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Abstract

The coupling of the spin and the motion of charge carriers stems directly from the atomic struc-

ture of a conductor. It has become an important ingredient for the emergence of topological matter,

and, in particular, topological superconductivity which could host non-abelian excitations such as

Majorana modes or parafermions. These modes are sought after mostly in semiconducting plat-

forms which are made of heavy atoms and therefore exhibit naturally a large spin-orbit interaction.

Creating domain walls in the spin orbit interaction at the nanoscale may turn out to be a crucial

resource for engineering topological excitations suitable for universal topological quantum com-

puting. For example, it has been proposed for exploring exotic electronic states [1] or for creating

hinge states [2]. Realizing this in natural platforms remains a challenge. In this work, we show how

this can be alternatively implemented by using a synthetic spin orbit interaction induced by two

lithographically patterned magnetically textured gates. By using a double quantum dot in a light

material- a carbon nanotube- embedded in a microwave cavity, we trigger hopping between two

adjacent orbitals with the microwave photons and directly compare the wave functions separated

by the domain wall via the light-matter coupling. We show that we can achieve an engineered

staggered spin-orbit interaction with a change of strength larger than the hopping energy between

the two sites.
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Recently there has been a growing interest in controlling a crucial handle on the spin, the

spin orbit interaction. It is a particularly important resource for spin qubits [3–6] but also

for the engineering of topological states [7, 8]. Most of the experiments carried out so far

rely on transport measurements, which do not enable a direct probe of the spatial structure

of the spin-orbit interaction. Whereas local probes such as STM [9, 10] are a priori very well

suited to perform such a task, they remain challenging to implement in quantum devices [11].

An ideal setup for spatial resolution is two localized orbitals which experience two different

spin orbit interactions separated by a spin-independent tunnel barrier. The overlap of the

two corresponding wave functions can be directly mapped onto the tunnel matrix element

through the barrier. Such a setup can readily be implemented using a double quantum

dot and the corresponding matrix element can directly be measured by cavity quantum

electrodynamics techniques [3].

It might seem counterintuitive at first glance that microwaves which have macroscopic

wavelengths can probe such nanoscale features. We show here that the large electric field

gradients which can be achieved inside a microwave cavity enable nanoscale dipoles to be

sensed [12]. Specifically, we study a device made out of a carbon nanotube double quantum

dot proximal to two different magnetic textures inducing locally different synthetic spin orbit

interactions [13]. As a consequence, the localized energy levels respond differently to the

external magnetic field. The phase contrast of the microwave signal reveals a large difference

of the magnetic field response of the two dots, witnessing a large spin orbit contrast at the

nanoscale.

The principle of our experiment is depicted in figure 1a. A double quantum dot with

each of the two dots subject to two different synthetic spin orbit interactions is coupled to a

photonic field which actuates tunneling between these two dots as schematized by the orange

arrow [14]. The electric dipole φ arising from tunneling between the two dots stems directly

from the overlap between the wave functions between the left and the right dot depicted

here by a specific effective spin direction on the left dot. Owing to the band structure of

carbon nanotubes, the Hilbert space has at least 4 dimensions for each of the two dots due

to the spin and the orbital degrees of freedom.

Our physical implementation of such a setup is presented in figure 1b. A double quantum

dot is patterned in a single wall carbon nanotube using a stapling technique [15]. The device

is designed with two magnetically textured gates, colored in blue in figure 1b, made out
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of CoPt stacks (see Appendix) [13] above which the nanotube is stapled. The device is

embedded in a Nb microwave cavity with a quality factor of about 1000 and a resonance

frequency of fcav = 6.42 GHz, shown in figure 1d. From the magnetic force microscope

(MFM) micrograph shown in figure 1c, modulations of the magnetic signal are observed

with a length scale λ of about 200 nm. This yields a priori a large spin orbit energy scale

[14, 16] of hvF/2λ ≈ 8 meV, where vF is the Fermi velocity in the SWNT, comparable to

the mean energy level spacing of each dot , of about hvF/2L ≈ 3 meV, where L ≈ 500 nm

is the designed physical length of each dot.

The phase of the cavity transmission is sensitive to the charge susceptibility of the quan-

tum circuit [17]; in a double-quantum dot setup, a phase shift is measured when two energy

levels are essentially resonant as sketched in the leftmost panel of figure 3a. When an

external magnetic field is applied, Bext 6= 0, the energy levels are shifted by an energy

δEL(R) = gL(R)µBBext where gL(R) is an effective Landé factor in the left (right) dot. In

absence of a magnetic texture, and the two dots being formed inside the same CNT, the

Landé factor is expected to be identical in the two dots and δEL = δER as shown in the left

panel of figure 3a. In this situation, the cavity signal at the resonant frequency is expected

to be unaffected by the external magnetic field (the line width of the cavity is not affected

much at these magnetic fields). Such a behavior, observed in several samples, is shown in

figure 2c. Such a control sample design is similar to the one presented in figure 1 but its

magnetic electrode generates a very small and non-modulated dipolar field. Panel a presents

the phase contrast as a function of VgR−VgL for the control sample, where both the stability

diagram and internal transitions between the two dots are visible. Panel c presents the evo-

lution of the phase contrast as a function of VgR−Bext over the values spanned by the black

arrow in panel a. The cavity signal at resonance does not change with an external magnetic

field between ±150 mT, as expected for gL = gR. A very different signal is observed for the

staggered sample, fabricated with different magnetically textured gates. Here, the measure-

ments correspond to a second situation where gL 6= gR, as illustrated in the third panel of

figure 3a. The resonance condition for the cavity signal change with Bext, and resonance

can be recovered by changing the detuning Ed, as illustrated in figure 2d. Same as for the

control sample, panel b presents the stability diagram of the sample and panel d the evo-

lution of the phase signal with an external magnetic field an a detuning Ed (its span being

represented by the black arrow in b). Here, the cavity signal changes both in detuning value
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and in contrast over a range of Bext = ±100 mT. Two qualitative observations can be made

here. First, the width of the phase signal gives an order of magnitude of the energy scale at

play: it is of the order of t ≈ ~ωcav (see Appendix). The change in the resonant condition

thus corresponds to a detuning shift (δEd in figure 2a) larger than t. Second, the change in

the phase contrast indicates a change in the effective interdot tunneling term t sin(θ) with

Bext, where θ is the angle between the spin eigenvalues for the two energy levels at play.

Importantly, the observation that the dispersion of the phase signal occurs on an energy

scale t shows that the inhomogeneity of the energy scale governing the dispersion is t i.e.

the strong inhomogeneity regime according to the conventional wisdom for a chain.

In order to further susbtantiate our findings, we study now in details the evolution of

the phase contrast dispersion for different orbital states i.e. for different VgR − VgL gate

configurations. Figure 4a displays the corresponding measurements of the phase contrast as

a function of Bext − Ed for several transitions in the staggered sample. As expected for an

orbitally sensitive phenomenon, there are strong qualitative variations for the phase contrast

dispersion depending on the charge states considered. The observed dispersions range from

a ”v-shape” going up or down to a ”w-shape” going up or down, the capsized ”w-shape” of

figure 2d being one particular example. In addition, there are changes in the magnitude and

sign of the phase contrasts as a function of the external magnetic field. As a consequence,

these measurements show that there are spinful levels the dispersion of which change as the

orbital part of the wave function is changed, the hallmark of spin-orbit interaction. Since,

alike figure 2d, the dispersion is comparable to the width of the phase contrasts stripe, we

are led to conclude that the spin-orbit interaction engineered in our setup is in the strongly

inhomogeneous regime i.e. has a staggered character between the two dots. This is the main

result of our work.

We now show that we can understand quantitatively our findings. In a double dot setup

with a large orbital level spacing, our system can be described with an effective spin qubit

model [14, 18] (see Appendix). The left (right) dot are subject to a local field BL(R) with

a relative angle θ in the x-y plane and has an effective Landé factor gL(R). As shown in

figure 3b and c, these effective parameters stem from the overlap of the local magnetic field

modulations and the electronic wave function. We consider them as a fitting parameter

(see Appendix). The external magnetic field Bext is applied along z the CNT axis and BL

is taken along the x axis. As shown in the Appendix, all the ingredients of such a low
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energy model can be obtained by considering the effect of the magnetic texture on a carbon

nanotube. In particular, the renormalization of the spinful energy levels acquire a magnetic

field dependent part which strongly renormalize the effective Landé factors. The magnetic

field dispersion of the spinful levels in each dot being related to the overlap between the

electronic wave function and magnetic texture, there are two ways to control them, either

by detuning each dot or by changing the external magnetic field, as illustrated in figure 3b

and c. As shown in figure 4b, we can quantitatively reproduce the variety of experimental

observations. The obtained orders of magnitude of BL(R), θ and gL(R) are 100mT − 500mT ,

0−0.95π, 1−200 and t ≈ 3−7GHz (see Appendix). Besides the qualitative dependence on

the orbital and inhomogeneity, it is worth noticing that the extracted values of Landé factors

are much larger than the observed values in the litterature and in our control devices. This

allows us to rule out a simple orbital effect for our measurements. All these facts confirm

that we have achieved the strong inhomogeneity regime of spin orbit interaction.

As a conclusion, we have demonstrated that, by using a magnetic texture, we can achieve

changes in the magnitude and direction of the spin orbit interaction which correspond to an

energy larger than the hopping between adjacent orbitals. Such a synthetic material could

have important applications for the engineering of topologically non-trivial states as well as

for designs of spin quantum bits.

APPENDIX

Fabrication and measurement techniques.

The two sample presented in the main text consist in DQD made out of a CNT, stapled

over a mesoscopic circuit using the stapling technique described in ref [15]. The DQD is

coupled to a CPW resonator etched from a Nb thin film.

We describe here in greater details the fabrication and measurement techniques. The

electrical circuit and microwave cavity were lithographically defined on a high-resistivity

Si/Si02 substrate. The cavity is made of a λ/2 coplanar waveguide (CPW). First, a 100nm-

thick Nb layer is evaporated at a pressure below 5× 10−10 mbar, then the cavity pattern is

defined with laser lithography and etched using a reactive ion etching (RIE) process with

SF6. The CPW of the staggered sample is represented in figure 1 d, and has a resonant

frequency around 6.42 GHz. Then, the nanoscale circuit for defining the DQD is drawn using

electron beam lithography and metal evaporation processes. Trenches are defined around

this circuit with either optical or electron beam lithography and RIE etching. Carbon
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nanotubes were chemically grown using a methane process, on a separated chip designed

for the stapling process, and subsequently stapled under vacuum. Once an good electrical

contact is measured at room temperature, the circuit is transferred to a cryostat.

Both samples were characterized in a dilution fridge with base temperature of about

20 mK, through simultaneous DC and RF measurements. For RF measurement, a hetero-

dyne detection scheme is used with a modulation frequency of 20 MHz. For every change in

magnetic field, the change in the bare cavity resonant frequency is measured with the DQD

transitions detuned.

The two samples differ in the nanoscale circuit defining the DQD. For the staggered

sample, the CNT was positioned over two magnetically textured gates and a central Al/Alox

gate. This last gate can be DC biased and is also connected to the central conductor of the

microwave cavity of resonant frequency fcav = 6.42 GHz and linewidth κ = 5.5 MHz. The

magnetic gates were made out of ten repetitions of Co/Pt, with a Ta/Pt initial layer and a

thin Alox cap. The CNT was connected to two Pd electrodes, through which a current can

be measured. The electrode height is chosen so that the CNT was lying on the magnetic

gates, to maximize their effect. The control sample on the other hand, was fabricated with

several Al/Alox gates and two narrow magnetic gates with only 5 repetitions of a Pt/Co

bi-layer. The CNT was again connected with two Pd contacts. The electrode height was

increased, to that the CNT was suspended above the gate structure (as in ref [15]). The

CNT was capacitively coupled to a microwave cavity through one of the Al/Alox gate, of

resonant frequency 6.439 GHz and quality factor 1600. The narrower magnetic gates in

this control case implied that we had essentially a single domain situation (or bi-domain at

most) ensuring that there was no magnetic texture, as shown by magnetic force microscopy

measurements.

Low energy hamiltonian of a carbon nanotube in the presence of a magnetic

texture We present in this section the derivation of the low energy hamiltonian of a single

wall carbon nanotube in the presence of a magnetic texture. The spectrum of the SWNT

subject to an external magnetic field reads [19]:

Eκ,k,τ,σ = ±
√
κ2 + k2 +

1

2
gorbB‖τ +

1

2
gsBextσ (1)

where gorb(s) are the orbital (spin) Landé factors, τ(σ) are the orbital(spin) indices, κ and

k are the transverse and longitudinal wave vectors of the nanotube. Using the conven-
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tional quantization conditions for both κ and k, we can introduce the wave functions of

electrons/holes in a quantum dot made out of a carbon nanotube:

〈ϕ, ζ|Ψm,n,τ,σ〉 =
ei
−→
K(′).−→r
√

4π
ei(m−τν/3)ϕΦm,n(ζ) (2)

where n,m are the quantum numbers for the transverse and longitudinal quantization. The

parameter ν = 0,±1 encodes whether the nantoube is semiconducting (ν = ±1) or metallic

(ν = 0). The wave function Φm,n(ζ) has the usual spinor structure to account for the

graphene sublattices [19]:

Φm,n(ζ) = C

zκm,kn,τ
1

 eiknζ +D

zκm,−kn,τ
1

 e−iknζ (3)

with zκ,k,τ = ±τ(κ − iτk)/
√
κ2 + k2. The coefficients C and D depend on the boundary

conditions of the nanotube. We would like to calculate the matrix elements arising from the

spin texture. The corresponding terms in the nanotube hamiltonian read[20]:

spin :
1

2
gsBosc(σ̂z cos 2πζ/λ+ σ̂x sin 2πζ/λ)

valley :
1

2
gorbBoscτ̂zη̂x cos 2πζ/λ

In the above expressions, we have assumed a cycloidal magnetic texture oscillating with a

period λ and an amplitude Bosc. The matrices σ̂i, τ̂i and η̂i are the Pauli matrices acting

on the spin, valley and sublattice spaces respectively. We define kλ = 2π/λ. The matrix

element of these terms for the wave functions |Ψm,n,τ,σ〉 are all of the form :

Amnn′
sin((kn ± kn′ ± kλ)L/2)

(kn ± kn′ ± kλ)L/2

where L is the length of the confined region of the nanotube forming the quantum dot

(assuming a square potential for the sake of simplicity) and Amnn′ is a coefficient which

depends on the overlap between the wave functions of the dot and the subband index. We

would like now to obtain an effective spin-valley hamiltonian for the CNT. Two terms arise

from the above discussion : terms which conserve the longitudinal index (first order) and
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terms which couple different orbitals.The hamiltonian of the system is now :

H =
∑
n

|n〉〈n|[En +
1

2
gsµB(Bext + ασznnBoscσ̂z + ασxnnBoscσ̂x) +

1

2
gorbµB(Bext + βτznnBosc)τ̂z]

(4)

+
∑
nn′

|n〉〈n′|[1
2
gsµBBosc(α

σz
nn′σ̂z + ασxnn′σ̂x) +

1

2
gorbµBBoscβ

τz
nn′ τ̂z] + h.c.

(5)

The second terms modify at the second order the hamiltonian. This can be calculated using

a Schrieffer-Wolf transformation:

H̃ = eSHe−S ≈ H + [S,H] +
1

2
[S, [S,H] + ...

where S is a anti-hermitian operator. The operator S has to be chosen such that its com-

mutator with the diagonal part of the hamiltonian in the orbital subspace (4) is exactly

the opposite of the off-diagonal part (5). One can show that an operator satisfying these

conditions has the following matrix elements:

〈n, σ, τ |S|m,σ′, τ ′〉 =

[σδσσ′ασznm + σδσσ′ασxnm + τβτznm]δττ ′

En − Em + 1
2
gsµB(Bext +Bosc

√
ασznn

2 + ασxnn
2)σ − 1

2
gsµB(Bext +Bosc

√
ασzmm

2 + ασxmm
2)σ′

where σ is the new quantum number along the quantization axis defined by the external

field and the first order terms of the magnetic field. The final version of the hamiltonian

(projected on the orbital |n〉) is :

Heff = En +
1

2
gsµB(Bext + ασznnBoscσ̂z + ασxnnBoscσ̂x) +

1

2
gorbµB(Bext + βτznnBosc)τ̂z+ (6)

+γσzτznn

(gsµBBosc)
2

ESO
σ̂z τ̂z + γσxτznn

(gsµBBosc)
2

ESO
σ̂xτ̂z + γσynn

(gsµBBosc)
2

ESO
σ̂y (7)

The dimensionless parameters ασznn, ασxnn, βτznn, γσxτznn , γσzτznn and γ
σy
nn are of the order of 1

and depend on the wave function, the value of kλ and therefore on the external magnetic

field Bext as well. It is important to note that we obtain for the two first terms of the

second line the same form as that for the intrinsic spin orbit interaction [21] in carbon

nanotubes which shows that the magnetic texture plays indeed the role of an effective spin

orbit interaction. Finally, it is essential to note that the synthetic spin-orbit interaction acts

already at first order as an effective magnetic field which depends on the wave functions
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through the parameters ασznn, ασxnn and βτznn which imply in particular an orbital dependent

effective field direction for the spin defined by the angle θn = arctan[ασxnn/α
σz
nn].

Local fields and effective-g model

The above hamiltonian can be further simplified if one considers the ground state and the

first excited state. This is fully justified in our case since the cavity is energy selective and

filters the transition which is the closest to the cavity frequency ωcav/2π. We therefore model

our devices as a double quantum dot (DQD) with one level in each dot, with an effective

spin degree of freedom corresponding to the ground and excited states of hamilotnian (6)

and (7).

The two levels are detuned by an energy Ed. We introduce τ0,x,y,z, σ0,x,y,z as the Pauli

matrices for the left/right and effective spin subspaces. Each dot is subject to a local effective

field BL,R that is in the x-y plane (BL is along the x axis, and BR has an angle θ to BL). An

external magnetic field Bext can be applied along the z-axis, that is the axis of the CNT. Bext

can thus both have a Zeeman and orbital contribution to the spectrum. The orthogonality

between Bext and the local effective field ensure a symmetric spectrum with respect to Bext,

as experimentally observed.

The model hamiltonian is the following :

Htot =
Ed
2
τz + tτx +Hspin,L +Hspin,R

with

Hspin,L = −gLµBBL

4
(τ0 + τz)σx −

gLµBBext

4
(τ0 + τz)σz

Hspin,R = −gRµBBR

4
(τ0 − τz)(sin(θ)σx + cos(θ)σy)−

gRµBBext

4
(τ0 − τz)σz

The cavity transmission is given by: T = κ/2
(fcav−fd)−iκ/2−χ where fcav, κ are the cavity

resonance frequency and line width and fd is the drive frequency. The charge susceptibility

χ is given by: χ =
∑

i,j χij(ni − nj) and χij =
g2ij

fij−fd−i(Γ1+Γφ/2)/2
with ni, nj the thermal

occupations at an electronic temperature Te, and fij = fi − fj the transition frequency

between eigenvalues i and j. The electron-photon coupling strength gij is calculated from

the electron-photon coupling operator: gij = g0|〈i| τ0−τz2
|j〉| where g0 is a fitting parameter.

For simplicity, the dephasing rate Γ1 = 1 MHz is kept constant, whereas the Γφ for each (i, j)

are calculated from the model Hamiltonian Htot(defined above) through the projection of
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the different dephasing operators with the initial and final states. The dephasing operators

are τz (charge), σz (spin) and γz (valley).

The electronic temperature is taken to be Te = 150 mK. gorb = 10,∆KK′ = 6 GHz, κ =

5.5 MHz, fcav = fd = 6.42 GHz. Γφ,v = Γφ,s = 1 MHz by default.

An additional model parameter is the conversion energy for the detuning axis. Indeed,

a first approximative value for the lever arms of both gates was extracted from Coulomb

diamonds. However, the strong interdot coupling deforms the stability diagram and hinders

a precise measurement of these lever arms. A correction to the lever arms is thus kept as a

general parameter in the model. First, the gate voltages are converted into a detuning value

through

εd = µ1 − µ2 with µ1 = 0.31Vg1 − 0.025Vg2, µ2 = −0.10Vg1 + 0.11Vg2

Then, the detuning in the fits is taken as Ed = εεd, where ε is a fit parameter.

The values for the fit of the different transitions are given in figure 5.
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Figure 1. The device (a) Schematics of the DQD. It is defined inside a CNT connected to two

normal contacts (grey). The two blue gates yield an oscillating magnetic field (red) at the level of

the dots. The DQD is also coupled to a microwave cavity through the orange gate; as a consequence,

the transmission phase Φ is sensitive to the charge susceptibility of the DQD. (b) False-color SEM

image of sample 2, with the CNT highlighted in white. The central orange gate is connected to

the cavity central conductor. The two lateral blue gates are made of teh CoPt stacks. (c) MFM

phase cut of the sample, displaying oscillations of the AFM phase signal above the magnetic gates

(blue region). (d) Photograph of the CPW in which the sample is embedded.
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Figure 2. Magneto-spectroscopy of staggered and control device. a,b Vg1 − Vg2 cavity

phase shift map for two samples. c,d B − Vg maps of the cavity phase shift, over a magnetic field

range of about ±0.1 T for the two samples. For sample 1 c the cavity signal is unaffected by the

external magnetic field, as opposed to sample 2 d. For these measurements, the cavity resonant

frequency is measured at each new value of external magnetic field.
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a

= ≠
EdEd

b

c
Change of detuning

Change of external magnetic field

Figure 3. Picture of evolution of DQD levels and of the staggered spin-orbit interaction.

a Schematic representation of the evolution of the charge susceptibility with an external field Bext,

from a no-detuning situation (first panel from the left). When the left and right Landé factors are

equal, gL = gR, the cavity signal is unaffected by Bext (second panel). When they are different,

the cavity signal is modified (third panel), but the resonant condition can be recovered with a

detuning Ed (fourth panel). b Picture illustrating the evolution of the spinful levels from the

overlap between the electronic wavefunction and the magnetic textures from change of detuning.

c Picture illustrating the evolution of the spinful levels from the overlap between the electronic

wavefunction and the magnetic textures from change of detuning.
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Figure 4. Orbital effect on spinful transitions. a Measured B − Vg phase shift maps for

several transitions in sample 2. The magnetic field is swept from −0.2 T to 0.2 T. b Modeling of

the transitions with the local fields and effective g model of the Appendix section.
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Figure 5. Fitting parameters. Summary of all the fitting parameters used in figure 4b
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