

The following reformulation of nuclearity is implicit in [17, Section 3]; the

reader is encouraged to see that reference for further background.

Lemma 2.18. Let A be a unital C*-algebra. Then the following are equiva-
lent:

(i) A is nuclear;

(i1) for any € > 0 and any finite subset X of A, there exist contractions
ai,...,an € A and scalars ty,...,t, € [0,1] such that 3" t; = 1, such

that
1A — Z tiaiaz‘
i=1

and such that for any A-bimodule E, any e € Ey, and any x € X,

T ( Zn: tiaiea;“> — ( Zn: tiaiea;“> x
i=1 i=1 5

<€,
A

<e. 9)

Proof. We will need to recall the projective tensor product of Banach spaces.
Let E and F be (complex) Banach spaces, and let E©F denote their algebraic
tensor product (over C). The projective norm of g € E® F' is defined by

lgll == inf > ezl fil r. (10)
i=1

where the infimum is taken over all ways of writing g as a sum >, , €;® f; of
elementary tensors. The projective tensor product of E and F, denoted EQF,
is the completion of £ ® F for the projective norm. If A is a C*-algebra,
we make A®A into an A-A-bimodule via the actions defined on elementary
tensors by

ab®c) :=ab®c and (b®c)a:=b® ca. (11)
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Now, it is shown in [17, Lemma 3.1]'® that a unital C*-algebra is nuclear if
and only if the following holds: “for any € > 0 and any finite subset X of A,
there exist contractions aq, ..., a, € A and scalars ti, ..., t, € [0, 1] such that
> ti =1, such that

<€,
A

n
1A — Z t,-aia;"
i=1

and such that

<e€ (12)

x(itiaiéﬁa;‘) — (étiai@)a;‘)x

for all z € X.” For the sake of this proof, let us call this the “CSSWW”
condition. It suffices for us to show that condition (ii) is equivalent to the
CSSWW condition.

First assume A satisfies condition (ii) above. Then taking £ = A®A and
e = 14®14 shows that A satisfies the CSSWW condition. Conversely, say A
satisfies the CSSWW condition. Let X be a finite subset of A and let € > 0,
and let aq, ..., a, and tq, ..., t, satisfy the properties in the CSSWW condition
with respect to this X and e. Let E be an A-bimodule, and e € F;. Consider
the map

ARQA

T:AOA—->E, a®b— aeb

from the algebraic tensor product (over C) of A with itself to E. Using the
definition of the projective tensor norm (line (10) above), it is straightfor-
ward to check that 7 is contractive for that norm, whence it extends to a
contractive linear map m : A®RA — E. Moreover, the extended map 7 is
clearly an A-bimodule map for the bimodule structure on ARA defined in
line (11). Applying 7 to the expression inside the norm in line (12) therefore
implies the inequality in line (9), so we are done. O

18This is based on several deep ingredients: the key points are the result of Connes
[20, Corollary 2] that amenability for a C*-algebra implies nuclearity; the converse to this
due to Haagerup [33, Theorem 3.1]; and Johnson’s foundational work on amenability and
virtual diagonals [39, Section 1].
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Remark 2.19. We will only need to apply Lemma 2.18 in the special case
that the bimodule E in part (ii) is a C*-algebra containing A as a unital
C*-subalgebra, with the bimodule actions defined by left and right multi-
plication. The corresponding, formally weaker, variant of condition (ii) still
implies nuclearity, as we now sketch'”. Let A be a unital C*-algebra satisfy-
ing the variant of condition (ii) from Lemma 2.18, where E' is a C*-algebra
containing A as a unital C*-subalgebra. Let m: A — B(H) be an arbitrary
unital representation, which we use to make B(H) an A-bimodule. Let I be
the directed set consisting of all pairs i = (X, €) where X is a finite subset
of A, and € > 0, and where (X,¢) < (Y¥,9) if X € Y and § < e. For each
i=(X,e) el let agi), ...,aﬁf} and tgi), ...,t%} have the properties in Lemma

2.18 condition (ii). For each i, define a ccp map
¢i: BUH) = BUH), b~ 3 1 n(a))or(a”)",
j=1

and let ¢ : B(H) — B(H) be any point-ultraweak limit point of the net
(¢;) (such exists by [10, Theorem 1.3.7], for example). Then one checks that

' whence the latter is

¢ is a conditional expectation from B(H) onto 7(A)
injective. As 7 was arbitrary, this implies that A is nuclear: indeed, applying
this to the universal representation 7 implies that w(A)" is injective, whence
A** = m(A)” is injective by [8, IV.2.2.7], whence A is nuclear by the main

result of [16].

Variants of the next lemma we need are well-known: see for example the
lemma on page 332 of [3], which we could have used for a purely qualitative

version. For the sake of concreteness, we give a quantitative?” version.

19This also gives an approach to the theorem of Connes that amenable C*-algebras are
nuclear that is maybe slightly more direct than the original argument from [20, Corollary
2]. However, it still factors through the theorem that injective von Neumann algebras are
semi-discrete (see [19, Theorem 6] for the case of factors, and [65] for the general case), so
cannot really be said to be genuinely simpler.

20The estimate it gives is optimal in some sense: to see this consider C' = My(C),

T = (g 125),andc= ((1) (1))
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Lemma 2.20. Let § € [0,1/2), and let x be a self-adjoint element in a C*-
algebra C with spectrum that does not intersect the interval (6,1 —0). Let x
be the characteristic function of (1/2,0). Then for any c € C,

(@), el < =5l ]l

Proof. Let N > |z|. Let v be the positively oriented rectangular contour
in the complex plane with vertices at 1 5 £iN, and 2N £ iN. Then by the
holomorphic functional calculus, x(z ) = ;- Sz —a2)” 'dz. Hence for any

ceC, [x(xz),c] = 5= SW[(Z —x)7 !, c]dz. Applying the formula

[(z—2)" e = (z—2) e, 2](z —2)

and estimating gives

Ib(a). ] < C$'j| 22 (13)

Let 41 be the side of v described by {5 +it | =N <t < N}, and let 75 be the
union of the other three sides. Then for z in the image of 75, the continuous
functional calculus implies that [[(z — )7 < (V — |z|)~!. As the length of
9 is 4N, we thus see that

AN
| 1= Pel < e (14)

On the other hand, for z = %—F it in the image of 1, the continuous functional
calculus gives ||(z — )7 < ((3 — 6)* +¢?) V2 , whence
N 0
1 1 T
—1)2
d —————dt < ———dt = .
Jjemnrrads [ gt < | g 1

Combining lines (13), (14), and (15) we get

umwmu<”%fQNfﬁﬂy+li5)

Letting N — oo gives |[x(x), ]| < %, which is the claimed estimate. [
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The following lemma is our key application of Lemma 2.18.

Lemma 2.21. Let ¢ € (0,1). Let B be a separable C*-algebra, and let A
be a separable, unital, nuclear C*-algebra. Let m : A — Lgp be a large
representation (see Definition 2.9), and use this to identify A with a C*-
subalgebra of Lsp.

Let X be a finite subset of Ay, and let (Y,0) be an element of the set X
of Definition 2.10 such that (X, €) < (Y,d). Then there exists a finite subset
Z of A1 containing X and a homomorphism

¢x : KK 3(Z,B) - KK;(Y, B)
such that the following diagram

KK s(Z,B)

ol TN

KKs(Y, B)—> KK.(X, B)

(where the unlabeled maps are forget control maps as in Definition 2.11)

commutes.

Proof. Let X, Y, and 0 be as in the statement. If § > €/8, we may just take
Z =Y and ¢, the forget control map. Assume then that § < €/8. According
to Lemma 2.18 there exists contractions ay, ...,a, € A and ty,....t, € [0,1]
such that >  t; =1, such that

n
1A — Z tiaia;"
i=1

and such that for all y € Y and b in the unit ball of Lp,

y(itiaibaf) — <itiaiba2‘)y
i=1 i=1

We set Z := X u {af,...,a’}, and claim this works.

< 0/4,
A

< /4. (16)

Lsp
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Let p € Pys(Z,B), let e € L be the neutral projection (see Definition
2.1), and define

n n
= Z tia;pa; + (e — Z tiaiea;") €Lp
i=1 i=1

As the representation is large, we may use the fixed isomorphism ¢? ® B =~
C?*® (> ® B to identify Lp with My(Lp) and have that with respect to
this identification, operators in A are diagonal matrices, and e = (é 3) In

particular, e commutes with all the a;, and so we have

<1 — Zn: tiaia >
=1

<5+
4

+ZHM@ZH+
=1

lp — a(p)

(1—21&% e

+ g. (17)

€
8

As § < ¢/8 and as € < 1, we see that [p — «(p)| < ;. As p is a projection,

Lemma 2.3 implies that
spectrum(a(p)) n (1/4,3/4) = @. (18)

Let x be the characteristic function of (1/2,00), so y is continuous on the
spectrum of a(p) and we may define ¢(p) := x(a(p)). The rest of the proof
will be spent showing that the formula [p] — [¢(p)] defines a homomorphism

¢s : KK 5(Z,B) - KK;(Y, B)

with the claimed properties.
We first claim that if p € P.s(Z, B), then ¢(p) is in Ps(Y, B). Note first

that .
a(p) —e = Etiai(p —e)al
i=1

which is in K. As Kp is an ideal in Lp, it follows f(a(p)) — f(e) is in
Kp for any polynomial f. Letting (f,) be a sequence of polynomials that
converges uniform to y on the spectrum of «(p) and letting n — oo, we see
that x(a(p)) — e is in K. Let now y € Y and apply the inequality in line
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(16) once with b = p and once with b = e (and use that [e,y] = 0) to deduce
that

lla(p), vl < o/2. (19)

Lines (19), (18), and Lemma 2.20 imply that |[x(a(p)),y]|l < d, completing
the proof that ¢(p) is an element of Ps(Y, B). Moreover, it is straightforward
to see that the assignment

PE/S(ZaB) _)PfS(YaB)’ p'_)¢(p)

takes homotopies to homotopies and Cuntz sums to Cuntz sums. Hence we
do indeed get a well-defined homomorphism

¢ KK 3(Z, B) > KK5(Y,B),  [p] — [6(p)]

as claimed.
It remains to show that the diagram

KK s(Z,B)

al T

KK;(Y,B)——~ KK.(X,B)

commutes. For this, let p € Pcs(Z, B) represent a class in K K5(Z, B), and
for t € [0, 1], define p; := (1 — ¢)p + ta(p). Then by line (17), we have that
lpe —pll < £+ 3% <1 forall ¢ € [0,1], so in particular

spectrum(p;) N (1/3,3/4) = @ for all t¢e[0,1]. (20)

Hence x(p;) is a well-defined projection for all ¢ € [0, 1]. We claim that x(p;)
is an element of P.(X, B) for all t € [0, 1]; as x(p1) = x(a(p)) and x(po) = p,
this will complete the proof.

For this last claim, note first that p, — e € Kp for all ¢ € [0, 1], whence
(analogously to the case of y(a(p)) argued above) x(p;) — e € Kp for all
t € [0,1]. Morever, for all z € Z,

€

) €
2l < M~ + Il < 2(5+2) + £ < 5,

8§ 2
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where the last inequality used that § < ¢/8. Hence by line (20) and Lemma
2.20, |[[x(pe), z]| < € for all z € Z, and so in particular for all z € X. This
completes the proof that x(p;) € P.(X, B) for all t € [0, 1], so we are done. [

Corollary 2.22. Let A be a separable, unital, nuclear C*-algebra. The fol-

lowing are equivalent:

(1) A satisfies the UCT.

(i1) Let € € (0,1), and let B be a separable C*-algebra B with K.(B) = 0.
Let m: A — Lgp be a large representation, and use this to identify A
with a C*-subalgebra of Lsg. Then for any finite subset X of Ay there
is a finite subset Z of Ay such that (X,€) < (Z,€/8) in the sense of
Definition 2.10, and so that the forget control map

KK s(Z,SB) - KK.(X,SB)

of Definition 2.11 is zero.
Proof. Using Theorem 2.15, it suffices to show that condition (ii) from that
theorem implies condition (ii) from the current corollary (the converse is
immediate). Let then e, B, w, and X be as in the statement. Then condition
(ii) from Theorem 2.15 gives (Y,d) = (X, ¢) in the sense of Definition 2.10
such that the associated forget control map

KK;(Y,SB) > KK.(X,SB)
of Definition 2.11 is zero. Lemma 2.21 then gives a finite subset Z of A;
containing X and a homomorphism
¢ KKys(Z,5B) - KK5(Y,5B), [p]— [6(p)]

such that the following diagram

KKe/g(Z, SB)
¢*l \
KK(;(Y, SB) —>KK€(X, SB)

commutes (the unlabeled arrows are forget control maps). Hence the diagonal
forget control map in the above diagram is zero, which is what we wanted to
show. 0
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3 Flexible models for controlled K K-theory

In this section (as throughout), if B is a separable C*-algebra, then £z and
K p denote respectively the adjointable and compact operators on the stan-
dard Hilbert B-module #2® B. For each n, we consider L5 as a subalgebra of
M, (Lp) via the “diagonal inclusion” Lg = 1y, ® L < M,,® L = M, (Lp).

Our goal in this section is to give flexible models for controlled K K-theory
that will be useful for computations. Contrary to the usual conventions of
C*-algebra K-theory, we base our new even and odd groups on idempotents
and invertibles rather than projections and unitaries. The extra flexibility
this allows is very useful for computations. The main reason for not writing
the whole paper using the more flexible model is that we previously estab-
lished Theorem 2.13 in [68] using the version of controlled K K-theory from
Definition 2.2 above, so need to use that model where we are directly ap-
plying Theorem 2.13. Moreover, we need the results from Section 4 in the
current paper (which are also independently needed in Section 6) to relate
the two models.

3.1 The even case

Our goal in this subsection is to define a variant of the controlled K K-theory
groups of Section 2, but based on idempotents rather than projections. For
the next definition, we recall that C* denotes the unitization of a C*-algebra
C, and that if a € M,(C) and b € M,,(C) are matrices over a C*-algebra,
then a @ b denotes the matrix (‘; 2) in M, (C).

Definition 3.1. Let B be a separable C*-algebra, let X be a subset?' of
the unit ball of Lp, let K > 1, let € > 0, and let n € N. Define P, ,, (X, B)
to be the collection of pairs (p,¢) of idempotents in M, (K}) satisfying the
following conditions:

21Unlike Definition 2.2, we do not require X to be “large” in the sense of Definition 2.1.
Essentially, largeness is needed to ensure that the sets KK (X, B) of Definition 2.2 are
groups; we show the sets we define in Definition 3.1 are groups by using matrix arguments
and a weaker equivalence relation in this definition.
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(i) [l < & and [qf < &;
(ii) ||[p,x]| < € and |[q, x]| < € for all x € X;

(iii) the classes [o0(p)],[0(q)] € Ko(C) defined by the images of p and g under
the canonical quotient map o : M, (K}) — M, (C) are the same.

Define .
POO,H,G(X7 B) = |_| Pn,n,e(Xy B)J

n=1

i.e. Py re(X, B) is the disjoint union of all the sets P, (X, B).
Equip each P, .. (X, B) with the norm topology it inherits from M, (Lg)®
M, (L), and equip Py (X, B) with the disjoint union topology. Let ~ be
the equivalence relation on Py, . (X, B) generated by the following relations:

(i) (pq) ~ (p@r,q@r) for any element (r,r) € Py (X, B) with both
components the same;

(ii) (p1,q1) ~ (p2,q2) whenever these elements are in the same path com-
ponent of Py, . (X, B).*

Define KK} (X, B) to be equal as a set to Pu, (X, B)/ ~, and provisionally
define a binary operation + on KK (X, B) by [p1,¢1] + [p2, 2] :== [p1 @
q1, P2 @ G2

The next lemma is essentially the same as [68, Lemma A.21].

Lemma 3.2. With notation as in Definition 3.1, KK\ (X,B) is a well-
defined abelian group with identity element the class [0,0] of the zero idem-
potent.

Proof. Checking directly from the definitions shows that K Kg,e(X ,B) is a
well-defined (associative) monoid with identity element the class [0,0]. A
standard rotation homotopy shows that K K,g,E(X , B) is commutative. To

22Equivalently, both are in the same P, . (X, B), and are in the same path component
of this set.
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complete the proof we need to show that any element [p,¢] has an inverse.
We claim that this is given by [g¢, p]. Indeed, applying the rotation homotopy

p 0 cos(t) sin(t)\ [q 0\ [cos(t) —sin(t) o
<<0 q) ’ (—sin(t) Cos(t)) (0 p) (Sin(t) cos(t) >>’ te0,m/2]

shows that (p® q,¢®p) ~ (PD ¢, p® q), and the element (p D q,p @ q) is
equivalent to (0,0) by definition of the equivalence relation. ]

The following lemma gives a useful description of cycles (p, q) € Peo (X, B)
that define the zero class in KK (X, B) .

Lemma 3.3. With notation as in Definition 3.1, let (p,q) € Pnx(X,B),
and assume that [p,q] = 0 in KK (X,B). Then there is m € N and an
element (s,5) of Puiomr.(X, B) such that (p @ 1, @ 0, ¢ D 1, ® 0,,) is in
the same path component of Ppiomanc(X, B) as (s,s).

Proof. For elements (p1, ¢1) and (pa, g2) in P 4. (X, B) let us write: (p1,q1) —
(p2; @2) if (P2, q2) = (p1 @ 7,1 ® ) for some (r,7) € Po (X, B); (p1,¢1) L
(p2, q2) if there is a path connecting these elements; and (p1,q1) < (p2,¢2)
if (p2,q2) — (p1,q1). Then [p,q] = 0 means that there is some sequence
of moves from {—, «, Q} starting at (p,¢) and finishing at (0,0). It is not
difficult to see the following: any time a move from {—, «, ild} is consecu-
tively repeated we may replace it by a single move of the same type; any

Y

h h
occurrence of “~—" may be replaced by an occurrence of “—~"; any occur-

7

rence of “—2 may be replaced by an occurrence of “fi<—”; any occurrence
of “——” or 4ty may be replaced by « R o» (we leave the details to
the reader in each case). Using these replacements, we see that our moves
relating (p, ¢) to (0,0) may be assumed to be of the form (p, q) Sl (0,0),
or in other words that there are elements (r,7) and (¢, %) in Py 4. (X, B) such
that (p@r,q@®r) is homotopic to (¢,1).

To complete the proof, note then that (p ®@r® 1 —r,g®r® 1 —7r) is
homotopic to (t@®1—r,t@®1—r). For t € [0,7/2], define

S (7’ 0) N (cos(t) —sin(t)) <0 0 > (cos(t) sin(t))
lo oo sin(t)  cos(t) 0 1—r) \—sin(t) cos(t)
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SO (rt)te[om/Q] is a path connecting r®1 —r and 1® 0. One computes that
|rell <1+ K <2k for all ¢, and that |[ry, z]| < € for all x € X. Hence with
s=1t®1—r we get the claimed result. O]

We will need a more general variation of Definitions 2.10 and 2.11.

Definition 3.4. Let C' be a C*-algebra. Let X/, consist of all triples of the
form (X, k,€) where X is a finite subset of the unit ball of C', Kk > 1, and
e > 0. Put a partial order on X/, by (X, k,¢) < (Y, ),0) if § < ¢, A < k and
if for all x € X there exists y € Y with [lz — y|| < 3 (e — 9).

Let now B be a separable C*-algebra. Then if (X, s, ¢) < (Y, A,0) in A7 _,

one checks that for each n we have
Pars (Y, B) S Pppe(X, B). (21)
We call the canonical map
KK} ,(Y,B) > KK, (X, B)

induced by the inclusions in line (21) above a forget control map.

3.2 The odd case

Our goal in this subsection is to introduce an odd parity version of the
controlled K K-theory groups of the previous section. For the statement,
recall that C'* denotes the unitization of a C*-algebra C.

Definition 3.5. Let B be a separable C*-algebra, let X be a subset of the
unit ball of Lg, let k =1, let € > 0, and let n € N. Define U, . (X, B) to be
the subset of those invertible elements u in M, (K}) satisfying the following

conditions:
(i) JJu| <& and [u™"] < &;

(i) |[u,z]|| < € and |[[u~!, z]| < € for all z € X.
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Define .
uoo,n,E(Xa B) = |_| un,n,&(X7 B)a

n—1
i.e. Uy (X, B) is the disjoint union of all the sets U, (X, B).

Equip each U, . (X, B) with the norm topology it inherits from M, (Lg),
and equip | " Uy x(X, B) with the disjoint union topology. Define an
equivalence relation on Uy . (X, B) to be generated by the following rela-

tions:
(i) for any k € N, if 1y € Uy .(X, B) is the identity element, then u ~
u® Ly

(ii) uy ~ ug if both are elements of the same path component of U, o, (X, B).**

Define KK (X, B) to be Uy (X, B)/ ~, and provisionally define a binary
operation + on KK, (X, B) by [u1] + [uz] := [uy @ uy].

Lemma 3.6. With notation as in Definition 3.5, KK} (X,B) is a well-
defined abelian group with identity element the class [1g] of the unit of B.

Proof. 1t is straightforward to check that KK ;,E(X , B) is a monoid, and the
class [1] is neutral by definition. A standard rotation homotopy shows that
KK, (X,B) is commutative. It remains to show that inverses exist. We
claim that for u € U, . (X, B), the inverse of the class [u] is given by [u™!].
Indeed, consider the homotopy

_fu O\ [cos(t) —sin(t)| (1 0 cos(t)  sin(t) 0
" (0 1) (Sin(t) cos(t) ) (0 ”1> (—sin(t) Cos(t))’ te[0,m/2].

This connects u@u ! and 1y, so it suffices to show that this passes through
Usp 2. (X, B). For the commutator condition, we compute that for a € X
and t € [0, 27]

[a,u] = [a, u] 0 cos?(t) cos(t) sin(t) .
’ 0 [ut,a]) \cos(t)sin(t) —cos*(t)

ZEquivalently, both are in the same U,, 2, (X, B), and are in the same path component

of this set. Notice also the switch from k to 2« here, which is needed for our proof that
KK} (X,B) is a group.
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The scalar matrix on the right has norm | cos(t)|, and the matrix on the left
has norm at most max{|[a, u]|, |[a,u™']|} <€, so ||[a,us]| < €. For the norm
condition, we compute that

u 0 cos®(t)  cos(t)sin(t) sin®(t) — cos(t) sin(t)

Uy = 1 . 2 + . .92 .
0 —u cos(t)sin(t)  —cos*(t) cos(t) sin(t) sin”(t)

The first scalar matrix appearing above has norm |cos(t)|, and the second

has norm |sin(¢)|. We thus have that |w|| < x|cos(t)| + |sin(t)|, which is at
most?* 2k as required. O

Definition 3.7. Let C' be a C*-algebra, and let X/, be the directed set of
Definition 3.4 above. Let B be a separable C*-algebra. Then if (X, k,¢€) <
(Y, A,0) in X7, one checks that for each n we have

un,)\,§(y7 B) - un,n,e<Xa B) (22>
for all n. We call the canonical map
KK},(Y.B) € KK} (X, B)

induced by the inclusions in line (22) above a forget control map.

4 Homotopies, similarities, and normalization

In this section (as throughout), if B is a separable C*-algebra, then L5 and
K denote respectively the adjointable and compact operators on the stan-
dard Hilbert B-module ?® B. For each n, we consider Lp as a subalgebra of
M, (Lp) via the “diagonal inclusion” Lg = 1y, ® Ly = M,,® Ly = M, (Lp).

Our goal is to establish some technical lemmas about the controlled
KK-groups KK (X,B) and KK (X,B) and the underlying sets of cy-
cles Py (X, B) and Uy, .. (X, B) from Definitions 3.1 and 3.5 respectively.
These are all variants of standard facts from C*-algebra K-theory, but the

24We suspect the optimal estimate is & — this is the case if u is normal, for example —
but were unable to do better than 4/1 + k2 in general.
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arguments are more involved as we need to do extra work to control commu-
tator estimates. Some of the material is adapted from the foundational work
of Oyono-Oyono and the second author on controlled K-theory [47]; those
authors work in the ‘dual’ setting to us in some sense, and similar techniques
are often useful.

Most of the results in this section come with explicit estimates. We have
generally not tried to get optimal estimates, but as it might be useful for
future work we have tried to point out where one might expect the estimates
to be optimal where this is simple to do.

4.1 Background on idempotents

In this subsection we look at idempotents in C*-algebras and their relation-
ship to projections. Most of this is well-known; nonetheless, we give proofs
for the sake of completeness where we could not find a good reference.

To establish notation, let us first note that if p € B(H) is an idempotent,
then with respect to the decomposition H = Image(p) ® Image(p)*, p has a

p- (; g) (23)

for some a € B(Image(p)*, Image(p)); conversely, any operator admitting a

matrix representation

matrix of this form with respect to some orthogonal direct sum decomposition
of the underlying Hilbert space defines an idempotent.

Lemma 4.1. If p is an idempotent bounded operator on a Hilbert space that
is neither zero nor the identity, then |1 — p| = |p| and |p — p*| < ||p|.

Proof. Writing p as in line (23) (and using that neither Image(p) nor Image(p)*
are the zero subspace), we compute that

Ip|? = [pp*| = |1 + aa*| = 1+ |a|? (24)
and moreover that
[1=p[> =11 =p)*(L=p)| = |1+ a*a] = 1+ [a]* = |p]*.
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Looking now at p — p*, we see that

0101 = <_O 3) (O _oa> - (o O)

whence |p — p*[? = |a|* < ||Ip|?. =

Corollary 4.2. If kK = 1, and p s any idempotent in a C*-algebra with
[p < &, then [1 —p| < &, [p—p*| <k, and |2p — 1| < 2.

Proof. The estimates for |1 —p| and [p—p*| are immediate from Lemma 4.1
(and direct checks for the degenerate cases p = 0 and p = 1). The estimate
for 2p — 1 follows as 2p — 1 = p — (1 — p). O

It will be convenient to formalize a standard construction in C*-algebra
K-theory for turning idempotents into projections (compare for example [7,
Proposition 4.6.2]).

Definition 4.3. Let p be an idempotent in a C*-algebra C. Define z :=
L+ (p—p*)(p* —p) € C*, and note that z > 1+ so z is invertible. Define
ro=pp*zt
to p.

, which is an element of C. We call r the projection® associated

Remark 4.4. If C' is a concrete C*-algebra and p is an idempotent with
matrix representation as in line (23), then one computes that the associated

projection has matrix representation

10
r= (0 0) (25)

with respect to the same decomposition of the underlying Hilbert space. In
particular, r is the projection with the same image as the idempotent p.

Lemma 4.5. Let p be an idempotent in a C*-algebra C, and assume that
Ip| < & for some Kk = 1. Let r be the projection associated to p as in
Definition 4.3, and for t € [0,1] define ry := (1 —t)p+tr. Then the following
hold:

25Tt will be shown to be a projection in the next lemma.
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(i) The element r is a projection in C, and there is an invertible u € C*

Y= ». Moreover, u and its inverse have norm at most

such that upu~
1+ |p|, and u is connected to the identity through a path of invertibles
such that all the invertibles in the path and all of their inverses have

norm at most 1 + ||p|.

(ii) Fach ry is an idempotent such that |ri| < k for all t, and the map
t — 1y 15 k-Lipschitz.

(i11) For anyce C andt € [0, 1] we have ||[ry, c]| < (1+2¢t)|[p, c]|+t|[p, ¢*]]-

(iv) The map
peClp=p"}—{peClp=p"=p"}
that takes an idempotent to its associated projection is 1-Lipschitz.

Proof. Part (i) as in line (23), we may write p = ((1) ‘5), and note as in line

(24) that |p| = 4/1 + ||a|?, so in particular ||a| < |p||. Using the discussion

in Remark 4.4 we see that u = (3 ‘j) satisfies upu™! = r, and that the

ta

path u; = (3 connects u to the identity through invertibles of norm at

1

most 1 —I; [ta| < 1+ ||p|. The claims on the norms of the inverses follow as
)

(or see for example the proof of [7, Proposition 4.6.2]).

For part (ii), we write p as in line (23), note that |al| < &, and also that
r has the matrix representation as in line (25). This implies the claimed
properties.

For part (iii), we again write p as a matrix as in line (23). Let ¢ € C, and
with respect to the same decomposition of the underlying Hilbert space, let

Ci1 Ci12
c= .
(021 sz)
Then one computes that

[p, c] _ <a021 C12 + ACoo — cna> ' (26)

us write

—C1 —C10
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As the conditional expectation that sends a matrix to its diagonal is contrac-

acoy 0
0 —C21Q

and combining this with line (26) gives

0  ci12+acyy —cq1a
—C21 0

One computes that the top right entry of [p — p*, ¢| is acas — ¢11a, whence

tive, we have

< [[p: el

< 2|[p, ]|l (27)

lacos — ennal < [[[p = p* el < ll[p; elll + [[[p, ¢*]Il

This and line (27) together imply that

()

As r has the matrix representation from line (25
(

< 3lp, el + [lp, <1 (28)

), the left hand side of the
inequality in line (28) equals ||[r, ]|, and so line (28) can be rewritten as the
inequality |[r, c]| < 3|[p, ]| + |[p, c*]|- As r: = (1 — t)p + tr, this implies
the claimed estimate.

For part (iv) we may assume that C' is a concrete C*-algebra. As noted
in Remark 4.4, the projection r associated to an idempotent p is then simply

the orthogonal projection with the same image as p. In this language, part
(iv) is [41, Chapter One, Theorem 6.35]. O

4.2 From similarities to homotopies

Our goal in this short subsection is to establish an analogue of the standard
K-theoretic fact that similar idempotents are homotopic, at least up to to
increasing matrix sizes. Compare for example [7, Proposition 4.4.1].

Proposition 4.6. Let B be a separable C*-algebra, let X be a subset of the
unit ball of L, and let k = 1 and € > 0. Let (po,q) and (p1,q) be elements
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of Pure(X,B), and let u € Uy, . (X, B) be such that upou™' = p;. Then the
elements (po@0,,, ¢D0,,) and (p1 D0, ¢D0,,) are in the same path component
0f Paon.ss 3n2(X, B), and in particular, (po,q) and (p1,q) define the same class
in KK, (X, B).

The analogous statement holds with the roles of the first (“p”) and second
(“q”) components reversed.

Proof. Define

- cos(t) —sin(t)| (1 0 cos(t) sin(t) . .
¢ <sin(t) cos(t) ) (0 u) <— sin(t) COs(t)) Mo (KF).-
Then the path

t— (Ut(p0®0n)U;17Q®On)v te [077T/2]

connects (pg @ 0,,,¢ D 0,,) to (p1 @ 0y, ¢ D 0,,) through Pa,, .3 3.2.(X, B). We
leave the direct checks involved to the reader. O

4.3 Normalization

Our goal in this subsection is to show that cycles for KK} (X,B) and
KK ;76()( , B) can be assumed to have prescribed “scalar part”, at least up to
some deterioration of x and e.

The following lemma is well-known without the Lipschitz condition?®: see
for example [7, Theorem 4.6.7] or [36, Corollary 4.1.8].

Lemma 4.7. Let L > 0. Then if (p)iwefo) s an L-Lipschitz path of pro-
jections in a unital C*-algebra C, there is a (3L)-Lipschitz path (uy)epo1) of
unitaries in C such that ug = 1, and such that p; = wpou; for all t € [0,1].

We need a preliminary lemma.

26The constant 3 appearing in the statement is not optimal: one can see from the proof
that 3 can be replaced with 2 + ¢, for any ¢ > 0. We do not know what the optimal
constant is.
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Lemma 4.8. Letn > 1, and let C be a unital C*-algebra. Then the map
{ceCle=n} > C, c—c?
18 %ng/Q—Lz’pschitzw.

Proof. For any positive real number ¢, one has

2 Q0
12 = —f (A2 4 t) 7t

™ Jo

whence for any positive invertible elements ¢, d € C'

V2 gl = %f@ (N +c) = (N +d) 1)dA (29)

Using the formula
N+t =N+ d) T =N+ (d—o) (N +d)?

and assuming that ¢ > 7! and d > n~!, the continuous functional calculus
implies that

[+ ) = (W +d) 7 < e —d| (A +071) 7"

This inequality and line (29) imply that
2)ec—d|| [~
HC—1/2 o d—l/QH < HC H J ()\2 + n—l)—Qd)\‘
T 0

The integral on the right hand side equals (77%?)/4, whence the result. [

Proof of Lemma 4.7. We first claim that it suffices to show we can choose a
d > 0 such that if [¢;,t2] is a sub-interval of [0, 1] of length at most J, and
t — p; is a projection-valued L-Lipschitz function on [t,%3], then there is
a unitary-valued (3L)-Lipschitz function ¢ — wu; on [ty, %] such that uy = 1
and p; = wpouj for all t € [t1,t3]. Indeed, if we can do this, then let

2"The constant is optimal in some sense: this follows as the absolute value if the deriva-
tive of the function ¢ — ¢~%2 on [p7!, 00) has maximum value £7%2.
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0=ty <t < - <ty =1Dbea partition of the interval [0, 1] such that
each subinterval has length at most §, and for each i € {0, ..., N — 1} choose a
unitary-valued (3L)-Lipschitz function t — u? on [ti, ti+1] such that u(f) =1
and p; = ugi)pti (uﬁ”)* for all t € [t;,t;11]. The function on [0, 1] defined on
each subinterval [t;,t; 1] by

t— uti)ug_l)ugﬁ) - -ug?)
then has the right properties to establish the lemma.

Let us then establish the statement in the claim. Let € > 0 be small
enough that (1 —(2+¢)e) 2+ (1 +€)?(1—(2+¢)e)~*? < 3, and let 6 > 0 be
such that if ¢, s € [0, 1] satisfy |t —s| < 9, then |ps —pi|| < €. Let [t1,12] be an
interval of length at most §. For ¢ € [t1,t5], define z; := pypy, + (1—p¢) (1—py,)
and note that

lze =1 = 12pe = 1)(pe, — Pl < 1120 = 1llpe, — pell < e,

and so each z; is invertible, |z,| < 1 + ¢, and also |2;!| < (1 — €)~! by the
Neumann series formula for the inverse. One computes that x;p;, = pipy, =
Py, and so xtptlxt_l = pi. Moreover, py, x} = x;p;, and so py, xyxy = Tiprry =

—-1/2

xfxepy,, 1.e. zix, commutes with py, . If we define wy := zy(x}fz,)~"*, we have

that w; is unitary and moreover
—1 *, \—1/2 % \1/2,.—1 -1
Wiprwy - = Ty (T T) i, (@F ) / Ty = TiPu Ty = Pt

It remains to show that the path defined on [ti,t3] by t — w; is (3L)-
Lipschitz.
We first note that for s, ¢ € ¢, 2], we have that

lzs =il = (21 = ps) (2P, = DI < pe = psl < Lls =2 (30)

by assumption that (p;) is L-Lipschitz. Using that |z < 1 + ¢, this implies
that for any s,t € [t1, to]

|wfee — alas| < llaf — 2l + oo — 2o < 2(1 + €)L|s — 1]
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Moreover, |1—z}z;| < (2+¢€)e, whence 1 —(2+¢€)e < ¥z, and so in particular
I(zFz) 2 < (1= (24 €)e)™? forall te[t,ts]. (31)

Hence moreover Lemma 4.8 (with n = (1 — (2 + ¢))™!) implies that for any
S, te [tl, tg]

[(afe) ™ = (aZw) Pl < (1= 2+ )P (L+e)Lls — 1. (32)
Lines (30), (32), and (31) combined with the fact that |x;]| < 1 + € for all
t € [t1,t2] implies that for any s,t € [t1, t2]
Jwe = w,|| <[ — ||| (Fwe) ™2 + [ (2F ) 72 = (2Fw,) 72
<(1—(2+€)e) V2L|s —t| + (1 + €)*(1 — (2 + €)e)>2L|s — |
which implies the desired estimate by choice of e. O]

For the statement of the next definition, recall that for [ € {1,...,n}, we
let 1; € M,,(C) be the rank [ projection with [ ones in the top-left part of the
diagonal and zeros elsewhere.

Definition 4.9. With notation as in Definition 3.1, define

Pl (X.B) - (P, ) € Pry.e(X, B) | 3 € N such that (p,q) — (1, 1)
" is in M,,(Kp) ® M,,(Kp)
Define P, . (X, B) to be the disjoint union of these sets as n ranges over N.

Here is the first of our main goals for this subsection: it allows control of
the “scalar part” of cycles for KK} (X, B).

Proposition 4.10. Let B be a separable C*-algebra. Let X be a self-adjoint®®
subset of the unit ball of Lg, let €¢ >0, let kK = 1, and let n € N.

(i) Any element Py, (X, B) is in the same path component of Py, 4x3.¢(X, B)
as an element of P, ;s (X, B)*.

28We mean here that X = X* not the stronger assumption that every z € X is self-
adjoint.

29If k = 1, one can replace 4x> with 1 in the statement: we leave the details to the
reader.
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(ii) If two elements (po,qo) and (p1,q1) of P!

e (X, B) are connected by a
path in P, (X, B), then they are connected by a path in 73,}075746()(, B).
Moreover, if L = 1 is such that there is an L-Lipschitz path in Py, . (X, B)
connecting (po, qo) and (p1,q1), then there is a (20xL)-Lipschitz path in

77711,,{746()(, B) connecting (po, qo) and (p1,q1).

Proof of Proposition /.10. For part (i), assume that (p,q) is an element of
Prre(X, B). Hence by definition of P, . (X, B), if K} is the unitization of
Kgpand o : M,,(K}) — M,(C) is the canonical quotient map then the classes
[0(p)] and [0(q)] in Ky(C) are the same, so in particular the idempotents
o(p) and o(q) have the same rank. Using Lemma 4.5 part (i), there are paths
of invertibles (u)se[o,1] and (vt)sefo,1] in M, (C) and projections r, s such that
u; = vy is the identity, such that ugrug’ = o(p), such that vosvy* = o(q),
and such that the norms of all the w;, all the v; and their inverses are all
at most 1 + Kk < 2k. On the other hand, r and s have the same rank,
whence there are paths of unitaries (u;)iwe[1,97 and (ve)eefo,1] in M, (C) such
that u; = v; is the identity, and such that wsrui = 1;, and vesvy = 1;.
As scalar matrices commute with X, the path ((wpu; ', v,qv; '))ieqo.2) passes
through P, 4.3 (X, B), and connects (p, ¢) to an element of 7371745376()(, B) as
required.

For part (ii), we just look at the statement involving Lipschitz paths;
the case of general continuous paths follows (in a simpler way) from the
same arguments, and is left to the reader. Assume that (po,qo) and (p1,q1)
(X, B) that are connected by an L-Lipschitz path that

passes through P, . (X, B). In particular there exists [ € N such that o(py) =

are elements of P!

n,K,€

0(qo) = 1, = o(p1) = o(q1). Let r¢ be the projection associated to py as in
Definition 4.3. As in Lemma 4.5, part (ii), the path defined for ¢ € [0, 1] by
t — (1 —1t)po+tro is k-Lipschitz and connects py and ry through idempotents
of norm at most k. Moreover, Lemma 4.5, part (iii) implies that for all z € X
and all t € [0, 1]

I[(L = )po + tro, ]| < (1 + 2t)[[[po, ]| + t][po, 2]

As X = X* this implies that |[(1 —t)po + tro, z]| < 4€ for all z € X, and all
t € [0,1]. Note also that o((1 — t)pg + tro) = 1; for all t. Similarly, we get
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so which has the same properties with respect to ¢o. We have thus shown
that (po,qo) is connected to the element (rg,sg) via a r-Lipschitz path in
Pn

projection (71, s;) via a k-Lipschitz path in P}

(X, B). Completely analogously, (p1, ) is connected to its associated

ki de
wac(X, B). Moreover, using
Lemma 4.5, part (iv), we have that (ro, so) and (r1, s1) are connected by an
L-Lipschitz path of projections in P, 1 4(X, B), say ((7¢, 5¢))te[0,1]-

Now, consider the path (o(r.), o(s¢))ieo0,17 in My, (C)@M,(C), which is also
L-Lipschitz. Lemma 4.7 gives (3L)-Lipschitz paths (u)to,1] and (v¢)sefo,1) of
unitaries in M, (C) such that o(r;) = uso(ro)u; and o(s;) = v;0(so)v; for all
t € [0,1]. The path ((ujrue, vf s:v¢))iefo1) then passes through P, 4 (X, B),
is (6L)-Lipschitz, and connects (79, so) to (ujriu, visiv).

Summarizing where we are, we have the following paths

(i) A s-Lipschitz path through P}, ,. (X, B), parametrized by [0, 1], and

that connects (po, qo) and (7o, So)-

(ii) A (6L)-Lipschitz path through P}, , (X, B), parametrized by [0,1],

and that connects (rg, so) and (ufrjug, visivy).

(iii) A s-Lipschitz path through P}, (X, B), parametrized by [0, 1], and
that connects (p1,¢q1) and (rq, $1).

We claim that there is a 27-Lipschitz path passing through 77,}“1746()( , B),
parametrized by [0, 1] and connecting (uiriui, visiv1) and (rq, s1). Concate-
nating this new path with the three paths above (and using that x > 1
and that L > 1), and rescaling the two k-Lipschitz paths by 1/12; the 6L-
Lipschitz path by 4/12, and the 6m-Lipschitz by 6/12, this will give us a
(20kL)-Lipschitz path connecting (po, o) and (p1, 1) through P, , (X, B),
which will complete the proof.

To establish the claim note that u; commutes with 1;, and is therefore
connected to the identity in M,,(C) via a m-Lipschitz path of unitaries that all
commute with 1;, say (u)sep1,2)- Similarly, we get a m-Lipschitz path (vy)e 2
with the same properties with respect to vy. The path ((ujriue, v s10¢))seq 2]
then passes through P, | 4 (X, B), is 27-Lipschitz, and connects (ufriuy, visiv;)

to (r1, 1), so we are done. O

51



We now move on to results that let us prescribe the “scalar part” of cycles

for KK, which is much simpler.

Definition 4.11. With notation as in Definition 3.5, define

Define UL

U (X,B) :={uely,.(X,B)|u—1e M,(Kp)}.

n,K,€
(X, B) to be the disjoint union of these sets as n ranges over N.

00,K,€

We need a slight variant of the well-known fact that the group of invert-

ibles in a C'*-algebra deform retracts onto the group of unitaries.

Lemma 4.12. Let k = 1, let C be a unital C*-algebra, and let C7' be the
set of invertible elements u € C such that |ul| < k and |u™'| < k. Then the

unitary group of C' is a deformation retract of C*. In particular, M, (C)

-1
K

18 connected.

Proof. Let w € C', and for t € [0,1/2] define u; := u(u*u)~*. This is a

K

homotopy between the identity u — ug on C! and the map u — u; /2; the

latter is a retraction of C_! onto the unitary group of C, giving the first

part. In particular, it follows that C-! is connected if and only if C; ! is

connected; as the unitary group of M, (C) is connected, this gives the last

statement. ]

Proposition 4.13. Let B be a separable C*-space, let X be a subset of the
unit ball of Lg, let € > 0, let Kk > 1, and let n € N.

(1) Any elementv € U, . (X, B) is in the same path component of Uy, .2 (X, B)

as an element of U} . (X, B).

(i) If two elements vy, vy € Uy, . (X, B) are in the same path component of

U e (X, B), then they are in the same path component of U} . (X, B).

Proof. For part (i), let F be the unitization of K, let o : M, (K}) — M, (C)
be the canonical quotient map, and set w = o(u~!). Using Lemma 4.12,

there is a path (wt)te[m] of invertibles connecting w = w; to the identity

and all with norm at most . Then the path (wv)ie[o] is in Uy, k2 ke (X, B)
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and connects v to the element u := wyv, which satisfies o(u) = 1, and so
1 —ue M,(Kp).

For part (ii), let (v;)wo,1] be a path in U, . (X, B) connecting vy and
vy. Let w, = o(v; '), and note that wy = w; = 1. Moreover, |w,| < & for
2ne(X; B) as
required. ]

all t. Then w; := wv; is a path connecting vy and vy in Z/{}L

4.4 From homotopies to similarities

Our goal in this subsection is to establish a controlled variant of the fact
that homotopic idempotents are similar: compare for example [7, Proposition
4.3.2]. This requires some work, as we need to control the “speed” of the
homotopy in order to control the commutator estimates for the invertible
element appearing in the similarity. The final target is Proposition 4.17
below; the other results build up to it.

Lemma 4.14. Let k > 1, and let py and p; be idempotents in a C*-algebra
C with norm at most x, and such that |po — p1| < 1/(12k%). Then there is
a path (pi)iweoa] of idempotents connecting po and py, and with the following
properties:

(1) each p; is an idempotent in C of norm at most 2k;

(ii) for all ce C and t € [0,1],
e, i)l < 2152 mase .l

(111) the function t — p, is 1-Lipschitz.

Proof. For each t € [0, 1], define r, := (1 — t)pg + tp; € C, and define u,; :=
(1—7r)(1—po)+71ipo € CT. Corollary 4.2 implies that |2py— 1| < 2k, whence

|1 =] = [[(Zpo — 1)(po — r¢)|| < 2|po — p1| < 1/6

In particular, u, is invertible, ||lu| < 7/6, and |u; | < 6/5 by the Neumann
series formula of the inverse. Define p;, := w;pou; !, which is an idempotent
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in C. We claim that the path (p;)w[o1] has the desired properties. Note
first that 1o = po, whence uy = 1, and so the path (p;)sejo1] does start at
the original py. On the other hand, uipg = ripy = p1po = pi1uy, whence
u1pou; ' = p1. Thus the path (p;) does connect py and p;.

For part (i), note that as uspy = rypo, we get

6 6
K K= < 2K.
122 5 5

el = Irepouy | < 1(re = po)pouy ' + oy ' <

For part (ii), let 6 = max;_o1 |[c, pi]||. We compute using the identity 1 —u; =
(2pg — 1)(po — r¢) that

[, el = T =, ]| < [12po = L, eflllpo = | + [2po = [ [po — 74, €]

<
< 2|[po, ellllpo = 74l + [2po = LI ([lpo, elll + 2, e]l))-

Using that |[2py — 1| < 2k again, this implies that

[, el < 26

+ 2K - 20 = <4/€+L)5

12k2 6k2

Hence also
™ ell = s [es o '] < o (45 + = 5 )l
and so

I[Pt elll = Mupouy ]|

< [, ]| [ pollf| ey 1H + lwel [po, el g M| + Neel[ ol [wy s €]
77 36 1

4 —)5 IS S —<4 —)5

( ot Ga2) s T 50 T 55 (M T G2

< 21K%5

as claimed. Finally, for part (iii), we again use that |2po—1| < 2k to compute
that for any s,t € [0, 1],

s =l = [(2po = 1)(rs = )| < |2po = 1fls = tl[po =] <
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and so

_ _ _ _ 36 1 6
Jugt —u = g (e — ug)uy | < Ben T t| = 25—%|3 — .
Hence
Ipe = psll < [l (ue — wo)pouy | + Juspo(uy t —ugt)|
1 6 7 6
< —|s—tlks + —k—1|s — ]
6K 5 6 25k
< |s —t
as claimed. O

The next lemma gives universal control over the “speed” of a homotopy
between idempotents (at the price of moving to larger matrices). The basic
idea is not new: see for example [47, Proposition 1.31]. We give a complete
proof, however, as we need to incorporate commutator estimates and work

with idempotents rather than projections.

Lemma 4.15. Let B be a separable C*-algebra, let X be a subset of the unit
ball of Ly, let € > 0, and let n € N. Let (po, qo) and (p1,q1) be elements of the
same path component of Ppx (X, B). Then there is k € N and a homotopy
((re, 5¢))eefo,1] 1 Ploks1yn2n2162¢(X, B) such that (1, 5;) = (pi ® Lk @ Opke, ¢; D
Lk @®0yk) fori e {0,1}, and such that the map t — (r¢, s¢) is (16k)-Lipschitz.

Proof. Let ((pt, G¢))te0,1] be an arbitrary homotopy in P, . (X, B) connecting
(o, qo) and (p1,q1). Let § > 0 be such that if s,t € [0, 1] satisfy |s — | < 4,
then |ps — pi| < 1/(1262) and |lgs — ¢ < 1/(12K%). Let 0 = tg < t; < ... <
tr = 1 be a sequence of points in [0, 1] such that ¢;.; — ¢; < J for all i. We
claim that this k£ works, and to show this we build an appropriate homotopy

by concatenating the various steps below.
(1) COIII’lGCt (pO @ ]—nk; @ 0nk7 do @ 1nk @ Onk) to

Y
k times k times

via a 2-Lipschitz rotation homotopy parametrized by [0, /2] and pass-
ing through Pog 1)k (X, B).
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(i)

(iii)

In the i*® ‘block’ 1,, @ 0,,, use the homotopy

1—p O N cos(t) —sin(t)) {0 O cos(t)  sin(t)
0 0 sin(t)  cos(t) 0 pi ) \—sin(t) cos(?)

(parametrized by t € [0,7/2]) to connect 1,, ®0, to 1 — p;, @ py,, and
similarly for ¢g. In order to compute commutator estimates, note that
rearranging gives that the homotopy above is the same as

10 (e 0 ( —eostl)  —sin(t)cos(t)
(0 0) + (0 ptl) (— sin(t) cos(t) cos?(t) > , tel0,m/2].

The scalar matrix appearing on the right above has norm |cos(t)|,
whence every element in this homotopy has norm at most 2x. Hence
our homotopy connects the result of the previous stage to

(Po@1—py, ®p, @ @1 —py, ®pr, 1 — ¢, DG, @ - @1 —q1, Dy,
through Pak+1)n,26,(X, B), and is 2k-Lipschitz.

From Corollary 4.2, each idempotent 1 — p;, has norm at most x. For
each i € {1, ..., k}, using that [(1—p;,) — (1—ps,_,)| < 1/(12k?), Lemma
4.14 gives a path of idempotents connecting 1 —p,;, and 1—p;, , and with
the following properties: it is 1-Lipschitz; it consists of idempotents of
norm at most 2x; each idempotent r in the path satisfies |[r, z]|| < 21x2%€
for all z € X. We get similar paths with respect to the elements 1 — ¢,

and use these paths to connect the result of the previous stage to

(p()@l_pto@ptl@' ' '@1_ptk,1®pt;€; 90@1_%0@%1@' : 'G‘)l_th,l@(th)-
via a 1-Lipschitz path in Piogi1)n,26,21k2¢ (X, B).

Use an analog of the homotopy in step (ii) in each block of the form
p, @1 — py, (and similarly for ¢) to connect the result of the previous
stage to

' h
k times k times

This passes through Pogi1yn,26,e(X, B), and is 2x-Lipschitz.
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(v) Finally, noting that p;, = p; and ¢, = ¢, use a rotation homotopy
parametrized by [0, 7/2] to connect the result of the previous stage to
(pl @ 1nk @ Onk; qQ @ 1nk @ Onk) This passes through 7D(2k+1)n,m,e(}(7 B)
and is 2k-Lipschitz.

Concatenating the five homotopies above gives a 2x-Lipschitz homotopy,
parametrized by [0, 27 + 1], that passes through P(ok11yn,2x.(X, B) and con-

nects (po @ Lok @ Ok, o @ Lok @ Opg) and (p1 @ Lok @ Onks 1 D Lok @ Opie)-
Reparametrizing by [0, 1], we get a (16x)-Lipschitz homotopy as required. [

Before we get to the main result of this subsection, we give one more

elementary lemma; we record it as it will be used multiple times below.

Lemma 4.16. Say x and yi,...,y, are elements of a C*-algebra such that
[z, y:]ll < & and ||lyil| < m for all i. Then if y := y1y2---yYn, we have
[z, y]| < nm" 0.

Proof. This follows from the formula

)= 35 (T w)tewl( T o)

1<j<i i<j<n
which itself follows from induction on n and the usual Leibniz formula [z, 15|
yilz, yol + [, y1lye. O

Here is the main result of this subsection. The basic idea of the proof is
contained in [47, Corollary 1.32], but as usual we need to do more work in

order to get our estimates.

Proposition 4.17. Let B be a separable C*-algebra, let X be a self-adjoint
subset of the unit ball of Lp, let k = 1, and let e > 0. Let M = 2(100%)* 17,
notation as in Definition 4.9, let n € N, and let (p,q) be in the same path

component of P} __(X,B) as an element (r,r) with both entries the same.

Then there is m € N and (with notation as in Definition 4.11) an element
w € Uy, g0 ara1e(X, B) such that

o7



Proof. Let k € N be as in the conclusion of Lemma 4.15, so there exists
a (16x)-Lipschitz homotopy in P(oki1)n,2k21x2¢(X, B) between (p @ L,x @
Onk, @ D Lok @ 0px) and (1 @ 1g @ Opp, 7 D 1k @ Op). Set m = kn. Propo-
sition 4.10 gives a (20x - 16x)-Lipschitz path ((pt, g¢))se[o,1] passing through
73711+2m72H’84H26(X, B) that connects (p@ 1, B 0nk, ¢D 1 D O0,x) and (rd 1,
Onk, 7 @ 1k @ 0,1). To simplify notation, note this path is (2°x2)-Lipschitz,
+2m,2;~:,27n26(X7 B)

Define N := [213x3| (where [y] is the least integer at least as large as y),
and define ¢; = i/N for i € {0,..., N}. As the path ((p;, qt))eepo] is (27K7)-
Lipschitz, for any i € {1,..., N}, |ps, — ps,_,|| < (16x)~'. For ¢ € {1,..., N},
define v; :== py, pr, + (L —pr, ,)(L —pr,). As |py,
4.2 implies that

and that it passes through P!

< 2k for all i, Corollary

12pe; — 1] < 4 (33)

for all 7, and so
Hl - Ul” = ”(2pti—1 - 1)(pti—1 _pti)H <4k - (16H)_1 < 1/2

It follows that each v; is invertible, |v;| < 2, and (by the Neumann se-
ries formula for the inverse) |v; || < 2. Note also that as the homotopy
((pt, G¢) )sefo1] passes through P(12k+1)n,2ﬁ,27/~326(X? B) all the elements p;, must
have the same “scalar part” (i.e. the same image under the canonical map
M, io0m(KE) = Myi9,(C)), and so the elements v; must satisfy 1 — v; €

M, 190m (K ). Moreover, for x € X, using line (33) again we see that

|[vi, ]| = [[[vi = 1, ]|
= [2pe;., — D(peiy — pt,), 7]
< 2|[pe, s 2] (Uptis | + e ) + 1206 = L (Pt 2] + ot 2]])
< 12k - 27K%e.

Hence moreover

I[v; Y 2]l = vy Ha, viv; b < 4126 - 27K% < 28K

At this point we have that each v; is an element of L{nl om.2.918 3"
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Note also that vip,, = ps, ,pi, = Pr,, Vi, and so vip,,v; * = py, , for each i.
Define v to be the product v,vs - - - vn, S0 v satisfies v pyv = p1, or in other
words v (p@® 1, ®0p)v = r® 1, ®0,,. Note that 1 —v € M, 0,(Kp).
As v < 2 and |v; | < 2 for each i, we have that |v| < 2V and simi-
larly o~ < 2N. Moreover, for any x € X, Lemma 4.16 gives |[v,z]| <
N2N=1.9B3¢ and similarly |[v™1, 2] < N2N~1.213k3¢. Applying the same
construction with (¢;) in place of (p;), we get an invertible element w such
that w(¢® 1, ®0,)w = @D 1,, ®0,,, such that 1 —w € M, 42,,(Kp), such
that |w| < 2V, |w™t| < 2V, and such that |[[w,z]]| < N2V~1. 213k3¢ and
I[w=, 2] < N2V~1.283k3¢ for all 2 € X. Define u = wv=t. As N = [213x3],

this has the claimed properties. O

5 Reformulating the UCT II

In this section (as throughout), if B is a separable C*-algebra, then L and
K denote respectively the adjointable and compact operators on the stan-
dard Hilbert B-module #2® B. For each n, we consider L5 as a subalgebra of
M, (Lp) via the “diagonal inclusion” Lg =1y, ® L < M,,® L = M, (Lp).

Our goal in this section is to reformulate the vanishing results on the
UCT of Section 2 in terms of the groups KK} (X, B) of Section 3. We look
at the even (i = 0) and odd (i = 1) cases separately.

5.1 The even case

Lemma 5.1. Letk > 1 and e > 0. Let B be a separable C*-algebra, and let X
be a self-adjoint subset of the unit ball of Lg. Then there is a homomorphism
Vit KK (X, B) » KK{ (X, B) such that the diagrams

K

KKRE(X, B) (34)

S

KK} (XaB)ﬁKKg,e(XaB)

K,€e/4
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and

KK} (X, B) — KK} (X, B) (35)

T~ “’*]

KK i(X,B)

commute, where the unlabeled arrows are the forget control maps of Definition

3.4.

Proof. Let (p,q) be an element of P, . 4(X, B). Let r and s be the projec-
tions associated to p and ¢ respectively as in Definition 4.3. Using Lemma

4.5 parts (i) and (iii) we may define a map

Ut Popea(X, B) = Pope(X, B), (p,q) — (r,5).

Allowing n to vary, and noting that the process of taking associated projec-
tions takes homotopies to homotopies (by part (iv) of Lemma 4.5) and block
sums to block sums, we get a well-defined homomorphism

Uy KK;{EM(X, B) — KKﬁe(X, B).

To check commutativity of the diagram in line (34), it suffices to show
that if (r,s) € P,1.(X, B) is the pair of projections associated to (p,q) €
P re/a(X, B) as above, then (r, s) and (p, ¢) are in the same path component
of Py k.e(X, B). This follows from parts (ii) and (iii) of Lemma 4.5. Commu-
tativity of the diagram in line (35) is immediate: if (p,q) is in Pn1.(X, B)
for some n, then p and ¢ are themselves projections, so equal their associated

projections. L]

The following lemma records some results from [68, Section A.3] that we
will need. For the statement, recall the notion of a unitally strongly absorbing

representation from Definition 2.5 above.

Lemma 5.2. In the statement of this lemma, all unlabeled arrows are forget
control maps as in Definitions 2.11 and 3.4. Let A be a separable unital C*-
algebra, and let B be a separable C*-algebra. Let w: A — Lp be a strongly
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unitally absorbing representation of A, which we use to identify A with a
C*-subalgebra of L.
Let € > 0, and let X be a finite subset of Ay. Then there exist homomor-
phisms
a: KK} (X,B) - KKs(X,B)

and
f:KKJ(X,B)— KK&(X, B)

that are natural with respect to forget control maps: more precisely if (X, €) <
(Y,9) in X4 as in Definition 2.10 then the diagrams

KK(Y,B)—=KK?.(X,B) and KK?(Y,B)—KK;(X,B)
| I | |
KK(Y,B) —— KK°(X, B) KK(Y,B)—~ KK°(X, B)

are defined and commute.

Moreover, the diagrams

KK} (X, B) —= KK{;(X,B)

P

KKs (X, B)
and
KK.(X,B)—— KK5/(X,B)
P
KKRG(X, B)
commute.

Proof. Let m : A — Msy(Lg) be (the amplification of) our fixed represen-
tation. In the language of [68, Appendix A.2|, the groups KK (X, B) are
the same as the groups that are called there K K™P(X, B), while in the lan-
guage of [68, Appendix A.3], the groups K K7 (X, B) would there be called
KKT™(X,B). The lemma thus follows from the arguments of [68, Lemmas
A.22, A23, and A.24] O
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We are now able to deduce a version of Corollary 2.22 for the groups of
Definition 3.1.

Corollary 5.3. Let A be a separable, unital, nuclear C*-algebra. The fol-

lowing are equivalent:

(i)
(i1)

(iii)

A satisfies the UC'T.

Let k = 1 and e € (0,1). Let B be a separable C*-algebra with K.(B) =
0. Let m : A — Lgp be a strongly unitally absorbing representation,
which we use to identify A with a C*-subalgebra of Lsg. Then for
any finite subset X of Ay, there is a finite subset Z of Ay such that
(X, k,€) < (Z,K,€/160) in the sense of Definition 3./, and such that

the forget control map
KK2,6/160(Z7 SB) - KKg,e(Xa SB)
of Definition 3./ is zero.

There exist k = 1 and v = k with the following property. Let v > 0, let
B be a separable C*-algebra with K,(B) = 0, and let X be a finite subset
of A1. Let m: A — Lgp be a strongly unitally absorbing representation,
which we use to identify A with a C*-subalgebra of Lsg. Then there is
e > 0 and a finite subset Z of Ay such that (X,v,v) < (Z,k,€) in the
sense of Definition 3.4, and such that the forget control map

KK (Z,5B) - KK, (X,SB)

of Definition 3. is zero.

Proof. In the following proof, all unlabeled arrows are forget control maps

as in Definition 2.11, or Definition 3.4. Assume first that condition (i) from

the statement holds, and let x > 1 and ¢ > 0; we may assume moreover

that € < 1. Let a finite subset X be given as in condition (ii). Then by the

equivalence from Corollary 2.22, there is a finite subset Z of A; such that

the forget control map

KK.s(Z,SB) » KK.(X, SB)
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is zero. Replacing Z by Z u Z* if necessary, we may assume that 7 is

self-adjoint. Lemma 5.2 gives a commutative diagram

KK.s(Z,SB) —>—~ KK.(X,SB) ,

| %
KK ,,4(Z.SB)—~ KKY (X, SB)

whence the bottom horizontal map is zero. On the other hand, Lemma 5.1
(see in particular line (34)) gives a map v, such that the bottom triangle in

the diagram below

KK} ,,0(Z,8B) —— KK} (X,SB)

S

KK° . (Z,SB)—= KK, (X,SB)

K,€/160

commutes. The top triangle also commutes as all the maps involved are
forget control maps, whence the bottom horizontal map is zero. This gives
us condition (ii) from the statement.

Condition (ii) clearly implies condition (iii), so it remains to show that
condition (iii) implies condition (i). For this, it suffices to establish condition
(ii) from Theorem 2.15, so let v > 0 and a finite subset X of A; be given.
Then according to condition (iii) there are v > k > 1, € > 0 and a finite
subset Z of A; such that the forget control map

KK? (Z,SB) — KK2. (X, SB)

/20

is defined and zero. Replacing Z with Z u Z* if necessary, we may assume 2
is self-adjoint. Using Lemma 5.1 (see in particular line (35)) there is a map

1, such that the top right triangle in the diagram below comutes

KK (Z,5B) — KKi,20(X,5B) — KK1,,5(X, SB) .

| |

KKgye(Z, SB)—O>KKM/20(X, SB)——=KK°_ ., (X,SB)

v,7/20
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The rest of the diagram also commutes, as all the arrows are forget control
maps, whence the composition

KKRE(Z, SB) e KK177/20(X7 SB) —— KKI,V/S(X> SB)

of the two top horizontal maps is zero. Using Lemma 5.2, there is a commu-
tative diagram

KK.(Z,5B) KK.(X,SB)

f| lo

KK (Z,8B) — KKy 5(X,SB)

The top horizontal map is therefore zero; this is the conclusion we need for

Theorem 2.15, condition (ii) so we are done. O

5.2 The odd case

For the statement of the next lemma, consider the Hilbert module ¢? @ SB
associated to the suspension SB = Cy((0,1), B) of a separable C*-algebra B.
Let Cg(X, M(C)) denote the C*-algebra of bounded and strictly continuous
functions from a locally compact space X to the multiplier algebra M (C')
of a C*-algebra C'. For any C*-algebra C there are canonical identifications
Lo = M(C®K) (see for example [45, Theorem 2.4]) and M (Cy(X,C)) =
Ca(X, M(C)) (see for example [1, Corollary 3.4]). Hence there is a canonical
identification

ESB = Csb((ov 1)a ‘CB) (36)

We identify Lp = L({? ® B) with a C*-subalgebra of Lsp = L({* ® B®
Cy(0,1)) via the *-homomorphism a — a ® l¢y,1). We recall also that K}
denotes the unitization of Kg.

Lemma 5.4. Let B be a separable C*-algebra. Let k = 1, € > 0, and let X
be a subset of the unit ball of L. Then:

(1) Elements of Ppx(X,SB) (see Definition 3.1 identify canonically with
continuous paths (p, ¢t )iefo,1] of idempotents in M, (K}f)® M, (K}) sat-
isfying the following conditions:

64



(i)

(a) for allt € [0,1], |pe| <k and || < &

(b) for allt €[0,1] and all x € X, ||[ps, ]| < € and |[q:, x]| <€,

(c) there are p,q € M,(C) such that py = p1 = p, qo = q1 = q and such
that if o : M, (K%) — M,(C) is the canonical quotient map then
o(p) =p and o(q;) = q for all t € [0, 1].

Moreover, the element (p,q) is in the subset P}

n,K,€

(X, SB) of Definition
4.9 if and only if p and q are equal to 1; for some [ € N.

Elements of Uy, (X, SB) (see Definition 3.5) identify with continuous
paths (ug)iepo,1) of tnvertibles in M,(K}) satisfying the following condi-
tions:

(a) for all t € [0,1], |uel| < k and |u; | < &y
(b) for allt€[0,1] and all x € X, |[us, z]| < € and |[u;*, 2]| < ¢€;

(c) there is u € M,(C) such that ug = u; = u and such that if o :
M, (K}) — M, (C) is the canonical quotient map then o(u;) = u
for all t € [0,1].

Moreover, the element is in the subset U}, (X, SB) of Definition J.11

n,K,€

if and only if u is the identity.

Proof. We have a canonical identification

Part

Kb = {F € C(0,11.K5) | o(F(1) = F(0) = £(1) for all t € [0, 1]},

(i) follows directly by comparing this with Definitions 3.1 and 4.9; simi-

larly, part (ii) follows from comparing this with Definitions 3.5 and 4.11. We
leave the details to the reader. O

Lemma 5.5. For any k > 1 there exists a positive constant My with the

following property. Let e > 0, let A be a separable, unital, nuclear C*-algebra
that satisfies the UCT, and let B be a separable C*-algebra with K,(B) = 0.
Let m: A — Lgp be a strongly unitally absorbing representation that factors

65



through the subalgebra B(€*) (such exists by Lemma 2.6), and use this to
wdentify A with a C*-subalgebra of Lsp.

Then for any finite subset X of Ay there exists a finite subset Z of Ay
such that the forget control map

KK, (Z,SB) = KK} 1,.(X,SB)
of Definition 3.7 is defined and zero.

Proof. We claim M; = 22005°)° . 39057 works. Using Corollary 5.3 there is a
finite subset Z of A; such that the forget control map

KK28,2/€6E(Z7 SB) - KK28,320566<X7 SB) (37)

of Definition 3.4 is zero. We claim this set Z works.

Let u be an arbitrary element of U, . (Z, B). Using Proposition 4.13
part (i), and with notation as in Definition 4.11, there is an element v of
u71L K2, ke

a path (v¢)we[o,1] by

oy e cos(mt/2) —sin(mt/2)\ (1 0 cos(mt/2) sin(wt/2)\ [v™' 0 .
sin(wt/2)  cos(wt/2) 0 o) \ —sin(nt/2) cos(nt/2) 0 1

(38)

Note that each v; is an element of U; (Z, B). Define

n,k%,2Kx3¢

10\
Pt = Uy 0 0 Uy

Write p for the path (p;), and note that according to Lemma 5.4 part (i),

(Z, B) in the same path component of U,, .2 ..(Z, B) as u. Define now

we may identify the pair (p, 1, ® 0,) with (using the notation of Definition

4.9) an element of P, < ,.7.(Z,SB), and therefore also a class [p, 1, ®0,] €
K K,gs’%?E(Z, SB). By assumption, the forget control map in line (37) is

zero, and therefore the image of [p, 1, @ 0,] in KK 45+ (X, SB) is zero.
For notational simplicity, at this point let us define € := 320x7e.
Now, Lemma 3.3 gives m € N and (s, 5) € Pa(nim),2x8,¢, (X, SB) such that

P@1Ln®0m, 1, ®0,®1, ®0,,) and (s, s) are in the same path component
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of the set Po(nim)2ns e (X, SB). Let x be a unitary matrix in My (4m)(C)
such that (1, @0, ® 1, ® 0,)x* = 1,4 D Opyrn. As x is connected to the
identity through unitaries, the element (z(p@®1,@0,,)T*, 15 1m@0p1m) is also
homotopic to (s,5) in Pa(nsm)2us.e (X, SB); moreover (with notation as in
Definition 4.9), it is in P21(n+m),2/£8,51 (X, SB). We may now apply Proposition
4.17 to see that if M = 205" then there is k € N and an element w of
U21(n+m+k)7M7Mq (X, SB) such that

W(E(P® 1y @ 0p) 7" D1 @ 0p)w ™" = Ly @ O @ 1, @ O
Write v for the path defined in line (38) above, which naturally defines an
element of Lgp using the identification in line (36). Then if we define
y:=w(®d Lok) (v @ logm+k)) € Lsb,

we have

Y1 @0, @1 @0m @ 1L ®0)y ' = 1,80, ® 1, @ 0, ® 11, B Op.

In other words, the element y commutes with 1, &0, ® 1, ® 0, ® 11 @ 0.
Define

Using Lemma, 5.4 part (ii), we may think of z as a path (2;)sej0,1] i Untm-+k, 01,016, (X, B).
Now, write w as a path (w;)e[o,1], and note that as w is in L{Ql(n+m+k)7M7M61 (X,SB),

then by Lemma 5.4 part (ii), wg = wy = Lo(n+m)- Moreover, vy = 1y, by def-

inition. Hence 2y = = @ 1;. On the other hand v; = v @ u '@ Lom+k)

and so z1 = (z @ 1) (u @ 1,,4%). Hence (x @ 1;)*z defines a homotopy in
Untmikmme (X, B) between 1,441 and u @ 1,,45. This implies [u] maps

to zero in KKy 5., (X, SB), which completes the proof. O

6 A Mayer-Vietoris boundary map

In this section (as throughout), if B is a separable C*-algebra, then L5 and
K denote respectively the adjointable and compact operators on the stan-
dard Hilbert B-module #2® B. For each n, we consider Lz as a subalgebra of
M, (Lp) via the “diagonal inclusion” Lg = 13, ® Ly € M, QL = M, (Lp).
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Our goal in this section is to construct and analyse a‘“Mayer-Vietoris
boundary map” in controlled K K-theory. The main results of the section
prove the existence of this boundary map (Proposition 6.1) and show it has
an exactness property (Proposition 6.6). These results are the technical heart
of the paper.

6.1 Existence
Here is the construction of the boundary map.

Proposition 6.1. Define an increasing function Ny : [1,00) — [0,00) by the
formula Ny(k) = 2*"k**. This function has the following properties.

Let k = 1, let Ng = No(k), let € > 0, let B be a separable C*-algebra, and
let X be a subset of the unit ball of Lp. Let h € L be a positive contraction
such that ||[h, x]| < € for all x € X. Then there is a homomorphism

0: KK, (h(1—h)X U {h},B) > KK}, n(X U {h},B)

defined by applying the following process to a class from KK (h(1 —h)X u

{n},B):
(i) Choose a representative w € Uy, . (h(1 — h)X U {h}, B) for the class,
and use Proposition 4.13 part (i) to find an element u € U (h(1 -

n,k2 ke

h)X U {h}, B) that is in the same path component as w in U, .2 x(h(1—
h)X v {h}, B).

(ii) Define
c=c(u,h):=hu+(1—h), d=duh):=h"'+(1-h) (39
in M, (Lp), and

1 ¢ 1 0 1 ¢ 0 1
v=uov(u,h) = <0 1) (—d 1) (0 1) <_1 O) € My, (Lp). (40)



Moreover, the boundary map is “natural with respect to forget control maps”:
precisely, if for some k < \ and € < ¢, the boundary maps

0: KK (h(1—h)X U {h}, B) = KKR, ) no()e (X U {h}, B)
and

0 KK 5(h(1 = h)X U {h}, B) = KKy, nvoos(X U {}, B)
both exist, then the diagram

KK} (h(1=h)X U {h}, B) == KK () noe(X U {h}, B)

| |

KK} (h(1=h)X U {h}, B) =2+ KKY ) vooys(X U {1}, B)

(with vertical maps the forget control maps of Definitions 3.4 and 3.7) com-
mutes.

In order to make the proof more palatable, we split off some computations
as lemmas. The proofs of these lemmas are elementary, but the second one is
quite lengthy. We record them for the sake of completeness, but recommend
the reader skips the proofs.

Lemma 6.2. Let B be a separable C*-algebra. Let u € M,(Lp) be an in-
vertible element such that 1 —u € M, (Kg), and let h € L be a positive
contraction. Then the elements ¢ = c(u,h) and d = d(u, h) from line (39)

above have the following properties.

(i) The elements cd — 1 and dc — 1 are in M, (Kg).

(ii) If K = 1 and € > 0 are such that |[u]| < &, |[u™!] < &, |[[h,u]|| <€, and
I[h,u=t]| <€, then cd — 1 and dc — 1 are both closer than (k + 1)e to
h(1—h)(u+u"t—2).

Proof. We just look at the case of cd — 1 for both parts (i) and (ii); the case
of dec — 1 is similar. Note first that because 1 — u is in M,,(Kg) and M, (Kp)
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is an ideal in M, (Lp), we must have that 1 —u~! is in M, (Kp) also. We
compute that

cd — 1 = huhu™" + (1 — h)hu™ + hu(l — h) — 2h + h?
= h® + hu[h,u ']+ h(1 — h)u™*
+ h(1 —h)u + [h,u](1 — h) — 2h + B (41)

Using that u and u™! equal 1 modulo the ideal M, (Kg), we compute that
this equals 0 modulo M, (Kg). Hence e¢d — 1 is in M, (Kp)

Looking at part (ii), note that the terms hu[h,u™!] and [h,u](1 — h) in
line (41) above have norms at most ke and € respectively. Hence cd — 1 is
within (k 4+ 1)e of h? + h(1 — h)u™' + h(1 — h)u — 2h + h?, which equals
h(1—h)(u+ut—2). O

Lemma 6.3. Let B be a separable C*-algebra. Let k = 1, € > 0, and let
X be a subset of the unit ball of Lg. Let h € Ly be a positive contraction
such that |[h,z]|| < € for all x € X, and let u be an element of the set
Ul (h(1 — h)X U {h}, B) from Definition 4.11. Let ¢ = c(u,h) and d =

d(u, h) be as in line (39) above, and let v = v(u,h) be as in line (40).
Then |v| < (k+2)3, v < (k + 2)%, and the pair

10\ , (10
v v,
00 0 0
is an element of 7321n 36n6,216H56(X u {h}, B) from Definition 4.9.

Proof. From the definition of v in line (40) above,

v = (C(jcc__ 12) 1:§d> (42)

0 ({0 =1} (1 —c\ (1 O\ [1 —c\ [ —d dc—1
ol o) \o 1) \a 1) \o 1) T s ede—2))



Hence

1 0\ , ([cd2—cd) c(dc—2)(dc—1)
Mo o) “\a—dod  (de—1)
and so

_ —1)2 — _
” 10 Sl 1 0) _ [—(ed=1)* (cd—1)c(dc—2) | (43)
00 00 (1 —dc)d (dec —1)*
This formula, part (i) of Lemma 6.2, and the fact that M, (Kpg) is an ideal
in M, (Lp) imply that

10\ ., (10
- M. n K )
1 1 1
whence v 0 v lisin Ms,(K}), and v 0 v~! and 0 have the
0 0 0 0 0 0

same image under the image of the canonical quotient map o : M, (K%) —
M, (C). Note moreover that [v] < (k +2)% and |[v™!]| < (k + 2)? from the
formula for v (whence also v™!) as a product of four matrices in line (40).
As k > 1, this implies that

10\
v v
0 0

To complete the proof that the pair

(6 6))

1
defines an element of P, 56,6 p16,5,

commutator estimates, i.e. condition (ii) from Definition 3.1 with  in X u

< (k +2)% < 3%°.

(X, B) it remains to check the relevant

1 0
{h} and e replaced by 2'°x%. As 0 0 (and indeed, any scalar matrix)

commutes with elements of X U {h} exactly, it suffices to show that

[+l 0) 6]
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for all z € X u {h}. We focus on the case when z is in X: the case when
x = h follows from similar (and much simpler) estimates that we leave to the
reader.

Working towards the estimate in line (44), we compute that the element

(cd—l 0 ) (l—cd c(dc—2)>‘ (45)
0 de—1 —d de—1

The second matrix above satisfies
1—ecd e(de—2)
—d de —1

As k + 1 = 1, we therefore see that

l—cd c(de — 2)
de—1

On the other hand, using part (ii) of Lemma 6.2, the first matrix in line (45)
above is closer than €(k+1) to h(1—h)(u+u"'—2) (we identify this as usual
with the diagonal matrix with both entries equal to (1 — h)(u + u™! — 2)).
Hence the difference in line (43) is closer than 8(x + 1)°¢ to

1—cd c(de— 2))

in line (43) equals

< 1= ed| + fefllde = 2] + [d] + de = 1]

S(+1D?*+ D)+ (k+1D)((k+1)2+2)
+(k+ 1)+ ((k+1)2+1).

< 8(k + 1)~ (46)

h(l—h)(u+u1—2)< 4 o 1

Hence for z € X,

[+l o))

[ (L= Bt ut —2) (1:;1 Cg;:ﬁ)”.
(47)

< 16(k + 1)°¢
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As |[z, h]|| < €, we have |[z, h(1 — h)]| < 2¢; combining this with line (46)

gives

[@hu—hxu+w4—%<l;ﬁ %f:f»]”

h(1—h) [:m (w+ut—2) (1 :dCd c(;lcc_—12)> ] H

Combining this with line (47) gives

93]

+na—n [ (wtu'—2) (1:;d Cf{f_‘?)”.
(48)

<2¢-8(k+1)° +

< 32(k + 1)%

1 —cd c(dc—2)
—d dec—1
as a sum of at most 30 terms, each of which is a product of at most 5

Every entry of the matrix (u + u~! — 2) can be written

elements from the set {u,u™! h,1}, each of which has norm at most k. As
I[h(1 = h)z,y]| < € for all y € {u,ut, h,1}, Lemma 4.16 gives

| [h(l —Rh)z, (u+ut —2) (1 :dCd C(jcc__f)> ]

On the other hand, |[[h(1 — h),y]| < 2¢ for all y € {u,u™' h, 1}, whence

‘[u1—m4u+ul—m<1_m d“_zle

<4-30-5-r*  (49)

<4-30-5 k' (50)
—d dec—1
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Finally, note that

h(1 — h) [m, (u+ut—2) (1 —od c(de— 2)> ]

—d dec—1
— [h(l —Rh)z, (u+ut—2) (1 :dCd c(;lcc_—12)> ]
+ [h(l —h), (u+ut - 2) (1 :d“l C(C‘;CC__?) ]a:

so combining lines (48), (49), and (50) implies

) 63)

Recalling that x > 1, this is enough for the estimate in line (44). O

< 1232(k + 1)%.

We are now ready for the proof of Proposition 6.1.

Proof of Proposition 6.1. Assume that w € Uy, . (h(1 — h)X U {h}, B), and
let u € L{iHQ,m(h(l — h)X v {h}, B) be in the same path component as w
in Uy, 2 ke(h(1 —h)X U {h}, B); u is guaranteed to exist by Proposition 4.13
part (i). Define v := v(u, h) as in line (40), so Lemma 6.3 gives an element

10 10
(U (O O) U_l, (0 0) ) € Pgn,36,{127216,{115(X u {h}, B).

Moreover, if uy := u, and u; is another choice of element in L[ijngm(h(l —
h)X U {h}, B) that is connected to w in U, .2 . (h(1 — h)X U {h}, B) then
Proposition 4.13 part (ii) implies that there is a homotopy (uy)e,1] that
connects ug and uy through Uy . (h(1 —h)X U {h}, B). Let v; := v(uy, h)
be as in line (40). Then Lemma 6.3 implies that the path

10y , (10
t»—»(vt<0 O)vt ,(0 0))’ t e [0,1]
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has image in Py, 6,21 16,21 (X U {h}, B). In particular, the class o[w] e
K K5,21 916,21 (X U {h}, B) does not depend on the choice of u, so at this
point we have a well-defined set map

Z/{n7,{7€(h(1 — h)X U {h}, B) — KK§61124,216H216(X U {h}, B)

We next claim that this map sends block sums on the left to sums on the
right.

For this, assume that w; and ws are elements of U,, . (h(1—h) X U{h}, B).
Let uy and uy be elements of U, » . (h(1 —h)X U {h}, B) that are connected
to wy and wy respectively in U, > (h(1 —h)X U {h}, B). Forie {1,2} let
v; = v(uy, h) be as in line (40), and let v := v(uy @ ug, h) € My, (Lp). Then
the pairs

(1 Y ot ge (B 0) ot (0 O g (1o O
"\o o/ ™ Lo o) " \o o 0 0
lon 0\ 4 (10 O
v v,
0 0 0 0

in My, (K%) @ My, (KF) differ by conjugation by the same (scalar) permuta-
tion matrix in each component, and so define the same class in K K. gﬁnm 21f,‘ﬁgle(X U
(h}, B).

At this point, we have a semigroup homomorphism

unﬁ,e(h(l - h)X v {h}7 B) - KK§6K247216K216(X V) {h}, B)

We claim that it respects the equivalence relation defining KK (h(1—h)X U
{h}, B). First, we check that w1 goes to the same class as w. As we already
know we have a semigroup homomorphism, it suffices to show that 1, goes to
zero in K K, 04 516,20, (X U {h}, B). For this, note that if v := v(1, h) is as in
line (40), then v = 1gz, whence the image of 1; in KK:?GKM’QMKME(X u{h}, B)
is the class [1j @ O, 1 @ 0], which is zero by definition.

Let us now show that elements of U, . (h(1 — h)X U {h}, B) that are
homotopic through U, 9, (h(1 — h)X U {h}, B) go to the same class. For
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this, say that wy and w; are homotopic through U, o, (h(1 — k)X U {h}, B).
Choose ug and u; in U, >, (h(1 —h)X U {h}, B) that are connected to wo
and w; respectively in U, .2 .(h(1—h)X U{h}, B) as in Proposition 4.13 part
(). Using Proposition 4.13 part (ii), ug and u; are connected by a homotopy
(ue)iefoa] in Uy 4a 9 (R(1 = h)X U {h}, B). Let v, := v(ug, h) be as in line
(40). Then Lemma 6.3 implies that the path

(o) (63))

defines a homotopy between the images of wy and w; in 7721n7314,€24’227ﬁ216(X v
{h}, B). We thus see that Ny(x) := 2*"x?* has the desired property, and we
are done with the existence of 0.

As the formulas for the boundary map ¢ do not depend on the constants
k and e the naturality statement is clear. O

6.2 Exactness

We now turn to the exactness property of the boundary map. In order to
state this, we need two lemmas.

Lemma 6.4. Let B be a separable C*-algebra. Let X and Y be subsets of
the unit ball of Lg, € > 0 and k = 1. Let h € L be a positive contraction
such that |[h, z]|| < € for all x € X. With notation as in Definition 3.1, let
(p,q) € Prre(X Y U {h},B) (respectively, with notation as in Definition
4.9, let (p,q) € Py(L},).c,e(X vY u{h},B)). Then

(p,q) € Prwa(hX Y U {h}, B)

(respectively,
(P.4) € Pppe(hX 0Y U {h}, B)) ).

In particular, there are homomorphisms

m: KK (X 0Y u{h},B) > KK,

K,2€

(hX Y u{h}, B)

76



and

mon: KK (X UY U {h}, B) > KK®

K,2€

(1—h)X uY u{h},B)
induced by the identity map on cycles (p,q).

Proof. We compute that for x € X,
[[p; ha]| < |[B|[p. ]Il + [[p, Al[lz] < €+ €

These estimates hold similarly for ¢ so (p,q) € P, . o(hX UY U {h}, B). As
the identity map on cycles takes homotopies to homotopies, and block sums
to block sums, existence of the homomorphism 7y, is clear. Existence of n;_p,

follows on noting that the assumptions on h also holds for 1 — A. O

We leave the direct checks needed for the proof of the next lemma for the
reader.

Lemma 6.5. Let B be a separable C*-algebra. Let X and Y be subsets of
the unit ball of Lg, € > 0 and k = 1. Assume moreover that there is § > 0
such that for ally e Y, x €5 X. Then for any v = kd + € and \ = K, the
forget control map of Definition 3./

KK, (X,B) - KK,,(Y,B)
1s well-defined. O

The next proposition is the exactness property of the Mayer-Vietoris
boundary map that we are aiming for. We refer the reader to Subsection
1.6 for motivation behind the statement. For the statement, recall that for
an element z and subset Y of a metric space, and for € > 0, we write “z €, S”
to mean that there is y € Y with d(x,y) < e. Moreover, in the statement
below, all unlabeled arrows between controlled K K-groups are the forget
control maps of Definition 3.4 or Definition 3.7.

Proposition 6.6. The increasing functions Ny, Ny : [1,00) — [1,00) defined

by
Ni(\) = 99000000A% . 7 No(p) = 237,u25.
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satisfy the following properties.

Let k= 1, and let ¢ > 0. Let A = Kk, and let § = 3ke. Let Ny := Ny(\),
and let 4 = Ny and v = N10. With notation as in Proposition 0.1, define
No := No(p), and let Ny := No(p).

Let B be a separable C*-algebra, and let X be a self-adjoint subset of the
unit ball of L. Let h € L be a positive contraction such that ||[h, z]|| < € for
all z € X. Let Yy, Yi_p,, and Y be self-adjoint subsets of the unit ball of Lp
such that y €. Yy, and y €. Y1_y for all y € Y. With notation as in Definition
4.9, let (p,q) be an element of P, , (X uY, UYi_, u {h}, B). Withn, and
M_pn as in Lemma 6.4, and suing Lemma 6.5 to define the right hand vertical

maps in each case, assume that the images of |p, q| under the maps

KK® (X UY,UYigu {h},B) (51)

l

KK? (X Y, u{h},B)—"— KK

K,2€

(hX Y, u{h}, B)

|

KKf\),(;(hX vY u{h},B)
and

KK) (X uY,uYi_,u{h},B)

|

KK (X UYiy U {h}, B) —"~ KK

K,2€

(1—=h)X uYi_pu{h},B)

|

Kng(;(hX uY u{h}, B)
(52)
are zero.
Then with notation as in Definition /.11, there exists an element

u e M;J,Nl,Nl(S(h(]‘ — h)X U {h} U }/, B)
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such that in the diagram below

KK}\,LNla(h(l —h)X u{h}uY, B) KK,%E(X uY,uYi,u{h},B)

| |

KK} (h(1—h)X U {h},B) g KK, noy(X U {h}, B)

KK]Q&,NQ’Y(‘)( o {h}7 B)

the images of the classes [u] € KKy y s(h(1 —h)X U {h} UY) and [p,q] €
KK} (X0Y,uYi_pu{h}, B) in the bottom right group K K3, v, (X U{h}, B)

are the same.

Just as for Proposition 6.1, to make the argument more palatable, we
split off some computations as two technical lemmas. As in that earlier case,
the arguments we give for these lemmas are elementary, but quite lengthy
(in fact, much longer than the earlier ones). We record them for the sake of
completeness, but again recommend that the reader skips the proofs.

Lemma 6.7. Let B be a separable C*-algebra. Let v =1 and let v > 0. Let
X andY be self-adjoint subsets of the unit ball of Lg. Let h € Lg be a positive
contraction such that ||[h,z]| <~ for allx € X. Let (p,q) e P., (X UY U

n7y7’y

{h}, B) (see Definition 4.9 for notation), and let up, € Uy, (hX U{h} LY, B)

(1—=h)X u{h} UY,B) (see Definition 4.11 for notation).
Then the element

and uy_p €U,

w:=u_p(1 —p) + upp (53)
(M(1=h)X u{h} VY, B).

. . 1
5 un,Ql/Q,lOz/'y

Proof. We split the computations into the points labeled (i), (ii), (iii), (iv),
and (v) below.

(i) As up, — 1 € M,(Kg) and uy_p, — 1 € M,(Kp), we compute from line
(53) that u — 1 € M,,(Kp).
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(ii) Note that
1—p|<v (54)

by Corollary 4.2. Hence max{|usl|, |[u1_wll, |p], |1 — p|} < v, and so by
line (53), |lu| < 22

(iii) Let y € Y. Then by definition, |[a,y]| < ~ for all a € {up, u;_p, p, 1 —p}.
Hence the definition of u from line (53) implies that |[y, «]| is bounded
above by

[y, wai-n ]I = Pl + lua-nlIly, 1 = pl + ITy; unlllpl + Junl [Ty, 1
< 4vy.

(iv) Using the definition of u from line (53) and the assumptions on uy, w1y,
and p directly together with line (54) implies that

[, BT < TR wan [T = Pl + Juanl[[2, 1 = Il + ({2, wnl ] + [unllTh, Pl
< 4y

(v) Let x € X and note that
[A(1 — h)z,up] = (1 — h)[ha, up] + [h,up](1 — h)z.

As |[hz,upn]| < v, as |[h,ur]| < 7, as h is a positive contraction, and

as x is a contraction, we get
[[2(1 = h)z, un]| < [[he, un][[1 = 2| + [Az|[I[1 = R, un]]| < 2. (55)
Completely analogously, we see that
[[(1 = h)z,us-n] < 2v. (56)
We see also that

[[A(1 = h)a, pl|| < [Tz, pll[A(L = R)| + [T = h, plll[hz] + [[2, pI[II(T = R)z]
< 3.
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Combining this with lines (54), (55), (56), we get

[[(1 = h)z, ul| < [[R(1 = h)z,ur—p][|1 = p[ + [uwr-n[[2(1 = h)z,1 - p]
+ (1 = W), un]lp] + lunl [TR(1 = h)z, p|
< 2vvy + 3vy + 2vy + vy
= 10v7.

Putting the points (i), (ii), (iii), (iv), and (v) above together (and using that
(h(1—h)X u{h}uY,B)
as claimed. O

v = 1) we conclude that, u is an element of U} , , L0ury

Lemma 6.8. With assumptions as in Lemma 6.7, let

w:=u;_p(1—p)+upe Z/l,lwyz,wm(h(l —h)X u{h}uY,B)

be the element considered there. Let v := v(u,h) be as in line (40) above,

and define
W= Ul_h(l _p) —-q c M2 (ﬁB)
p (1= purly,

Then w is invertible, and vw=" is in Uon, (20)8 257,25, (X U {h}, B).

Proof. Using the assumptions on |p|, [ui_s, |u;}, | and line (54) to estimate

|1 — pl|, we have
Jwl < Jur-n(@ = p)| + gl + ol + (1 = p)ug?, | < 40,

A direct computation shows that w is invertible with inverse

w—l _ ((1 _p>u1_—1h p > ) (57)

—q u1—p(1—p)

This satisfies the same norm estimate as w, and so we get the norm estimates

Jwl < (2v)* and Juw™] < (2v)". (58)
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Lemma 6.3 and the fact that ||u| < 202 implies that |v| < (2v? + 2)% and
o™ < (202 +2)3. As v > 1, we thus see that

Jo] < (2v)° and o] < (2v)°. (59)
Lines (58) and (59) then imply
low™] < (2v)* and fuwv'] < (20)% (60)

To complete the proof, we need to show that for all z € X U {h}, we have
[[ow™, z]| < 2872y and |[wv™!, z]| < 237v%+. We focus first on the case
of vw™!, and look first at [h, vw™1].

Let ¢ := hu+ (1 —h) and d := hu™' + (1 — h) be as in line (39). Tt will
be technically convenient to define

S = {h’a 1— h7p> q, 1— D, 1- q, Up, u}jla Uy—p, ufjh7 u, u71> C, d}? (61>

and to define S™ to be the set of all products of at most n elements from S.
Note that for every s € S we have |s| < (2v)?, and ||[s, k]| < 10vy. Hence
by Lemma 4.16, for all n € N we have

seS" = |[hs]| <n@2v)*™Vi0ovy. (62)
Using the formula in line (42) above,

[ lede,h] —2[c,h] [cd, h]
(A, 0] _< [, de] [d, h])'

and so
\lh, o]l < [[[ede, h]|| + 2[c, h]|| + |[ed, A]|| + |[[A, dc]| + |[[d, R]]-

Each summand on the right hand side above is of the form |[h, s]| where
s€ S3 for S as in line (61). Hence line (62) implies that

[, o]l < 6-3- (20)* - 100y < 2"y (63)
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We also compute that

(=Pl [
o ]‘< 4,11 [h,ul_hu—p)])’

whence
[, w™ | < [, (1= p)ug 1|+ [ Pl + g, BI+ [I[A wa—n (1 = p)]|

Each commutator appearing above is of the form [h, s] for some s € S? as in
line (61), whence line (62) gives

I[h, w1 < 4-(2v) - 100y < 2713y, (64)
On the other hand,
[[7, vw™ | < [[A, v]lw ™| + [ol[[A, w™ ]

Combining this with lines (58), (59), (63), and (64), as well as that v > 1,
we see that

I[h, v ]| < 2"05y - (20) + (20)° - 273y < 2P (65)

Now let us look at [z,vw™!] for z € X. The definition of v from line (40)

gives
S clde—1) 1—cd w1 (€ 0 -
-\ de—1 0 0 d

cd—1 0 c -1\ _, c 0} _,
= w - w .
0 de—1)\1 O 0 d
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Hence the formula for w™"' from line (57) gives

ow-l — cd—1 0 c(1 —p)ut, ep—ui_n(l—p)
0 de —1 (1 —p)ul__lh p

—(1—h) <<1 L ) . (60)

We now estimate |[vw™, z]| for each z € X by looking at each of the terms

Y1, Y2, and ys separately.

(i) First, we look at y; from line (66). Let z € X. Lemma 6.2 implies that

H(Cdo_l 0 >—h(1—h)(u+u‘1—2)<(u+1)7 (67)

de —1

(where, as usual, we identify h(1—h)(u+u~'—2) with the corresponding
diagonal matrix). Let

el =p)uil, p—uin(1—p)
7= ( 0 put, ; > . (68)

As in line (54), ||1 — p| < v, whence using that v > 1,

< et = pllu2yl + lellpl + lui-alllt = pl + 1 = plluily] + ol
<A+ + 2+ v+ v+ v
< 9t (69)

1]
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Combining this with line (67), we see that
lyr—=h(1 = h)(u +u™" = 2)z]

(Cd_l 0 )-h(1-h>(u+u1—2)

1]

0 de —1

<wiv+ 1)y < (2v)°y.
As |z| < 1, this implies that

Il ]l < U,y — h(L = b)Y+ u™" = 2)24]]
+ [z, h(1 — h)(u +u"t — 2)z]|
< @)+ [l (L~ )+~ 2)z]].

Hence we see that

[z, yu]ll < 2v)°y + [z, h(1 = R)], (u +u™" = 2)2]]
+ I[A(1 = R)z, (u+ut —2)z]|
+|[R(1 = R), (u+u"t —2)z]z].

(70)

Looking at line (68), every entry of the matrix (u+u~! —2)z; is a sum

of at most 8 elements from the set S*, where S is as in line (61). Hence

by line (62), we see that

I[h(1—h), (u+ut —2)z ]| <4-2-8-4-(2v)° - 1207y < 2%, (71)

We have |[z, (1 — h)]| < 2v, and line (69) implies
l(u+u™ —2)z| < (4% +2) 9* < 2005,

whence
[z, h(1 = h)], (u+u™" = 2)z]] < 2%%.

Combining lines (70), (71), and (72) thus implies that

Iz ]l < 205y + |[A(1 = h)z, (u+u™" = 2)z]].
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Note now that for every element s € S we have that at least one of
the following holds: (a) |[s,z]| < 16v%y for all z € X; or (b) |[s, (1 —
h)z]| < 1602y for all x € X; or (c) [[s, (1—h)z]|| < 1612y for all z € X;
or (d) |[s,h(1 — h)z]| < 16v2y for all z € X. In any of these cases,
using that ||[s, h]| < 1207y for any s € S, we get that for any s € S and
r e X, |[s,h(1 — h)z]| < 40v%y. Applying Lemma 4.16, we therefore
see that

seS" = |[[M1—h)z,s]| <n(2v)* ™ D4002. (74)

As we have observed above already, every entry in the matrix (u+u~! —
2)z; is a sum of at most 8 elements from the set S, where S is as in
line (61). From line (74) we therefore see that

I[h(1 = h)z, (u+ut —2)z]| <4-4-(2v)*- 4002y < 25,
Combining this with line (73) above therefore implies

Iz, y1]]| < 2°°0%.

Now we look at the element y, from line (66) above. If z € X, we see
that

e[ (it ) B (5 )

We have that

p(1—a wp )| _( loh] (b up)
\-up'e 1-p [uy'a. k] [p.h] )

Each entry in the matrix on the right is the commutator of h with an

element of S?, where S is as in line (61) above. Hence by line (62), we

see that
1—
h, _lq Upp
—u,q 1—p

<4-2-(2v) - 120%y < 2%%.
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Combining this with line (75) gives

IL—q upp
xh, .

[z, ]l <

On the other hand

As |[h, x]| <y, we have

1—q upp I1—q upp
[z, h], B v o
—u, q 1—0p —u, q 1—0p

As |1 —p|| < v and |1 — ¢| < v by Corollary 4.2, every entry of the

<2

matrix on the right has norm at most »?, and so

l—q upp
ERISANA)

Hence line (77) implies that
1—
(10
—u,q 1=p

1—q upp
xh, _1

The commutator appearing on the right above equals
[q7 hx] [hSC, Uh]p +up [hx7p]
[u, ', halg — ;. ' [ha, ] [p, ha]

Using that u;, € U} ,_(hX, B), and applying Lemma 6.4, the norm of

vy

< 2312,

< + 2%y, (78)

each entry above is at most 2vy, whence

b l—q upp
x, o
—u, ¢ 1—p

Combining this with lines (76) and (78) therefore implies that

< 2%v7.

[z, ya] || < 2"%0%.
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(iii) Finally, we look at y3 from line (66). This can be handled very similarly
to the case of yo, giving the estimate ||[x,y3]| < 2% %y for all z € X;
we leave the details to the reader.

Putting together the concluding estimates of points (i), (ii), and (ii) above,
we see that ||[xz,vw™]| < 218y for all z € X. Combining this with line
(65), we see that

[z, vw™]| < 2%y (79)

for all z € X U {h}.
To complete the proof, let us estimate ||[z, wv™!]| for z € X U {h}. Using

1 1

the formula [z, wv™] = wo™How ™, z]wv™, we see that

[z, wo™ 1] < Jwo [ [vw™, 2] Juwv™].

Lines (79) and (60) therefore imply that
[z, wo™]| < 2°70%y
and we are finally done. m

Finally, we are ready for the proof of Proposition 6.6.

Proof of Proposition 6.6. With notation as in the statement, let (p,q) €
PhrX UY, UYi, U {h},B), and assume that the images of [p,¢] in
KKS ;(hX 0Y u{h}, B) and KK} 5((1-h)X uY u {h}, B) under the maps
in lines (51) and (52) are zero.

Note first that the map in line (51) is induced by the identity map on
cycles, so Lemma 3.3 applied to the cycle (p,q) in P, s(hX Y U {h}, B)
implies that there exists k € N such that (p® 1, ® 0k, ¢ D 15 D 0y) is in the
same path component of P, or016(hX UY U {h}, B) as an element of the
form (r,7). Replacing (r,r) with (yry*, yry*) for some appropriate unitary
y € M, 2,(C) and using that the unitary group of M, 2x(C) is connected,
we may assume that (r,7) is in P}, 5 9y 5(hX U Y, U {h}, B) (see Definition
4.9 for notation). Moreover, as (p,q) € P, , 5(X Y, U Yi_ U {h}, B) there
is a unitary z € M, 9(C) such that (z(p@® 15 D 0x)z*, 2(¢ D 1 D 0x)2*) is in
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Pras(hXUY U{h}, B). As the elements (r,7) and (z(p®1,®0k)2*, 2(¢®1,®
0x)2*) of Py oy 5(hX UY U {h}, B) are connected by a path Pp,2xs(hX UY U
{h}, B), we may use Proposition 4.10 part (ii) to connect them by a path in
7)1

n

aaas(AX UY U {h}, B). Precisely analogously (increasing k if necessary),
we may assume that (z(p @ 1x @ 0x)2*, 2(¢ D 1 @ 0x)2*) is in the same path
component of P}, 45((1 —h)X 0 Yi_, U {h}, B) as an element of the form
(s,s).

For notational simplicity, write m = n+2k, and let M := 4.22000°  Then
(with notation as in Definition 4.11), Lemma 4.17 gives j € N and elements

Up & uv%@-&-Qj,M,M&(hX v {h}uY, B)

and
Ui—p € u7’1n+2j,M,M6((1 —h)X u{h}vY,B)

such that
un(z(p@® L ®0)2" @ L ©0j)uy," = 2(® L ®0)2" ®L; ©0;  (80)
and
U p(2(p@ 1L ®0L)2* DL ®0)ul ), = 2(¢@ 1L, ®0)2* D1, D0, (81)

For notational simplicity, rename z2(p @ 1, @ 0;)2* @ 1; ®0; and z(p D 1, @
05)2*@1,;80; as p and g respectively and rewrite m+2j as n: if the conclusion
of the proposition holds for this new pair then it also holds for the original
pair thanks to the definition of the controlled KK groups (see Definition
3.1), so this makes no real difference. In this new language, lines (80) and
(81) can be rewritten uhpu,jl = q and ul,hpuf_lh = q respectively.
Define now
u = uy_p(1 — p) + upp, (82)

which we claim has the properties in the statement. Using Lemma 6.7 with
v = M and v = MJ, we see that (with notation as in Definition 4.11),
u is an element of U, 0 10y25(R(1 — h)X U {h} U Y, B). Recalling that
M = 42007 e see that Np(A) = 29000000%° hag the desired property.
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To complete the proof, it remains to show that if Np = Ny (j1) = 22520000004%
then o[u] = [p, q] in KKY, v, (X U {h}, B).
Now, v := v(u, h) is as in line (40), we have

olu] —-[v (é 8) v (3 8) ]'

_ [w-n(1=p) —q
w = 1
p (I —=pluy,
Applying Lemma 6.8 with v = M and v = MJ, we see that w is in
Usy (205 237235 (X U {h}, B). For notational simplicity, set M := 237 M.

Proposition 4.6 implies that in KK 5 ., 5:(X U {h}, B)

(1 0\ , (10
=5 ) 5]
= [(vw™") v ((1) 8) v ow ™), ((1) 8)]
- 10\, (10
"0 loo) )

Computing, we see that

1 0} 4 1—-q O
w w = :
0 0 0 »p

Define now

) € Mo, (Lp). (83)

whence
1-— 0 1 0
ofu] = U (84)
0 p) \o o
in the group KK](\]43 3M35(X u {h}, B).
1—
Note now that the matrix 1 ) 7 )¢ My, (K%) has norm at most
q —q

2) (as |¢| < x < A, and so ||1 —¢| < A by Corollary 4.2), and that it satisfies

()]
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—q 4q
l—q
Proposition 4.6 again and using that A < M, the identity

(o)) -(h)

shows that the class on the right hand side of line (84) is the same as the

for all z € X U {h}. Hence € Uspoxns(X U {h}, B). Applying

class
1—q 0 1—q O
0 p)’ \ 0 ¢
in KK]?/[?,QM{%S(X u {h}, B). Using a rotation homotopy, this is the same as
[p, q] by definition of K K36 o,05(X U {h}, B); recalling that M, := 257 M?®,

M = 4.2@00 “and that p > 290000000 we see that Ny(p) = 2742 indeed
has the right properties. O

7 Main theorems

In this section (as throughout), if B is a separable C*-algebra, then L5 and
g are respectively the adjointable and compact operators on the standard
Hilbert B-module /2 ® B. We identify L with the “diagonal subalgebra”
Iy, ® L € M, ® L = M,(Lp) for each n.

In this section we prove our main result: the class of separable and nuclear
C*-algebras with the UCT is closed under decomposability.

7.1 Two technical ‘local’ controlled vanishing results

In order to make the structure of the proof of Theorem 1.2 as clear as we can,
in this subsection we split off two ‘local” technical results. These are based
on our work in Sections 5 and 6; given the material in these earlier sections,
at this point the proofs are essentially book-keeping.

The next result is the first key technical ingredient we need: it is based
on the material from Section 5. For the statement, recall that if x and S
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are respectively an element and subset of a metric space, and ¢ > 0, then
“r €. S” means that there is s € S with d(z,s) < e.

Proposition 7.1. There exists a function M : [1,00) — [1,00) with the
following property. Let k = 1, and let M := M(k). Let B be a separable
C*-algebra such that K,(B) = 0. Lete > 0, and let X be a finite subset of the
unit ball of Lsp. Let F' < Lgp be a separable, nuclear, unital C*-subalgebra
of Lsp such that the identity representation F' — Lgp s strongly unitally
absorbing (see Definition 2.5), such that for all x € X, x €. F, and such that
F satisfies the UC'T.

Then for each i € {0,1} there exists a finite subset Z of Fy such that the

forget control map
KK, (Z,B) - KKy (X, B)
of Definition 3.4 (for i =0) or Definition 3.7 (for i = 1) is zero.

Proof. Let us focus on the case of i = 0 first. Let Y be a finite subset of F}
such that for all x € X there exists y € Y with |z — y|| < e. Then for any n,
any 0 > 0, we see that with notation in Definition 3.1

Pn,/f,(S(K SB) < Pn,ﬁ,&-i—Zne(Xa SB)
Hence the forget control map
KEK.5(Y,SB) — KK, 5..(X,SB) (85)

is defined. On the other hand, Corollary 5.3 implies that there is a finite
subset Z of F such that the forget control map

KK, (Z,8B) — KK, 15.(Y,SB)

is defined and zero. Taking 6 = 160¢, and composing this with the forget
control map in line (85) above, we see that the forget control map

KKS,E(Za SB) - KKI({),(160+2H)€<Y7 SB)
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is well-defined and zero. We are therefore done in the case i = 0: any
function M satisfying M (k) = 160 + 2k will work. The case of i = 1 is
similar (although requiring a much larger M (x)), using Lemma 5.5 in place
of Corollary 5.3. O]

The second key technical result we need is as follows: it is based on the
material from Section 6.

Proposition 7.2. Let X be a finite subset of the unit ball of L, let € > 0,
and let k = 1. Assume there exists a positive contraction h € Lpg, finite
self-adjoint subsets Zy,, Z1_p,, and Zpq—p) of the unit ball of Lp, and X\, u > 1
and 0,y > 0 with the following properties:

(1) |[[h, x]| <€ for all x € X;
(ii) for each z € Zya_p), 2 €c Zy and z €c Z1_p;
(15i) with Ny := N1(\) as in Proposition 6.0, the forget control map
KKy, ys(M(1—=h)X U{h} U Zya-n) = KK, _(h(1 = h)X U {h}, B)
os Definition 3.7 is defined and zero;

(iv) the forget control map

KK} 0.(Zn v hX U {h},B)
— KKS 5(hX U {h} U Zya-n), B)

of Definition 3.4 is defined and zero;
(v) the forget control map

KK 0 (Zion 0 (1— W)X U {h}, B)
— KE((1 = W)X U {h} U Zua—n), B)

of Definition 3./ is defined and zero.
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Then if Z := Zy v Z1_p, X U {h} and Ny := Ny(p) is as in Proposition 6.0,
we have that the forget control map

KK® (2, B) > KK%, x,,(X, B)
of Definition 3. is zero.

Proof. We need to show that an arbitrary class a € KK} (X, B) vanishes
under the forget control map

KK (Z,B) — KK, n,, (X, B).

Using Proposition 4.10 part (i), with notation as in Definition 4.9, we may as-
sume that there is a cycle (p, q) € P}, s (Z, B) such that [p,q] € KK\ ; (Z, B)
agrees with the image of o under the forget control map

KK/S,E(Z7 B) - KK2K37E(Z7 B)

It thus suffices to show that [p,q] € KK}, 5 (Z, B) vanishes under the forget
control map
KK} (Z,B) —» KK}, y,,(X,B)

(we leave the check that this map is defined under our assumptions to the
reader). Now, with notation as in Proposition 6.6, the composition

KK}, (X UZyuZiyuih},B)
KK, (X uZyu{h},B)—"—KK,, (hX U Z, U {h}, B)

|

KK 5(hX U Zyuny v {h}, B)

(compare line (51)) is the zero map: indeed, the right-hand vertical map is
zero by assumption (iv). Similarly, using assumption (v), we see that the
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composition

KKEHQVE(X U Zpu Zi_pu{h}, B)

|

KK, (X U Zi_u{h},B)—""~ KK, (1-h)X0UZ_yu{h},B)

|

KK (1= h)X U Zya-n v {h}, B)

(compare line (52)) is zero. Hence Proposition 6.6 gives us an element
u € Uy v, w5 (ML = W)X U {h} U Zy-n), B)
such that in the diagram below (with Ny = Ny(u) as in Proposition 6.1)

KKy, ns(h(1 = h)X 0 {h} O Zna-n), B) KK?,, (Z, B)

4K2 2¢

| |

KK} _(h(1—h)X U {h}, B) g KK, joy(X U {h}, B)

|

KK]({,%NW(X u {h}, B)
(86)
the images of the classes [u] € KKy, ys(h(1 = h)X U {h} U Zya_n)) and
[p,q] € KK (Z,B) in the bottom right group K KR, y,.(X U {h}, B) are
the same; a fortiori their images are also the same if we further compose with

the forget control map
KKR@,NTY(X Y {h’}’ B) - KK]%g,Ngfy(Xa B)

Assumption (iii) implies, however, that the left-hand vertical map in line (86)

is zero, however, so we are done. O

7.2 Proof of the main theorems

We are now ready for our main results. For the statement of the first of

these, we recall what it means for a C*-algebra to decompose over a class of
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C*-algebras from Definition 1.1 above. After giving a proof of this, we will
use it to establish the theorems from the introduction.

Theorem 7.3. Let k > 1 and v > 0. Let My := M(4) be as in Proposition
7.1. Let Ny := Ny(My) be as in Proposition 6.06. Let My := M(Ny) be as
in Proposition 7.1. Let Ny := Ny(My) be as in Proposition 6.6. Then any
v = Ny and € € (0,7(2Na My N1 M) ™) have the following property.

Let A be a separable, unital C*-algebra that decomposes over the class of
nuclear C*-algebras that satisfy the UCT. Let B be any separable C*-algebra
such that K,(B) = 0. Then for any finite subset X of Ay, and € > 0, there
is a finite subset Z of Ay, such that the forget control map

KK°.(Z,5B) - KK° (X,SB)

of Definition 3.4 is defined and zero.
In particular, A satisfies the UC'T.

Proof. The claim that A satisfies the UCT follows as the vanishing property
in the statement of Theorem 7.3 implies condition (iii) from Corollary 5.3.
It thus suffices to prove the vanishing property. Let v and e satisfy the given
assumptions.

As A is decomposable with respect to the family of nuclear C*-subalgebras
that satisfy the UCT, there are nuclear, UCT C*-subalgebras C', D and F
of A and a positive contraction h € E such that for all x € X, |[[h, x]| < €,
hz €. C, (1 — h)x €. D, and h(1 — h)z €. E, and such that all e € E we
have that e e, C, and e €, D. Replacing C', D, and E by the C*-subalgebra
of A spanned by the algebra and the unit of A, we may assume that C, D,
and E are unital subalgebras of A (note that the unitization of a nuclear
C*-algebra that satisfies the UCT is nuclear and satisfies the UCT: see [10,
Exercise 2.3.5] for nuclearity and [55, Proposition 2.3 (a)] for the UCT).

Represent A on Lgg using a representation with the properties in Corol-
lary 2.7 (with B replaced by SB), and identify A (therefore also C', D, and E)
with unital C*-subalgebras of Lgp using this representation. Note that the
restrictions of this representation to each of E, C, D, (and the representation

of A itself) are strongly unitally absorbing.
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Throughout the rest of the proof, all unlabeled arrows are forget control
maps as in Definitions 3.4 or 3.7 as appropriate.

Using Proposition 7.1 there exists a finite self-adjoint subset Zj_p) of
FE such that the forget control map

KKy, onan (M1 = h)X O Zya_py v {h}, SB) (87)
- KK]1\42,2M2N1M16(h<1 - h)X v {h}7 SB)
is zero. Similarly, Proposition 7.1 and the facts that for all z € Z,q_p) S Ei,

z €. C and z €. D gives finite self-adjoint subsets Z, and Z;_; of C; and D,

respectively such that the forget control maps

KK}, (hX U Zy U {h},SB)
— KK} onn,(hX O Zyaopy u {h}, SB) (88)

and

KKE’Qé((l —h)X u Zy_p u{h},SB)
- KKJ(\)41,2M15((1 —h)X U Zn(1—n) Y {h},SB) (89)

are defined and zero. Expanding Z), and Z;_, if necessary (using that for all
ee F,ee C,and e €. D), we may assume that ,

forall ze Z, ze. Zy, and z €. Z1_y,. (90)

We are now in a position to apply Proposition 7.2 with the given ¢ and
Ky A = My, 6 = 2Mye, up = M, and v as given: assumption (i) follows by
choice of h; assumption (ii) follows from line (90); assumption (iii) follows as
the map in line (87) is zero; assumption (iv) follows as the map in line (88)
is zero; and assumption (v) follows as the map in line (89) is zero. Therefore
Proposition 7.2 implies that the forget control map

KK .(Z,5B) - KK, (X,SB)

is zero and we are done. O
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To establish the main results as stated in the introduction, we need a

basic lemma.

Lemma 7.4. The class of unital, nuclear C*-algebras is closed under decom-

posability.

Proof. Let A be a unital C*-algebra that decomposes over the class of unital
nuclear C*-algebras. Let a finite subset X of A and € € (0,1) be given. To
show that A is nuclear, it will suffice to construct a finite rank ccp map

p:A—> A

such that ¢(x) ~, x for all z € X (compare for example [8, IV.3.1.6, (iii)]).
We may assume that X contains the unit of A.

Let then C, D, E*°, and h be as in the definition of decomposability
(Definition 1.1) with respect to the finite set X and the parameter § =
+(e/(1 + €))%, and with C' and D nuclear. Note that for any z € X,
|[h2, 2] < 2|[R,2]]"/? by the main result of [49], whence

5 5
|ha — M 22h??|| < Z\\[h,x]]\1/2 < 151/2 < 262, (91)

as hx €5 C, and as 0 < 1, this implies that hY2xh'/? €452 C. Choose a finite
subset Y of C' such that for all z € X there is y, € Y with

lye — hM2xh'?| < 362, (92)

Similarly, there is a finite subset Z of D such that for all x € X there is
2y € Z with ||z, — (1 — h)V22(1 — h)V2| < 36V2.
Now, as C' and D are nuclear there are diagrams

and D C

C C
Nyt N
Fe

Fp

390ne does not actually need E at all in the proof.
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where: all the arrows are ccp maps; F and F)p are finite dimensional C*-
algebras; and for all y e Y, and all z € Z,

dc(Vo(y)) =52y and  ¥p(dp(z)) ~s2 2. (93)

Using Arveson’s extension theorem (see for example [10, Theorem 1.6.1}),
extend ¢ and ¥ p to ccp maps defined on all of A, which we keep the same
notation for. Define

G0 A= A ars do(bo(hah'?) + op(Up((1—h) (1~ b)),

and note that ¢q is completely positive. For any x € X, let y, have the
property in line (92). As 9¢ is contractive, this and lines (93) and (91)
imply that

do (Ve (WY22h?)) ~gsie d(We(Yn)) ~sue Yo Fagie B22hY? xo500 ha.
Precisely analogously, for any = € X,
Sp(Wp((1—h)Pe(l —h)'2) xepn (1 - h)z

and so for any z € X, ¢o(z) ~yg512 ©. Applying this to z = 1 implies in
particular that ||¢o| = ||¢o(1)| = 1 — 1862, Hence if we define

Po(a)
A— A —
? O oD

then ¢ is a ccp map such that

1801/2
lp(z) —zf < T 13512

for all z € X. Using the choice of §, this completes the proof. n

The next corollary is Theorem 1.2 from the introduction: it is an imme-
diate consequence of Lemma 7.4 and Theorem 7.3.

Corollary 7.5. If a separable, unital C*-algebra decomposes over the class
of nuclear, unital C*-algebras that satisfies the UCT, then it is nuclear and

satisfies the UC'T. O
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The next result is Theorem 1.4 from the introduction. For the definition
of finite complexity and the classes D, used below, see Definition 1.3.

Corollary 7.6. Let C be a class of separable, unital, nuclear C*-algebras
that satisfy the UCT. Then the class of separable unital C*-algebras that have
finite complexity relative to C consists of nuclear C*-algebras that satisfy the
UCT.

In particular, every separable C*-algebra of finite complexity is nuclear
and satisfies the UC'T.

Proof. With notation as in Definition 1.3, let Dy = C, and for each ordinal «,
let D, sep comnsist of the separable C*-algebras in the class D, from Definition
1.3. We proceed by transfinite induction to show that each D, s, consists
of nuclear, UCT C*-algebras. If a = 0, this is just the well-known fact
that AF C*-algebras satisfy the UCT. If & > 0 (and either a successor or
limit ordinal) then any C*-algebra in D, s, decomposes over C*-algebras in
U 5<a Dpsep, and so is nuclear and UCT by Corollary 7.5 and the inductive
hypothesis. [

A Examples

In this appendix we give some examples of C'*-algebras with finite complexity.

A.1 Cuntz algebras

The material in this section is based closely on work of Winter and Zacharias
70, Section 7]*!. Our aim is to establish the following result.

Proposition A.1. For any n with 2 < n < o, the Cuntz algebra O,, has

complexity rank one.

We should remark that the proof of Proposition A.1 uses classification
results for Cuntz algebras, and so depends on prior knowledge of the UCT; it

31More specifically, it is based on the slightly different approach to the material in [70,
Section 7] suggested in [70, Remark 7.3].
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therefore cannot be said that Proposition A.1 gives a new proof of the UCT
for Cuntz algebras (and even if it did, it would be quite a complicated one!).
Indeed, the main point of establishing Proposition A.1 for us is to use it as an
ingredient in Theorem 1.7 from the introduction, not to establish the UCT.

We should also remark that Proposition A.1 was subsequently generalized
in [37, Theorem 1.5]; nonetheless, we hope that the different argument given
here still has some interest.

We now embark on the proof of Proposition A.1. We will follow the
notation from [70, Section 7]. Fix n € N with n > 2. Let H be an n-

dimensional Hilbert space, with fixed orthonormal basis {ey, ..., e, }. Define

o]

I'(n) := P H¥, (94)
1=0
where H® is the ['" tensor power of H (and H®° is by definition a copy of
C). Let W, be the set of all finite words based on the alphabet {1,...,n}. In
symbols

e ¢]
W, = |_|{1, )k
k=0

(with {1,...,n}° by definition consisting only of the empty word). For each
p= (i1, ....,i) € W, define e, := €;, ®- - -®e;,, and define ey to be any unit-
length element of H®® = C. Then the set {e, | p € W,} is an orthonormal
basis of I'(n). For u € W, write |u| for the length of u, i.e. |u| = k means
that g = (i1, ...,1) for some iy, ..,ix € {1,...,n}. Then the canonical copy of
H®* inside I'(n) from line (94) has orthonormal basis {e, | |u| = k}.

For each i € {1,...,n} let T; be the bounded operator on I'(n) that acts

on basis elements via the formula
Ti:e,— e @e,.

The Cuntz-Toeplitz algebra T, is defined to be the C*-subalgebra of B(I'(n))
generated by T1,...,T,. We note that each T; is an isometry, and that 1 —
> T;T7 is the projection onto the span of ez. It follows directly from

this that 7, contains all matrix units with respect to the basis {e,} of I'(n),

101



and therefore contains the compact operators K on I'(n). Moreover, in the
quotient 7, /K, the images s; of the generators T; satisfy the Cuntz relations
sfs;=1land )] | s;sF = 1, and therefore the quotient is a copy of the Cuntz

algebra O,
Now, for z € Ry, define [z] := min{n € N | n > x}, and define**
2k—1 2k+[k/2]
pi= P H® and Tyy:= P HE (95)
I=k I=k+[k/2]
For i € {0,1}, define BY) := B(I;4). For cach [,m € N, we identify H®' ®

H®™ with HOWH™) vig the leeCtIOH of orthonormal bases
(62‘1 ®®€Zl) ® (6_71 ®”'®6j7n) - 62‘1 ®®€Zl ®6]1 ®.”®€j7n'

Fix for the moment k£ € N (it will stay fixed until Lemma A.2 below). Then
for each 7 € N we get a canonical identification

2k—1 (J+1)k—1
Lor @ H¥* = P H¥ @ H¥* = P HE.
=k l=jk

Combining this with line (94) we get a canonical identification

P(n) = (k@l H®l) @( é ok ® H®j’“) .
l:iH j=0

Let id be the identity representation of B(()O,z on 'y, and write By, for the

image of B(() . in the representation on I'(n) that is given by

0
O @ (@id@ 1H®jk>
k=0
with respect to the above decomposition above. Similarly, we get a decom-
position
k+[k/2]— [ee) )
r(n) = ( D H®l) o( D rieHo)
j=0
=?E11

32In [70, Section 7], Lo,k is written I'y o and I'y j is written Fk+[k/2],2k+[k/2]-
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and define B ;, to be the image of Bgo,g under the representation

o]

01, ® (D@ Lo ).

k=0

Now, let f : [0,1] — [0,1] be the function with graph pictured, where
the non-differentiable points occur at the = values 1/6, 2/6, 4/6, and 5/6.

057

Let h(()?,l € B(()?,z be the operator on Ty that acts on the summand H® from
line (95) by multiplication by the scalar f((I — k)/(k — 1)). Similarly, let
h(l?ll € Bﬁz be the operator on 'y ; that acts on the summand H® from line
(95) by multiplication by the scalar 1 — f((I — k — [k/2])/(k — 1)). Let hox
and hqj be the images of h(()?,l and h§0,)€ in By and By respectively. Note
that the operator on hgy, + hyy on I'(n) acts on the summand on H®' from
line (94) by multiplication by 1 as long as [ = k + [k/2]. In particular,

ho + h1k equals the identity on I'(n) up to a finite rank perturbation.
(96)

We will need two technical lemmas about these operators.

Lemma A.2. For any T in the Cuntz-Toeplitz algebra T, and i € {0,1}, we
have that |[hig, T]| — 0 as k — .

Proof. We will focus on hgy: the case of hyy is essentially the same. It
suffices to consider the case where T is one of the canonical generators 7T; of

the Cuntz-Toeplitz algebra. Let e, be a basis element with |u| = jk + { for
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some j,l € Nwith [ € {0,...,k — 1}. Then we compute that [hoy, T;]e, = 0 if
7 =0, and that otherwise

[hoe, Tilew = (F((U+1)/(k = 1)) = f(U/(k —1)))e: ® ey

As the elements {e; ® e, | i € W,,} are an orthonormal set, this implies that
thor, Ti]ll < | max  [f((+1)/(k = 1)) = f(I/(k = 1)

The choice of function f implies that the right hand side above is approxi-

mately 6/k, so we are done. O
Lemma A.3. For any T in the Cuntz-Toeplitz algebra T, we have that:

(i) forie{0,1}, d(h;xT,Bix) — 0 as k — oo;

(ii) d(hoxh1 kT, Boy N Big) — 0 as k — 0.

Proof. We will focus on the case of hgy: the other cases are similar. It
suffices to consider T" a finite product S;...5,,, where each S; is either one of
the generators T; or its adjoint. Using Lemma A.2, we see that [hé{,i, S;] —0
as k — oo for any j, and any [ € N with [ > 1. Hence the difference

hO,ksl---Sm . (hl/ (2m) Slhl/ (2m) )(h 2m)52h1/(2m)) L (hé{]i2m)5mh(l){]§2m))

tends to zero as k — oco. It thus suffices to prove that the distance between

each of the terms hl/ (2m) S hl/ (2m)

) and By, tends to zero as k — 0. Define
pr to be the strong operator topology limit of hl M as il — 00; in other words,
pr is the support prOJectlon of hor. Then we have that hé/ ka S; hl/ (2m) _

hé,/lizm)ka]p ho,k . As hO,/li ™ is in By i, it suffices to prove that the distance
between p;Tipy, and By, tends to zero as k — c0. However, p,T;p;, is actually

in By, so we are done. O

Now, as in the discussion on [70, page 488, define



For a word € W, in {1,...,n}, we may uniquely write p = popu1, where the
lengths |po| and |p]| satisfy |po| € {0,...,k — 1}, and |u;| € kKN. Then the
bijective correspondence of orthonormal bases

ey <> Cuy D €y
gives rise to a decomposition
I'(n) = T'i(n) @ T(n*).

Identify the C*-algebra B(I'yx(n)) ® T,» with its image in the representation
on I'(n) arising from the above decomposition. The following is essentially
part of [70, Lemma 7.1].

Lemma A.4. With notation as above, B(I'y(n)) ® T, contains the finite-
dimensional C*-algebras we have called By, and By, and in particular also

contains hoy and hy .

Proof. In the notation of [70, Lemma 7.1], By = Ax(B(I'k2k)), and By =
Ap(B(Tks[r/21,264k/21))- Part (i) of [70, Lemma 7.1] says exactly that the
image of Ay is contained in B(I'x(n)) ® T,x, however, so we are done. O

It is explained on [70, page 488] that B(I'x(n)) ® T,» contains T,, so we
get a canonical inclusion.

T — B(Tk(n)) & Tor. (97)

The dimension of ['y(n) is d, := 1 +n +n? + -+ + n*7! so we may make
the identification B(I'y(n)) ® T = Mg, (T,+). With respect to this identi-
fication, the inclusion in line (97) takes the compact operators on I'(n) to
My, (K(T'(n*))). Taking the quotient by the compacts on both sides of line

(97) thus gives rise to an inclusion
L:Op — My (Opr). (98)

In this language, we get the following immediate corollary of Lemmas A.2
and A.3. To state it, let ¢ : B(I'(n)) — Q(I'(n)) be the quotient map from
the bounded operators on I'(n) to the Calkin algebra.
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Corollary A.5. For any a € O,,, we have that the following all tend to zero as

k= o0 |[g(hor), la)ll, Ilg(hir), (@), dq(hor)i(a), ¢(Bok)), d(q(hir)e(a), a(Bi)),
and d(q(hoxhix)i(a), q(Box N Big))- O

We are finally ready for the proof of Proposition A.1.

Proof of Proposition A.1. Let € > 0, and let X be a finite subset of the unit
ball of O,,. Corollary A.5 implies that for any large k£ we have that for all
a € X and ¢ € {0,1}, the quantities |[g(hix),c(a)]|, d(q(hix)t(a),q(Bik)),
and d(q(hoxhix)t(a),q(Box N Big)) are smaller than /2. We may assume
moreover that £ = 1 modulo n — 1. Fix this k for the remainder of the proof.

As discussed on [70, page 488], we have a canonical unital inclusion O,x —
O,, by treating suitable products of the generators of O, as generators of
O,x. Moreover, dj, is equal to £ modulo n — 1. It follows that the K-theory
of My, (0O,,) is given by Z/(n — 1)Z in dimension zero and zero in dimension
one, with the class [1] of the unit in Ky represented by the residue of & in
Z/(n —1)Z. Hence the K-theory invariants of M, (O,) and O, agree, as we
are assuming that £ = 1 modulo n — 1. In particular, the Kirchberg-Phillips
classification theorem (see for example [53, Corollary 8.4.8]) gives a unital
isomorphism My, (O,,) = O,,. Combining this with the inclusion O,» — O,

mentioned above gives a unital inclusion
B My, (Onr) = O,. (99)

Now, the composition fo¢: O, — O, of § as in line (99) and ¢ as in line (98)
is a unital inclusion, whence necessarily induces an isomorphism on K-theory.
As O, satisfies the UCT, fou is therefore a K K-equivalence (see for example
[55, Proposition 7.3]). Hence the uniqueness part of the Kirchberg-Phillips
classification theorem (see for example [53, Theorem 8.3.3, (iii)]) implies that
Borv: O, — O, is approximately unitarily equivalent to the identity. Thus
there is a sequence (u,,) of unitaries in O,, such that |a — uy,Se(a)ut,| — 0
for all a € O,,. Choose m large enough so that |a — u,,Be(a)u’ || < €/2 for all
ae X.

Set h := unB(q(hok))up,, Co := umB(q(Bok))tn,, Do = umB(g(Bix))ur,,
and Ey 1= u,[(q(Bix 0 Bog))uk,. Set C to be the C*-subalgebra of O,

m
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spanned by Cjy and the unit, and similarly for D and E£. Our choices, plus
the fact that q(hoy + h1x) = 1 (see line (96)), imply that this data satisfies
the definition of decomposability (Definition 1.1), so we are done. O

A.2 Groupoids with finite dynamical complexity

In this section, we give another interesting class of C*-algebras with finite
complexity: C*-algebras of groupoids with finite dynamical complexity. To
avoid repeating the same assumptions, let us stipulate that throughout this
appendix the word “groupoid” means “locally compact, Hausdorff, étale
groupoid”; we will often also assume that G has compact base space, but
not always. For background on this class of groupoids and their C*-algebras,
we recommend [10, Section 5.6], [51, Section 2.3], or [59].

Note that if G is a groupoid in this sense, then any open subgroupoid
H of G (i.e. H is an open subset of G that is algebraically a groupoid with
the inherited operations) is also a groupoid in this sense. Again, to avoid
too much repetition, let us say that the word “subgroupoid” means “open
subgroupoid”.

The following definitions are essentially contained in the authors’ joint
work with Guentner [31, Definition A.4].

Definition A.6. Let G be a groupoid, let H be a subgroupoid of GG, and
let C be a set of subgroupoids of G. We say that H is decomposable over
C if for any compact subset K of H there exists an open cover {Uy, U;} of
r(K) u s(K) such that for each i € {0, 1} the subgroupoid of H generated by

{he K |s(h)eU;}
is contained in an element of C.
Definition A.7. For an ordinal number «:

(i) if @ = 0, let Cy be the class of groupoids G such that for any compact
subset K of G there is a subgroupoid H of G such that K < H, and
such that the closure of H is compact;
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(ii) if a > 0, let C, be the class of groupoids that decompose over the
collection of their subgroupoids in the class [ J 5<aCs-

We say that a groupoid G has finite dynamical complexity if G is contained in
C, for some ordinal «. If G has finite dynamical complexity, the complexity
rank of G is the smallest «v such that G is in C,,.

The main result of this section is as follows. For the statement, recall that
a groupoid is ample if it has totally disconnected base space, and principal
if the units are the elements g € G that satisfy s(g) = r(g). Recall also
that a C*-algebra is subhomogeneous if it is isomorphic to a C*-subalgebra
of My(C(X)) for some N € N and compact Hausdorff space X. Recall
finally the notion of complexity rank relative to a class of C*-algebras from
Definition 1.3.

Proposition A.8. Let G be a groupoid with compact base space.

(i) The complexity rank of C}(QG) relative to the class of subhomogeneous
C*-algebras is bounded above by the complexity rank of G.

(i1) If G is ample and principal, then the complexity rank of C*(G) (relative
to the class of finite-dimensional C*-algebras) is bounded above by the
complexity rank of G.

In particular, if G is second countable and has finite dynamical complezity,
then C*(Q) satisfies the UCT.

Before getting into the proof of this, let us discuss some remarks and

examples.

Example A.9. Let G(X) be the coarse groupoid associated to a bounded
geometry metric space X: see [61, Section 3| or [52, Chapter 10] for back-
ground. For such spaces X, Guentner, Tessera and Yu [29] introduced a
notion called finite decomposition complezity; it comes with a natural com-
plexity rank, defined to be the smallest ordinal o such that X is in the class
D, of [30, Definition 2.2.1]. Then [31, Theorem A.7| shows that G(X) has
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finite dynamical complexity if and only if X has finite decomposition com-
plexity®?*; moreover, inspection of the proof shows that the two complexity
ranks agree. It follow from this and [30, Theorem 4.1] that for any n € N
there are spaces X such that G(X) is not in C,, but is in Cy for some finite
N > n. Moreover it follows from [30, Discussion below 2.2.1] or the main
result of [15] that there are spaces X such that G(X) is in C, for some infinite
a, but not for any finite a.

Example A.9 shows that the range of possible values of the complexity
rank for groupoids is quite rich. As we do not know the corresponding fact
for C*-algebras, the following question is natural.

Question A.10. Are there any circumstances when the complexity rank of
C*(Q) is bounded above by that of G?

It seems very unlikely that there is a positive answer in general, but it is
conceivable that there could be a positive answer for coarse groupoids.

Example A.11. Transformation groupoids provide natural examples with
finite complexity rank. Using the main result of [2], the complexity rank of
the transformation groupoid associated to any free action of a virtually cyclic
group on a finite-dimensional space is one. We guess that the techniques used
in the proof of [18, Theorem 1.3] should show that for many discrete groups
[', any free action on the Cantor set X gives rise to a groupoid X x I with
finite dynamical complexity; however, we did try to look into the details, and
would be interested in any progress here. These ideas lead to the following

conjecture.

Conjecture A.12. IfT' has finite decomposition complexity then X x T has

finite dynamical complexity for any free action of I' on the Cantor set.

Remark A.13. Proposition A.8 does not give new information on the UCT:
this is because all groupoids with finite dynamical complexity are amenable

33This result was one of the key motivations for the definition of finite dynamical com-
plexity, and also motivates the terminology.
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by [31, Theorem A.9], whence their groupoid C*-algebras satisfy the UCT
by Tu’s theorem [64, Proposition 10.7]. However, it seems interesting to have
an approach to the UCT for a large class of groupoids that does not factor
through the Dirac-dual-Dirac machinery employed by Tu.

We now turn to the proof of Proposition A.8. For a subgroupoid H of a
groupoid G, write H' := H U G, which is also a subgroupoid of G.

Lemma A.14. Let G be a groupoid with compact base space, and let H be a
subgroupoid in Co. Then H U G© is a subgroupoid of G that is also in Cy.

Proof. We proceed by transfinite induction on «. For the base case @ = 0,
let H be a subgroupoid of G in Cy, and let K’ be a compact subset of H'. As
the base space in an étale groupoid is open, K := K'\G? is also a compact
set, and is contained in H. As H is in Cy, there exists a subgroupoid L of H
that contains K, and that has compact closure. Hence L’ is a subgroupoid
of H' that contains K’ and has compact closure. Thus H’ is in Cy too. The

inductive step follows the same idea. O]
The lemma below is very similar to [67, Lemma B.3].

Lemma A.15. Let G be a groupoid with compact base space. Let H be a
subgroupoid of G that decomposes over some class C of subgroupoids of G.
Then H' decomposes over the collection of subgroupoids L', where L is a

subgroupoid of H that is in C.

Proof. Let X be a finite subset of the unit ball of C*(H’), and ¢ > 0. As
C.(H) + C(G) is dense in C*(H'), perturbing X slightly, we may assume
that X is contained in a subset of C*(H') of the form C.(K) + C(G),
where K is an open and relatively compact subset of H. The proof of [67,
Lemma B.3] gives us open subgroupoids H; and Hs of H and a positive
contraction h in C’C(Hl(o)) < C¥(H,) such that Hy, Hy and Hy n Hy are in
the class C, and such that for all x € X, ha € C*(H,), (1 — h)x € C*(H,),
and (1 —h)hx € C}(H; n Hy). Then the data h, C := C}(H;), D = C}(H}),
and £ = C*(H] n H}) give the desired decomposability statement. O
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Proof of Proposition A.8. For part (i), fix a groupoid G. We show by trans-
finite induction on « that if H is an open subgroupoid of GG in the class C,,
and if H' = H U GO, then C*(H') is in the class D, of Definition 1.3, where
we define D, relative to the class of subhomogeneous C*-algebras. Applying
this to H = G then gives the desired conclusion for C}(G).

For the base case, we need to show that if H is an open subgroupoid of G
in the class Cy and if H' = H UG, then C*(H') is locally subhomogeneous.
Let a finite subset X of C*(H’) and € > 0 be given. As C.(H') is dense
in C*(H'), up to a perturbation, we may assume X is contained in C.(K)
for some open and relatively compact subset K of H'. Lemma A.14 implies
that H' is in Cy, whence there is an open subgroupoid L of H' with compact
closure that contains K, and therefore so that X is contained in C}*(L). On
the other hand, C*(L) is subhomogeneous by the proof [32, Lemma 8.14], so
we are done with the base case.

Assume now that o > 0 (and is either a successor ordinal or limit ordinal),
and let H be a subgroupoid of G in the class C,. According to Lemma A.15,
we have that H' decomposes over

{C’:(L') | L an open subgroupoid of H' in U Cg}.
B<a
which completes the proof of part (i) by inductive hypothesis.

We now look at part (ii), so let G be principal and ample. We will show
that if G is in Cy, then C}(G) is locally finite dimensional; thanks to our
work in part (i), this will suffice for the proof.

Let then G be an element of Cy. We claim that for any compact subset
K of G there is a compact open subgroupoid of H of GG that contains K.
The claim shows that C*(G) is locally finite-dimensional. Indeed, up to a
perturbation we can assume any finite subset of C*(G) is contained in C..(K)
for some open and relatively compact subset K of G, and so in C*(H) for
some compact, open subgroupoid of G. It is well-known that a compact,
Hausdorff, étale, principal groupoid with totally disconnected base space has
a locally finite-dimensional C*-algebra: for example, this follows directly
from the structure theorem for “CEERs” in [25, Lemma 3.4].
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To establish the claim, let a compact subset K of G be given. According
to the definition of Cy there exists an open subgroupoid L of G with compact
closure such that K is contained in L. Note first that as L has compact
closure, there is some m € N such that L is covered by m open bisections
from G. Hence in particular, for any z € L(®), we have that the range fiber
L* has at most m elements. Working entirely inside L, it suffices to prove
that if K is a compact subset of a principal, ample groupoid L such that
sup,cz |L*| = m < oo, then there is a compact, open subgroupoid H of L
that contains K.

Now, as L is ample (and étale), each point [ € K is contained in a compact,
open subset of L. As finitely many of these compact, open subsets cover K,
there is a compact, open subset K’ of L such that K < K’. Let H be
the subgroupoid of L generated by K’. A subgroupoid generated by an open
subset is always open (see for example [32, Lemma 5.2]), so it suffices to prove
that H is compact. Let (h;).c; be an arbitrary net consisting of elements from
H. Each h; can be written as a finite product h; = kz(l) e kl(ni), with kz(j) in
K" :=K' U (K') ' us(K')ur(K'). As each range fibre from L has at most
m elements, we may assume that n; < m for all m; in fact we may assume it
is exactly m, as otherwise we can just “pad” it with identity elements. Write
then h; = kﬁl) e kﬁm). As K" is compact, we may pass to a subnet of I, and
thus assume that each net (k,fj ))ie 1 has a convergent subnet, converging to
some k) in K”. Tt follows on passing to this subnet that (h;) converges to
kW ... k(™ As we have shown that every net in H has a convergent subnet,

H is compact, completing the proof. O
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