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Abstract. We construct numerical approximations for Mean Field Games with

fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approx-

imations of the underlying control problems/games along with dual approximations
of the distributions of agents. The methods are monotone, stable, and consistent,

and we prove convergence along subsequences for (i) degenerate equations in one

space dimension and (ii) nondegenerate equations in arbitrary dimensions. We also
give results on full convergence and convergence to classical solutions. Numerical

tests are implemented for a range of different nonlocal diffusions and support our

analytical findings.
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1. Introduction

In this article we study numerical approximations of Mean Field Games (MFGs) with
fractional and general non-local diffusions. We consider the mean field game system

−ut − Lu+H(x,Du) = F (x,m(t)), in (0, T )× Rd,
mt − L∗m− div(mDpH(x,Du)) = 0 in (0, T )× Rd,
u(T, x) = G(x,m(T )), m(0) = m0 in Rd,

(1)

where

Lφ(x) =

∫
|z|>0

[
φ(x+ z)− φ(x)− 1{|z|<1}Dφ(x) · z

]
dν(z),(2)

2020 Mathematics Subject Classification. 35Q89, 47G20, 35Q84, 49L12, 45K05, 35K61, 65M12,
91A16, 65M22, 35R11 , 35R06,

Key words and phrases. Mean Field Games, jump diffusion, anomalous diffusion, nonlocal operators,

fractional PDEs, nonlocal PDEs, degenerate PDEs, semi-Lagrangian scheme, convergence, compactness,
Fokker-Planck equations, Hamilton-Jacobi-Bellman equations, duality methods.

1

ar
X

iv
:2

10
5.

00
07

3v
1 

 [
m

at
h.

A
P]

  3
0 

A
pr

 2
02

1



2 I. CHOWDHURY, O. ERSLAND, AND E. R. JAKOBSEN

is a nonlocal diffusion operator (possibly degenerate), ν is a Lévy measure (see assump-
tion (ν0)), and the adjoint L∗ is defined as (L∗φ, ψ)L2 = (φ,Lψ)L2 for φ, ψ ∈ C∞c (Rd).

The first equation in (1) is a backward in time Hamilton-Jacobi-Bellman (HJB) equa-
tion with terminal data G, and the second equation is a forward in time Fokker-Planck-
Kolmogorov (FPK) equation with initial data m0. Here H is the Hamiltonian, and the
system is coupled through the cost functions F and G. There are two different types
of couplings: (i) Local couplings where F and G depend on point values of m, and (ii)
non-local or smoothing couplings where they depend on distributional properties induced
from m through integration or convolution. Here we work with nonlocal couplings.

A mathematical theory of MFGs were introduced by Lasry–Lions [49] and Caines–
Huang–Malhame [44], and describes the limiting behavior of N -player stochastic differ-
ential games when the number of players N tends to ∞ [18]. In recent years there
has been significant progress on MFG systems with local (or no) diffusion, includ-
ing e.g. modeling, wellposedness, numerical approximations, long time behavior, con-
vergence of Nash equilibria, and various control and game theoretic questions, see
e.g. [5, 27, 18, 13, 39, 43] and references therein. The study of MFGs with ‘non-local
diffusion’ is quite recent, and few results exist so far. Stationary problems with frac-
tional Laplacians were studied in [30], and parabolic problems including (1), in [33] and
[37]. We refer to [48] and references therein for some development using probabilistic
methods.

The difference between problem (1) and standard MFG formulations lies in the type of
noise driving the underlying controlled stochastic differential equations (SDEs). Usually
Gaussian noise is considered [49, 51, 20, 26, 5], or there is no noise (the first order case)
[17, 19]. Here the underlying SDEs are driven by pure jump Lévy processes, which
leads to nonlocal operators (2) in the MFG system. In many real world applications,
jump processes model the observed noise better than Gaussian processes [9, 50, 34,
54]. Prototypical examples are symmetric σ-stable processes and their generators, the
fractional Laplace operators (−4)

σ
2 . In Economy and Finance the observed noise is not

symmetric and σ-stable, but rather non-symmetric and tempered. A typical example is

the one-dimensional CGMY process [34] where dν
dz (z) = C

|z|1+Y e
−Gz+−Mz− for C,G,M >

0 and Y ∈ (0, 2). Such models are covered by the results of this article. Our assumptions
on the nonlocal operators (cf. (ν1)) are quite general, allowing for degenerate operators
and no restrictions on the tail of the Lévy measure ν.

There has been some development on numerical approximations for MFG systems
with local operators. Finite difference schemes for nondegenerate second order equations
have been designed and analyzed e.g. by Achdou et al. [1, 2, 3, 4, 7, 8, 6] and Gueant
[40, 42, 41]. Semi-Lagrangian (SL) schemes for MFG system have been developed by
Carlini–Silva both for first order equations [23] and possibly degenerate second order
equations [24]. Other numerical schemes for MFGs include recent machine learning
methods [28, 29, 52] for high dimensional problems. We refer to the survey article [6]
for recent developments on numerical methods for MFG. We know of no prior schemes
or numerical analysis for MFGs with fractional or nonlocal diffusions.

In this paper we will focus on SL schemes. They are monotone, stable, connected
to the underlying control problem, easily handles degenerate and arbitrarily directed
diffusions, and large time steps are allowed. Although the SL schemes for HJB equations
have been studied for some time (see e.g. [38, 16, 14, 35]), there are few results for FPK
equations (but see [25]) and the coupled MFG system. For nonlocal problems we only
know of the results in [15] for HJB equations.

Our contributions.

A. Derivation. We construct fully discrete monotone numerical schemes for the
MFG system (1). These dual SL schemes are closely related to the underlying control



APPROXIMATION OF NONLOCAL MFGS 3

formulation of the MFG. In our case it is based on the following controlled SDE:

dXt = −αt dt+ dLt,

where αt is the control and Lt a pure jump Lévy process (cf. (6)). Note that Lt can
be decomposed into small and large jumps, where the small jumps may have infinite
intensity. We derive our approximation in several steps:

1. (Approximate small jumps) The small jumps are approximated by Brownian motion
(see (7)) following e.g. [10, 15, 36]. This is done to avoid infinitely many jumps per
time-interval and singular integrals, and gives a better approximation compared to
simply neglecting these terms.

2. (SL scheme for HJB) We discretise the resulting SDE from step 1 in time and approx-
imate the noise by random walks and approximate compound Poisson processes in
the spirit of [15] (Section 3.1). From the corresponding discrete time optimal control
problem, dynamic programming, and interpolation we construct an SL scheme for
the HJB equation (Section 3.2).

3. (Approximate control) We define an approximate optimal feedback control for the
SL scheme in step 2 from the continuous optimal feedback control as in [23, 24]:
α∗approx = DpH(·, Duεd), where uεd is a regularization of the (interpolated) solution
from step 2 (Section 3.3).

4. (Dual SL scheme for FPK) The control of step 3 and the scheme in step 2 define
a controlled approximate SDE with a corresponding discrete FPK equation for the
densities of the solutions. We explicitly derive this FPK equation in weak form, and
obtain the final dual SL scheme taking test functions to be linear interpolation basis
functions (Section 3.4).

See (18) and (24) in Section 3 for the specific form of our discretizations. These seem
to be the first numerical approximations of MFG systems with nonlocal or fractional
diffusion and the first SL approximations of nonlocal FPK equations. Our dual SL
schemes are extensions to the nonlocal case of the schemes in [23, 24, 25], but a clear
derivation of such type of schemes seems to be new. The schemes come in the form of
nonlinear coupled systems (27) that need to be resolved numerically. We prove existence
of solutions using fixed point arguments, see Proposition 3.4.

B. Analysis. We establish a range of properties for the scheme including monotonic-
ity, consistency, stability, (discrete) regularity, convergence of individual equations, and
convergence to the full MFG system.

1. (HJB approximation) For the approximation of the HJB equation we prove point-
wise consistency and uniform discrete L∞, Lipschitz, and semiconcavity bounds.
Convergence to a viscosity solution is obtained via the half relaxed limit method
[12].

2. (FKP approximation) We prove consistency in the sense of distributions, preserva-
tion of mass and positivity, L1-stability, tightness, and equi-continuity in time. In
dimension d = 1, we also prove uniform Lp-estimates for all p ∈ (1,∞]. Convergence
is obtained from compactness and stability arguments.

3. (The full MFG approximation) We prove convergence along subsequences to viscosity-
very weak solutions of the MFG system in two cases: (i) Degenerate equations in
dimension d = 1, and (ii) non-degenerate equation in Rd under the assumption that
solutions of the HJB equation are C1 in space. Full convergence follows for MFGs
with unique solutions, and convergence to classical solutions follows under certain
regularity and weak uniqueness conditions. Applying the results to the setting of
[37], we obtain full convergence to classical solutions in this case.

Because of the nonlocal or smoothing couplings, the HJB approximation can be anal-
ysed almost independently of the FKP approximation. The analysis of the FKP scheme
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on the other hand, strongly depends on boundedness and regularity properties of solu-
tions of the HJB scheme. Compactness in measure is enough in the nondegenerate case
when the HJB equation has C1 solutions, while stronger weak (∗) compactness in Lp

for some p ∈ (1,∞] is needed in the degenerate case. As in [23], we are only able to
prove this latter compactness in dimension d = 1. A priori estimates and convergence
for p ∈ (1,∞) seems to be new also for local MFGs.

In this paper we study general Lévy jump processes and nonlocal operators. This
means that the underlying stochastic processes may not have first moments whatever
initial distribution we take (like e.g. σ-stable processes with σ < 1), and then we can no
longer work in the commonly used Wasserstein-1 space (P1, d1) for the FKP equations.
Instead we work in the space (P, d0) of probability measures under weak convergence
metrizised by the Rubinstein-Kantorovich metric d0 (see Section 2). Surprisingly, a
result from [31] (Proposition 6.1) allow us to prove tightness and compactness in this
space without any moment assumptions! We refer to section 4.3 for a more detailed
discussion along with convergence results in the traditional (P1, d1) topology when first
moments are available.

This (P, d0) setting can be adapted to local problems, to give results also there without
moment assumptions. Finally, we note that our results for degenerate problems cover the
first order equations and improve [23] in the sense that more general initial distributions
m0 are allowed: P ∩ Lp for some p ∈ (1,∞] instead of P1+δ ∩ L∞ for some δ > 0.

C. Testing. We provide several numerical simulations. In Example 1 and 2 we
use a similar setup as in [24], comparing the effects of a range of different diffusion
operators: Fractional Laplacians of different powers, CGMY-diffusions, a degenerate
diffusion, a spectrally one-sided diffusion, as well as classical local diffusion and the case
of no diffusion. In Example 3 we solve the MFG system on a long time horizon and
observe the turnpike property in a nonlocal setting. Finally, in Example 4 we study the
convergence of the scheme.

Outline of the paper. In section 2 we list our assumptions and state mostly known
results of the MFG system (1) and its individual HJB and FKP equations. In section
3 we construct the discrete schemes for the HJB, FKP, and full MFG equations from
the underlying stochastic control problem/game. The convergence results are given in
Section 4, along with extensions and a discussion section. In sections 5 and 6 we analyze
the discretisations of the HJB and FKP equations respectively, including establishing a
priori estimates, stability, and some consistency results. Using these results, we prove
the convergence results of section 4 in section 7. In section 8 we provide and discuss
numerical simulations of various nonlocal MFG systems. Finally, there are three appen-
dices with proofs of technical results.

2. Assumptions and Preliminaries

We start with some notation. By C,K we mean various constants which may change
from line to line. The Euclidean norm on any Rd-type space is denoted by | · |. For
any subset Q ⊆ Rd or Q ⊆ [0, T ] × Rd, and for any bounded, possibly vector valued
function onQ, we will consider Lp-spaces Lp(Q) and spaces Cb(Q) of bounded continuous
functions. Often we use the notation ‖ · ‖0 as an alternative notation for the norms in
Cb or L∞. The space Cmb (Q) is the subset of Cb(Q) with m bounded and continuous

derivatives, and for Q ⊆ [0, T ]×Rd, Cl,kb (Q) is the subset of Cb(Q) with l bounded and

continuous derivatives in time and k in space. By P (Rd) we denote the set of probability
measure on Rd. The Kantorovich-Rubinstein distance d0(µ1, µ2) on the space P (Rd) is
defined as

d0(µ1, µ2) := sup
f∈Lip1,1(Rd)

{∫
Rd
f(x)d(µ1 − µ2)(x)

}
,
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where Lip1,1(Rd) =
{
f : f is Lipschitz continuous and ‖f‖0, ‖Df‖0 ≤ 1

}
. We define the

Legendre transform L of H as:

L(x, q) := sup
p∈Rd

{
p · q −H(x, p)

}
.

We use the following assumptions for equation (1):

(ν0): (Lévy condition) ν is a positive Radon measure that satisfies∫
Rd

1 ∧ |z|2dν(z) <∞.

(ν1): (Growth near singularity) There exists constants σ ∈ (0, 2) and C > 0 such
that the density of ν for |z| < 1 satisfies

0 ≤ dν

dz
≤ C

|z|d+σ
, for |z| < 1.

(L0): (Continuity and local boundedness) The function L : Rd × Rd → R is
continuous in x, q, and for any K > 0, there exists CL(K) > 0 such that

sup
|q|≤K

|L(x, q)| ≤ CL(K), x ∈ Rd.

(L1): (Convexity and growth) The function L(x, q) is convex in q and satisfies

lim
|q|→+∞

L(x, q)

|q|
= +∞, x ∈ Rd.

(L2): (Lipschitz regularity) There exists a constant LL > 0 independent of q,
such that

|L(x, q)− L(y, q)| ≤ LL|x− y|.

(L3): (Semi-concavity) There exists a constant cL > 0 independent of q, such
that

L(x+ y, q)− 2L(x, q) + L(x− y, q) ≤ cL|y|2.

(F1): (Uniform bounds) There exists constants CF , CG > 0 such that

|F (x, µ)| ≤ CF , |G(x, µ)| ≤ CG, ∀x ∈ Rd, µ ∈ P (Rd).

(F2): (Lipschitz assumption) There exists constants LF , LG > 0 such that

|F (x, µ1)− F (y, µ2)| ≤ LF
[
|x− y|+ d0(µ1, µ2)

]
,

|G(x, µ1)−G(y, µ2)| ≤ LG
[
|x− y|+ d0(µ1, µ2)

]
.

(F3): (Semi-concavity) There exists constants cF , cG > 0 such that

F (x+ y, µ)− 2F (x, µ) + F (x− y, µ) ≤ cF
G(x+ y, µ)− 2G(x, µ) +G(x− y, µ) ≤ cG

(M): (Initial condition) We assume m0 ∈ P (Rd).

(M’): The dimension d = 1, and m0 ∈ P (R) ∩ Lp(R) for some p ∈ (1,∞].

By (L1), the Legendre transform H = L∗ is welldefined and the optimal q is q∗ =
DpH(x, p). To study the convergence of the numerical schemes we further assume local
uniform bounds on the derivatives of Hamiltonian:

(H1): The function DpH ∈ C(Rd×Rd), and for every R > 0, there is a constant
CR > 0 such that for every x ∈ Rd and p ∈ BR we have |DpH(x, p)| ≤ CR.
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(H2): The function DpH ∈ C1(Rd×Rd). For every R > 0 there exists a constant
CR > 0 such that for every x ∈ Rd and p ∈ BR we have

|DppH(x, p)|+ |DpxH(x, p)| ≤ CR.

Remark 2.1. We impose most of the conditions on L, and not on H, as L appears in
optimal control problem, which would be the basis of our semi-Lagrangian approxima-
tion. Assumptions (L1) and (L2) (but, not (L3)!) would immediately carry forward to
the corresponding Hamiltonian H from the definition of Legendre transform. Whereas,
we require to assume (H1)–(H2) on H, in contrary to the other assumptions, as it does
not follow from the condition on L in general. However, when the Lagrangian L behaves
like | · |r in q variable for large q and r > 1, the growth of the corresponding Hamiltonian

H would be | · |
r
r−1 in p variable for large p (cf. [32, Proposition 2.1]). The growth of

the derivatives of H for large p can be computed similarly, which would correspond to
similar condition as in (H1)–(H2).

In most of this paper solutions of the HJB equation in (1) are interpreted in the
viscosity sense, we refer to [46] and references therein for general definition and well-
posedness results, while solutions of FPK equation in (1) are considered in the very weak
sense defined as follows:

Definition 2.2. (a) If u ∈ C0,1
b ((0, T )×Rd), a measure m ∈ C([0, T ], P (Rd)) is a very

weak solution of the FPK equation in (1), if for every φ ∈ C∞c (Rd) and t ∈ [0, T ]∫
Rd
φ(x) dm(t)(x)−

∫
Rd
φ(x) dm0(x)

=

∫ t

0

∫
Rd

(
L[φ](x)−DpH(x,Du) ·Dφ(x)

)
dm(s)(x)ds.

(3)

(b) If u ∈ L∞(0, T ;W 1,∞(Rd)) and p ∈ [1,∞], a function m ∈ C([0, T ], P (Rd)) ∩
Lp([0, T ] × Rd), is a very weak solution of the FPK equation in (1), if (3) holds for
every φ ∈ C∞c (Rd) and t ∈ [0, T ].

Remark 2.3. Inequality (3) holding for every φ ∈ C∞c (Rd) and t ∈ [0, T ] is equivalent to∫
Rd
φ(T, x) d(m(T ))(x)−

∫
Rd
φ(0, x) dm0(x)

=

∫ T

0

∫
Rd

(
φt(s, x) + L[φ](s, x)−DpH(x,Du) ·Dφ(s, x)

)
dm(s)(x)ds,

holding for every φ ∈ C1,2
b ([0, T ]× Rd) (cf. [31, Lemma 6.1]).

Definition 2.4. A pair (u,m) is a viscosity-very weak solution of the MFG system (1),
if u is a viscosity solution of the HJB equation, and m is a very weak solution of the
FPK equation (see, Definition 2.2).

Proposition 2.5. Fix, µ ∈ C([0, T ], P (Rd)). Let (ν0), (L2) and (F1) hold.

(a) (Comparison principle) If u is a viscosity subsolution and v is a viscosity superso-
lution of the HJB equation in (1) with u(T, ·) ≤ v(T, ·), then u ≤ v.

(b) There exists a unique bounded viscosity solution u ∈ Cb([0, T ] × Rd) of the HJB
equation in (1), and for any t ∈ [0, T ] we have ‖u(t)‖0 ≤ CFT + CG.

(c) If (L2) and (F2) hold, then the viscosity solution u is Lipschitz continuous in space
variable and for every t ∈ [0, T ] and x, y ∈ Rd we have

|u(t, x)− u(t, x+ y)| ≤
(
T (LL + LF ) + LG

)
|y|.
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In addition, if (L3) and (F3) hold, then u is semiconcave in space variable and for every
t ∈ [0, T ] and x, y ∈ Rd we have

u(t, x+ y) + u(t, x− y)− 2u(t, x) ≤
(
T (cL + cF ) + cG

)
|y|2.

Proof. These results are by now standard: (a) follows by a similar argument as for
[46, Theorem 3.1], (b) follows by e.g. Perron’s method, and (c) by adapting the com-
parison arguments of [46] in a standard way. We omit the details. Under some extra
assumptions, (b) and (c) also follows from Theorem 5.4 and Lemma 5.3 below. �

Proposition 2.6. Assume (ν0), (ν1), (H1), and (M).

(a) If u ∈ C([0, T ];C1
b (Rd)), then there exists a very weak solution m ∈ C([0, T ];P (Rd))

of the FPK equation in (1).

(b) If d = 1, u ∈ C([0, T ];W 1,∞(R)), u semi-concave, and (M’) holds, then there exists
a very weak solution m ∈ C([0, T ];P (R)) ∩ Lp([0, T ] × R) of the FPK equation in (1).
Moreover, ‖m(t)‖Lp(R) ≤ eCT ‖m0‖Lp(R) for some constant C > 0 and t ∈ [0, T ].

Proof. The results follow from the convergence of the discrete scheme in this article.
The proof of (a) follows the proof of Theorem 4.3, setting Duρ,h = Du. The proof of
(b) follows the proof of Theorem 4.1 and Theorem 6.7, setting Duρ,h = Du. Note that
semi-concavity of u is crucial for the the Lp-bound of Theorem 6.7. �

Existence and uniqueness results are given in [37] for classical solutions of MFGs with
nonlocal diffusions under additional assumptions:

(ν2): (Growth near singularity) There exists constants σ ∈ (1, 2) and c > 0 such
that the density of ν for |z| < 1 satisfies

c

|z|d+σ
≤ dν

dz
, for |z| < 1.

(F4): There exists constants CF , CG > 0, such that ‖F (·,m)‖C2
b
≤ CF and

‖G(·, m̃)‖C3
b
≤ CG for all m, m̃ ∈ P (Rd).

(F5): F and G satisfy monotonicity conditions:∫
Rd

(F (x,m1)− F (x,m2)) d (m1 −m2) (x) ≥ 0 ∀m1,m2 ∈ P (Rd),

∫
Rd

(G (x,m1)−G (x,m2)) d (m1 −m2) (x) ≥ 0 ∀m1,m2 ∈ P (Rd).

(H3): The Hamiltonian H ∈ C3(Rd × Rd), and for every R > 0 there is CR > 0
such that for x ∈ Rd, p ∈ BR, α ∈ NN0 , |α| ≤ 3, then |DαH(x, p)| ≤ CR.

(H4): For every R > 0 there is CR > 0 such that for x, y ∈ Rd, u ∈ [−R,R] , p ∈
Rd: |H (x, u, p)−H (y, u, p) | ≤ CR (|p|+ 1) |x− y|.

(H5): (Uniform convexity) There exists a constant C > 0 such that 1
C Id ≤

D2
ppH (x, p) ≤ CId.

(M”): The probability measure m0 has a density (also denoted by m0) m0 ∈ C2
b .

Theorem 2.7. Assume (ν0), (ν1), (ν2), (F2), (F4), (H3),(H4), and (M”).

(a) There exists a classical solution (u,m) of (1) such that u ∈ C1,3
b ((0, T ) × Rd) and

m ∈ C1,2
b ((0, T )× Rd) ∩ C(0, T ;P (Rd)).

(b) If in addition (F5) and (H5) hold, then the classical solution is unique.
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This is a consequence of [37, Theorem 2.5 and Theorem 2.6]. We refer to [37] for
more general results, where in particular assumptions (ν1) and (ν2) can be relaxed to
allow for a much larger class of nonlocal operators L. In the nondegenerate case, for the
individual equations in (1) we also have uniqueness of viscosity-very weak solutions and
existence of classical solutions. Uniqueness for HJB equations and existence for HJB
and FPK equations follows by Theorem 5.3, Theorem 5.5, and Proposition 6.8 in [37].
We prove uniqueness for very weak solutions of FPK equations here.

Proposition 2.8 (Uniqueness for the FPK equation). Assume (ν0), (ν1), (ν2), and

DpH(x,Du(t)) ∈ C0,2
b ((0, T )×Rd). Then there is at most one very weak solution of the

FPK equation in (1).

Proof. Let m1,m2 be two very weak solutions, define m̃ := m1 − m2 and take any
ψ ∈ C∞c

(
Rd
)
. For any τ ∈ (0, T ), the terminal value problem

∂tφ+ Lφ−Dφ ·DpH(x,Du) = 0 in Rd × (0, τ) and φ(x, τ) = ψ(x) in Rd,

has a unique classical solution φ ∈ C1,2
b ((0, τ) × Rd) essentially by [37, Theorem 5.5]

(the result follows from Proposition 5.8 with k = 2 and the observation that the proof
of Theorem 5.5 also holds for k = 2). Using the definition of very weak solution (see
Remark 2.3) we get∫

Rd
ψ(x) dm̃(τ)(x) =

∫ τ

0

∫
Rd

(
∂tφ+ Lφ−Dφ ·DpH(x,Du)

)
dm̃(t)(x) dt = 0,

for any τ ∈ [0, T ]. Since ψ was arbitrary, it follows that m̃(τ) = 0 in P (Rd) for every
τ ∈ [0, T ], and uniqueness follows. �

3. Discretisation of the MFG system

To discretise the MFG system (1), we first follow [15] and derive a Semi-Lagrange
approximation of the HJB equation in (1). Using this approximation and the optimal
control of the original problem, we derive an approximation of the FPK equation in (1)
which is in (approximate) duality with the approximation of the HJB-equation.

This derivation is based on the following control interpretation of the HJB equation.
For a fixed given density m = µ, the solution u of the HJB equation in (1) is the value
function of the optimal stochastic control problem:

u(t, x) = inf
α
J
(
x, t, α

)
,(4)

where αt is an admissible control, J is the total cost to be minimized,

J
(
x, t, α

)
= E

[ ∫ T

t

(
L(X̃s, αs) + F (X̃s, µs

)
ds+G(X̃T , µT )

]
,(5)

and X̃s = X̃x,t
s solves the controlled stochastic differential equation (SDE){
dX̃s = −αs ds+

∫
|z|<1

zÑ(dz, ds) +
∫
|z|≥1

zN(dz, ds), s > t,

X̃t = x,
(6)

where N a Poisson random measure with intensity/Lévy measure ν(dz)ds, and Ñ =
N(dz, ds)− ν(dz)ds is the compensated Poisson measure.1

3.1. Approximation of the underlying controlled SDE.

1The N -integral is just a (difficult way of writing a) compound Poisson jump-process, while the

Ñ -integral is a centered jump process with an infinite number of (small) jumps per time interval a.s.

[9].
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A. Approximate small jumps by Brownian motion. First we approximate small jumps
in (6) by (vanishing) Brownian motion2 (cf. [10]): For r ∈ (0, 1), let Xs = Xx,t

s solve{
dXs = b̄(αs)ds+ σr dWs +

∫
|z|≥r zN(dz, ds), s > t

Xt = x,
(7)

where Ws is a standard Brownian motion, b̄(αs) = −αs − bσr , and

bσr :=

∫
r<|z|<1

z ν(dz),(8)

σr :=

(
1

2

∫
|z|<r

zzT ν(dz)

)1/2

.(9)

The last integral in (7) is a compound Poisson process (cf. e.g. [9]): For any t ≥ 0,∫ t

0

∫
|z|≥r

zN(dz, dt) =

N̂t∑
j=1

Jj(10)

where the number of jumps up to time t is N̂t ∼ Poisson(tλr), the jumps {Jj}j are iid
rv’s in Rd with distribution νr and J0 = 0, and for r ∈ (0, 1],

νr := ν1|z|>r and λr :=

∫
Rd
νr(dz).(11)

The infinitesimal generators Lα and L̂α of the SDEs (6) and (7) are (cf. [9])

Lαφ(x) = −αt · ∇φ+ L1φ(x) + L1φ(x),

L̂αφ(x) = b̄(αt) · ∇φ(x) + tr
(
σTr ·D2φ(x) · σr

)
+ Lr[φ](x)

for φ ∈ C2
b (Rd), where

Lφ(x) = Lrφ(x) + Lrφ(x)

:=

(∫
|z|<r

+

∫
|z|>r

)(
φ(x+ z)− φ(x)− 1{|z|<1}Dφ(x) · z

)
dν(z).

(12)

The operator L̂α is an approximation of Lα.

Lemma 3.1 ([47]). If (ν1) holds and φ ∈ C3
b (Rd), then for Lr and σr defined in (12)

and (9) respectively, we have

|Lrφ(x)− tr
(
σTr ·D2φ(x) · σr

)
| ≤ Cr3−σ‖D3φ‖0.

If in addition, φ ∈ C4
b (Rd) and the Lévy measure ν is symmetric, then

|Lrφ(x)− tr
(
σTr ·D2φ(x) · σr

)
| ≤ Cr4−σ‖D4φ‖0.

B. Time discretization of the approximate SDE. Fix a time step h = T
N ∈ (0, 1) for some

N ∈ N and discrete times tk = kh for k ∈ {0, 1, . . . , N}. Following [15], we propose

the following Euler-Maruyama discretization of the SDE (7): Let Xtl,x
n ≈ Xtl,x

tn , where
Xn = Xtl,x

n solves
Xl = x

Xn = Xn−1 + hb̄(αn−1) +
√
h

d∑
m=1

σmr ξ
m
n−1, n = l +Ni + 1, . . . , l +Ni+1 − 1,

Xl+Ni+1
= Xl+Ni+1−1 + Ji.

(13)

2To avoid singular integrals and infinite number of jumps per time interval.
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Here the control αn is constant on each time interval, σmr is the mth-column of σr, and
ξn = (ξ1

n, . . . , ξ
d
n) is a random walk in Rd with

P
(
ξin = ±1

)
=

1

2d
.

The processes Jk and Nk defines an approximation of the compound Poisson part of (7)

through equation (10) where N̂t is replaced by an approximation

Ñt = max{k : ∆T1 + ∆T2 + · · ·+ ∆Tk ≤ t},

where exponentially distributed waiting times (time between jumps) are replaced by
approximations {∆Tk}k∈N3: ∆Tk = h∆Nk = h(Nk − Nk−1) where Nk : Ω → N ∪ {0},
N0 = 0, and ∆Nk iid with approximate hλr-exponential distribution given by

P[∆Nk > j] = e−hλrj for j = 0, 1, 2, . . . .

Then for pj := P [∆Nk = j], p0 = 0 and pj = P [∆Nk > j − 1] − P [∆Nk > j] =
e−jhλr (ehλr − 1) for j > 0. We find that

∑∞
j=0 pj = 1 and E(∆Nk) =

∑∞
j=0 e

−jhλr =
ehλr

ehλr−1
. Note that in each time interval, approximation (13) either diffuses (the second

equation) or jumps (the third equation), and that we have ignored the unlikely event of
more than one jump per time interval. For the scheme to converge, we will see that we
need to send both h→ 0 and hλr → 0. In this case E(∆Nk)→∞ and the jumps become
less and less frequent and the random walk dominates the evolution of Xk (which is to
be expected).

3.2. Semi-Lagrangian approximation of the HJB equation.

A. Control approximation of the HJB equation. We approximate the control problem
(4) – (6) by a discrete time control problem: Define the value function

ũh(tl, x) = inf
{αn}

Jh
(
x, tl, {αn}

)
,(14)

where the controls {αn} are piecewise constant in time, the cost function Jh is given by

Jh
(
x, tl, {αn}

)
= E

[N−1∑
n=l

(
L(Xn, αn) + F (Xn, µ(tn))

)
h+G(XN , µ(tN ))

]
,(15)

and the controlled discrete time process Xn = Xtl,x
n is the solution of (13). By the

(discrete time) Dynamic Programming principle it follows that

ũh(tl, x) = inf
αn

E
[ l+p∑
n=l

(
L(Xtl,x

n , αn) + F (Xtl,x
n , µ(tn))

)
h+ ũh(tl+p+1, X

tl,x
l+p+1)

]
,

for l + p + 1 ≤ N . Taking p = 0 and computing the expectation using conditional
probabilities (the probability to jump in a time interval is p1 = 1 − e−hλr ), we find a
(discrete time) HJB equation

ũh(tl, x) = inf
α

{
hF (x, µ(tl)) + hL(x, α) +

[e−hλr
2d

d∑
m=1

(
ũh(tl + h, x+ hb̄(α) +

√
hdσmr )

+ ũh(tl + h, x+ hb̄(α)−
√
hdσmr )

)
+

1− e−hλr
λr

∫
|z|≥r

ũh(tl + h, x+ z)ν(dz)
]}
.(16)

3In the new model, Ñt still gives the number of jumps up to time t.
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B. Interpolation and the fully discrete scheme. For ρ > 0 we fix a grid Gρ = {iρ : i ∈ Zd}
and a linear/multilinear Gρ-interpolation I. For functions f : Gρ → R,

I[f ](x) :=
∑
i∈Zd

f(xi)βi(x), x ∈ Rd,(17)

where the βj ’s are piecewise linear/multilinear basis functions satisfying

βj ≥ 0, βj(xi) = δj,i,
∑
j

βj(x) = 1, and ‖I[φ]− φ‖0 = ‖D2φ‖0ρ2

for any φ ∈ C2
b (Rd). A fully discrete scheme is then obtained from (16) as follows:

ũi,k[µ] = Sρ,h,r[µ](ũ·,k+1, i, k), k < N, and ũi,N [µ] = G(xi, µ(tN )),(18)

where

Sρ,h,r[µ](v, i, k) = inf
α

{
hF (xi, µ(tk)) + hL(xi, α) +

1− e−hλr
λr

∫
|z|≥r

I[v](xi + z)ν(dz)

+
e−hλr

2d

d∑
m=1

(
I[v](xi + hb̄(α) +

√
hdσmr ) + I[v](xi + hb̄(α)−

√
hdσmr )

)}
.(19)

Finally, we extend the solution of the discrete scheme ũi,k[µ] to the whole Rd× [0, T ]
by linear interpolation in x and piecewise constant interpolation in t:

ũρ,h[µ](t, x) = I
(
ũ·,[ th ][µ]

)
(x) =

∑
i∈Zd

βi(x) ũi,[ th ][µ] for any (t, x) ∈ [0, T )× Rd.(20)

3.3. Approximate optimal feedback control.

For the HJB equation in (1), satisfied by the value function (4), it easily follows that
the optimal feedback control is

α(t, x) = DpH(x,Du[µ](t, x)).

Based on this feedback law, we define an approximate feedback control for the discrete
time optimal control problem (13)–(15) in the following way: For h, ρ, ε > 0 and (t, x) ∈
Rd × [0, T ],

αnum(t, x) := DpH(x,Dũερ,h[µ](t, x)),(21)

where ũρ,h[µ] is given by (20),

ũερ,h[µ](t, x) = ũρ,h[µ](t, ·) ∗ ρε(x),(22)

and the mollifier ρε(x) = 1
εd
ρ
(
x
ε

)
for 0 ≤ ρ ∈ C∞c (Rd) with

∫
Rd ρ(x)dx = 1. We state a

standard result on mollification.

Lemma 3.2. If u ∈ W 1,∞(Rd), ε > 0, and uε = u ∗ ρε. Then uε ∈ C∞b (Rd), and there
exists a constant cρ > 0, such that for all ε > 0,

‖uε − u‖0 ≤ ‖Du‖0 ε and ‖Dpuε‖0 ≤ cρ‖Du‖0 ε1−p for any p ∈ N.

By construction, we expect αnum to be an approximation of the optimal feedback
control for the approximate control problem with value function (14) when h, ρ, ε are
small and ũερ,h is close to u.

3.4. Dual SL discretization of the FPK equation.
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A. Dual approximation of the FPK equation. First note that if X̃s = X̃0,Z0
s solves

(6) with t = 0 and X0 = Z0, a rv with distribution m0, then the FPK equation for

m̃ := Law(X̃s) is {
m̃t − L∗m̃− div(m̃α) = 0,

m̃(0) = m0.

Setting α = αnum, this equation becomes an approximation of the FPK equation in (1).
With this choice of α, we further approximate m̃ by the density m̃k := Law(Xk), of the

approximate process Xk = X0,Z0

k solving (13) with l = 0 and X0 = Z0.
We now derive a FPK equation for m̃k which in discretised form will serve as our

approximation of the FPK equation in (1). To simplify we consider dimension d = 1.
By definition of m̃k,

E[φ(Xk+1)] =

∫
R
φ(x) dm̃k+1(x),

for φ ∈ Cb(Rd) and k ∈ N ∪ {0}. Let Ak be the event of at least one jump in [tk, tk+1),
i.e. Ak = {ω : Nk+1(ω) − Nk(ω) ≥ 1} where Nk is the random jump time defined in
Section 3.1 B. Then by the definition of Xk in (13), the fact that Nk, Jk, and ξk are
i.i.d. and hence independent of Xk, and conditional expectations, we find that∫

R
φ(x) dm̃k+1(x) = E[φ(Xk+1)]

= E[φ(Xk+1)|Ack]P (Ack) + E[φ(Xk+1)|Ak]P (Ak)

= e−hλrE(φ(Xk + hb̄(αnum) +
√
hσrξk)) + (1− e−hλr )E(φ(Xk + Ji))

=
e−hλr

2

∫
R

(
φ(x+ hb̄(αnum) +

√
hσr) + φ(x+ hb̄(αnum)−

√
hσr)

)
m̃k(dx)

+ (1− e−hλr )
∫
R

∫
|z|>r

φ(x+ z)
ν(dz)

λr
m̃k(dx).

Let Ei :=
(
xi − ρ

2 , xi + ρ
2

)
, m̃j,k =

∫
Ej
m̃k(dx). We approximate the above expression

by a midpoint (quadrature) approximation, i.e.
∫
Ej
f(x)m̃k(dx) ≈ f(xj)m̃j,k, then by

choosing φ(x) = βj(x) (linear interpolant) for j ∈ Z and using βj(xi) = δj,i we get a
fully discrete approximation

m̃j,k+1 ≈
∑
i∈Z

m̃i,k

[e−hλr
2

(
βj(xi + hb̄(αnum) +

√
hσr) + βj(xi + hb̄(αnum)−

√
hσr)

)
+

1− e−hλr
λr

∫
|z|>r

βj(xi + z)ν(dz)
]
.

In arbitrary dimension d, we denote

Φε,±j,k,p := xj − h
(
Hp(xj , Dũ

ε
ρ,h[µ](tk, xj)) +Bσr

)
±
√
hdσpr .(23)

for j ∈ Zd, k = 0, . . . , N , p = 1, . . . , d. Redefining Ei := xi + ρ
2 (−1, 1)d and reasoning

as for d = 1 above, we get the following discrete FPK equation
m̃i,k+1[µ] :=

∑
j∈Zd

m̃j,k[µ] Bρ,h,r[Hp(·, Dũερ,h[µ])(i, j, k),

m̃i,0 =

∫
Ei

dm0(x),
(24)
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where

Bρ,h,r[Hp(·, Dũερ,h[µ]](i, j, k) :=

[
e−λrh

2d

d∑
p=1

(
βi
(
Φε,+j,k,p

)
+ βi

(
Φε,−j,k,p

))
+

1− e−λrh

λr

∫
|z|>r

βi(xj + z)ν(dz)

]
.

(25)

The solution is a probability distribution on Gρ × hNh, where Nh := {0, . . . , N}:

Lemma 3.3. Let (m̃i,k) be the solution of (24). If m0 ∈ P (Rd), then (m̃i,k)i ∈ P (Zd),
i.e. m̃i,k ≥ 0, i ∈ Zd, and

∑
j∈Zd m̃j,k = 1 for all k ∈ Nh.

Proof. First note that m̃i,k ≥ 0 follows directly from the definition of the scheme and
mi,0 ≥ 0. Changing the order of summation and as

∑
i Bρ,h,r[Hp(·, Dũερ,h[µ]](i, j, k) = 1,

we find that∑
i

m̃i,k+1 =
∑
i

∑
j

m̃j,kBρ,h,r[Hp(·, Dũερ,h[µ]](i, j, k) =
∑
j

m̃j,k.

The result follows by iteration since
∑
j m̃j,0 = 1. �

We extend (m̃i,k[µ]) to Rd by piecewise constant interpolation in x and then to [0, T ]
by linear interpolation in t: For t ∈ [tk, tk+1] and k ∈ Nh,

m̃ε
ρ,h[µ](t, x) :=

t− tk
h

m̃ε
ρ,h[µ](tk+1, x) +

tk+1 − t
h

m̃ε
ρ,h[µ](tk, x),(26)

where, m̃ε
ρ,h[µ](tk, x) := 1

ρd

∑
i∈Zd m̃i,k[µ]1Ei(x). Note that m̃ε

ρ,h[µ] ∈ C([0, T ], P (Rd))
and the duality with the linear in x/constant in t interpolation used for ũρ,h in (20).

3.5. Discretisation of the coupled MFG system.

The discretisation of the MFG system is obtained by coupling the two discretisations
above by setting µ = m̃ε

ρ,h[µ]. With this choice and u = ũ[µ] and m = m̃[µ] we get the

following discretisation of (1):

ui,k = Sρ,h,r[m
ε
ρ,h](u·,k+1, i, k),

ui,N = G(xi,m
ε
ρ,h(tN )),

mi,k+1 =
∑
j∈Zd mj,k Bρ,h,r[Hp(·, Duερ,h)](i, j, k),

mi,0 =
∫
Ei
dm0(x),

(27)

where Sρ,h,r,Bρ,h,r, u
ε
ρ,h,m

ε
ρ,h are defined above.

The individual discretisations are explicit, but due to the forward-backward nature
of the coupling, the total discretisation is not explicit. It yields a nonlinear system
that must be solved by some method like e.g. a fixed point iteration or a Newton type
method.

The approximation scheme (27) has a least one solution:

Proposition 3.4. (Existence for the discrete MFG system) Assume (ν0), (ν1), (L1)–
(L2), (F1)–(F2), (H1), and (M). Then there exist a pair (uρ,h, m

ε
ρ,h) solving (27).

The proof of this result is non-constructive and given in Appendix A.

4. Convergence to the MFG system

In this section we give the main theoretical results of this paper, various convergence
results as h, ρ, ε, r → 0 under CFL-conditions. The proofs will be given in Section 7 and
require results for the individual schemes given in Sections 5 and 6.
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4.1. Convergence to viscosity-very weak solutions. We consider degenerate and
non-degenerate cases separately. For the degenerate case, the convergence holds only in
dimension d = 1.

Theorem 4.1 (Degenerate case, d = 1). Assume (ν0), (ν1), (L1)–(L3), (F1)–(F3),
(H1)–(H2), (M’), {(uρ,h,mε

ρ,h)}ρ,h,ε>0 are solutions of the discrete MFG system (27).

If ρn, hn, εn, rn → 0 under the CFL conditions
ρ2n
hn
, hnrσn

,
√
hn
εn

= o(1), then:

(i) {uρn,hn}n is precompact in Cb([0, T ]×K) for every compact set K ⊂ R.
(ii) {mεn

ρn,hn
}n is sequentially precompact in C([0, T ], P (R)), and (a) in L1 weak if

p ∈ (1,∞) in (M’), or (b) in L∞ weak ∗ if p =∞ in (M’).
(iii) If (u,m) is a limit point of {(uρn,hn ,m

εn
ρn,hn

)}n, then (u,m) is a viscosity-very

weak solution of the MFG system (1).

Note that {mε
ρ,h} is precompact in C([0, T ], P (Rd)), just by assuming (M) for the

initial distribution. But in the degenerate case this is not enough for convergence of
the MFG system, due to lower regularity of the solutions of the HJB equation (no
longer C1). Therefore we need assumption (M’) and the stronger compactness given by
Theorem 4.1(ii) part (a) or (b). This latter result we are only able to show in d = 1.

In arbitrary dimensions we assume more regularity on solutions of the HJB equation
in (1):

(U): Let u[m] be a viscosity solution of the HJB equation in (1). For any m ∈
C([0, T ], P (Rd)) and t ∈ (0, T ), u[m](t) ∈ C1(Rd).

Remark 4.2. Assumption (U) holds in non-degenerate cases, e.g. under assumption
(ν2), see Theorem 2.7 and the discussion below.

We have the following convergence result in arbitrary dimensions.

Theorem 4.3 (Non-degenerate case). Assume (ν0), (ν1), (L1)–(L3), (F1)–(F3), (H1)–
(H2), (U), (M), {(uρ,h,mε

ρ,h)}ρ,h,ε>0 are solutions of the discrete MFG system (27). If

ρn, hn, εn, rn → 0 under the CFL conditions
ρ2n
hn
, hnrσn

,
√
hn
εn

= o(1), then:

(i) {uρn,hn}n is precompact in Cb([0, T ]×K) for every compact set K ⊂ Rd.
(ii) {mεn

ρn,hn
}n is precompact in C([0, T ], P (Rd)).

(iii) If (u,m) is a limit point of {(uρn,hn ,m
εn
ρn,hn

)}n, then (u,m) is a viscosity-very

weak solution of the MFG system (1).

These results give compactness of the approximations and convergence along subse-
quences. To be precise, by part (i) and (ii) there are convergent subsequences, and by
part (iii) the corresponding limits are solutions of the MFG system (1).

We immediately have existence for (1).

Corollary 4.4 (Existence of solutions of (1)). Under the assumptions of either Theorem
4.1 or 4.3, there exists a viscosity-very weak solution (u,m) of the MFG system (1).

If in addition we have uniqueness for the MFG system (1), then we have full conver-
gence of the sequence of approximations.

Corollary 4.5. Under the assumption of either Theorem 4.1 or Theorem 4.3, if the
MFG system (1) has at most one viscosity-very weak solution, then the whole sequence
{(uρn,hn ,m

εn
ρn,hn

)}n converges to a limit (u,m) which is the (unique) viscosity-very weak

solution of the MFG system (1).

4.2. Convergence to classical solutions. In the case the individual equations are
regularising, we can get convergence to classical solutions of the MFG system. To be
precise we need:
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1. (“Weak” uniqueness of individual PDEs) The HJB equation have unique vis-
cosity solutions, and the FPK equation have unique very weak solutions.

2. (Smoothness of individual PDEs) Both equations have classical solutions.

This means that viscosity-very weak solutions of the MFG system automatically (by
uniqueness for individual equations) are classical solutions. If in addition

3. (Classical uniqueness for MFG) classical solutions of the MFG system are
unique,

we get full convergence of the approximate solutions to the solution of the MFG system.

We now give a precise result in the setting of [37], see Theorem 2.7 in Section 2 for
existence and uniqueness of classical solutions of (1).

Corollary 4.6. Assume (ν0)–(ν2), (L1)–(L3), (F1)–(F4), (H3)–(H4), and (M”). Let
(uρ,h,m

ε
ρ,h) be solutions of the discrete MFG system (27). If ρn, hn, εn, rn → 0 under

the CFL conditions
ρ2n
hn
, hnrσn

,
√
hn
εn

= o(1), then:

(a) {(uρn,hn ,m
εn
ρn,hn

)}n has a convergent subsequence in the space Cb,loc([0, T ]× Rd)×
C([0, T ], P (Rd)), and any limit point is a classical-classical solution of (1).

(b) If in addition (F5) and (H5) hold, then the whole sequence in (a) converges to the
unique classical-classical solution (u,m) of (1).

Proof. 1. Assumption (U) holds by Theorem 2.7, and then by Theorem 4.3, there is
a convergent subsequence {(uρn,hn ,m

εn
ρn,hn

)}n such that (uρn,hn ,m
εn
ρn,hn

) → (u,m) and

(u,m) is a viscosity-very weak solution of (1).

2. Since m ∈ C([0, T ], P (Rd)), the viscosity solution u is unique by Proposition 2.5

(b) (see also [37, Theorem 5.3]). Hence it coincides with the classical C1,3
b ((0, T )× Rd)

solution given by [37, Theorem 5.5].

3. Now DpH(x,Du(t)) ∈ C2
b (Rd) by part 2 and (H3), and then by Proposition 2.8 there

is at most one very weak solution of the FPK equation. Hence it coincides with the
classical C1,2

b ((0, T )× Rd) solution given by [37, Proposition 6.8].

4. In addition if (F5) and (H5) hold, there is a most one classical solution (u,m) by
Theorem 2.7 (b).

5. This shows (compactness, smoothness, and uniqueness) that all convergent sub-
sequences of {(uρn,hn ,m

εn
ρn,hn

)}n have the same limit, and thus the whole sequence

converges to (u,m), the unique classical solution of (1). �

4.3. Extension and discussion.

Extension to more general Lévy operators. The results of Theorem 4.1 and 4.3
hold under much more general assumptions on the Lévy operator L. In [37] they use
(ν0) together with the assumptions,

(ν1′): r−2+σ

∫
|z|<r

|z|2dν + r−1+σ

∫
r<|z|<1

|z|dν + rσ
∫
r<|z|<1

dν ≤ c, r ∈ (0, 1).

(ν2′): There are σ ∈ (1, 2) and K > 0 such that the heat kernels Kσ and K∗σ of
L and L∗ satisfy for K = Kσ,K

∗
σ : K ≥ 0, ‖K(t, ·)‖L1(Rd) = 1, and

‖DβK(t, ·)‖Lp(Rd) ≤ Kt−
1
σ

(
|β|+(1− 1

p )d
)

for t ∈ (0, T )

and any p ∈ [1,∞) and multi-index β ∈ Nd ∪ {0}.

where the heat kernel of the operator L is defined as the fundamental solution of the heat
equation ∂tu−Lu = 0. These assumptions cover lots of new cases compared to (ν0), (ν1),
and (ν2). New cases include (i) sums of operators satisfying (ν1) on subspaces spanning
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Rd, having possibly different orders, (ii) more general non-absolutely continuous Lévy
measures, and (iii) Lévy measures supported on positive cones. An example of (i) (cf.
[37]) is

L = −
(
− ∂2

∂x2
1

)σ1/2

− · · · −
(
− ∂2

∂x2
d

)σd/2
, σ1, . . . , σd ∈ (1, 2),

which satisfies (ν1′) with σ = mini σi and dν(z) =
∑d
i=1

dzi
|zi|1+σi

Πj 6=iδ0(dzj). This

is a sum of one-dimensional fractional Laplacians of different orders. An example of
(iii) is given by the spectrally positive “fractional Laplacian” in one space dimension:
Lu = cσ

∫∞
0

(u(x+ z)− u(x)−Du(x) · z1{z<1})z
−1−σdz.

We have the following generalization of the wellposedness result for classical solutions
given in Theorem 2.7.

Theorem 4.7 ([37]). Theorem 2.7 holds when you replace (ν1) – (ν2) by (ν1′) – (ν2′).

It follows that (U) holds whenever Theorem 4.7 holds. Since (ν1) implies (ν1′) and
the integrals in (ν1′) are what appear in the different proofs, it is easy to check that
all estimates in this paper are true for Lévy measures satisfying (ν1′) instead of (ν1).
This means that under assumption (ν1′) and (ν2′) we have the following extensions of
Theorems 4.1 and 4.3 and Corollary 4.6.

Theorem 4.8. Theorem 4.1 holds when you replace (ν1) with (ν1′).

Theorem 4.9. Theorem 4.3 holds when you replace (ν1) – (ν2) by (ν1′) – (ν2′).

Corollary 4.10. Corollary 4.6 holds when you replace (ν1) – (ν2) by (ν1′) – (ν2′).

The Wasserstein metric d1 versus our metric d0. The typical setting for the
FPK equations in the MFG literature seems to be the metric space (P1(Rd), d1), that
is the 1−Wasserstein space W1 of probability measures with finite first moment. This
is also the case in [25] where convergence results are given for SL schemes for local
nondegenerate MFGs in Rd. In this paper we can not assume finite first moments if
we want to cover general non-local operators. An example is the fractional Laplacian
−(−∆)

σ
2 for σ < 1, where the underlying σ-stable process only has finite moments of

order less than σ. Instead we consider the weaker metric space (P (Rd), d0), which is
just a metrization of the weak (weak-* in Cb) convergence of probability measures. In
this topology we can consider processes, probability measures and solutions of the FPK
equations that do not have any finite moments or any restrictions on the tail behaviour
of the corresponding Lévy measures.

Of course, under additional assumptions convergence in d0 implies convergence in d1.

Lemma 4.11. If mn converges to m in (P (Rd), d0) and mn and m has uniformly
bounded (1 + δ)-moments for δ > 0, then mn → m in (P1(Rd), d1).

Convergence in P1(Rd) [53, Definition 6.8] is by definition equivalent to weak conver-
gence plus convergence of first moments, and the result follows from e.g. Proposition
1.1 and Lemma 1.5 in [5].

We then have the following version of Theorem 4.1 and Theorem 4.3.

Corollary 4.12. Assume m0 ∈ P1+δ(R),
∫
Rd\B1

|z|1+δdν(z) <∞ for some δ > 0, and

the assumptions of Theorem 4.1 and Theorem 4.3. Then the statements of Theorem 4.1
and Theorem 4.3 hold if we replace (P, d0) by (P1, d1) in part (ii).

Note that the number of moments of m is determined by the number of moments of
1|z|>1ν (and m0), see e.g. the discussion in section 2.3 in [37]. Moreover, if 1|z|>1ν has
at most α finite moments, then Lu is well-defined only if u has at most order α growth
at infinity. Hence in the nonlocal case there is ”duality” between the moments of m and
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the growth of u. Note that um will always be integrable which is natural since then e.g.
Eu(Xt, t) =

∫
u(x, t)m(dx, t) is finite.

In our case we assume no moments and have to work with bounded solutions u.

On moments and weak compactness in Lp in the degenerate case. Previous
results for Semi-Lagrangian schemes in the first order and the degenerate second order
case [23, 24] cover the case m0 ∈ P1(R) ∩ L∞(R), which means that m0 has finite first-
moments. Our results assume m0 ∈ P (R)∩Lp(R), for p ∈ (1,∞], and hence no moment
bounds and possibly unbounded m0. When p < ∞ we have weak compactness in L1

instead of weak-* compactness in L∞.
Since our results in the degenerate case allows for L = 0, they immediately give an

extension to this P ∩ Lp setting for the convergence results for first order problems of
[23]. Moreover, the same conditions, arguments, and results easily also holds in the local
diffusive case considered in [24].

5. On the SL scheme for the HJB equation

We prove results for the numerical approximation of the HJB equation, including
monotonicity, consistency, and different uniform a priori stability and regularity esti-
mates. Using the “half-relaxed” limit method [12], we then show convergence in the
form of vρn,hn [µn](tn, xn)→ v[µ](t, x), where v[µ] is the (viscosity) solution of the con-
tinuous HJB equation. Let B(Gρ) be the set of all bounded functions defined on Gρ.

Theorem 5.1. Assume (ν0), (L1), ρ, h, r > 0, µ ∈ C([0, T ], P (Rd)), and let Sρ,h,r[µ]
denote the scheme defined in (18).

(i) (Bounded control) If φ ∈ Lip(Rd), Sρ,h,r[µ](φ, i, k) has a minimal control and
|α| ≤ K where K only depends on ‖Dxφ‖0 and the growth of L as |x| → ∞.

(ii) (Monotonicity) For all v, w ∈ B(Gρ) with v ≤ w we have,

Sρ,h,r[µ](v, i, k) ≤ Sρ,h,r[µ](w, i, k) for all i ∈ Gρ, k = 0, . . . , N − 1.

(iii) (Commutation by constant) For every c ∈ R and w ∈ B(Gρ),

Sρ,h,r[µ](w + c, i, k) = Sρ,h,r[µ](w, i, k) + c for all i ∈ Gρ, k = 0, . . . , N − 1.

Assume also (ν1) and (F2).

(iv) (Consistency) Let ρn, hn, rn
n→∞−−−−→ 0 under CFL conditions

ρ2n
hn
, hnrσn

= o(1),

grid points (tkn , xin)→ (t, x), and µn, µ ∈ C([0, T ];P (Rd)) such that µn → µ.
Then, for every φ ∈ C∞c (Rd × [0, T )),

lim
n→∞

1

hn

[
φ(tkn+1, xin)−Sρn,hn,rn [µn](φ·,kn+1, in, kn)

]
=− ∂tφ(t, x)− inf

α∈Rd

[
L(x, α)−Dφ · α

]
− Lφ(x)− F (x, µ(t)).

Proof. (i) Since

h(α) :=
e−hλr

2d

d∑
m=1

I[φ](xi + hb̄(α) +
√
hσmr ) + I[φ](xi + hb̄(α)−

√
hσmr )

is Lipschitz in α (maximum linear growth at infinity), while L(x, α) is coercive (more
than linear growth at infinity) by (L1), there exists a ball BR, where R depends on the
Lipschitz constant of I[φ] and the growth of L, such that the minimizing control ᾱ of
Sρ,h,r[µ](φ, i, k) belongs to BR.

(ii) and (iii) Follows directly from the definition of the scheme.
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(iv) For ease of notation, we write ρ, h, r, µ instead of ρn, hn, rn, µn. A 4th order Taylor
expansion of φ gives

φ(x+ hb̄(α)±
√
hdσmr ) = φ(x) +Dφ(x) · (hb̄(α)±

√
hdσmr )

+
hd

2
(σmr )TD2φ(x)σmr ±

√
d h

3
2 b(α)TD2φ(x)σmr +

h2

2
b̄(α)TD2φ(x)b̄(α)

+
∑
|β|=3

Dβφ(x)

β!
(hb̄(α)±

√
hdσmr )β +

∑
|β|=4

Dβφ(ξ±)

β!
(hb̄(α)±

√
hdσmr )β ,

for some ξ± ∈ Rd. Using that b̄(α) = −α−
∫
r≤|z|≤1

zν(dz), and by (ν1)
∫
r≤|z|≤1

zν(dz) =

O(r1−σ), we get that

φ(x+ hb̄(α) +
√
hdσmr ) + φ(x+ hb̄(α)−

√
hdσmr )− 2φ(x)(28)

= −2hDφ(x) · α− 2h

∫
r<|z|<1

Dφ(x) · zν(dz) + hd(σmr )T ·D2φ(x) · σmr +O
(
h2r2−2σ

)
.

We used that h2

2 b̄(α)TD2φ(x)b̄(α) is of order O(h2r2−2σ), the 3rd order terms are of or-

der O(h3r3−3σ+h2r1−σ), and the 4th order terms are of order (
√
hdσr)

4 = O(h2r4−2σ).
Then the error of the Taylor expansion is O(h2r2−2σ). Using Lemma 3.1,

φ(xi)− Sρ,h,r[µ](φ, i, k)

= φ(xi)− inf
α

[
hF (xi, µ(tk+1)) + hL(xi, α) +

e−hλr

2d

d∑
m=1

(
2φ(xi)− 2hDφ(xi) · α

+ hd(σmr )TD2φ(xi)σ
m
r − 2h

∫
r<|z|<1

Dφ(xi) · zν(dz)
)

+
1− e−hλr

λr

∫
|z|>r

φ(xi + z)ν(dz) +O(ρ2) +O(h2r2−2σ)

]
= hF (xi, µ(tk+1))− inf

α

[
hL(xi, α)− he−hλrDφ(xi) · α

]
+ (1− e−hλr )φ(xi)(29)

− he−hλr
(
Lrφ(xi) +O(r3−σ)

)
+ he−hλr

∫
r<|z|<1

Dφ(xi) · zν(dz)

− 1− e−hλr
λr

∫
|z|>r

φ(xi + z)ν(dz) +O(ρ2 + h2r2−2σ).

Using that
∫
|z|<r |z|

2ν(dz) ≤ Kr2−σ (by (ν1)), for the small jump operator Lr (defined

in (12)) we have

|Lrφ(xi)− e−hλrLrφ(xi)| ≤ hλr r2−σ‖D2φ‖0.(30)

Again, as
∫
r<|z|<1

|z|ν(dz) ≤ Kr1−σ and
∫
|z|>1

ν(dz) ≤ K, for the long jump operator

Lr (defined in (12)) we have that∣∣∣Lrφ(xi) + e−hλr
∫
r<|z|<1

Dφ(xi) · zν(dz)− 1− e−hλr
hλr

∫
|z|>r

(φ(xi + z)− φ(xi))ν(dz)
∣∣∣

≤ K(1− e−hλr )r1−σ‖Dφ‖0 +K
(

1− 1− e−hλr
hλr

)(
r1−σ‖Dφ‖0 + ‖φ‖0

)
≤ K

(
hλrr

1−σ‖Dφ‖0 + hλr‖φ‖0
)
.(31)

Recalling that Lφ(xi) = Lrφ(xi) +Lrφ(xi), combining (29) with (30) and (31), we find

φ(xi)− Sρ,h,r[µ](φ, i, k) = hF (xi, µ(tk+1))− h inf
α

[
L(xi, α)−Dφ(xi) · α

]
− hLφ(xi)
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+O
(
h2λr + hr3−σ + h2λrr

1−σ + ρ2 + h2r2−2σ
)
.

As |λr| ≤ Cr−σ, we have

φ(tk, xi)− φ(tk+1, xi)

h
+

1

h

(
φ(tk+1, xi)− Sρ,h[µ](φ·,k+1, i, k)

)
= −∂tφ(tk, xi)− Lφ(tk+1, xi) + F (xi, µ(tk+1))− inf

α

[
L(xi, α)−Dφ(tk+1, xi) · α

]
+O

(
h+ hr−σ + r3−σ + hr1−2σ +

ρ2

h
+ hr2−2σ

)
.

Hence the result follows by taking the limit n→∞ with
ρ2n
hn
, hnrσn

= o(1). �

Theorem 5.2. (Comparison) Assume µ1, µ2 ∈ C([0, T ], P (Rd)), (ν0), and (L1). Let
uρ,h[µ1] and uρ,h[µ2] be defined by the scheme (20) for µ = µ1, µ2, respectively. Then,

‖uρ,h[µ1]− uρ,h[µ2]‖0 ≤ T‖F (·, µ1)− F (·, µ2)‖0 + ‖G(·, µ1(T ))−G(·, µ2(T ))‖0.

Proof. Let c±m(α) := hb̄(α)±
√
hdσmr , and note that

I[u·,k+1[µ1]](x)− I[u·,k+1[µ2]](x) =
∑
p∈Zd

βp(x)(up,k+1[µ1]− up,k+1[µ2]).(32)

By (18) and the definition of inf, for any ε > 0, there is αε ∈ Rd such that

ui,k[µ2] ≥ hF (xi, µ2(tk)) + hL(xi, αε) +
e−hλr

2d

d∑
m=1

[
I[u·,k+1[µ2]](xi + c+m(αε))

+ I[u·,k+1[µ2]](xi + c−m(αε))
]

+
1− e−hλr

λr

∫
|z|≥r

I[u·,k+1[µ2]](xi + z)ν(dz)− ε.(33)

We then find, using (18), (32), (33),

ui,k[µ1]− ui,k[µ2] ≤ h
(
F (xi, µ1(tk))− F (xi, µ2(tk)

)
+ h(L(xi, αε)− L(xi, αε))

+
∑
p∈Zd

[
e−hλr

2d

d∑
m=1

(
βp(c

+
m(αε)) + βp(c

−
m(αε))

)(
up+i,k+1[µ1]− up+i,k+1[µ2]

)
+

1− e−hλr
λr

∫
|z|≥r

βp(z)
(
up+i,k+1[µ1]− up+i,k+1[µ2]

)
ν(dz)

]
+ ε

≤ h‖F (·, µ1)− F (·, µ2)‖0 + c sup
i
|ui,k+1 − ũi,k+1|+ ε,

where since
∑
p βp ≡ 1,

c =
e−hλr

2d

d∑
m=1

∑
p∈Zd

(
βp(c

+
m(αε)) + βp(c

−
i (αε))

)
+

1− e−hλr
λr

∫
|z|≥r

∑
p∈Zd

βp(z)ν(dz) = 1.

Since |ui,N [µ1] − ui,N [µ2]| ≤ ‖G(·, µ1(tN )) − G(·, µ2(tN ))‖0, a symmetry and iteration
argument shows that∣∣ui,k[µ1]− ui,k[µ2]

∣∣ ≤ (N − k)h‖F (·, µ1)− F (·, µ2)‖0 + ‖G(·, µ1(tN ))−G(·, µ2(tN ))‖0.

The result then follows from interpolation and T = Nh. �

The SL scheme is very stable in the sense that we have uniform in h, ρ, µ boundedness,
Lipschitz continuity, and semi-concavity of the solutions ui,k.

Lemma 5.3. Let µ ∈ C([0, T ], P (Rd)) and ui,k[µ] be defined by the scheme (18).
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(a) (Lipschitz continuity) Assume (ν0), (L2) and (F2). Then

|ui,k − uj,k|
|xi − xj |

≤ (LF + LL)(T − tk) + LG, i, j ∈ Zd, k ∈ {0, 1, . . . N}.

(b) (Semi-concavity) Assume (ν0) , (L3) and (F3). Then

ui+j,k − 2ui,k + ui−j,k
|xj |2

≤ (cF + cL)(T − tk) + cG, i, j ∈ Zd, k ∈ {0, 1, . . . N}.

(c) (Uniformly bounded) Assume (ν0), (L0)–(L2), (F1), and (F2). Then

|ui,k| ≤ (CF + CL(K))(T − tk) + CG, i, j ∈ Zd, k ∈ {0, 1, . . . N},

where K is defined in Theorem 5.1 (i).

Proof. (a) Note that since βm(xj + x) = βm−j(x),

I[u·,k+1](xj + x)− I[u·,k+1](xi + x) =
∑
p∈Zd

βp(x)(up+j,k+1 − up+i,k+1).(34)

Then, by (L2), (F2), and similar computations as in Theorem 5.2, we find that

uj,k − ui,k ≤ h(Lf + LL)|xi − xj |+ sup
j
|ui,k+1 − uj,k+1|+ ε,

Since |ui,N+1−uj,N+1| = |G(xi,m(tN+1))−G(xj ,m(tN+1))| ≤ LG|xi−xj | by (F2), the
result follows by iteration.

(b) Similar to (34) we see

I[u·,k+1](xi+j + x)− 2I[u·,k+1](xi + x) + I[u·,k+1](xi−j + x)

=
∑
p∈Zd

βp(xi + x)(up+j,k+1 − 2up,k+1 + up−j,k+1).

Then, by (L3), (F3), and similar computations as in Theorem 5.2, we find that

ui+j,k − 2ui,k + ui−j,k ≤ (cL + cF )h|xj |2 + sup
i

(ui+j,k+1 − 2ui,k+1 + ui−j,k+1).

Since ui+j,N − 2ui,N + ui−j,N ≤ cG|xj |2 by (F3), the result follows by iteration.

(c) By part (a) and Theorem 5.1 (i), |α| ≤ K, and then a direct calculation shows that

− sup
|α|≤K

(
h(|F |+ |L|) + sup

j
|uj,k+1|

)
≤ ui,k ≤ sup

|α|≤K

(
h(|F |+ |L|) + sup

j
|uj,k+1|

)
.

The result follows from (L1) and (F1). �

Theorem 5.4. (Convergence of the HJB scheme) Assume (ν0), (ν1), (F1), (F2), (L2),

ρn, hn, rn
n→∞−−−−→ 0 under CFL conditions

ρ2n
hn
, hnrσn

= o(1), µn → µ in C([0, T ], P (Rd)),
and uρn,hn [µn] is the solution of the scheme (18) defined by (20). Then there is a
continuous bounded function u[µ] such that uρn,hn [µn]→ u[µ] locally uniformly in Rd ×
[0, T ], and u[µ] is the viscosity solution of the HJB equation in (1) for m = µ.

Proof. The result follows from the Barles-Perthame-Souganidis relaxed limit method
[12], using the monotonicity, consistency, and L∞-stability properties of the scheme (cf.
Theorem 5.1 (ii), (iii), and Lemma 5.3 (c)), and the strong comparison principle for the
HJB equation in Proposition 2.5 (a). We refer to the proof of [23, Theorem 3.3] for a
standard but more detailed proof in a similar case. �

We recall that the continuous extensions uρ,h[µ](t, x) and uερ,h[µ](t, x) are defined in

(20) and (22), respectively. The results of Lemma 5.3 transfers to uερ,h[µ](t, x).

Lemma 5.5. Let µ ∈ C([0, T ], P (Rd)) and uερ,h[µ] be given by (22).
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(a) (Lipschitz continuity) Assume (ν0), (L2) and (F2). Then∣∣uερ,h[µ](t, x)− uερ,h[µ](t, y)
∣∣ ≤ ((LL + LF )T + LG)|x− y|.

(b) (Approximate semiconcavity) Assume (ν0), (L2),(L3), (F2), and (F3). Then
there exist a constant c1 > 0, independent of ρ, h, ε and µ, such that

uερ,h[µ](t, x+ y)− 2uερ,h[µ](t, x) + uερ,h[µ](t, x− y) ≤ c1(|y|2 + ρ2 +
ρ2

ε
), and

〈Duερ,h[µ](t, y)−Duερ,h[µ](t, x), y − x〉 ≤ c1
(
|x− y|2 +

ρ2

ε2

)
.

(c) Assume d = 1, (ν0), (L3), and (F3). Then there exists a constant c2 > 0,
independent of ρ, h, ε and µ, such that for each i, j ∈ Zd and k ∈ Nh

〈Duερ,h[µ](tk, xj)−Duερ,h[µ](tk, xi), xj − xi〉 ≤ c2|xj − xi|2.

Proof. (a) Since ui,k satisfies the discrete Lipschitz bound of Lemma 5.3 (a), uρ,h[µ] is
Lipschitz with same Lipschitz constant as ui,k by properties of linear interpolation, and
uερ,h[µ] is Lipschitz with same constant as uρ,h[µ] by properties of mollifiers (Lemma

3.2).

(b) For i, j ∈ Zd we have by Lemma 5.3 (b), ui+j + ui−j − 2ui ≤ c|xj |2. Multiplying
both sides by βi(x), and summing over Zd, we get

uρ,h(x+ xj) + uρ,h(x− xj)− 2uρ,h(x) ≤ c|xj |2.

Letting x→ x− z, multiplying by a positive mollifier ρε(z) and integrating, we get

uερ,h(x+ xj) + uερ,h(x− xj)− 2uερ,h(x) ≤ c|xj |2.

We multiply both sides with βj(y), and sum over Zd,

I[uερ,h](x+ y) + I[uερ,h](x− y)− 2I[uερ,h](x) ≤ cI[| · |2](y) ≤ c(|y|2 + ρ2).

By Lemma 3.2 and part (a), we have that |I[uερ,h](ξ)−uερ,h(ξ)| ≤ K‖D2uερ,h‖0ρ2 ≤ K ρ2

ε ,

where the Lipschitz bound K depends on the constants in (L2) and (F2). Thus,

uερ,h(x+ y) + uερ,h(x− y)− 2uερ,h(x) ≤ c(|y|2 + ρ2 +
ρ2

ε
).

The second part of (b) then follows as in [3, Remark 6].

(c) The proof is given in [23, Lemma 3.6]. �

Under our assumptions, the continuous HJB equation has a (viscosity) solution u(t) ∈
W 1,∞(Rd), that is, the derivative exists almost everywhere [37, Theorem 4.3]. We have
the following result for Duερ,h[µ].

Theorem 5.6. Assume (ν0), (ν1), (L1)–(L2), (F1)–(F2), ρn, hn, rn, εn
n→∞−−−−→ 0 under

CFL conditions
ρ2n
hn
, hnrσn

= o(1), and µn → µ in C([0, T ], P (Rd)). Let uεnρn,hn [µn] be

defined by (22) and u[µ] the viscosity solution of the HJB equation in (1) for m = µ.
Then

(i) uεnρn,hn [µn]→ u[µ] locally uniformly,

(ii) Assume also (L3), (F3) and ρn
εn

= o(1). Then Duεnρn,hn [µn](t, x)→ Du[µ](t, x)

whenever Du(t, x) exists, that is, the convergence is almost everywhere.
(iii) Assume also (L3), (F3), ρn

εn
= o(1), and (U). Then Duεnρn,hn [µn] → Du[µ]

locally uniformly.

Proof. (i) This follows from the convergence result Theorem 5.4 and Lemma 3.2.
(ii) and (iii). We refer to [23, Theorem 3.5] and [25, Proposition 5.1]. Estimates from
Lemma 5.5 are needed. For completeness we give the proof in Appendix B. �
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6. On the dual SL scheme for the FPK equation

In this section we establish more properties of the discrete FPK equation (24), in-
cluding tightness, equicontinuity in time, L1-stability of solutions with respect to µ, and
Lp-bounds in dimension d = 1. To prove tightness we will use a result from [31].

Proposition 6.1. Assume (ν0) and (M). Then there exists a function 0 ≤ Ψ ∈ C2(Rd)
with ‖DΨ‖0, ‖D2Ψ‖0 <∞, and lim

|x|→∞
Ψ(x) =∞, such that

sup
x∈Rd

∣∣∣ ∫
|z|>1

(
Ψ(x+ z)−Ψ(z)

)
ν(dz)

∣∣∣ <∞ and

∫
Rd

Ψ(x)m0(dx) <∞.(35)

Proof. We use [31, Lemma 4.9] on the family of measures {ν1,m0}, where ν1 is defined

in (11), to get a function Ψ(x) = V0(
√

1 + |x|2) such that V0 : [0,∞) → [0,∞) is a
non-decreasing sub-additive function, ‖V ′0‖0, ‖V ′′0 ‖0 <∞, lim

x→∞
V0(x) =∞, and∫

Rd
Ψ(x)µ(dx) <∞ for µ ∈ {ν1,m0}.

We immediately get the result except for the first part of (35). But this estimate follows
from sub-additivity and ν1-integrability of V0, see [31, Lemma 4.13 (ii)]. �

Remark 6.2. (a) If dν
dz ≤

C
|z|d+σ1 for |z| > 1 and

∫
Rd |x|

σ2 m0(dx) < ∞ for σ1, σ2 > 0,

then Ψ(z) = log(
√

1 + |z|2) is a possible explicit choice for the function in Proposition
6.1.

(b) Since Ψ ∈ C2(Rd), the first part of (35) is equivalent to ‖LΨ‖0 <∞ (see [31, Lemma
4.13 (ii)]).

Lemma 6.3. Assume {µα}α∈A ⊂ P (Rd) and there exists a function 0 ≤ ψ ∈ C(Rd)
such that lim|x|→∞ ψ(x) =∞ and supα

∫
Rd ψ(x)µα(dx) ≤ C. Then {µα}α is tight.

This result is classical and can be proved in a similar way as the Chebychev inequality.

Theorem 6.4 (Tightness). Assume (ν0), (ν1), (L1)–(L2), (F2), (H1), (M), the CFL

condition ρ2

h , hr
1−2σ = O(1), µ ∈ C([0, T ], P (Rd)), and mε

ρ,h[µ] is defined by (26). Take
Ψ as in Proposition 6.1. Then there exists C > 0, independent of ρ, h, ε and µ, such
that ∫

Rd
Ψ(x) dmε

ρ,h[µ](t) ≤ C for any t ∈ [0, T ].

Proof. Essentially we start by multiplying the scheme (24) by Ψ and integrating in
space. By the definition of mε

ρ,h = mε
ρ,h[µ] in (26) and (24), we find that∫

Rd
Ψ(x)dmε

ρ,h(tk+1) =
1

ρd

∑
i∈Zd

mi,k+1

∫
Ei

Ψ(x)dx

=
∑
i∈Zd

1

ρd

∫
Ei

Ψ(x)dx
∑
j

mj,k Bρ,h,r[Hp(·, Duερ,h)](i, j, k).

By the definition of Bρ,h,r in (25) and interchanging the order of summation and inte-
gration, we have∫
Rd

Ψ(x)dmε
ρ,h(tk+1) =

∑
j∈Zd

mj,k

ρd

[
e−λrh

2d

d∑
p=1

∑
i∈Zd

∫
Ei

Ψ(x)
(
βi(Φ

ε,+
j,k,p) + βi(Φ

ε,−
j,k,p)

)
dx

+
1− e−λrh

λr

∫
|z|>r

∑
i∈Zd

∫
Ei

Ψ(x)βi(xj + z)dx ν(dz)

]
.
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Since Ψ ∈ C2(Rd), by properties of midpoint approximation and linear/multilinear
interpolation we have

∣∣ 1
ρd

∫
Ei

Ψ(x)dx − Ψ(xi)
∣∣ +

∣∣Ψ(x) −
∑
i∈Zd βi(x)Ψ(xi)

∣∣ ≤ O(ρ2).

Therefore∫
Rd

Ψ(x)dmε
ρ,h(tk+1) ≤

∑
j∈Zd

mj,k

[
e−λrh

2d

d∑
p=1

(
Ψ
(
Φε,+j,k,p

)
+ Ψ

(
Φε,−j,k,p

))
(36)

+
1− e−λrh

λr

∫
|z|>r

Ψ(xj + z) ν(dz)

]
+O(ρ2).

We estimate the terms on the right hand side. Let Φε,±j,k,p = xj ± a±h,j where

a±h,j = h
(
DpH

(
xj , Du

ε
ρ,h(tk, xj)

)
+Bσr

)
±
√
hσpr .(37)

By the fundamental theorem of Calculus,

Ψ(xj − a+
h,j) + Ψ(xj − a−h,j) = 2Ψ(xj)− (a+

h,j + a−h,j) ·DΨ(xj) + E1(38)

where a+
h,j + a−h,j = 2h

(
DpH

(
xj , Du

ε
ρ,h(tk, xj)

)
+Bσr

)
and

E1 = −
∫ 1

0

[
a+
h,j ·

(
DΨ(xj − ta+

h,j)−DΨ(xj)
)

+ a−h,j ·
(
DΨ(xj − ta−h,j)−DΨ(xj)

)]
dt.

By Lemma 5.5 (a) and (H1), we find that ‖DpH(·, Duερ,h)‖0 ≤ CR with R = (LL +

LF )T + LG + 1, and then that

|E1| ≤ ‖D2Ψ‖0(|a+
h,j |

2 + |a−h,j |
2) ≤ 4‖D2Ψ‖0

(
h2(C2

R + |Bσr |2) + h|σpr |2
)
.

To estimate the nonlocal term, we write∫
|z|>r

Ψ(xj + z) ν(dz) =

∫
|z|>1

Ψ(xj + z)ν(dz)

+

∫
r<|z|<1

{
Ψ(xj) + z ·DΨ(xj) +

∫ 1

0

z ·
[
DΨ(xj + tz)−DΨ(xj)

]
dt
}
ν(dz)

≤
∣∣∣ ∫
|z|>1

(
Ψ(xj + z)−Ψ(xj)

)
ν(dz)

∣∣∣+ λrΨ(xj) +Bσr ·DΨ(xj)

+ ‖D2Ψ‖0
∫
r<|z|<1

|z|2ν(dz)

≤ λrΨ(xj) +Bσr ·DΨ(xj) + E2,

where E2 is finite and independent of ρ, h, ε by Proposition 6.1 and
∫
|z|<1

|z|2ν(dz) <∞.

Going back to (36) and using the above estimates then leads to∫
Rd

Ψ(x)dmε
ρ,h(tk+1)

≤
∑
j∈Zd

mj,k

[
e−λrh

2d

d∑
p=1

(
2Ψ(xj)− 2h

[
DpH

(
xj , Du

ε
ρ,h(tk, xj)

)
+Bσr

]
·DΨ(xj) + |E1|

)
+

1− e−λrh

λr

(
λrΨ(xj) +Bσr ·DΨ(xj) + E2

)]
+ Cρ2

≤
∑
j∈Zd

mj,k Ψ(xj) + C
(
h2λr|Bσr |+ h2|Bσr |2 + h+ ρ2

)
,

where we used |−he−λrh+ 1−e−λrh
λr

| ≤ 3
2λrh

2 and 1−e−λrh
λr

≤ h to get the last inequality.
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With Ak+1 =
∫
Rd Ψ(x)dmε

ρ,h(tk+1), the above estimate becomes Ak+1 ≤ Ak + E

where E = C(λrh
2|Bσr |+h2|Bσr |2 +h+ρ2). By iteration, |Bσr |2 ≤ λr|Bσr | ≤ Cr1−2σ (by

(ν0), (ν1)), and k ≤ N ≤ C
h , we find that

Ak+1 ≤ A0 + (k + 1)E ≤ A0 + C
(
hr1−2σ + 1 +

ρ2

h

)
.(39)

By assumption ρ2

h , hr
1−2σ = O(1), and by Proposition 6.1, A0 =

∫
Rd Ψ(x)dm0 < ∞.

Therefore ∫
Rd

Ψ(x)dmε
ρ,h(tk) ≤ C for k = 0, 1, . . . , N,

for some constant C > 0 independent of ρ, h, ε, µ, and hence by (26) the result follows
for t ∈ [0, T ]. �

Theorem 6.5 (Equicontinuity in time). Assume (ν0), (ν1), (L1)–(L2), (F2), (H1),

(M), µ ∈ C([0, T ], P (Rd)), and mε
ρ,h[µ] is defined by (26). Let ρ2

h ,
h
rσ = O(1) if

σ ∈ (0, 1), or ρ2

h , hr
1−2σ = O(1) if σ ∈ (1, 2). Then there exists a constant C0 > 0,

independent of ρ, h, ε and µ, such that for any t1, t2 ∈ [0, T ],

d0(mε
ρ,h[µ](t1),mε

ρ,h[µ](t2)) ≤ C0

√
|t1 − t2|.

Proof. We start by the case σ > 1. For δ > 0, let φδ := φ ∗ ρδ for ρδ defined just before
Lemma 3.2. With mε

ρ,h = mε
ρ,h[µ] we first note that

d0(mε
ρ,h(t1),mε

ρ,h(t2)) = sup
φ∈Lip1,1

∫
Rd
φ(x)(mε

ρ,h(t1)−mε
ρ,h(t2))dx

= sup
φ∈Lip1,1

{∫
Rd

(φ− φδ)(mε
ρ,h(t1)−mε

ρ,h(t2))dx+

∫
Rd
φδ (mε

ρ,h(t1)−mε
ρ,h(t2))dx

}

≤ 2δ‖Dφ‖0 + sup
φ∈Lip1,1

∫
Rd
φδ (mε

ρ,h(t1)−mε
ρ,h(t2))dx,

(40)

where Lemma 3.2 was used to estimate the φ− φδ term and
∫
mε
ρ,hdx = 1. Since mε

ρ,h

and
∫
Rd φδ(x)mε

ρ,h(t, x)dx are affine on each interval [tk, tk+1],
∫
Rd φδ(x)mε

ρ,h(·, x)dx ∈
W 1,∞[0, T ] and ∥∥∥ d

dt

∫
Rd
φδ(x)mε

ρ,h(·, x)dx
∥∥∥

0
≤ sup

k
|Ik|.

where Ik =
∫
Rd φδ(x)

mερ,h(tk+1,x)−mερ,h(tk,x)

h dx. It follows that∫
Rd
φδ (mε

ρ,h(t1, x)−mε
ρ,h(t2, x))dx ≤ |t1 − t2| sup

k
|Ik|.(41)

Let us estimate Ik. By (26), (24), (25), the midpoint quadrature approximation error
bound, and the linear/multi-linear interpolation error bound, we have

Ik =
1

h

∑
i

1

ρd

∫
Ei

φδ(x) dx[mi,k+1 −mi,k]

=
1

hρd

∑
j,i

(∫
Ei

φδ(x)dx
)[
mj,k Bρ,h,r[Hp(·, Duερ,h)](i, j, k)−mi,k δi,j

]
=

1

h

∑
j

mj,k

[∑
i

φδ(xi)Bρ,h,r[Hp(·, Duερ,h)](i, j, k)− φδ(xj) + C‖D2φδ‖0ρ2
]



APPROXIMATION OF NONLOCAL MFGS 25

=
1

h

∑
j

mj,k

[e−λrh
2d

( d∑
p=1

φδ(Φ
ε,+
j,k,p) + φδ(Φ

ε,−
j,k,p)− 2φδ(xj)

)
+

1− e−λrh

λr

∫
|z|>r

(
φδ(xj + z)− φδ(xj)

)
ν(dz) + C‖D2φδ‖0ρ2

]
.

Since Φε,±j,k,p = xj + a±h,j by (37), a 2nd order Taylor’s expansion gives us∣∣Ik∣∣ ≤ 1

h

∑
j

mj,k

[
e−λrh

(
(−hDpH

(
xj , Du

ε
ρ,h[µ](tk, xj)

)
− hBσr ) ·Dφδ(xj)

+
‖D2φδ‖0

2d

d∑
p=1

(
|a+
h,j |

2 + |a−h,j |
2
)

+
1− e−λrh

λr

(
Bσr ·Dφδ(xj)

+ ‖D2φδ‖0
∫
r<|z|<1

|z|2ν(dz) + 2‖φδ‖0
∫
|z|>1

ν(dz) + C‖D2φδ‖0ρ2
)]

≤ 1

h

[(
h‖DpH(·, Duερ,h)‖0 + h2λr|Bσr |

)
‖Dφδ‖0 + c3h‖φδ‖0

+ c1

(
h2‖DpH(·, Duερ,h)‖2 + h2|Bσr |

2
+ h|σr|2 + h+ ρ2

)
‖D2φδ‖0

]∑
j

mj,k.

The above inequality follows since ( 1−e−λrh
λr

− he−hλr ) ≤ h2λr (used for the Bσr ·Dφδ-
terms), and

∫
r<|z|<1

|z|2ν(dz) +
∫
|z|>1

ν(dz) ≤ C independently of r by (ν0) and (ν1).

By Lemma 5.5 (a) and (H1), ‖DpH(·, Duερ,h)‖0 ≤ CR with R = (LL + LF )T + LG + 1.

Since
∑
mj,k = 1, φ ∈ Lip1,1, ‖D2φδ‖0 ≤ ‖Dφ‖0

δ , and |Bσr |2 ≤ λr|Bσr | ≤ Kr1−2σ (by
(ν0), (ν1)), we get that

|Ik| ≤ C(1 + hr1−2σ) + C
(
1 + h+ hr1−2σ +

ρ2

h

)1

δ
.

To conclude the proof in the case σ > 1, we go back to (40) and (41). In view of the

above estimate on Ik and the assumption that ρ2

h , hr
1−2σ = O(1), we find that

d0(mε
ρ,h(t1),mε

ρ,h(t2)) ≤ 2δ + C|t1 − t2|
(

1 +
1

δ

)
.

Finally taking δ =
√
|t1 − t2| we get d0(mε

ρ,h(t1),mε
ρ,h(t2)) ≤ C

√
|t1 − t2|.

When σ < 1, we find that |Bσr | ≤ C and hence that

|Ik| ≤ C(1 + hr−σ) + C
(
1 + h+ hr−σ +

ρ2

h

)1

δ
.

By assumption hr−σ + ρ2

h = O(1), so again we find that

d0(mε
ρ,h(t1),mε

ρ,h(t2)) ≤ 2δ + C|t1 − t2|
(

1 +
1

δ

)
,

and can conclude as before. �

We also need a L1-stability result for mε
ρ,h[µ] with respect to variations in µ.

Lemma 6.6 (L1-stability). Assume (ν0), (H1), and mε
ρ,h[µ] is defined by (26). Then

for µ1, µ2 ∈ C([0, T ], P (Rd)),

sup
t∈[0,T ]

‖mε
ρ,h[µ1](t, ·)−mε

ρ,h[µ2](t, ·)‖L1(Rd)

≤ cKT

ρ
e−hλr

∥∥DpH(·, Duερ,h[µ1])−DpH(·, Duερ,h[µ2])
∥∥

0
.
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Proof. Let α = DpH(·, Duερ,h[µ1]), α̃ = DpH(·, Duερ,h[µ2]), mj,k = mj,k[µ1], and m̃j,k =

mj,k[µ2]. By (25) and Lemma 3.3, Bρ,h,r[α](i, j, k) ≥ 0 and mj,k ≥ 0, so that∑
i

∣∣mi,k+1 − m̃i,k+1

∣∣ =
∑
i

∣∣∑
j

(mj,k Bρ,h,r[α](i, j, k)− m̃j,k Bρ,h,r[α̃](i, j, k))
∣∣

≤
∑
i

∑
j

(
mj,k

∣∣Bρ,h,r[α](i, j, k)−Bρ,h,r[α̃](i, j, k)
∣∣+
∣∣mj,k − m̃j,k

∣∣Bρ,h,r[α̃](i, j, k)
)
.

Since
∑
i Bρ,h,r[α̃](i, j, k) = 1 (follows from

∑
i βi = 1 and (25)),∑

i

∑
j

∣∣mj,k − m̃j,k

∣∣Bρ,h,r[α̃](i, j, k) =
∑
j

∣∣mj,k − m̃j,k

∣∣.
Moreover, since only a finite number Kd of βi’s are non-zero at any given point, βi is
Lipschitz with constant c

ρ , and
∑
jmj,k = 1 by Lemma 3.3, by the definitions of Bρ,h,r

(25) and Φ±j,k,p (23),∑
i

∑
j

mj,k

∣∣Bρ,h,r[α](i, j, k)−Bρ,h,r[α̃](i, j, k)
∣∣

≤
∑
j

mj,k
e−hλr

2d

d∑
p=1

∑
i

∣∣βi(Φ+
j,k,p[µ1])− βi(Φ+

j,k,p[µ2])

+ βi(Φ
−
j,k,p[µ1])− βi(Φ−j,k,p[µ2])

∣∣ ≤ Kd
che−hλr

ρ
‖α− α̃‖0.

An iteration then shows that∑
i

∣∣mi,k+1 − m̃i,k+1

∣∣ ≤∑
i

∣∣mi,0 − m̃i,0

∣∣+
cKdT

ρ
e−hλr‖α− α̃‖0.

Since mi,0 = m̃i,0 =
∫
Ei
m0 dx, the result follows by interpolation. �

We end this section by a uniform Lp-bound on mε
ρ,h in dimension d = 1.

Theorem 6.7 (Lp bounds). Assume d = 1, (ν0), (ν1), (L1), (L3), (F3), (H2), (M’),
µ ∈ C([0, T ], P (Rd)), and mε

ρ,h[µ] be defined by (26). Then mε
ρ,h[µ] ∈ Lp(R) and there

exist a constant K > 0 independent of ε, h, ρ and µ such that

‖mε
ρ,h[µ](·, t)‖Lp(R) ≤ eKT ‖m0‖Lp(R).

To prove the theorem we need few technical lemmas.

Lemma 6.8. Assume d = 1, (ν0), (ν1), (L1), (L3), (F3), and (H2). There exists a
constant c0 > 0 independent of ρ, h, ε, µ such that(

DpH
(
xj , Du

ε
ρ,h(tk, xj)

)
−DpH

(
xi, Du

ε
ρ,h(tk, xi)

))
(xj − xi) ≤ c0|xj − xi|2.

Proof. By (L1) and (H2) for R = ((LF + LL)T + LG) + 1 we have(
DpH

(
xj , Du

ε
ρ,h(tk, xj)

)
−DpH

(
xi, Du

ε
ρ,h(tk, xi)

))
(xj − xi)

= (xj − xi)
∫ 1

0

d

dt

(
DpH

(
xj , tDu

ε
ρ,h(tk, xj) + (1− t)Duερ,h(tk, xi)

))
dt

+ (xj − xi)
(
DpH

(
xj , Du

ε
ρ,h(tk, xi)

)
−DpH

(
xi, Du

ε
ρ,h(tk, xi)

))
= (xj − xi)

∫ 1

0

DppH
(
xj , tDu

ε
ρ,h(tk, xj)

+ (1− t)Duερ,h(tk, xi)
)(
Duερ,h(tk, xj)−Duερ,h(tk, xi)

)
dt
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+ (xj − xi)
(
DpH

(
xj , Du

ε
ρ,h(tk, xi)

)
−DpH

(
xi, Du

ε
ρ,h(tk, xi)

))
≤ CR c2|xj − xi|2 + CR|xj − xi|2,

where the last inequality follows from convexity of H (since L is convex by (L1)), semi-
concavity of uερ,h in Lemma 5.5 (c), and regularity of H in (H2). �

Lemma 6.9. Assume d = 1, (ν0), (ν1), (L1), (L3), (F3), (H2), µ ∈ C([0, T ], P (Rd)),
and let Φε,±j,k [µ] be defined in (23). There exist a constant K0 > 0 independent of ε, ρ, h, µ,
such that for all i ∈ Z and k = Nh,

max
{∑
j∈Z

βi(Φ
ε,+
j,k )[µ],

∑
j∈Z

βi(Φ
ε,−
j,k )[µ]

}
≤ 1 +K0h.

The proof of this result is similar to the proof of [23, Lemma 3.8] – a slightly expanded
proof is given in Appendix C. A similar result holds for the integral-term:

Lemma 6.10. Assume d = 1. Then we have

1

λr

∑
j∈Z

∫
|z|>r

βi(xj + z)ν(dz) = 1.

Proof. By (11) and properties of the basis functions βj we have

1

λr

∑
j∈Z

∫
|z|>r

βi(xj + z)ν(dz) =
1

λr

∫
|z|>r

∑
j∈Z

βi−j(z)ν(dz) =
1

λr

∫
|z|>r

ν(dz) = 1. �

Proof of Theorem 6.7. By definition of mε
ρ,h in (26) and the scheme (24),∫

R
(mε

ρ,h(x, tk+1))pdx =

∫
R

(1

ρ

∑
i

mi,k+11Ei(x)
)p
dx

=
1

ρp−1

∑
i∈Z

(mi,k+1)p =
1

ρp−1

∑
i

(∑
j

mj,k Bρ,h,r(i, j, k)
)p
,

where Bρ,h,r = Bρ,h,r[Hp(·, Duερ,h[µ])] is defined in (25). By Jensen’s inequality we have∑
i∈Z

(∑
j

mj,k Bρ,h,r(i, j, k)
)p
≤
∑
i∈Z

(∑
p∈Z

Bρ,h,r(i, p, k)
)p−1(∑

j

(
mj,k

)p
Bρ,h,r(i, j, k)

)
,

and by Lemma 6.9 and 6.10, ∑
p∈Z

Bρ,h,r(i, p, k) ≤ 1 +K0h,

where K0 is independent of i, ρ, h, ε and µ. Since
∑
i Bρ,h,r(i, p, k) = 1 (follows from∑

i βi = 1), we find that∑
i∈Z

(mi,k+1)p ≤ (1 +K0h)p−1
∑
j

(
mj,k

)p∑
i

Bρ,h,r(i, j, k)

≤ ρp−1‖mε
ρ,h(tk, ·)‖pLp(R)(1 +K0h)p−1.

By iteration and ‖mε
ρ,h(·, t0)‖Lp = ‖m0‖Lp , ‖mε

ρ,h(tk+1, ·)‖Lp ≤ eK0T (1− 1
p )‖m0‖Lp , and

the result follows for p ∈ [1,∞).
The proof of p =∞ is simpler, and in view of Lemma 6.9 and 6.10, the proof follows

as in [24] for 2nd order case. �



28 I. CHOWDHURY, O. ERSLAND, AND E. R. JAKOBSEN

7. Proof of convergence – Theorem 4.1 and 4.3

The main structure of the proofs are similar, so we present the proofs together. We
proceed by several steps.

Step 1. (Compactness of mεn
ρn,hn

) In view of Theorem 6.4 and 6.5, mε
ρ,h is precompact

in C([0, T ], P (Rd)) by the Prokhorov and Arzelà-Ascoli Theorem. Hence there exist a
subsequence {mεn

ρn,hn
} and m in C([0, T ], P (Rd)) such that

mεn
ρn,hn

→ m in C([0, T ], P (Rd)).

This proves Theorem 4.3 (a) (ii) and the first part of Theorem 4.1 (a) (ii).

If (M’) holds with p =∞, then Theorem 6.7 and Helly’s weak ∗ compactness theorem
imply that {mε

ρ,h} is weak ∗ precompact in L∞([0, T ] × R) and there is a subsequence

{mεn
ρn,hn

} and function m such that mεn
ρn,hn

∗
⇀ m in L∞([0, T ]× R). If (M’) holds with

p ∈ (1,∞), then {mε
ρ,h} is equiintegrable in [0, T ] × R by Theorem 6.4 and 6.7 and de

la Vallée Poussin’s theorem. By Dunford-Pettis’ theorem, it is then weakly precompact
in L1([0, T ] × R) and there exists a subsequence {mεn

ρn,hn
} and function m such that

mεn
ρn,hn

⇀m in L1([0, T ]× R). The second part of Theorem 4.1 (a) (ii) follows.

Step 2. (Compactness and limit points for uρn,hn) Part (i) and limit points u as
viscosity solutions in part (iii) of both Theorem 4.1 and 4.3 follow from step 1 and
Theorem 5.6 (i).

Step 3. (Consistency for mεn
ρn,hn

) Let (u,m) be a limit point of {(uεnρn,hn ,m
εn
ρn,hn

)}n.

Then by step 2, u is a viscosity solution of the HJB equation in (1). We now show that
m is a very weak solution of the FPK equation in (1) with u as the input data, i.e.
m satisfies (3) for t ∈ [0, T ] and φ ∈ C∞c (Rd). In the rest of the proof we use ρ, h, r, ε

instead of ρn, hn, rn, εn to simplify. We also let ̂̂m = mεn
ρn,hn

, w = uεnρn,hn [ ̂̂m], and take

tn =
[
t
hn

]
hn. Then we note that∫
Rd
φ(x)d ̂̂m(tn)(x) =

∫
Rd
φ(0)dm0(x) +

n−1∑
k=0

∫
Rd
φ(x)d[ ̂̂m(tk+1)− ̂̂m(tk)],

so to prove (3), we must estimate the sum on the right.
By the midpoint approximation and (26), the scheme (24), and (25) combined with

linear/multilinear interpolation, and finally midpoint approximation again, we find that∫
Rd
φ(x)d ̂̂m(tk+1) =

1

ρd

∑
i∈Zd

mi,k+1

∫
Ei

φ(x)dx =
∑
i

mi,k+1φ(xi) +O(ρ2)

=
∑
i

φ(xi)
∑
j

mj,k Bρ,h,r[Hp(·, Dw)](i, j, k) +O(ρ2)

=
∑
j

mj,k

(e−λrh
2d

d∑
p=1

[φ(Φε,+j,k,p) + φ(Φε,−j,k,p)] +
1− e−λrh

λr

∫
|z|>r

φ(xj + z)ν(dz)
)

+O(ρ2)

=
∑
j

mj,k

ρd

∫
Ej

(e−λrh
2d

d∑
p=1

[φ(Φε,+k,p )(x) + φ(Φε,−k,p )(x)]

+
1− e−λrh

λr

∫
|z|>r

φ(x+ z)ν(dz)
)
dx+O(ρ2) + EΦ + Eν ,

where Φε,±j,k,p is defined in (23), Φε,±k,p (x) = x − h
(
Hp(x,Dw(tk, x)) + Bσr

)
±
√
hdσpr ,

and EΦ + Eν is the error of the last midpoint approximation. Since φ is smooth, uρ,h
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uniformly Lipschitz (Lemma 5.5 (a)), ‖D2w‖0 ≤ C‖Duρ,h‖0
ε , and by assumption (H2),∣∣∣φ(Φε,±j,k,p)−

1

ρd

∫
Ej

φ(Φε,±k,p )(x)dx
∣∣∣

≤ ‖Dφ‖0
ρd

∫
Ej

|x− xj |dx+
h‖Dφ‖0
ρd

∫
Ej

∣∣DpH(xj , Dw(tk, xj))−DpH(x,Dw(tk, x))
∣∣dx

≤ Kρ
(
1 + h(‖Hpp‖0‖D2w‖0 + ‖Hpx‖0)

)
≤ Kρ

(
1 +

h

ε
‖Duρ,h‖0

)
,

and hence EΦ = O(hρε ). Similarly, Eν = O(hρ2λr) = O(hρ
2

rσ ).
From the above estimates, we find that∫
Rd
φ(x)d

( ̂̂m(tk+1)− ̂̂m(tk)
)
(x) =

∫
Rd

(e−λrh
2d

d∑
p=1

[φ(Φε,+k,p )(x) + φ(Φε,−k,p )(x)− 2φ(x)]

+
1− e−λrh

λr

∫
|z|>r

(
φ(x+ z)− φ(x)

)
ν(dz)

)
d ̂̂m(tk)(x) +O

(
ρ2 +

hρ

ε
+
hρ2

rσ
)
.

By a similar argument as in (28) and using Lemma 3.1,

φ(Φε,+k,p )(x) + φ(Φε,−k,p )(x)− 2φ(x) =− 2h
(
Dφ(x) ·DpH(x,Dw(tk, x)) +Bσr ·Dφ(x)

)
+ 2hLr[φ](x) +O(h2r2−2σ + hr3−σ).

Hence using (30) and (31) we have∫
Rd
φ(x)d( ̂̂m(tk+1)− ̂̂m(tk))(x)

= h

∫
Rd

[
−Dφ(x) ·DpH(x,Dw(tk, x)) + Lr[φ](x) + Lr[φ](x)

]
d ̂̂m(tk)(x)

+O(h2r−σ + h2r1−2σ + h2r2−2σ) +O(ρ2 +
hρ

ε
+
hρ2

rσ
+ h2r2−2σ + hr3−σ).

Summing from k = 0 to k = n− 1 and approximating sums by integrals, we obtain∫
Rd
φ(x)d ̂̂m(tn)(x)−

∫
Rd
φ(x)d ̂̂m(t0)

= h

n−1∑
k=0

∫
Rd

[
−Dφ(x) ·DpH(x,Dw(tk, x)) + L[φ](x)

]
d ̂̂m(tk)(x)

+ nO(ρ2 +
hρ

ε
+
hρ2

rσ
+ h2r−σ + hr3−σ)

=

∫
Rd

∫ tn

0

[
−Dφ(x) ·DpH(x,Dw(s, x)) + L[φ](x)

]
d ̂̂m(s)(x) ds

+O
(ρ2

h
+
ρ

ε
+
ρ2 + h

rσ
+ r3−σ

)
+ E,

(42)

where E is Riemann sum approximation error. Let Ik(x) := −Dφ(x)·DpH(x,Dw(tk, x))

+L[φ](x) and use time-continuity ̂̂m in the d0-metric (Theorem 6.5), that w(·, x) is

constant on [tk, tk+1), (H1), (H2) and ‖D2w‖0 ≤ C‖Duρ,h‖0
ε , to conclude that for s ∈

[tk, tk+1)∫ tk+1

tk

∫
Rd
Ik(x)d

( ̂̂m(tk)− ̂̂m(s)
)
(x)ds ≤ h

(
‖Ik‖0 + ‖DIk‖0

)
C0 sup

s∈[tk,tk+1)

√
s− tk

≤ Kh
(

1 + ‖Dw‖0 + ‖D2w‖0
)√

h ≤ Kh
(

1 +
1

ε

)√
h.
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Summing over k, we have E =
∣∣∑n−1

k=0

∫ tk+1

tk

∫
Rd Ik(x)d

( ̂̂m(tk)− ̂̂m(s)
)
(x)ds

∣∣ = O(
√
h
ε ).

Since ̂̂m converges to m in C([0, T ], P (Rd)) and φ ∈ C∞c (Rd) implies L[φ] ∈ Cb(Rd),
we have ∫

Rd

∫ tn

0

L[φ](x)d ̂̂m(s)(x)
n→∞−−−−→

∫
Rd

∫ t

0

L[φ](x)dm(s)(x).(43)

It now remains to show convergence of the DpH-term and pass to the limit in (42) to
get that m is a very weak solution satisfying (3).

Step 4 (Proof of Theorem 4.1 (a) (iii)). Now d = 1 and part (ii) of Theorem 4.1 (a)

implies that ̂̂m ∗
⇀ m in L∞([0, t] × R) if m0 ∈ L∞(R), or ̂̂m ⇀ m in L1([0, t] × R) if

m0 ∈ Lp(R) for p ∈ (1,∞). We also have Dw(t, x) = Duερ,h(t, x) → Du(t, x) almost

everywhere in [0, T ] × R by Theorem 5.6 (ii). Since Dφ ∈ C∞c (R) and DpH(·, Dw)
uniformly bounded, by the triangle inequality and the dominated convergence Theorem
we find that ∫

R

∫ tn

0

Dφ(x)·DpH(x,Dw(s, x)) d ̂̂m(s)(x)

−→
∫
R

∫ t

0

Dφ(x) ·DpH(x,Du(s, x)) dm(s)(x).

Then by passing to the limit in (42) using the above limit, (43), and the CFL conditions
ρ2

h ,
h
rσ ,
√
h
ε = o(1) (note that ρ2 ≤ h for large n), we see that (3) holds and m is a very

weak solution of the FPK equation. This completes the proof of Theorem 4.1 (a) (iii).

Step 5(Proof of Theorem 4.3(iii)). Now (U) holds and Dw = Duερ,h → Du lo-

cally uniformly by Theorem 5.6 (iii). Since Dφ ∈ C∞c (Rd) and
∫
Rd d

̂̂m(s)(x) = 1, by
continuity and uniform boundedness of DpH(·, Dw), it follows that∣∣∣ ∫

Rd

∫ tn

0

Dφ(x) ·DpH(x,Dw(s, x)) d ̂̂m(s)(x)

−
∫
Rd

∫ tn

0

Dφ(x) ·DpH(x,Du(s, x)) d ̂̂m(s)(x)
∣∣∣

≤ T‖Dφ‖0‖DppH‖0‖Dw −Du‖L∞(supp(φ))

∫
Rd
d ̂̂m(s)(x) −→ 0.

(44)

Since ̂̂m→ m in C([0, T ], P (Rd)) and Dφ ·DpH(·, Du)(t) ∈ Cb(Rd) by (U), we get∫
Rd

∫ tn

0

Dφ(x)·DpH(x,Du(s, x)) d ̂̂m(s)(x)

−→
∫
Rd

∫ t

0

Dφ(x) ·DpH(x,Du(s, x)) dm(s)(x).

Then by passing to the limit in (42) using the above limit, (44), (43), and the CFL

conditions ρ2

h ,
h
rσ ,
√
h
ε = o(1), we see that (3) holds and m is a very weak solution of the

FPK equation. This completes the proof of Theorem 4.3(iii).

8. Numerical examples

For numerical experiments we look at


−ut − σ2Lu+ 1

2 |ux|
2 = f(t, x) +K φδ ∗m(t, x) in (0, T )× [a, b],

mt − σ2L∗m− div(mux) = 0 in (0, T )× [a, b],

u(T, x) = G(x,m(T )), m(x, 0) = m0(x) in [a, b],

(45)
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where a < b are real numbers, L is a diffusion operator, φδ = 1
δ
√

2π
e−

x2

2δ2 , K some real

number, and f is some bounded smooth function. We will specify these quantities in
the examples below.

Artificial boundary conditions. Our schemes (18) and (24) for approximating (45)
are posed in all of R. To work in a bounded domain we impose (artificial) exterior
conditions:

(U1) u ≡ ‖u0‖0 + T · ‖f‖L∞((0,T )×(a,b)) in (R \ [a, b])× [0, T ],

(M1) m ≡ 0 in (R \ [a, b])× [0, T ], and m0 is compactly supported in [a, b].

Condition (U1) penalize being in [a, b]c ensuring that optimal controls α in (18) are such

that xi − hα ±
√
hσr ∈ [a, b]. Moreover, the contributions to non-local operators of u

from [a, b]c will be small away from the boundary. Condition (M1) ensures that the mass
of m is essentially contained in [a, b] up to some finite time (but some mass will leak
out due to nonlocal effects), and there is no contribution from [a, b]c when we compute
non-local operators of m. We will present numerical results from a region of interest
that is far away from the boundary of [a, b], and where the influence of the (artificial)
exterior data is expected to be negligible.

Evaluating the integrals. To implement the scheme, we need to evaluate the integral∫
|z|≥r

I[f ](xi + z)ν(dz) =
∑
j∈Z

f [xi]ωj−i,ν ,

where

ωj−i,ν =

∫
|z|≥r

βj−i(z)ν(dz),

see (17). In addition, we need to compute the values of σr, br, and λr (see (9), (8), and
(11)). To compute the weights ωj−i,ν we use two different methods. For the fractional
Laplacians, we use the explicit weights of [45], while for CGMY diffusions we calculate
the weights numerically using the inbuilt integral function in MATLAB. When tested on
the fractional Laplacian, the MATLAB integrator produced an error of less than 10−15.
Below the quantities σr, br, λr are computed explicitly, except in the CGMY case where
we use numerical integration.

Solving the coupled system. We use a fixed point iteration scheme: (i) Let µ = m0,
and solve for uρ,h in (18)–(20). (ii) With approximate optimal control Duερ,h as in (21),

we solve for mε
ρ,h in (24). (iii) Let µnew = (mε

ρ,h + µ)/2, and repeat the process with
µ = µnew. We continue until we have converged to a fixed point to within machine
accuracy.

Remark 8.1. Instead µnew = mε
ρ,h, we take µnew = (mε

ρ,h + µ)/2. I.e. we use a fixed
point iteration with some memory. This gives much faster convergence in our examples.

Example 1. Problem (45) with [0, T ] × [a, b] = [0, 2] × [0, 1], G = 0, f(t, x) = 5(x −
0.5(1− sin(2πt)))2, m0(x) = Ce−

(x−0.5)2

0.12 , where C is such that
∫ b
a
m0 = 1. Furthermore,

in accordance with the CFL-conditions of Theorem 4.1, we let h = ρ = 0.005, r = h
1
2s ,

ε =
√
h ≈ 0.0707, σ = 0.09, δ = 0.4, K = 1.

For the diffusions, we consider L = (−∆)
s
2 for s = 0.5, 1.5, 1.9, L = ∆, and L ≡ 0.

In figure 1 we plot the different solutions at time t = 0.5 and t = 1.5.

In figure 2 we plot the solution with s = 1.5 on the time interval [0, 2].

Example 2. Problem (45) with the same cost functions as in Example 1, but different
diffusions with parameter s = 1.5:
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(a) t = 0.5 (b) t = 1.5

Figure 1. The solutions m in Example 1.

(a) m(t, x) (b) u(t, x)

Figure 2. Solution m and u in Example 1 with diffusion parameter
s = 1.5

(i) L = σ2(−∆)
s
2 ,

(ii) L = σ2Cd,s
∫
R[u(x+ y)− u(x)−Du(x) · y1|y|<1]1[0,+∞)

dy
|y|1+s ,

(iii) L = σ2Cd,s
∫
R[u(x+ y)− u(x)−Du(x) · y1|y|<1]1[−0.5,0.5]c

dy
|y|1+s ,

(iv) L = σ2Cd,s
∫
R[u(x+ y)− u(x)−Du(x) · y1|y|<1] e−10y−−y+ dy

|y|1+s ,

where Cd,s is the normalizing constant for the fractional Laplacian (see [45]). Case (i)
is the reference solution, a symmetric and uniformly elliptic operator. Case (ii) is non-
symmetric and non-degenerate, case (iii) is symmetric and degenerate, and case (iv) is
a CGMY-diffusion (see e.g. [34]). We have plotted m at t = 0.5 and t = 1.5 in Figure 3.

Example 3. (Long time behaviour). Under certain conditions (see e.g. [22, 21]), the
solution of time dependent MFG systems will quickly converge to the solution of the
corresponding stationary ergodic MFG system, as the time horizon T increases. We
check numerically that this is also the case for nonlocal diffusions. In (45), we take
L = (−∆)

s
2 , with s = 1.5, [0, T ]× [a, b] = [0, 10]× [−1, 2], G(x) = (x− 2)2, f(t, x) = x2,

and m0(x) = 1[1,2](x). We expect (from the cost functions f and G) that the solution
m will approach the line x = 0 quite fast, and then travel along this line, until it goes
towards the point x = 2 in the very end. Our numerical simulations shows that this
is the case also for nonlocal diffusions. Here we have considered the cases K = 0 (no
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(a) t = 0.5 (b) t = 1.5

Figure 3. The solutions m in Example 2

coupling in the u equation) and K = 0.4 (some coupling). The parameters used in the

simulations are h = ρ = 0.01, ε =
√
h, r = h1/2s, and the results are shown in Figure 4.

(a) f (b) f + 0.4φδ

Figure 4. The solutions m in Example 3

The players want to avoid each other in the case of K = 0.4, so the solution is more
spread out in space direction than in the case of K = 0.

Example 4. We compute the convergence rate when f , G, m0 are as in Example 1,
s = 1.5, ν = 0.2, δ = 0.4, and the domain [0, T ]× [a, b] = [0, 0.5]× [0, 1]. We take ρ = h,

r = h
1
2s , and for simplicity ε = 0.25.

We calculate solutions for different values of h, and compare with a reference solution
computed at h = 2−10. We calculate L∞ and L1 relative errors restricted to the x-
interval [ 1

3 ,
2
3 ] (to avoid boundary effects), and t = 0 for u and t = T for m:

ERRu :=
‖uρ,h(0, ·)− uref(0, ·)‖L∞( 1

3 ,
2
3 )

‖uref(0, ·)‖L∞( 1
3 ,

2
3 )

, ERRm :=
‖mε

ρ,h(T, ·)−mref(T, ·)‖L1( 1
3 ,

2
3 )

‖mref(T, ·)‖L1( 1
3 ,

2
3 )

.

The results are given in the table below.

h 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9

ERRu 0.3155 0.1951 0.0920 0.0446 0.0218 0.0097 0.0035 0.0013
ERRm 0.8055 0.4583 0.2886 0.1869 0.1023 0.0596 0.0300 0.0186

We see that when we halve h, the error is halved, i.e we observe an error of order O(h).
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Appendix A. Proof of Proposition 3.4

The proof is an adaptation of the Schauder fixed point argument used to prove exis-
tence for MFGs. We will use a direct consequence of Theorem 6.4 and 6.5:

Corollary A.1. Assume (ν0),(ν1), (L1)–(L2), (H1), (F2), (M), Ψ is given by Propo-
sition 6.1, and mε

ρ,h[µ] is defined by (26). Then there is Cρ,h,ε > 0, such that for any

µ ∈ C([0, T ], P (Rd)) and t, s ∈ [0, T ],∫
Rd

Ψ(x) dmε
ρ,h[µ](t) +

d0(mε
ρ,h[µ](t),mε

ρ,h[µ](s))√
|t− s|

≤ Cρ,h,ε.

The point is that ρ, h, ε are fixed in this result. Let

C :=
{
µ ∈ C(0, T ;P (Rd)) : µ(0) = m0,

sup
t,s∈[0,T ]

[ ∫
Rd
ψ(x)dµ(t, x) +

d0(µ(t), µ(s))√
|t− s|

]
≤ Cρ,h,ε

}
,

where Cρ,h,ε is defined in Corollary A.1. For µ ∈ C, let uρ,h[µ] be solution of (18) and
uερ,h[µ] defined by (22). Then mε

ρ,h = S(µ) is defined to the corresponding solution of

(24). Note that a fixed point of S will give a solution (u,m) of the scheme (27). We
now conclude the proof by applying Schauder’s fixed point theorem since:

1. (C is a convex, closed, compact set). It is a convex and closed by standard arguments
and compact by the Prokhorov and Arzelà-Ascoli theorems.

2. (S is a self-map on C). The map S maps C into itself by Corollary A.1 (tightness and
equicontinuity), and Lemma 3.3 (positivity and mass preservation).

3. (S is continuous). Let µn → µ in C. By Theorem 5.2 (comparison) and (F2),

‖uρ,h[µn]− uρ,h[µ]‖0
≤ T sup

t,x
|F (x, µn(t))− F (x, µ(t))|+ sup

x
|G(x, µn(T ))−G(x, µ(T ))|

≤ TLF sup
t
d0(µn(t), µ(t)) + LG d0(µn(T ), µ(T ))→ 0.

Then supi
∣∣ui,k[µn]−ui−j,k[µn]

ρ −ui,k[µ]−ui−j,k[µ]
ρ

∣∣→ 0 uniformly for |i−j| = 1, ‖Duερ,h[µn]−
Duερ,h[µ]‖0 → 0, and finally by Lemma 6.6,

sup
t∈[0,T ]

‖mε
ρ,h[µn](t, ·)−mε

ρ,h[µ](t, ·)‖L1(Rd) ≤
cKT

ρ
e−hλr‖Duερ,h[µn]−Duερ,h[µ]‖0 → 0.

Hence S is continuous.

Appendix B. Proof of Lemma 5.6 (ii) and (iii)

Fix (t, x) ∈ [0, T ] × Rd and consider a sequence (tk, xk) → (t, x). For any y ∈ Rd, a
Taylor expansion shows that

uεnρn,hn [µn](tk, xk + y)− uεnρn,hn [µn](tk, xk)−Duεnρn,hn [µn](tk, xk) · y

=

∫ 1

0

(
Duεnρn,hn [µn](tk, xk + sy)−Duεnρn,hn [µn](tk, xk)

)
· y ds :=

∫ 1

0

I(s) · y ds.
(46)

Using first Lemma 5.5 (a) and then part two of Lemma 5.5 (b), we find that∫ ρn
εn|y|

0

I(s) · y ds ≤ 2‖Duεnρn,hn [µn]‖0
ρn
εn
≤ 2((LL + LF )T + LG)

ρn
εn∫ 1

ρn
εn|y|

I(s) · y ds ≤ c1
∫ 1

ρn
εn|y|

1

s

(
|sy|2 +

ρ2
n

ε2n

)
ds = c1|y|2

∫ 1

ρn
εn|y|

(
s +

1

s

ρ2
n

|y|2ε2n

)
ds
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≤ c1|y|2
∫ 1

ρn
εn|y|

(
s +

1

s
s2
)
ds ≤ c1|y|2.

By Lemma 5.5 (a), the sequence Duεnρn,hn [µn](tk, xk) is precompact. Now take any

convergent subsequence as n, k → ∞ and ρn
εn

= o(1). If p is the limit, then by passing

to the limit in (46) along this subsequence we have

u[µ](x+ y)− u[µ](x)− p · y ≤ c1|y|2 for every y ∈ Rd,

and p ∈ D+u[µ](t, x), the superdifferential of u[µ](t, x). At points (x, t) where u[µ] is
differentiable, D+u[µ](t, x) = {Du[µ](t, x)} and p = Du[µ](t, x), and then since the
subsequence was arbitrary in the above argument and all limit points p coincide,

lim sup
(tk,xk)→(t,x),n→∞

Duεnρn,hn [µn](tk, xk)

= lim inf
(tk,xk)→(t,x),n→∞

Duεnρn,hn [µn](tk, xk)

= Du(t, x).

(47)

We conclude that Duεnρn,hn [µn] → Du[µ] at (t, x). Part (ii) now follows since u[µ] is

Lipschitz in space by Proposition 2.5 (c) and then x-differentiable for a.e. x and every
t.

To prove part (iii), we note that u is C1 by (U), so now (47) holds for every (t, x).
Then in view of the uniform Lipschitz estimate from Lemma 5.5 (a), local uniform
convergence follows from [11, Chapter V, Lemma 1.9]. The proof is complete.

Appendix C. Proof of Lemma 6.9

We first show strong separation between any two characteristics Φε,±: By Lemma
6.8, ∣∣Φε,±j,k − Φε,±i,k

∣∣2 =
∣∣∣xj − xi ±√hσr ∓√hσr − h(DpH(xj , Du

ε
ρ,h(tk, xj)) +Bσr

−DpH(xi, Du
ε
ρ,h(tk, xi))−Bσr

)∣∣∣2
≥ |xj − xi|2 − 2h

(
DpH

(
xj , Du

ε
ρ,h(tk, xj)

)
−DpH

(
xi, Du

ε
ρ,h(tk, xi)

))
(xj − xi)

≥ (1− c0h)|xj − xi|2.

Hence, we have

min
{∣∣Φε,+j,k − Φε,+i,k

∣∣, ∣∣Φε,−j,k − Φε,−i,k
∣∣} ≥√1− c0h|j − i|ρ > ρ

√
1− c0h.(48)

The result now holds following the proof of [23, Lemma 3.8]. We give the proof for
completeness.

Since the diameter of the support of a (hat) basis functions βi is 2ρ, by (48) there can
be at most 3 characteristics inside the supp(βi) for small enough h. The result is trivial
if there is only one in characteristic supp(βi). When supp(βi) contains 2 characteristics,

say Φε,+j1,k and Φε,+j2,k, we see by (48) (check the different orderings of xk, Φε,+j1,k, Φε,+j2,k)
that

βi(Φ
ε,+
j1,k

) + βi(Φ
ε,+
j2,k

) = 1−

∣∣∣xi − Φε,+j1,k

∣∣∣
ρ

+ 1−

∣∣∣xi − Φε,+j2,k

∣∣∣
ρ

≤ 2−

∣∣∣Φε,+j1,k − Φε,+j2,k

∣∣∣
ρ

≤ 2−
√

1− c0h ≤ 1 +K0h.
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Finally, assume support(βi) contains 3 characteristics Φε,+j1,k,Φ
ε,+
j2,k

and Φε,+j3,k. By (48)

that all three characteristics can not be on one side (left or right) of xi. Without loss

of generality we assume Φε,+j1,k < xi < Φε,+j2,k < Φε,+j3,k, and find

βi(Φ
ε,+
j1,k

) + βi(Φ
ε,+
j2,k

) + βi(Φ
ε,+
j3,k

) = 1−
xi − Φε,+j1,k

ρ
+ 1−

Φε,+j2,k − xi
ρ

+ 1−
Φε,+j3,k − xi

ρ

≤ 3−
Φε,+j2,k − Φε,+j1,k

ρ
−

Φε,+j3,k − Φε,+j2,k
ρ

≤ 3− 2
√

1− c0h ≤ 1 + 2(1−
√

1− c0h) ≤ 1 +K0h.

Combining all three cases we get∑
j∈Z

βi(Φ
ε,+
j,k ) ≤ 1 +K0h for any i ∈ Z.

The estimate of
∑
j∈Z βi(Φ

ε,−
j,k ) is similar. This completes the proof.

Acknowledgements

The authors are supported by the Toppforsk (research excellence) project Waves and
Nonlinear Phenomena (WaNP), grant no. 250070 from the Research Council of Norway.
IC is partially supported by the Croatian Science Foundation under the project 4197.
The authors would like to thank Elisabetta Carlini for sharing the code of the numerical
methods introduced in [23].

References

[1] Y. Achdou, F. Camilli, and I. Capuzzo-Dolcetta. Mean Field Games: Numerical methods for the

planning problem. SIAM J. Control Optim, 50(1):77–109, 2012.

[2] Y. Achdou, F. Camilli, and I. Capuzzo-Dolcetta. Mean Field Games: Convergence of a finite
difference method. SIAM J. Numer. Anal., 51(5):2585–2612, 2013.

[3] Y. Achdou, F. Camilli, and L. Corrias. On numerical approximation of the Hamilton-Jacobi-

transport system arising in high frequency approximations. Discrete Contin. Dyn. Syst. Ser. B,
19(3):629–650, 2014.

[4] Y. Achdou and I. Capuzzo-Dolcetta. Mean Field Games: Numerical methods. SIAM J. Numer.

Anal., 48(3):1136–1162, 2010.
[5] Y. Achdou, P. Cardaliaguet, F. Delarue, A. Porretta, F. Santambrogio. Mean field games. Lecture

Notes in Mathematics, CIME vol. 2281, Springer, 2020.

[6] Y. Achdou and M. Laurière. Mean Field Games and applications: Numerical aspects. arXiv
preprint arXiv:2003.04444, 2020.

[7] Y. Achdou and V. Perez. Iterative strategies for solving linearized discrete Mean Field Games
systems. Netw. Heterog. Media, 7(2):197, 2012.

[8] Y. Achdou and A. Porretta. Convergence of a finite difference scheme to weak solutions of the sys-

tem of partial differential equations arising in mean field games. SIAM J. Numer. Anal., 54(1):161–
186, 2016.
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