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Abstract

We prove the local well-posedness of the 3D free-boundary incompressible ideal magnetohydrodynamics (MHD) equations
with surface tension, which describe the motion of a perfect conducting fluid in an electromagnetic field. We adapt the ideas
developed in the remarkable paper [11] by Coutand and Shkoller to generate an approximate problem with artificial viscosity
indexed by x > 0 whose solution converges to that of the MHD equations as k — 0. However, the local well-posedness of the
MHD equations is no easy consequence of Euler equations thanks to the strong coupling between the velocity and magnetic
fields. This paper is the continuation of the second and third authors’ previous work [38] in which the a priori energy estimate
for incompressible free-boundary MHD with surface tension is established. But the existence is not a trivial consequence of the
a priori estimate as it cannot be adapted directly to the approximate problem due to the loss of the symmetric structure.
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1 Introduction

We consider the following 3D incompressible ideal MHD system which describes the motion of a conducting fluid with free
surface boundary in an electro-magnetic field under the influence of surface tension

(0 +u-V)u—B-VB+VP=0, P:=p+3B? inD;
@ +u-VYB-B-Vu=0, in D; (1.1)
divu=0, divB=0, in D,

with boundary conditions
(01 +u-Vlap € T(0D),
P=cH on 0D, (1.2)
B-n=0 on 0D.

Here D := Up<r{t} X D, and D, C R? is the bounded domain occupied by the conducting fluid (plasma) whose boundary 0D,
moves with the velocity of the fluid. Here u = (uy, up, u3) is the fluid velocity, B = (B, By, B3) is the magnetic field, p is the
fluid pressure and P := p + %|B|2 is the total pressure. The quantity H is the mean curvature of the free surface D;, o > 0 is
a given constant, called surface tension coefficient and n denotes the exterior unit normal to 99,. Throughout the manuscript,
we will use the notation D; := 9, + u - V to denote the material derivative.

The first boundary condition shows that the boundary of the plasma moves with the velocity of the fluid. It can be equiva-
lently expressed as the velocity of (D) is equal to u - n. The second boundary condition shows that the normal stress tensor
is balanced by the surface tension. Here we note that H is determined by the unknown moving domain and thus not known
a priori. The third boundary condition implies that the plasma liquid is a perfect conductor. We also note that div B = 0 and
B - nl|sp, = 0 are both required only for initial data and they automatically propagate to any positive time. Therefore, the system
(1.1)-(1.2) is not over-determined.

Under the conditions above, we have the following conservation of physical energy [38, Section 1].

d (1
— (— lul> + |B? dx + o f ds (aD(t))) =0 (1.3)
dr\2 Jp, aD(1)

Given a simply connected domain Dy C R3 and initial data u and By satisfying div up = 0 and div By = 0, Bo'nlj=0jxam, = 0,
we want to find a set D and vector fields u and B solving (1.1)-(1.2) with initial data

Dy =1{x:0,x)€ D}, (u,B)=(up,Bp), 1n {t=0}xQy. (1.4)

Remark. When the surface tension is neglected, the classical Rayleigh-Taylor sign condition —V,P > ¢y > 0 is necessary
for the well-posedness. Ebin [17] and Hao-Luo [26] constructed the counterexamples for Euler equations and MHD equations
respectively to show that the free-boundary problems can be ill-posed when the Rayleigh-Taylor sign condition is violated.

1.1 History and Background

1.1.1 Physical background: Plasma-Vacuum model

The free-boundary problem (1.1)-(1.2) originates from the plasma-vacuum free-interface model, which is an important theoretic
model both in the laboratory and in astrophysical magnetohydrodynamics. The plasma is confined in a vacuum with another
magnetic field B, and there is a free interface I'(f), moving with the motion of plasma, between the plasma region Q. (¢) and the
vacuum region Q_(#). Such a model requires that (1.1) holds in the plasma region Q. (¢) and the pre-Maxwell system holds in
vacuum Q_(7):

curl B=0, divB=0. (1.5)

On the interface I'(¢), the perfect conducting condition is required that there is no jump in the the normal component:

A

1 1.
B-n=B-n=0, [P]:=p+§|B|2—§|B|2=o‘7{ (1.6)

where n is the exterior unit normal to I'(#). Finally, there is a rigid wall W wrapping the vacuum region on which the following
boundary condition holds
B xn, =9



where J is the given outer surface current density (as an external input of energy) and n,, is the exterior unit normal of W.
Note that for the ideal MHD equations, B - n = 0 on 09D, and div B = 0 in D, should be the constraints on initial data and these
constraints propagate. See more details in [18, Chapter 4, 6].

Remark. We also note that, in the study of MHD surface waves in the free-interface models, the effect of surface tension is
crucially important for modeling MHD flows in liquid metals, e.g., the liquid-metal film flows, jets and droplets, etc. See also
[29, 40, 43] and references therein. Even if we consider the MHD flows in astrophysical plasmas, where the surface tension
effect and magnetic diffusion are usually neglected, it is still useful to keep surface tension as a stabilization effect in numerical
simulations of the magnetic Rayleigh-Taylor instability [49, 50].

In this manuscript, we consider the case that B=0,ie., we neglect the magnetic field in the vacuum. It characterizes the
free-surface motion of an isolated liquid plasma under the influence of surface tension.

1.1.2 Review of previous results

In the absence of magnetic field B, the system (1.1)-(1.2) is reduced to the free-boundary incompressible Euler equations. The
study of free-surface incompressible Euler equations has blossomed in the past several decades. In the case of no surface tension
(o = 0), the first breakthrough is Wu [61, 62] in which she proved the local well-posedness (LWP) for the irrotational case
without surface tension. See also [3, 31, 39, 1, 2] for the LWP with or without surface tension. In the case of nonzero vorticity,
Christodoulou-Lindblad [8] first proved the a priori estimates and then Lindblad [35, 36] proved the LWP by using Nash-Moser
iteration. Later Coutand-Shkoller [11, 12] proved the LWP by using tangential smoothing and the energy estimates without
loss of regularity in the case of both oo = 0 and o > 0. See also Zhang-Zhang [65] for the study of incompressible water wave.
In the case of nonzero surface tension, we refer to [44, 11, 6, 46, 47, 48] for LWP, and [28, 13, 14] for low regularity estimates.

However, the study of free-boundary MHD equations is far less developed as opposed to Euler equations. The strong
coupling between the magnetic field and the motion of fluid destroys some good properties of Euler equations such as the
propagation of the irrotational assumption. Most of the known results focus on the case of zero surface tension. When the
surface tension is neglected, extra stabilization such as the Rayleigh-Taylor sign condition is required. Lee [33, 34] proved
the LWP for viscous-resistive MHD and the vanishing viscosity-resistivity limit. For the free-boundary problem of ideal
incompressible MHD under the Rayleigh-Taylor sign condition, Hao-Luo [25] proved the a priori estimates and [27] proved the
linearized LWP. Then the first author and Wang [22] proved the LWP. The second and the third authors [37] proved the minimal
regularity H 3+¢ estimates for a small fluid domain. For the plasma-vacuum model under the Rayleigh-Taylor sign condition,
Hao [24] proved the a priori estimates when J = 0 and the first author [19, 20] proved the LWP for the axisymmetric case with
a non-zero vacuum magnetic field in a non-simply connected domain. We note that there is another non-collinearity condition’
IBx B| > ¢y > 0 which gives extra 1/2-order regularity of the free interface than the Rayleigh-Taylor sign condition for the
plasma-vacuum model. Under this condition, Morando-Trebeschi-Trakhinin [41] proved the LWP for the linearized plasma-
vacuum system and Sun-Wang-Zhang [52] proved the nonlinear LWP. Coulombo-Morando-Secchi-Trebeschi [9] proved the
a priori estimates for 3D incompressible current-vortex sheets and Sun-Wang-Zhang [51] proved the LWP. So far, the energy
estimates and well-posedness of the plasma-vacuum model in general cases (i.e., J # 0 and without axisymmetric assumption)
under the Rayleigh-Taylor sign condition are still open problems.

In the case of nonzero surface tension, there are very few results for the free-boundary MHD system and most previous
works focus on the resistive or viscous MHD. To the best of our knowledge, The second and the third authors’ previous work
[38] which proved the H’/? a priori estimate is the only available result for incompressible ideal MHD with surface tension.
We also refer to Chen-Ding [5] for the inviscid-non-resistive limit under the condition Blsp, = 0, Wang-Xin [60] for GWP of
incompressible resistive MHD around a transversal uniform magnetic field, and Padula-Solonnikov [42], Guo-Zeng-Ni [23] for
incompressible viscous-resistive MHD.

Finally, for compressible MHD, we refer to Secchi-Trakhinin [45] for the LWP of plasma-vacuum model under non-
collinearity condition, and Chen-Wang [4], Trakhinin [55] and Wang-Yu [59] for compressible current-vortex sheets in 3D and
2D. Very recently, Trakhinin-Wang proved the LWP of free-boundary compressible ideal MHD under Rayleigh-Taylor sign
condition [57] or with surface tension [58]. All these results are proved by Nash-Moser iteration and thus there is no energy
estimate without regularity loss. The third author proved the LWP [64] and the incompressible limit [63] of compressible
resistive MHD under the Rayleigh-Taylor sign condition with energy estimates of no regularity loss. Finding suitable energy
estimates without regularity loss for compressible ideal MHD with or without surface tension is also a wide-open problem. The
plasma-vacuum model in compressible MHD under the Rayleigh-Taylor sign condition is also unsolved. See Trakhinin [56]
for detailed discussion.

!'Such condition comes from the study of the stability of current-vortex sheet which is a two-fluid (plasma-plasma) model in free-boundary MHD.



In this manuscript, we prove the local well-posedness with energy estimates of no regularity loss for the free-boundary
problem in incompressible ideal MHD with surface tension. Our result is a necessary step to study the plasma-vacuum model
under the influence of surface tension, which is an original theoretical model in the study of confined plasma in both laboratory
and astrophysical MHD.

1.2 Reformulation in Lagrangian coordinates

We reformulate the MHD equations in Lagrangian coordinates and thus the free-surface domain becomes fixed. Let Q C R3
be a bounded domain. Denoting coordinates on Q by y = (y1,y2,y3), we define 17 : [0, T] X Q — D to be the low map of the
velocity u, i.e.,

Om(t,y) = u(t,n(t,y)), n(0,y) =y. (1.7)

We introduce the Lagrangian velocity, magnetic field and pressure respectively by

v(t,y) = u(t,n(t,y)), bty = B@,nty), q(ty) =Ptny). (1.8)

Let 8 be the spatial derivative with respect to y variable. We introduce the cofactor matrix a = [dn]~!. Specifically, a** = %,

where x*(t,y) = n%(t,y). Also, we define J := det[dn], which is well-defined since 7(z, -) is almost the identity map when ¢ is
sufficiently small. It’s worth noting that a verifies the Piola’s identity and J = 1 in the incompressible case, i.e.,

8,d"" = 8,(Ja") =0 and J = 1. (1.9)

Here, the Einstein summation convention is used for repeated upper and lower indices. Above and throughout, all Greek indices
range over 1, 2, 3, and the Latin indices range over 1, 2.
For the sake of simplicity and clean notation, here we consider the model case when

Q=T2x%x(0,1), (1.10)

where 9Q = Ty UT and T’ = T2 x {1} is the top (moving) boundary, Iy = T2 x {0} is the fixed bottom. We mention here that
Q) is known as the reference domain, which allows us to work in one coordinate patch. We refer the interested readers to [11]
for detailed discussions. Using a partition of unity, e.g., [14], a general domain can also be treated with the same tools we shall
present. However, choosing Q as above allows us to focus on the real issues of the problem without being distracted by the
cumbersomeness of the partition of unity. Let N stand for the outward unit normal of Q. In particular, we have N = (0,0, —1)
onlpand N = (0,0,1)onT.

Under this setting, the system (1.1)-(1.2) can be reformulated as:

e — bpaPdyby + dydug =0  in[0,T]XQ;

8:by — bgaPd, v, =0 in [0, 7] x Q;

a;‘aﬁ,lv; =0, a"dub, =0 in [0, 7] x Q; (1.11)
v =>b=0 onIy;

A"*Nuq + 0(+/gAgn™) =0 onT;

a”b,N,, =0 onT,

where N is the unit outer normal vector to 6€2, and A, is the Laplacian of the metric g;; induced on I'(f) = n(¢,I') by the
embedding 5. Specifically, we have:

_ _ 1 - o
817 = O 9 Bg() = —291(V88"9,()). where g := det(g;). (1.12)

Here, we use dto emphasis that the derivative is tangential to I'. In particular, 0= (51, 52) = (01, 07).
By the second equation of (1.11) and the divergence-free condition on b, we get 8,(a**b,) = 0 which implies a*“b,, = bj and
thus b* = b’éaﬂna = (by - )n®. See Gu-Wang [22, (1.13)-(1.15)] for the proof. Therefore, the system (1.11) can be equivalently



written as the following system of (1, v, )

am=v n[0,T] x Q;

v —(by-0)n+Vg=0 in[0,TIXQ;

div ,v =0, n [0, T]XQ

div by = 0 { 0} x W)
V=D =0 on Iy;

a**q+ o(\gAn™) = 0 onT;

by =0 onT,

(n,v) = (Id, vo) on {r = 0}xQ.

Notation 1.1. The differential operator V,, := (V}, V2, V3) with V¢ := a*“d,, and for a smooth vector field X, we denote by
div X :=V,- X = a"", X, the Eulerian divergence of X and by divX := 8- X = 6%*9,X, the flat divergence.

Remark. The initial data of g is determined by vy and by. In particular, g satisfies an elliptic equation

—Ago = (0v0)(0vo) — (Obo)(Oby), in Q,
qo=0, onT, (1.14)
’%’U =0, on Y.

The boundary condition on I' is derived by restricting the boundary condition a**g + o( VgAgn®) = 0 att = 0. Then it becomes
gy + O’K?’]g =0, where A := 5% + 5%, and this yields go = 0 on I since 5217(3) = (. On the other hand, the boundary condition
on Iy is derived from by restricting 0,v — (bo - 3)*n + Voq = 0 on {t = 0} X Iy and then taking the normal component, where we
have used the fact that a'> = ¢** = 0 and ¢® = 1 on .

1.3 Main result

We prove the local well-posedness of (1.13) in the presenting manuscript. We denote |[|f|ls := || f(¢, -)llas@) for any function
f(,y)on[0,T] x Q and |f| := |f(z, )|asq) for any function f(¢,y) on[0,7] x I'. Let IT be the canonical normal projection
defined on the tangent bundle of the moving interface. Our main result is:

Theorem 1.2. Let vy € H*3(Q) N H>(I) and by € H*>(Q) be divergence-free vector fields with (by - N)|r = 0, and define gg
as in (1.14). Then there exists some T > 0, only depending on o, vy, by, such that the system (1.13) with initial data (v, bg, qo)
has a unique strong solution (77, v, g) with the energy estimates

sup E(t) <C, (1.15)

0<t<T

where C is a constant depends on ||vo|la.s, [|bolla.5, [vols, and

3
E@) = iR+ Y (@0, 0/0 - amw)[, _ + (@, 580 - o),
J=0 o
(1.16)
+ i [6 (133} + [313* @y - o),
=0

Moreover, the H> (I')-regularity of v on the free-surface can also be recovered, in the sense that there exists some 0 < T} < T,
depending only on o1, vy, by, such that

sup [()IZ + @2 < Co™, Ivollas, lIbollas). (1.17)

0<1<T,

Remark (Smoothing effect of by - d). It can be seen that in (1.16) v and (by - d)n are of the same interior regularity (i.e.,
H*3(Q)). This suggests that (b, - d) and d, behave the same when falling on the flow map 7. This observation turns out to be
very important when studying the energy of the approximate equations (1.19) defined below.



1.4 Strategy of the proof
1.4.1 Necessity of the tangential smoothing

In [38], the second and third authors proved the a priori estimates of (1.13). However, it is often highly nontrivial to prove
the local well-posedness for a free-boundary problem of an inviscid fluid, especially when equipped with the Young-Laplace
boundary condition, by a simple iteration scheme and fixed-point argument for the linearized equations. The reason is that the
linearization breaks the subtle cancellation structure on the free surface and thus causes the loss of tangential derivatives of the
flow map 7, which also occurs for incompressible Euler equations with surface tension.

In their remarkable work [11], Coutand and Shkoller introduced an approximate system in the Lagrangian coordinates by
smoothing the nonlinear coefficients in the tangential direction. This can be adapted to study the MHD equations and the
tangential smoothing preserves the essential transport-type structure of the original equations. Specifically, we define A, to
be the standard mollifier with parameter k > 0 on R? as in (2.17). Let 77 := A2p and @ = [07]~'. Then we set the nonlinear
k-approximation problem by replacing a with a. However, such construction does not apply to MHD because we also need to
control II[A,%, (bo - ) ]1lls.5 in which there is a normal derivative bga3 that is not compatible with the tangential mollification in
the interior. Motivated by Gu-Wang [22], we first mollify the flow map on the boundary, then extend it into the interior by the
harmonic extension, i.e.,

_Ai=-Ap  inQ,
{ 1=-a7 1w (1.18)

fi=NAn onT.

Define @ := [87]7", J := det[d7] and A := Ja, then we have the Piola’s identity 9,A** = 0. The nonlinear approximate
system is defined to be

dm=v n [0, 7] Q;

0v—(by-3)n+Viqg=0 n[0,7]xQ;

divzv = 0, n[0,T] x Q;

div b03=0 { 0} x (1.19)

=b;=0 on I'p;

A¥g = —o\gAg - DA + k(1= D)(v- @) onT;

b} =0 onT,

(n,v) = (d, vo) in {r = 0}xQ.

In this paper, we will (i). derive the uniform-in-« a priori estimates of the system (1.19), and then (ii). solve the nonlinear
k-approximation system (1.19).

1.4.2 Necessity of the artificial viscosity

There is an artificial viscosity term « ((1 —A)v- ﬁ)) 7® in the smoothed surface tension equation on the boundary. This was first
introduced by Coutand-Shkoller in [11] where the authors mentioned that the artificial viscosity term appears to be necessary to
prove the existence of an inviscid fluid with non-trivial vorticity and surface tension. This term also appears in the subsequent
work that studies the free-surface fluid with surface tension, e.g., Cheng-Coutand-Shkoller [6] for the vortex sheets, Coutand-
Hole-Shkoller [10] for the compressible Euler, and very recently Trakhinin-Wang [58] for the compressible MHD.

Remark. Very recently, the first author and Lei [21] proved the LWP of incompressible elastodynamics with surface tension by
proving the inviscid limit of the visco-elastodynamics system in standard Sobolev spaces. We also note that the inviscid-non-
resistive limit of free-boundary MHD (under B|yp, = 0) was recently proved by Chen-Ding [5] in co-normal Sobolev spaces.
However, the analogous inviscid limit in standard Sobolev space does not apply to MHD due to the existence of MHD boundary
layers.

An essential reason for introducing such an artificial viscosity term is that the presence of surface tension forces us to
control all of the time derivatives. In particular, the pressure g satisfies an elliptic equation and it appears that one can only get
control of it by considering the Neumann boundary condition instead of the Dirichlet boundary condition due to the presence
of surface tension. The Neumann boundary condition contains the time derivative of v, and thus we have to include the time
derivatives in our energy.

However, the full-time derivatives of v and (b, - 3)n only have L*(Q) regularity which introduces two new difficulties. First,
we cannot get estimates of the full-time derivatives of g via the elliptic equation due to the low spatial regularity. Second, we



do not have any control for the terms containing full-time derivatives on the boundary due to the failure of the Sobolev trace
lemma. For the original system, one can use the subtle cancellation structure developed in [13, 38] to resolve this difficulty.
But such cancellation structure no longer holds for the nonlinear k-approximate problem due to the presence of tangential
smoothing. Therefore, introducing the artificial viscosity term could produce «x-weighted higher-order terms on the boundary,
which enables us to finish the energy control.

Remark. The Young-Laplace boundary condition only gives us the information in the Eulerian normal direction. Therefore,
the artificial viscosity can only be imposed in the smoothed Eulerian normal direction K((l -AN)(- ﬁ)) 7i“ instead of all the
components, otherwise the system would be over-determined.

1.4.3 Difference from the case without surface tension

The first author and Wang [22] proved the LWP of incompressible MHD without surface tension, in which the pressure g can
be controlled by the elliptic equation with Dirichlet (zero) boundary condition, and thus one can avoid the estimates of all time
derivatives which turn out to be very complicated in the presenting manuscript. This tells an essential difference from the case
without the surface tension.

On the other hand, as mentioned in [11, 13, 38], surface tension has a stronger stabilization effect than the Rayleigh-Taylor
sign condition in the case without surface tension. The presence of surface tension allows us to control the boundary norms of
the normal component of v and (bg - )i by comparing with the corresponding Eulerian normal projections instead of using the
normal trace theorem to reduce to interior tangential estimates. We refer Section 3.3 for details. This property allows us to gain
extra 1/2 derivatives in the interior, and there is no need to introduce the Alinhac good unknowns and correction terms as in
[22].

1.4.4 Illustration on the energy functional

Let IT be the canonical normal project defined on the tangent bundle of the moving interface and 7i be the (Eulerian) unit normal
(We refer to Lemma 2.1 for the precise definition). The energy functional of the nonlinear approximate problem (1.19) is
defined to be

Ec=E" +E?P + ED

where

ED = w2 + i (v, 8o a)l](K))”zs_i + (@ v, ot ceo - 6)77(K))||z
70 :

Y (130} + [T o - ),
=0

T 4
E? =¢ j; (Z | VRIV(K) - fl(K)Cij + | &by - v(K) - AW )dt,
=1

4 T
B =3 [ (IR0l + ] VRatb- ol ) .
k=0

The energy constructed above looks much more complicated than (1.16), but it is quite natural. First, E,((l) constitutes the
non-weighted energies that are needed to close the a priori estimate for the MHD equations without the artificial viscosity (cf.
Luo-Zhang [38]). Then E,ﬁz) consists of the xk-weighted higher-order energy terms produced by the artificial viscosity when
dealing with the tangential estimates.

Besides, extra error terms are generated when all the derivatives fall on the smoothed Eulerian normal 72 in the construction
of E. Since E only gives us higher-order control of the normal component instead of all components. Most of the top
order error terms should be treated by moving them to the interior with the help of the Sobolev trace lemma, and we use E,(<3)
to record all of them. Nevertheless, due to the strong coupling structure (see Subsection 1.4.5 for more details) between the
velocity and the magnetic field, the terms in ES® must be controlled together via the Hodge-type div-curl estimate, and thus we
have to include the associated magnetic terms in E® as well.

When closing the energy estimates of E? and EY, and 536r-tangential estimates, one needs the control of +/k-weighted
H>(T')-norms of n,v and (by - d)n recorded in Lemma 3.5. These +k-weighted bounds can be established by considering
54, 546,, 54(190 - 0)-differentiated smoothed Young-Laplace boundary condition. See also Coutand-Shkoller [11, Lemma 12.6].



Remark. In the proof of Lemma 3.5, the self-adjointness of A, is used to keep the structure and close the energy estimates.
This is the reason that we need to mollify 7 twice in (1.18).

1.4.5 Difference between Euler equations and MHD with surface tension

As mentioned in [37, 38], the Cauchy invariance for the Euler equations no longer holds for MHD equations, which makes it
impossible to get a higher regularity of the flow map n than that of the velocity v. Without such property, one cannot control the
9*-tangential energy estimate directly as what Coutand-Shkoller did in [11] for the incompressible Euler equations.

In addition to this, the strong coupling between v and b = (b - d)n yields that the Sobolev norms of their vorticities have to
be controlled together (see equation (3.75)). As a consequence, the full Sobolev norms of v and b (and their time derivatives)
have to be studied simultaneously.

Finally, the | v/knls regularity for 3D incompressible Euler equations in [11] cannot be achieved either. But this does not
affect the proof for the MHD system unless one wants to get a H%(I')-posteriori estimates for the flow map 7.

1.4.6 Penalization method to solve the linearized problem

Finally, it remains to solve the nonlinear approximation problem. With the help of tangential smoothing, it is not difficult for us
to finish the iteration from the linearized approximate problem to the nonlinear one. But it is still difficult to solve the linearized
approximate problem by the fixed-point argument even if one can get the a priori estimates without the loss of regularity. The
reason is that we do not have any suitable equation for ¢ and thus the structure of the linearized system is no longer preserved in
the verification of the fixed-point argument. Motivated by [11], we use the penalization method to solve the linearized system.
We introduce a penalized pressure defined by ¢, := —A~!div ;wa and prove the existence of L?-weak solution to the penalized
problem by Galerkin’s method. Then we take the weak limit by passing 4 — 0 to get the weak solution of the linearized
approximate problem. Finally, one can prove the weak solution is strong by H'-estimates together with the inverse theorem of
div-curl decomposition (cf. Lemma 2.5 (2)).

Remark. The penalization method is not needed in the compressible case because the free-boundary compressible MHD is a
first-order symmetric hyperbolic system with characteristic boundary conditions and the corresponding linearized problem can
be solved by the duality argument in Lax-Phillips [32]. We refer to Trakhinin-Wang [57, 58] for details.

Remark. We cannot directly prove the weak solution of the penalized problem is a strong solution as in [11] since the diver-
gence part cannot be controlled because of the presence of the magnetic field. That is why we first take the weak limit and then
verify the H'-estimates for the linearized system.

Remark. In the a priori estimates and iteration process of the linearized approximate problem, the energy control is much
simpler than the uniform-in-« estimates of the nonlinear approximate problem (3.2) because we no longer require the energy is
k-independent. Therefore, one can use the elliptic estimates for equations with merely BMO-coefficients proved by Dong-Kim
[16] (see also Disconzi-Kukavica [13, Proposition 3.4]) to get the boundary control. See Section 8 for details.

1.5 Organization of the paper

The presenting manuscript is organized as follows. In Section 2 we record the lemmas that are repeatedly used in the proof.
Then we introduce the nonlinear x-approximation problem and do the div-curl-boundary estimates in Section 3. The non-
weighted energy E,((l) and +/k-weighted boundary norms are treated in Section 4 and +/k-weighted interior norms are treated in
Section 5. Then the uniform-in-« estimates for the nonlinear x-approximate problem are closed in Section 6. In Section 7 we
solve the linearized approximate system by penalization method. In Section 8 we use Picard iteration to solve the nonlinear
k-approximate problem. Finally, the original system’s local well-posedness and energy estimates are established in Section 9.

The following notations will be frequently used in the rest of this manuscript.

List of Notations:
e Q:=T2x(0,1). T :=T? x {1} is the free boundary and I’y := T2 x {0} is the fixed bottom.
o || - |ls: We denote ||fl]s := Il f(t, -)llms for any function f(z,y) on [0, T] X Q.

o |- ||L3H;: We denote ||f||Lng = lf (& W20.7:15(2y Tor any function f(z,y) on [0, ] X Q.



| -|s: We denote |fs := | f(%, -)lusa for any function f(z,y) on [0, T] X T

P(-): A generic non-decreasing continuous function in its arguments;

e 9,A: 8 = 91,0, denotes the tangential derivative and A := 6% + 6% denotes the tangential Laplacian.

For a smooth scalar function f, V& f := a**d,,f. Also, for a smooth vector field X, div ,X := a*“0, X, and (curl ,X),; :=
€1raa"0, X", Where €y, is the sign of the 3-permutation (Ata) € S3.

Let X be given as above. The flat divergence and curl are given as div X := 6**9,,X,, and (curl X))t = e9,X,,.

2 Preliminary lemmas

2.1 Geometric identities
The following geometric identities will be used repeatedly (and silently) throughout this manuscript.

Lemma 2.1. Let 72 be the unit outer normal to ("), namely I1 := 72 ® 71, and 7, N be the tangential and normal bundle of n(I')
respectively. Denote I : 7|,r) — N to be the canonical normal projection. Denote 6A to be 9, or 61, 62 Then we have the
identities

R a'N
n:=non=m, (21)
la" Nl =l(a™, a*,a™)| = g, 2.2)
I} =%, = 65 — g 0kmadma, (2.3)
Iy =[S, (2.4)
=A(m"[r) =H o nit”, (2.5)
Veh® = Vgg 00" = \8g 00" ~ \eg"g" 0" dur" 6,0 m,. (2.6)
OA(\BA") =i NBg TISBad 1" + (8" ~ ¢g )0 Bn,dadin') 27)
Oty = — §0k0an" O, (2.8)
01(\2g") = V(g g" — 28 gM)dv ' ama. (2.9)
Proof. See Disconzi-Kukavica [13, Lemma 2.5]. O

Remark. Recall that g;; = 8;17,0;7* and g = det[g;;] and [¢"] = [g;;]~". This means that g;j, g and g"/ are rational functions of
517 and so is II.

Notation 2.2. We shall use the notation Q(dn) and Q(gn) to denote the rational functions of dn and 577, respectively. This Q
notation allows us to record error terms in a concise way and so it will be used frequently throughout the rest of this paper. For

example for any tangential derivative 94, we have 9, Q(9n) = 0! (n)040m® where the term Q' (dn) is also a rational function
of 677. For more details of such notation, we refer readers to [11, Sect. 11] and [13, Remark 2.4].

2.2 Sobolev inequalities
First, we list the Kato-Ponce estimates which will be used in div-curl estimates.

Lemma 2.3 (Kato-Ponce type inequalities). Let J = (I — A)!/?, s > 0. Then the following estimates hold:
(1) Vs > 0, we have
I UMz < W f llwsei lgllerz + Nf Nz lIgllwsaz

) (2.10)
10°(fllzz < I f s llgllzez + 111z l1gllyysaz »
with 1/2=1/p; + 1/pa=1/q1 + 1/g and 2 < py,qa < o0;
(2)V¥s > 1, we have
I7°(fe) — (I*Ng = f° DNy S Wfllwro lIgllws-1re + I llws-1a [1gllwran (2.11)

forallthe 1 < p < p1,p2,q1,q2 <ocowith 1/py+1/pa=1/q1 +1/q2 = 1/p.



Proof. See Kato-Ponce [30]. O
Lemma 2.4 (Trace lemma for harmonic function). Suppose that s > 0.5 and u solves the boundary-valued problem

Au=0 in Q,

u=g onl

where g € H*(I'). Then it holds that
I8ls < llulls+os < 18ls

Proof. The LHS follows from the standard Sobolev trace lemma, while the RHS is the property of Poisson integral, which can
be found in [54, Proposition 5.1.7]. O

2.3 Elliptic estimates

First we illustrate the div-curl elliptic estimate.

Lemma 2.5 (Hodge-type decomposition and the inverse theorem).
(1) Let X be a smooth vector field and s > 1, then it holds that

1X1s < 11Xllo + lleurl X[ls—1 + lldiv Xlly-1 + [6X - Nls_y.5. (2.12)
(2) Let Q C R3 be a bounded H**'-domain with k > 1.5. Given F, G € H~'(Q) with div F = 0. Consider the equations
curlX=F, divX=G inQ. (2.13)
If F satisfies LF ~NdS = 0 for each connected component y of 9Q and h € H'="3(0Q) satisfies faghdS = fQ G dy, then
V1 < I < k, there exists a solution X € H'(Q) to (2.13) with boundary condition X - N|sq = & such that
XNy < €003 (1l ) + Gl @) + iliosiany)- (2.14)
Such solution is unique if € is the disjoint union of simply connected open sets.

Proof. (1) This follows from the well-known identity —AX = curl curl X — Vdiv X and integrating by parts. (2) This is the main
result of Cheng-Shkoller [7]. ]

Next, the following H 1-elliptic estimates will be applied to control |I6f’q||1.

Lemma 2.6 (Low regularity elliptic estimates). Assume B satisfies ||B||;~ < K and the ellipticity B*"(x)é,é, > %Ié—‘l2 for
all x € Qand & € R?. Assume W to be an H' solution to

0,(B"9,W)=divr inQ 2.15)
B, WN, = h on 0Q2,
where 7, div 7 € L>(Q) and h € H™%3(0Q) with the compatibility condition
(m-N-h)dS =0.
Q.
If ||B — I]|;~ < &p which is a sufficently small constant depending on K, then we have:
— — 1
|W— Wl < lnllo + |k — - N|-o5, where W := @ f Wdy, (2.16)
Q
Proof. See [28, Lemma 3.2]. O
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2.4 Properties of tangential mollification

Let £ = £(y1.y2) € CX(R?) be a standard cut-off function such that Spt{ = B(0,1) CR?, 0 </ < land [,/ = 1. The
corresponding dilation is

1
Gy y2) = —25(&, )2), k> 0.
K2\k’ K
Now we define
Af(1,y2,¥3) = fz & — 21, y2 — 22)f (21, 22, ¥3) dz1 dza. (2.17)
R

The following lemma records the basic properties of tangential smoothing.

Lemma 2.7 (Regularity and Commutator estimates). Let f be a smooth function. For x > 0, we have: (1) The following
regularity estimates:

IAAls < Il Vs> 0; (2.18)
[Acfls S Ifls, Vs = =0.5; (2.19)
10Aflo < K71 fli=s, ¥s €[0,1]; (2.20)
If = Al < Vldflos (2.21)
If = Acflr < KlOf1Lr, (2.22)
If = Acflz S VKI0? flo- (2.23)
(2) Commutator estimates: Define the commutator [A,, f1g := Ax(fg) — fA«(g). Then it satisfies
A £1glo < If1=lglo, (2.24)
[Aw £138lo < 1 flwi=lglos (2.25)
[Aw. £138l0.s < 1 flwiIglos. (2.26)

Proof. We refer [11, 22, 64] for the proof except for (2.23). The inequality (2.23) can be proved by integrating 9z by parts and
then using Minkowski inequality

r-ado=| [ a@Uw-a-sond:
R2NB(0,x) L
—« f 32,2031 f(y — 02)dz
R2NB(0,x) Lf.
=1 =1 5 lsL 1
K 62f0 ang'L‘(]RlﬂB(O,K)) SK 62fo 074 12
Then by interpolation, we have
1 1
— R 1 2 (1 = 2 _3
5;& 2 < |§K Zz 5§K Zz < (; |§|L2) (FlaaLz) <K 2,
and thus
If = Al 5 V|32 1] -

3 The nonlinear approximate system

For k > 0, we denote A, to be the standard mollifier on R? defined as (2.17). Define # to be the smoothed version of 5 solved
by the following elliptic system

3.1

—Af] = —A]], in Q,
=A% on 0Q,
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and a := [07]~", J := det[07j], A := Ja and #i = n o 7j. Now we introduce the nonlinear x-approximation system of (1.13).

om=v n[0,T] x Q;

Oy —(bo-9Y’n+Vzq=0 n [0, 7] x ;

divav = 0, n [0,T] % ©;

div by 3= 0 { 0} x 32)

=by=0 on I'p;

Aq = —o \(Aen - )i + k((1 - A)(v-7))A®  onT;

b?) =0 onT,

(n,v) = (d, vo) in {r = O}xQ.

Here A := 5% + 5% is the (flat) tangential Laplacian. The re-formulated boundary condition on I is used here since we find that it

is more convenient to apply when studying (3.2). We remark here that in absence of « ((1 —NCE ﬁ)) i the boundary condition
is just a reformulation of

A%g = —0 \JgA". (3.3)

Invoking (2.1) and the identity J|a" N| = /g, where g = g(i}), we have

A% \[g = Ja"*N,/Jla" N| = a®, (3.4)
and so (3.3) becomes
qin® = —UﬁA n
\/g 14

Also, because 71 - 7 = 1 (Euclidean dot product), we obtain
_ o Vg .
gn® = q(ii - n® = —o——=(Agn - A)A®
N

In view of (3.4), this is equivalent to
Adg = —o VE(Agn - )Y

By adding the artificial viscosity term « ((1 - K)(v . ﬁ)) 7i” on the RHS, the boundary condition of (3.2) is then achieved:

g = —o \B(Agn - Wi + k ((1 = A)(v - 1)) i, (3.5)
In addition, since A%¥ji, = /g, (3.5) can be written as

VZq = —o \Z(Agn - 7)) + k(1 = A)(v - ). (3.6)

Despite being equivalent to each other, (3.5) and (3.6) will be adapted to different scenarios. In fact, (3.5) will be used in
Section 4 for the tangential energy estimate, whereas we find (3.6) more convenient when dealing with the boundary estimate
in Section 3.3.

Let’s state the main theorem. Our goal is to derive the uniform-in-« a priori estimates for the nonlinear approximation
system (3.2).

Proposition 3.1. Given the divergence-free vector fields vo € H*>(Q)NH>(T") and by € H**(Q) satisfying b = 0 on T'UT, there
exists some 77 > 0 independent of x > 0, such that the solution (1(«), v(x), g(k)) to (3.2) satisfies the following uniform-in-«
estimates

sup E.(t) <C, 3.7

0<1<T,

where C is a constant depends on ||vo|la.s, [|bolla.s, [vols, provided the following a priori assumption hold for all ¢ € [0, T]

IT(0) = 1lls.5 + lld = A@)ll3.5 + lld = ATA@)135 < & (3-8)

12



Here the energy functional E, of (3.2) is defined to be

E.=EP +E? +EY, (3.9

where ;

ED = nwiks + Y (@0, a/bo - o)+ (08000, 380 - o),
3 J=0 ‘ (3.10)
+ 3 B (IF i), + BaE o - ),
and -
B [ ' (i |VRafve) -, + | VKo - oo - aewf: ),

= ‘ (3.11)

4 T
£0:= Y [ (el + [ Rolcby - ool )
k=0

The proof of this theorem is organized as follows: The rest of this section is devoted to the estimate of the full Sobolev of
the pressure ¢, and the velocity field v and the magnetic field (by - 9)ny as well as their time derivatives. In Section 4 we study the
tangential energy estimate of v and (b - )i, which ties to the control of the boundary Sobolev norms of the time derivatives of v
and (bg - ) that arose from the div-curl estimate. The terms in the weighted boundary top order energy E,((z) are created during
this process owing to the artificial viscosity. Lastly, we investigate the weighted top order energy functional E® in Section 5.
We need this energy to control the error terms generated by the artificial viscosity on the boundary when all derivatives land on
the Eulerian normal 7.

Let T < Ty, where [0, T,] is the interval of existence for the solution of the x-problem for some fixed «. The key step for
showing (3.7) is to prove

T
sup E((t) < Po + C(g) sup Ei(t) + (sup P) P, (3.12)

0<t<T 0<t<T 0<t<T 0

holds true independent of k, where
P = P(EAD),

and
Po = P(E(0), llg(0)llas, lg:(0)ll3.5, llg:(O)ll2.5),

with P denoting a non-decreasing continuous function in its arguments, and C(¢g) is a constant that is proportional to £ (and
thus C(e) <« 1 whenever € < 1). In Section 6, we are going to show that £ can in fact be controlled by C, i.e., the RHS of
(3.7). For the simplicity of notations, we will omit the « in (17(x), v(k), g(x)) in the rest of this paper. Also, we may assume that
supo<;<r Ex(t) = E(T), and this allows us to drop sup,.,; in (3.12). In other words, we only need to show

T
E(T) < Po+C(E(T)+P f P, (3.13)
0

Before going to the proof, we need the following preliminary estimates for 7j and its derivatives.

Lemma 3.2. We have

7llas <llmlla.s (3.14)
I(Bo - D)ifllas SPllbollas, I(bo - Dnllas, lImlla.s)- (3.15)

Proof. (3.14) follows from standard elliptic estimates and property of mollification. To prove (3.15), we take (b - d) in (3.1)

{ —A((bo - ) = =A((bo - O)n) = [(bo - 0), Al + [(bo - 9), Alf]  inQ, (3.16)

1= Agn on 8Q,
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and standard elliptic estimates yields that
lBo - Nilla.s < NI=A(bo - D)) — [(bo - 0), Al + [(bo - 8), Alfjll, 5
2 2
+ 2o - ), + || ho - &), A2] 77'4
Slibo - mllas + llbolaslinllas

) (3.17)
+Z| A2 b’]am' |A2 b.]5,872 | '67/2 [AZ, 513, n|
=1
SP(l1bollas, 11(bo - Dnlla.s, l17lla.5),
where commutator estimates in Lemma 2.7 is also used. O

The next lemma concerns some auxiliary results which come in handy when studying Proposition 3.1.

Lemma 3.3. Assume that ||7]ls.s, [|[Vllas < No, where Ny > 1. If T < &/P(Np) for some fixed polynomial P and 7, v is defined
on [0, T], then the following inequality holds for ¢ € [0, T']:

A" — &|l35 < &, (3.18)
@ - “llss s & |l —ss5 S &, (3.19)
YO<s< L5, [0'Gi-N=m s& 10— Nl < & (3.20)
li-Niz<se, [A-N3<e, (3.21)
16V — Vgg"ls <, (3.22)
on-nls <e [0k <e. (3.23)

Proof. Since
Ale _ 60/175277/153777, A2 _ —€MT5177/153777, Ade _ €MT5177/152777, (3.24)

and thus

Ale _ Eml‘razﬁ/laﬂ?ﬁ A2 _ —6”176177/163777, Ade _ 6MT517~7/1527~77, (3.25)

where €*" is the fully antisymmnetric symbol with €'?* = 1, we have |A — §| < for |0,0(07)| < fot |Q(077)0V|, where Q is defined
in Notation 2.2. Then (3.18) follows from (2.18) and the Kato-Ponce inequality (Lemma 2.3). Invoking the a priori assumption
IIJ = 1|5 < &, both inequalities in (3.19) are proved similarly. _

In addition, for (3.20), it suffices to prove the first inequality. Since 7i|;=o = N and 7i = Q(d7}), for each fixed 0 < s < 1.5,
there holds

! ! !
|0°(7t = Nl < f |0° 0yl Ty = f |0°(QONON) =) S f |0(077)0l3,
0 0 0

by the Sobolev embedding. Now, the trace lemma and the Kato-Ponce inequality yield for 0@V < ﬁ; 10@7)lls5 <

fot P(Ny) and so (3.20) follows.
Moreover, we have

it — Nl3 < fo 10073 < fo 103713 5,

which verifies (3.21).
In addition, owing to the fact that (6 — /gg")|,=o = 0 and the identity (2.9), there holds

t T
167 — \gg'lls < f 04(vEZ s = f 10l s,
0 0

which yields (3.22). Finally, a similar proof yields (3.23) since 677 fili=0 = (977 lr=0 = 0 and azm,_o = O

Remark. The inequalities in Lemma 3.3 can be viewed as an extended list of the a priori assumptions. Moreover, (3.8) is in
fact a direct consequence of (3.19) and (3.18).
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We also need the following corollary of Lemma 2.7 that “extends” (2.21) and (2.23) to the interior of 2 when applied to n
and its time derivatives.

Lemma 34. Letk=0,---,4. Then

1665 G = mllo < 1| V&dnll 5. (3.26)
Further, for £ = 0, 1, 2, there holds

106G — Ml < 11 Ved‘alls s (3.27)

Proof. The definition of 7 in (3.1) implies that 77 — iy together its time derivatives is a harmonic function in Q. So we invoke
Lemma 2.4 to get

18057 = mllo < 105G — )l < 105(AZn = Aemlo.s + 105 (A = los < 105 (A = los
where |05(A2 — AaDlos < 108(A7 — mloss since d; and A, commute, and

16 (A = Mlos < | Vkdnli

in light of (2.23). This, together with the trace lemma give (3.26). Moreover, (3.27) follow from (3.26) and the Sobolev
embedding. O

Remark. It is possible to prove an improved estimate for (3.27), i.e.,
1667 @ = iz~ < 11 Vil (3.28)

This can be done by adapting the following Schauder estimate for div-curl systems: Let X be a smooth vector field on Q. For
fixed0 < d < %, we have
10X lIcos(@) < I1div Xllcos(q) + lleurl Xllcos(q) + [1Xllcosaag) + I1X1l2. (3.29)

This inequality in fact reduces to the one in [15, Lemma 8.2] in the absence of the boundary term. Thus, in view of (3.1), we
have

100G = = <1108} = Mllcosy < 107 (A = Mleossy + 107G = b,
where the last term on the RHS is < || ﬁafnllz_s. In addition to this, (2.21) and the Sobolev embedding suggest that Iaf(AKn -
Mlcossqy S 1 Wafn|2+5, and so (3.28) follows after using the trace lemma.

Nevertheless, we mention here that (3.28) will not be applied in the rest of this manuscript. Despite not being sharp, (3.27)
turns out to be sufficient.

Finally, we state the following two lemmas that concern the boundary elliptic estimates of vk#j and k(b - 0)7. These lemmas
will be adapted to control the boundary error terms generated when derivatives land on the Eulerian normal 7i.

Lemma 3.5 (Improved Boundary Regularity). Let My = P(|[volla.s, Vkllvolls.s, Vkllbolls.s» VlIvolio). Then

T
| VRnlz <Mo + C@ET) + P f P, (3.30)
0
T T
f [ VivlE <Mo + C(&)EL(T) + P f P, (3.31)
0 0
T T
f | Vi(bo - 2 <Mo + C(e)E(T) + P f P, (3.32)
0 0

Discussion of the proof: By Jensen’s inequality and n(7") = Id + fOT v(t) dt, we know

T
| Vinls < Mo + Tf | Viv(0)13 dt,
0

and thus it suffices to prove (3.31) and (3.32). Indeed, one has to establish the energy estimates for || vkv|| L2HSS and || vVk(bo -
|l a3 and then use the trace lemma to derive (3.31) and (3.32). The reason is that the boundary condition (3.6) only gives
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us the information in the (smoothed) Eulerian normal direction, but (3.31) and (3.32) requires the control of all components. In
view of Lemma 2.5, we need the control of

IVRdiv vllzges, 1l VRdiv (Bo - il zes,
|| Vkeurl Vlizges, |l vicurl (b - 6)n||L3H4.5,
| Vi lzps, | V(o - O |2 pgs,

corresponding to the divergence, curl and normal trace, respectively. The proof of the div-curl control is parallel to Section 3.2
and we postpone the details to Section 5.3. Here, we shall sketch the control the normal traces.

To control fOT | \//?v3|§, it suffices to control its corresponding Eulerian normal trace fOT [ Vv - ﬁlg by adopting the following
perturbation arguments: Because the difference between N = (0,0, 1) and 7 is sufficiently small in L* thanks to (3.20) in
Lemma 3.3, we have

T B T T
[ 1vE@ -3y mg sk [vekse [ Ve (3.33)
0 0 0

To control the Eulerian normal trace, we need to prove

T T
f | VK& - i < Mo + C(e)E(T) + P f P. (3.34)
0 0

This is studied [11, Lemma 12.6]. The proof is extremely technical so we will not go into the details. But we remark here
that, the conclusions of this lemma essentially come from the energy estimates of the viscous surface tension equation (3.6).
In fact, one can differentiate (3.6) with 3*0, and test the equation by d*v - fi. Standard energy estimates give us the bounds for

0'|55 V- mi}” 3 and | \//?55\/ . ﬁli}z - The proof of (3.32) can be done similarly thanks to the fact that 9,1 and (bg - d)n are of the

same regularity. Because of this, we study the *(by - 0)-differentiated (3.6) tested with (54(190 -d)n) - i1 to obtain

T T
f | V& (bo - ) - il < Mo + C(&)E(T) + P f P. (3.35)
0 0

Remark. In the control of the normal trace of v, we need the control of ||61||421_5 (which is given by (3.36)) and ”’7”421.5' Also, we
mention here that the following highest order term will be generated during the testing process

T
K f f V88,7 - 1)@ - 1),
0 r

which cannot be controlled directly. Instead, we need to commute one tangential smooth operator A, from 7 to  and hence
create a positive term after pulling d ; out. In fact, this is the only place that this operation is required. For the normal trace of
magnetic field, we need the control of || vVk7lls.s, ||(bo - 6)77||42t.5 and ||(bg - 6)q||§‘5, where ||(b - 6)q||§‘5 < ||bo||§_5||q||fLS in light of the
Kato-Ponce inequality (2.10).

3.1 Elliptic estimates of pressure

We prove the following proposition in this section.
Proposition 3.6. The pressure ¢ in (3.2) and its time derivatives satisfy the following estimates

ligllas +118:qlls 5 + 167 qll2.5 + 16 glli < P- (3.36)

First, we give control of the pressure g. Taking div; in the second equation of (3.2) we get the following elliptic system for

~Azq 1= div 4(Vzq) = [divg, 8] v + [divg, (bo - )] (bo - D) + (bo - D)div (o - D)
= — 0,44 8,v0 — ((bo - DY), (bo - I + A (@b - 9)(bo - D)
+ (bo - ) div o ((bo - D)) +(bo - 9) (A" = @by - D))
————e

=div by=0
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and thus o ~ ~
~Aq =: - div (3g) = =0, (" = A" A**)3,uq) = 0, A" 8,v0 = ((bo - A", (bo - D)1l

+ A (3,ubo - D) (bo - D)t + (bo - B) ((AH” = @*)3u(bo - D)t ) -

We impose Neumann boundary condition to (3.37) by contracting A**N,, = A3* with the second equation of (3.2)

P - i i
67‘\1] = (&3 = A A3),q — A0y + A3 (by - g, on T

Also, since A3 = A32 = 0,43 =1, v; =0, and bg = 0 implies (bg - )3 = bégmg = 0on Ty, (3.38) yields

0
676\1] =0, on Iy.
By the standard elliptic estimates, we have

ligllas < [IRHS of (3.37)ll25 + IRHS of (3.38)[3 + Iglo.

Here, |g|o can be directly bounded by invoking the boundary condition of ¢, i.e.,

8 - 1 -, -
q= —U%(Agn - 7))+ K%(l - AN)(v- ),

and thus
Iglo < P.

Since for smooth functions f and g, (2.10) implies that

Ifgll2s < Nfll2sllgll2.s,

invoking the a priori assumption (3.8), we have

IRHS of (3.37)ll5 <éllgllas + P(Inllas. l1bolls )10V 5 + 180 - O)mlla.5)
+ 1A = allz sllboll2slI(bo - D)mlls.s + A — all2slboll2sl(bo - D)nllas
<éllgllas + Plbollas, [1(bo - Dnllas, mlla.s, [IVIl3.5)
<éllgllas + P,

and
[RHS of (3.38)I5 < &llglla.s + P(lInllas) (1035 + [1boll3.511(Bo - Dmllas) < &llgllas + P

Summing up (3.41)-(3.43) and choosing & > 0 sufficiently small, we get the estimates of ¢

ligllas < P.

Next we take 9, in (3.37)-(3.38) to get the equations of 9,g:

—Ad,q = - 0, (" - A A")8,0,9) - B, (" - DA A"))d,q)

= 07 AP0V — O AP 0,0, + 01 (A (Do - B)(bo - D)l — ((bo - D)A")B(bg - D)1fa)

+(bo - 9) (O - 3)d((bo - I) + (A - @)d((bo - D).

with Neumann boundary condition

ajzi/q = (0% = A B)3,01q - 0,(A K39, Q0
— A va — (by - 9)*va) = A @ =~ (bo - 01an o T,
and 00,q _o
N - O on I'y.
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(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)



Invoking the standard elliptic equation again, we have
ll6:qll3.5 < IRHS of (3.45)]l1.5 + [RHS of (3.46)|> + d:lo-
The control of the first two terms follows similarly as above
|[RHS of (3.45)|;.5 + |IRHS of (3.46), < P, (3.48)

where we have used the inequality
fgllis < N flls+sliglhs + 1/ 1slglhs+o,

which is a direct consequence of (2.10).
As for the boundary term, we take 0, in the surface tension equation to get

1 —
0:q = —o-ﬁ(Agv -7) + K7(1 — A)(@,v - 1) + lower-order temrs
g

V8

and thus
16:qllo < P. (3.49)

Summing up (3.48)-(3.49) and choosing &£ > 0 to be sufficiently small, we get
16:qll35 < P. (3.50)

Invoking the inequality

I gllo.s < Nlfllosliglli.s+s

which follows from (2.10), and time differentiating (3.45)-(3.46) and (3.40) again, we can silimarly get the estimates of ||6,2q||2,5:
167qllo.5 < P (3.51)

The treatment is similar to what has been done before and so we omit the details.

However, we cannot use a similar method to control |I8f’q||1 because the standard elliptic estimates require at least H?-
regularity. Instead, we invoke Lemma 2.6 which allows us to perform the low regularity H'-estimate for 4?-differentiated
elliptic system (3.37)-(3.38). To use this Lemma, we need first to rewrite the elliptic equations into the divergence form. Recall
that the elliptic equation (3.37) is derived by taking smoothed Eulerian divergence div;. This, together with Piola’s identity
0,A” = 0 give that

—0(A A 8,q) = B, (A" (@ = (bo - 1))
with the boundary condition
A A, q = A0 — (by - 0)’n)as  on T,

99 _

and N =

0 on Iy. Taking 47 derivatives, we get

DA A" 5}0,q) =0, ([A A, 7] duq) + 0,07 (A (0,v = (bo - 9)*n)a) (352)
with the boundary condition
XA, 53 = [A A" 63| 0uq + 8 (A*@w — (bo - 9)*1)a).  onT. (3.53)

Now if we set
B = A h = RHS of (3.53)

and
7 1= |2, 53] g + 67 (A @ — (bo - 8V

then the elliptic system (3.52)-(3.53) is exactly of the form (2.15). The a priori assumption (3.8) shows that ||B — Id||;~ is
sufficiently small. Now it is straightforward to see that , div 7 € I%ie.,

lillo + [ldiv 7llo < . (3.54)
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Also, since
h—-n-N=0, (3.55)
then by Lemma 2.6 and invoking (3.44), (3.50), (3.51), we have

8q-dq

| <l < . (3.56)

Lastly, we need to control the H'-norm of (3f_q by P.

- 1 1 - 1 =
3 3 _ 3 _ 3
&g = o) L&,qdy ST La,qal)d dy = Vol () L)’lalarq

< C(vol ()33} qlllly1lo = C(vol @) [6(33q - 079D, Iyl (3.57)

|1'

This concludes the control of ||6,3q||1, and we have

< C(vol() [03q - 834

10;4lli < P. (3.58)

3.2 The div-curl estimates

Invoking Lemma 2.5, we have the following inequalities for 0 < k < 3

VIG5 SIVIG + lIdiv VI3 5 + llcurl vi3 5 + [0V, (3.59)
ll(bo - A)mll; 5 <ll(bo - Ol + lIdiv (bo - D)l 5 + llcurl (bo - D)nll3 5 + 18(bo - )3, (3.60)
10%VIE 5, SIOMVIR + [Idiv afvIE 5, + llcurl 9512 5, + 10653, (3.61)

195 (bo - il 5y, <9 Bo - Dl + 1div 3 (b - Dl 5y
+ lleurl 8(bo - A3 5 +100%(bo - 13, (3.62)

Here, notice that we do not pick up the terms on Iy since v* = 0 and (bg - )i = b65m3 = 0 there. Also, the L?>-norms in (3.59)
and (3.60) are controlled by energy conservation law. We will omit the control of L?>-norms appearing in the div-curl estimates
in the rest of this manuscript.

Divergence estimates

For the velocity vector field, one has

div v = divgy +(8" — @"“)0uve = div 14-av, (3.63)
N——
=0
and thus
Idiv vll3.5 < [|divavliss + (04" = @*“)0uvallzs < 0+ &lv]lss. (3.64)

Time differentiating (3.63), one has
[Idiv Ovllos <Ildiv 14-a0:vllas + (Idiv 5,aVll2.s

2 ~ 2 - 2
sellopvilas + 10iallslvilss < lldivllas + 107ll2slIvI 5 (3.65)

T
<ellovllas + P(lvollss) + ||77||3.5f P(|Ivll4.5),
0

where in the last step we write ||v||35 in terms of initial data plus time integral and use Young’s inequality. The divergence
estimates of ||6’,‘v||3_5,k, k = 2,3 are parallel and so we omit the details.

T
lldiv a7vil1 s + lldiv ;vllos < &7 vil2s + 13 vIl1.5) + Po + 7’[ P. (3.66)
0
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As for (bg - 0)n, one no longer has diva((by - 0)7) = 0 due to the tangential mollification. Instead, one can compute the
evolution equation verified by divz((bg - d)np). Invoking divzv = 0 and 9,7 = v, we have

0:(diva((bo - O)n)) = [diva, (bo - O)]v + div 5,a(bo - O)n. (3.67)
The commutator [divz, (bg - d)]v only contains first order derivative of v and (bg - d)5. Using the identity
A" = —a" 9poi,a, (3.68)
which follows from differentiating a"“d,fjz = 5;, one has
[diva, (b - D)]v =a""0,by0,ve — b0, a0y va
=a""9,by0,va + 0p((bo - 0)ity )" & Dyva — Dby 0,7ty @ & 0yve
——

&
=0p((bo - 9)ity) @& Oy (3.69)
Moreover,

div g,a4(bo - O = 8,8 0,(bo - D)o = —aﬂyaﬁvyaﬁ”ay(bo - Ong- (3.70)

Taking 4°* in (3.67) and testing it with 3*>div 5(bo - 0)n, we get

T
ldiva(bo - O)ll3 5 < lldiv boll3 5 + f lldiva(bo - d)nlls.s (lldiva, (bo - A)IVIlz5 + [Idiv 5,a(bo - O)ll3.5) - (3.71)
0

This suggests that we need to control fOT [I[divz, (bo - 0)]v||3.5 and fOT [|div 5,a(bo - O)7ll3.5 on the right hand side. In light of (3.69)
and (3.70), we have

T T
f II[diVa,(bo-a)]VIlz.s+||diVa/a(bo~6)77|I3.sSf P.
0 0
Therefore,

T T
ldiva(bo - Ol 5 < lIdiv boll2 5 + f P <P+ f P, (3.72)
0 0

which implies, after invoking (3.19), that
T
Idiv (bo - O)nli35 5 B0 - D)l 5 + Po + f P. (3.73)
0
Similarly, one can take 6>>%6* for 1 < k < 3 in (3.67), then compute the L? estimates to get

T
Idiva0f (bo - Amllz 5, < 210K (bo - AmIl; 5, + Po + f P. (3.74)
0

Curl estimates
The curl estimates can be derived by the evolution equation of curlzv. Taking curl; in the second equation of (3.2), we get
O(curlgv) = (b - d)curlz((bo - O)n) = curl 4 zv + [curly, (bo - 9)1(bo - O)n. (3.75)

Then we take 9>, test it with 0>>(curl;v) and integrate (b - d) by parts (recall that by - N|sq = 0 and div by = 0) to get
1d
-Z f 18> curl ;v + 18> curl;(by - d)yl* dy
2dt Jo

= fg ([°°. o - 0] curlz(bo - Oy + 8> (curl 5,40 + [curlg, (bo - D)](bo - D)) (9 curlgv) dy 376)

+ f 0> (curlg(bo - O)y) - (|67 curly, (b - )| v + 6> (curl o 5(bo - O)m)) dy
Q

SP(l1bollas, 11(bo - Dnllas, [Vllas, I7llas) < P,
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and thus by the a priori assumption (3.8), we have
T
leurl viE 5 + lleurl (bo - D)l 5 < (IR 5 + 1o - DmIE5) + P + f P dr. (3.77)
0
Similarly, replacing > by 8337*3* for 1 < k < 3, we can similarly get the following curl estimates

T
lleurlz05(bo - Oll3 5, < X105 (bo - O3 5 + Po + f P dt. (3.78)
0

3.3 Boundary estimates

We need to control the boundary term |5(9£‘v - N|3_x and |56£‘(b0 -0)n - N|s—x. In the case of zero surface tension, one can use the
normal trace theorem to reduce [0X - N|;_; 5 to the interior tangential estimates ||[0°X||o. But the interior tangential estimates,
especially in the full spatial derivative case, cannot be controlled due to the appearance of surface tension.

3.3.1 Control of [35"v - N|3_;
Theorem 3.7. Fork =0, 1,2, 3, one has

T
10053, < 10+ akv)3 + P f P. (3.79)
0

First we study the case when k = 3. Let us consider the projection of 3’v to the Eulerian normal direction, i.e., (TT0>v)?
instead of Lagrangian normal direction. The reason is twofold.
1. Recall that (2.6) in Lemma 2.1 gives that
VEg A" = o Vg o',

So if we test 6f-differentiated version of (2.6) with afv and integrate by parts, then the term |5(H6§’v)|% is produced as
part of energy term,i.e.,

N _ 1d (- 2
f o NEg T T - vy = — = — f ]a(nafv)] ds + - (3.80)
r / 2dt Jr

2. The difference between X> and (I1X)? is expected to be small within a short period of time.

We will make the above assertions precise. For any vector field X, the following identity holds:

X? = 83X =83 - gMopPom) X + o amax?

- o (3.81)
=L X" + g0 amiX" = I1X)* + g o am X"
Using an® = fOT AV? dr (this is true since d° = 0 initially), we can control the difference between (ITX)? and X° as
_ 2 e S 2
[6(010° - x%)| <[¢"Bur'amax’| + (3B’ dmox|,
— — T _ 2 -
SP(Fnl.-)idX1} f [ dr + X218 Baram L. (3.82)
0 :
3 T
<IXIE sP(0nlz) f P.
0
LetX = afv. Since ||6;7’v||%5 is included in the energy E,ﬁl), then (3.82) implies
_ 2 T
]a (avy’ - a?&)'o <P f P, (3.83)
0
and thus
_ 2 = 2 T
|aa,3v3'0 < 'a(nai’v)'o +P f P. (3.84)
0

Finally, (3.79) follows from a parallel argument by assigning X = 56?\1, 3o, v, respectively.
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3.3.2  Control of |35 (by - 8)17 - N|3_«

First, when k > 1, the control of |56£‘(b0 - 0)n - N3 requires to that of |56fv - N|3—; (modulo lower order terms generated when
derivatives land on bg) for [ = 0, 1, 2, which has been done in the previous subsection.

Thus it suffices to study the control of (b - Oy, In Luo-Zhang [38], the boundary condition forms an elliptic equation
—0 \gAn" = a**q and thus one can take (by - d) and then use elliptic estimates. However, the boundary condition now takes
the form (3.6) in the smoothed approximate equations and it appears that there is no appropriate boundary H?-control for
k(bg - 6)K(V - 1). Specifically, it does not seem to be possible to control |k(by - a)Z(v )2 by Po + C(e)E(T) + fOT %P due to the
lack of time integrals. _

Our strategy here is to adapt the inequality (3.82) with X = 3(bo - d)n. In particular, we have

_ _ _ ) _ _ T T
613 wo - 0y = 3o - 37| < 18 b - Ayl s P(@L) f P <P f P, (3.85)
0 0
where the last inequality holds since ||(bg - 6)77”421.5 is included in E,(f). Therefore,
— P e 2 T
'a (bo - )y ]0 < 'a(na (bo - a)n)'o + P f P. (3.86)
0

— 2
Remark. The term |0(T16° (b, - 6)77)'0 is part of the energy E,ﬁl) defined in (3.9), which is a positive term generated by the

53(190 - 0) tangential energy estimate (See Section 4). There is no problem to study the 53(190 - 0)-differentiated equations (3.2)
since it is analogous to the 3°d,-differentiated equations. Indeed, as mentioned in the remark right after (1.17) that (b - 8)n and
0;m (which is v) have the same space-time regularity.

4 Tangential energy estimates

The purpose of this section is to investigate the a priori energy estimate for the tangentially differentiated approximate x-problem
(3.2). In particular, we will study the energy estimate for

&, 007, 8%0%,8°0,,8° (by - 0)

differentiated «-problem, respectively.

4.1 Control of full time derivatives

Now we compute the L*-estimate of d*v and 87(bo - d)n. This turns out to be the most difficult case compared to the cases
with at least one tangential spatial derivative that will be treated in Section 4.2. This is because d/v can only be controlled in
L?(Q) and so one has to control some higher-order interior terms instead. These interior terms will be treated by adapting the
geometric cancellation scheme introduced in [13] together with an error term which can be controlled by terms in E,(<3)(t).

For the sake of simplicity and clean arguments, we shall focus on treating the leading order terms. We henceforth adopt:

. L . . . L
Notation 4.1. We use = to denote equality modulo error terms that are effective of lower order. For instance, X = Y means that
X =Y + R, where R consists of lower order terms with respect to Y.
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Invoking (3.2) and integrating (bg - 9) by parts, we get

1 (Tda 2
— | = | 1o+ |0t bo- 0yl d
5 [ [l onf oy
T T
= f f eV dy dt + f f 3 (bo - a0t (b - OV dy dt
0 Q 0 Q
T T
= f f et (bo - 0)* 1 dy dt — f f v 0} (AF0,q) dy dt
0 Q 0 Q

T
+ f f 3t (b - O)Mad(by - IV dy dt
0 Q
T T B
- f f 3t (bo - 0)va 0% (b - D)o dy dt — f f 3}V 0} (A"0,q) dy dt
0 Q 0 Q

T
+ f f 3t (b - Oad(by - IV dy dt
0 Q

T
=- f f a0} (A"0,q) dy dt =
0 Q

Then we integrate d,, by parts, / becomes

T T T
fo fg 370,07} (A" q) — fo fr a0t (A3g) + fo fr Itva 0t (A3g)
0
f f AF30,v,0tq + f f 870,v410;, A*1q +Iy
f f a“deva f f [0}, A 10,ve 0 q +11 + Io + I,
Q ——

= 0 since on Iy, we have A3 = 432 =0, A¥ = 1, and v3 = 0.
I; yields a top order interior term when all 4 time derivatives land on A%, i.e

T
Iy = f f 370,va (0} A")gq.
0 Q

“4.1

4.2)

(4.3)

If A*® were AX then this term could be controlled by adapting the cancellation scheme developed in [13]. This motivate us to

consider

T T
f f a?aﬂva(a;‘A}M)q + f fﬁféyva(a?(A”” - Alﬂl))q = 1111 + 1112.

4.4)

Invoking (3.24), we have 974 = 3. ; =3 bij(0; (977)((96/1)) and 97A = 3, =3 b} (6’677)66/1) where we denoted A*® by A and A** by

A by a slight abuse of notations. These imply that

FA-A)= D byddndolm - v)+ > b}0d7 — omddl,

i+j=3 i+j=3

and so [|0*(A — A)||o consists the sum of ||i¢llp, £ = 1,- -+, 8, where

it = V)G —v), iy = (0T —v), iz = (OVOXF—v), iy= ORI~
is = 00?(V =)y, ig = 80,(F — )3, iy =0F —)ddv, i = d(if —ndFv.
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The L?-norm of these quantities can be controlled by invoking Lemma 3.4. Specifically,
llirllo <8 = Vi=11687llo < VilVllasllE7 VI,
lli2llo <N188,(% = Viz=1108,7ll0 < VKlldvllz sl
llisllo <1107 = Wllollovli= < VKA vIlvsIVIs,
lliallo <107l 1108, = )llo < Vklmllsll&;vilv.s.

and
llisllo <1067 = Wllolloviis < VKlIo7vllvsIVIs,
lligllo <1188,(% = Vliz=110vllo < VKlIdllz sl
llizllo <I10 = Wli=11007vllo < VKIVIIz.s17vll:,
lligllo <167 — M= 1160, vllz2 < Vidinlls.slo; vils.

Summing these up and moving vk to ||6f6v||0, we obtain

T B & T 1 T
Iz < f 0o} A ~ Alollgli < 5 f I VRdtovIE + o= f P, @.5)
0 0 € Jo

where the first term on the RHS contributes to €, and we bound ||g||z~ by ||gll» < P through (3.36).

We next control I11,. The argument is largely similar to that used in Section 3.1.3 of [13] which relies on exploiting the
geometric structure to create a remarkable cancellation scheme among the leading order terms. Invoking (3.24) and then
expanding the index y in 111, we have

T T
I =f fqé"hazafvﬁwralafva—f fqé"halafvﬁwrazéfva
0 Ja 0 Ja

T T
+f fqe‘“’aga?v,azmalaj‘va—f fqe“’alaﬁv,azmagaj‘va
0 Jo 0 Jo
T B B T o
+f qu"’“@ﬁ?walmag&?va—f fqe"’hag(??vralm(?z&?va+Il,,w
0 Jo 0 Jo
=th + e + -+ Tuie + Liows (4.6)

where [},,, consists terms of the form fOT fQ qd0?vovad?y. This term can be treated by integrating d; by parts,

T T T
f f qdd?vavadtv = f qod?vovodiv| — f f 3/(qdd* Vo)A,
0o Ja Q 0 0 Ja

. T
where the second term is controlled by fo P, whereas

- T
300 2 2 1292012 32
ol S Po+ ellFVIT + Mgl IOV 1109, vily < Po + &lldvily + f P.
0

f qod?vavod v
Q

To control the leading terms in (4.6), we consider 1111 + I1112, 11113 + L1114, and 11115 + I1116. For 1111 + 11112, integrating 0, by
parts in 11112, we have

T T
L + T Sf fqéahazafvﬁgmalafva — f fqe“ﬂfala;‘vﬂaw,azafva
0 Ja 0 Ja

=0

4.7)

— | 4B, v0m 80| + 1
QCI 10;V0311702 ,Vao low>

where I} consists terms of the form fOT fQ g€ 8,(qdn)(86?v)* which can be controlled by fOT P. Next we treat the first term
on the RHS of (4.7). It suffices to consider — fQ qe™ 7 0103v,1031:0,03 v,

=7 as
=T

< Py.
0

1=

f quTglaf vﬁgmgzaf Vo
Q
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We shall drop _r in 7 for the sake of clean notations. Expanding in 7, we find
T =- f quligla?‘}/laﬂYigZa?Va - f q€m1351(3?v,1(33773526?vm
Q Q

. . T
Since 037;l,=0 = 0, we can write d31; = fo 03v;, and so

T
—fqea’uﬁlafvﬁ%n,ﬁzﬁ?vaSPf P.
Q 0

In addition to this, we have 9313 = 1 + fOT 0d3v3, and so

T
_ f q€e"38,0%,03130,0%v4 < — f qge™30,03v,0,07 vy + P f P.
Q Q 0

al3

To treat the first term on the RHS, we expand €*** and get

- f qe‘”ngléf’mgzafva = - f q(élafvzézafvl - 516?\/1526?\/2).
Q Q
Integrating by parts d, in the first term and 8, in the second term, we have

—fq(gla?VZEZ(a?vl—51(9,3\/152(9[31)2)
Q

=fq51526?\/26;7’v1—fq@fv151526?VZ+fgzqglafvzafvl—fglqafvlgléf’vz.
Q Q Q Q

=0

Here,

T
| f 924018120 v1 - f 8140;11910;va| 5 el + 1311l < el +Po + f P.
Q Q 0

Therefore,

T
L+ 1112 < €E(T) + Py +Pf P.
0

(4.8)

4.9)

(4.10)

@.11)

4.12)

On the other hand, /113 + I1114 and I11;5 + 1116 are treated similarly with only one exception. Previously, we integrated él
and 0, by parts in (4.11) and so there were no boundary terms. However, when controlling 7,3 + 11114, we need to integrate 9,

and 03 by parts when treating (4.11), and thus the following boundary term will appear:

fqa?V1516?V3.
r

To control this term, we invoke the identity

Y
0107V = 1130,0v" + g0’ 0m0,;v" = TG, 9" + gV ( f akv3)almala§vﬂ,
0

and thus (4.13) becomes

— T_ p— —
fqﬁ?vlﬂfl(?lﬁ?v’l+fq8,3v1gkl(f ﬁkv3)(9m,1618,3v1
r r 0

T_ —
q@?vlgkl (f 6kv3) oma
0

T
<elll0dVE + Py + P f P.
0

393,12 2 3.2 793, 1
<ell10FVE + gl2107 VI3 + 100, v"|-0.5

0.5
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The extra term generated when analyzing 1115 + [1116 is of the same type integral and thus can be treated by the same method.
Therefore,

T
L SSE(T)+P0+Pf P. (4.15)
0

T T
L —1,=4 f f 310,078 3,q + 6 f f 370,v,02 A1 32 q
0 Q 0 Q

T
+4 f f 310,v00,A*03q = Ly + I3 + L4
0 Q

For I,, we integrating d, by parts and obtain

T
4 f 3,0, 0; A 9,q — 4 f f 3;0,40,(0} A1 0,q).
Q 0 Q

Next, we study

(4.16)

. T .
Here, the second term is < fo P, and since

A = Q(8i)d0*v + lower order terms

then the first term is bounded by

T
llAVIE + Po + f P.
0

113 is treated by adapting a similar method and so we omit the details. However, we can’t integrate d, by parts in order to control
114 as we do not have a bound for d}q. We integrate , by parts instead.

T T
Iy =4f fafvaatA~3aat3q_4f fa;‘vaﬁy((?,A~3"6?q).
0 Jr 0 Ja

There is no problem to control the second integral by fOT . For the first integral, invoking the boundary condition (3.6), we
obtain

—40 f f oty ,A3“a3 Agn - ) + 4 f f KOV ,A3"63(7(1—A)(V i) = Lt + Iy (4.17)
Invoking (2.6), I14; becomes
Ly = — 40 f f v tA3“63 ,,5 01 7i)
— 40 f f oy A3”63 8" "0t 00 m,0un - 7).

It suffices for us to consider the first integral only since the second integral is of the same type. Integrating by parts 5; first and
then 9, the first integral becomes

—40'f f{ﬁ@ Vad A3“(\/_ 9,07 - ) 40'f6 Bivad A3“(\/_ 9,07v - it) + R.
Vg &

Since ||(9,3 v||3.5 is part of E,(f)(t), the trace lemma implies that the first integral is bounded straightforwardly by fOT P. Moreover,
for the second integral, we have

4o f 80 vaar/ﬁ“(y g ,6% - n)

& . (4.18)

<&@t + PAonllz, 0VIl=)IapvI < ello}vI; 5 + Po + f P,
0
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where we used the trace lemma in the last inequality. In addition,
L ! 4 (1~ 3. =
L = -4 (VK8 va)O A (—= A(Vkd}v - ).
0o Jr V2
Integrating d by parts,then
L ’ a4 w30 1 793~
Iy =4 ( \/Eaat Va)atA _,,( \/Eaat V- i)
o Jr vz
T
<4 f el VKA VLG + P91l V)| VKD, vig dr
0

T T
<& f | VOV § + Po + f P.
0 0

Now, we start to analyze the boundary integral Iy in (4.2). This is essentially identical to the case of the incompressible
Euler equations, which have been treated in [11], Sect.12. Indeed, as what appears in the previous paper [38] concerning the a
priori estimate, we found that the magnetic field plays no role in the estimate of /. But we shall provide the control of the top
order terms for the sake of the completeness of our proof.

By plugging the boundary condition

A = —o \g(Agn - A" + k(1 = AY(v - 7)) i

in Iy we obtain

1 T T _
—Iy= f f 0400 (g A - AR%) dS dif — = f f a0t (1 = A)(v - )] dS dt, (4.19)
o 0 Jr o Jo Jr
where, after integrating one tangential derivative by parts, the second term becomes
T _ T _ _
Ly ( f f 864,018 (v - )1 dS di + f f OO (v - )3 dS dt). (4.20)
O oo Jr 0 Jr

The first term on the RHS contributes to the positive energy term (after moving to the LHS)

k (T .
;fo fr|a;‘v.n|fd5dt

together with errors terms. The most difficult error term is

T
K f f @3ty - m)(v - 8tdn) dS dt, (4.21)
0 r

where the other errors are either with the same type of integrand or are effectively of lower order by one derivative with the
case above. Since 97 = Q(A7)0%7 - 7, we have

T
£ f f @3* - 7)(v - 9*3m) dS dt
o Jo Jr
vk (T (= =
== f f (00 - )(v - 3’V - ) dS dt
o Jo Jr
T — —_— —_—
< j(; P07 () V)| VKA vIo| VKd* ;v - il
T _ _ T _ 2
< [ 1Nk + sup P bl + ([ 1N )

T T
2 —
< f IVka I s + ( f VK3 5) + sup Py, M)
0 0 t

<ED + (ED)? + sup Pl Wlr=m)-
t
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Here, the last term can be controlled appropriately because
_ T
Gy < s < ol + | vl
0

T
Vleea@y < IVll2 < Ivoll2 + f [lvill2,
0

and so sup, P(I5ﬁ| o=@ V@) < Po + P fOT #. In addition, the second term on the RHS of (4.20) can be treated by the same

argument.
Next we analyze the first term on the RHS of (4.19). Since 71 - 71 = 1, invoking (2.5) in Lemma 2.1 and we obtain

Agnp - Ai®™ = —=H o nit™ = Agn®,
and so we are able to rewrite

VBAG - i = §Agn - AR + A - A(® — A%) + \§Agn - (i — WA
=VgAN" + VEgAen - (AT — AY) + \gAgn - (7t — AT

In light of this, the first term on the RHS of (4.19) becomes
T T
f f a0l (\gAn™) dS dt + f f Ove [ \gAen - (A — 1) dS dt
o Jr 0 Jr

T
+ f f 010t [ \gAen - (A — M)A] dS dt.
0 r

(4.22)

(4.23)

(4.24)

We shall study the main term oy = fOT fr M0 \gAgn®) dS dt. The error terms involving 71 — 7 are treated using (2.22) and

they are identical to the Euler case. We refer [11, (12.16)-(12.19)] for the details. Invoking (2.6)-(2.7), we have
T — .. —_
Ioo = f fa;‘vaaﬁa,- ( \/Eg”l'[jﬁjv’l) ds dt
0 Jr
T —_ . . . — — —
+ fo f 07va0;0; (V2(g"s" - 'g")dm" madn') .
r
Integrating d; by parts and expanding the parenthesis, we get
T . —_ —
(4.25) = - f f V2815870 v 0} v,
0o Jr
T
- f f Va(g'g" - §™)d " ka8 003 0ive
0o Jr
T
-3 f f 3,(\gg"TI$)d20 V'3 d;vy dS dt
0 Jr
T
-3 f f 0 (Va(g”e" - g"¢™)d,u"0una) ;00" 9}diva
0 Jr
T p— u—
-3 f f 07( 28" T13)3,0 V'3 d;vq dS dt
0 Jr
T — — — —
-3 f f 07 (Va(gs" - ™10 m" D) 0,010} D;va
0 Jr
T p— p—
- f f 3, (28" TI)0 "0} dv, dS dt
0o Jr

T
- j; f 07 (Va(e’g" - g"¢™)am" Bina) 03 dve
r

=y + -+ + log.
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The main terms are Iy; and Iy, which produces the term |5(H(9,3v)|(2) as a part of energy functional, and the others can be
controlled by estimating Iz + Ios, los + los, lo7 + Ips and integrating d, by parts. In Iy, we integrate J; by parts and use (2.4) in
Lemma 2.1 to get

T 1 T y — -
+3 f f 3(\gg" )30 V' 3} d;vq dS dt
0 0 r

1 L — . — —
=3 fr V88 0:(I136;} ve)d (I, 0; V") + fr V88 oI, ved (I3 V")

1 L. — —
=3 f VEg 288, 8B,
r

(4.27)
L (5 o5 s sa LT iana3d Aa37

- E ra,-l'[llajl'[la, vaatv + E . rﬁ,( \/§g<1'[l)6t (3]'\/ 6, 8,~va ds dr + 101|,:()

=:o11 + lo12 + I3 + Io14 + Io1li=o.

The term Iy produces the energy term
—_ Y (e as - L i _ SiNG(TI83 5 (T3
I = > o1a;v)| ds 3 (Vgg" = 6)0i(1130,v,)0 ;(IY,3;v") dS
r r
| N i i
s 5 | +[ama| | ves’ - o, (4.28)
Lim s P e |2 T _ _
<3 [omaiv| +[amaiv), f P(16,1l. [91l,) dr.
0

The terms Iyi2, lo13, lo14 can all be directly controlled. Because 52n|,=0 =0, then
Toiz $|Vgg™|.. |0TT118; violaTa; v)lo
<P(0n]1 . 16°71)110; Vllo.510(TIA; )l

— 2
<e [ + PARIG;VIold;vI: (429

_ 2 T
s8(|a<na?v>|0+||a§v||%_5)+¢>o+ f P(lInlls, [Vlls, 167 vllo) dt,
0

and
Tois <IOTI,107v17, < Plonl) 167111167 viloll6; vl
3012 3 3 ! 72 (4.30)
<ella Vil 5 + Plonl)NIE; vilo f [ERYY
0

and

T, _ y T
Ini4 Sf 5;7’5\/‘0 lat( \/Eg”n)lm Sf P(03V]115, VI3, Ils) dt. (4.3D)
0 0

Combining (4.27) with (4.28)-(4.31), we get the estimates of Iy, as follows
_ 2 T
Ioi e('a(naﬁv)'o + ||a,3v||§_5) +Po+P f Pdt. (4.32)
0

Next we control I := — fOT fr Ve(glgt — glg™)d m 003 01v*3}9;v,. We expand the summation on /, i and find that:
e When / = i, this integral is zero thanks to the symmetry.
e When [ = 1,i = 2, the integrand becomes \/g—l(élmézna - 5177(,52774)6,351\/{6?52\/‘1.

e When /= 2,i = 1, the integrand becomes — g~ (91710210 — 01120212)3; 921301

29



1]_ 11 22

Here, we use g~! to denote det[g — g'2g?!. Therefore, we have

T
1 - = - - — - — -
Iy, = — f f 7 (01719210 — 0116 02ma) (9;01V'0700" + 870201581 dS dt
0 r

6177#6?51\/" 5177#6?52\1“
- — - + 1 der t
f f N [aznya?alvﬂ aznya?azvu ower order terms (4.33)
& f f a,( )detA
The first term in the last line of (4.33) can be expanded into two terms
1 - — _ _ _ o _ _
f— detA = f \/g ((9177;,(9277,1(91(9,‘3\/”(92(3?1/l - 6177”6277/1(92(9,3\/”(918?1/1) . (4.34)

It can be seen that the top order terms cancel with each other if one integrates a, by parts in the first term and 8, by parts in the
second. The remaining terms are all of the form — fr Q,1(0n, 8> )28} v, which can be controlled as

- f 0@, TP 55
T
<SP0, 0111133 v10108; Vo
1 roo_
$8||5?V||%,5+E||3,3V||0.5 f P(l3*v]) dt. (4.35)
0

The second term of (4.33) can be directly controlled, i.e.,

f f&,( )detA < Ia,ﬁnlelanlelaﬁ%lo dt 5 f P. (4.36)

Therefore, we get the estimates of Iy,:

T
Iz < elloVF 5 +Po + P f P dt, (4.37)
0
Next we control the remaining terms in /y, i.e., I3, - - - , log. The strategy here is to study loz + loa, los + los, lo7 + Ipg, where
T — f— [—
Tos +Iog =3 f f 3,(Q(0))d*dvd}dv ds dt
0o Jr
P T _ o T _ o _ T
23 f f (Q(On)d*dvddv + 3 f f A(Q(O)3vddv + 3 f 3,(Q(0n))3?0vd’ dv
0o Jr 0 Jr r 0

T
=3 f f Q(An)dv dv + QOn)d,v | 32 dvd>dv
0 Tr|~—
3,(Q@n) (4.38)

T o _ _ _ _ _ T
+3 f f Q(Bn)Ova’ ava dv + f Q(On)dvd*ovd v dS
0 r r 0

T
<Py + f P+ 0@ IV 1,
0

T
<ellvIE s + Po + f P.
0
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Similarly, by plugging 33(Q(3n)) = Q(@n)(@9;v8vdv + 8dvdv + o2v) into los + Ioe, we get
T
los + Io = f f F2(Q(I))d, v} dv dS dt
0 r
9 r — T o g
2_ f f 8;(Q(0m)d,0vd;dv dS dt - f f 8;(Q(0n)d;6va; dv + f 82(Q(@n))d,0v0> By
0 Jr 0 Jr r o
T
SPo+f P+|6vliw|6?6v|0|66tv|0 4.39)
0
T
sPo+ f P+ el s + 1975 + I
0
T
<Po + f P + elloVIf3 5.
0

Following the same way as above, we can control /y; + Ipg by P + fOT P+ 8”(3?\/”%_5 so we omit the details. Combining this
with (4.26), (4.32), (4.37)-(4.39), we get the estimates of Iy by

1o+ [5 (16)] < ellgie '
o+ 10( ,v)oss||a,v||1.5+¢>0+¢> P. (4.40)
0

Now the only term left to control in (4.2) is L. Expanding [}, A**], we have

T T
L= f f AP, v, 0l qdydt + 4 f f 3; AP 9,0,v,07 q dy dt
0o Ja 0o Ja

T T
+6 f f AP 320, v, 0 qdy dt + 4 f f 8,AF030,v, 01 q dy dt
0 Q 0 Q

=y + Loy + Loz + Lpg4.

4.41)

Despite having the right amount of derivatives, there is no direct control of ||(9qu|0 and so we have to make some extra efforts
to control Ly, -+, Log.
The hardest term to treat here is L,;. Since

O} AP0, vy = 0H(JE )0, vy =T (0} )0yve + (0}T) @70V, +lower-order terms
———
5 (4.42)
= — @ 030;7,AP"9,v, + lower-order terms

we have
L T e
Ly = f f @ 9070, APY0,v,0%q. (4.43)
0 Q

Since
Aeglq = 8 (APq) - (6 AP")q - 48] AP")dq — 6(6;AP)8} q — 4(8,AP)8]q,
and thus one can write the RHS of (4.43) as

T T
f f @ 90, 7,0, 07 (AP q) — 4 f f " 90, 7,0, 0; AP 9,q
0 Q 0 Q

T T
-6 f f " 0p029,0,v,07 AP 07 q — 4 f f " 0p027,0,v,0,AP 8} q
0 Q 0 Q
=:Lo11 + Loz + Lo13 + Laya.

It is not hard to see that Ly;», L»13, Lo14 can all be controlled directly by fOT P thanks to (3.36). To treat Ly, we integrate dg by
parts and get

T T
f f&“véf’ﬁyaﬂvaaf(ﬂ“q) - f f 6;”%6;;(&“”6,1\/&6?(5&’(1)) = L2111 + L2112.
0 r 0 Q
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Since Ly 12 L_ fOT fQ S?ﬁvaﬂvaﬂvaﬁfﬁﬁ(ﬁﬁ”q), we integrate 9, by parts in the last term and get

T T
- f 61‘3‘7"5;”8#‘)‘16?6,3(1&8“61) + f f 6,(6,3VV&”Vﬁpva)afaﬁ(Aﬁ“q) = Lzuz] + L21122. (444)
Q 0 0 Q

Now, since (%Aﬁ" = 0, we can write
3;05(AP q) = =N + 3} (bo - )" (4.45)

In light of this, we have

T
Ly < f P. (4.46)
0

Also,

T
0

Loijo) = — f 3; 9,8 v (=ONVT + 3 (bo - 0)*1™)
Q

<SP0 + 1@ 0vall=110; Vilo (10 Vllo + Ibollzs= 116 (bo - B)rlln)
<Py + (10, VI + 1167 (o - D)l + PG, Vllo, 1@ B,vella)

T
<Py + (101 + 1056y + 7 [ .
0
Moreover, by plugging the boundary condition (3.6) to L,;;; we obtain
T T _
—Uf faﬂva?vvaﬂvaa;‘( V8Agn - fift") + Kf faﬂvafvva,,vaa;‘( ((1 - AN ﬁ)) fl“) = Lonn + Lo
o Jr o Jr
Invoking (2.6), we have
T o\ ——
Loyt =—Uf fﬁﬂvagf’vaﬂaa?(\/ggljaiajn'ﬁﬁ”)
o Jr
T
+o f f 039,007 (2" X0 9,0 1,0k - AR®).
o Jr

It suffices to control the first term only since the second term has the highest order contribution with the same type of integrand.
Also,

T o T o
-0 f f " 039,0,,0" (\Bg0:0m - i) £ - o f f a9} 9,0,vq \g8"9:0,0,v - A"
0 r 0 r
T —_—
—0 f f " 030,0,v4 \28"0;0m - 1O} A").
0 r

Now, since

&' = Q(87)3d2v - i + lower-order terms, (4.47)

T
< f P. (4.48)
0

T
< f P, (4.49)
0

and so we have, after using the Sobolev embedding and trace lemma, that

T
o f f @ 99,0, 28 30,1 - (OFA)
0 r

In addition, by integrating d; by parts and then using the trace lemma, we have

T
o f f @ 99,0, N2$ 30,07 - i
0 r
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Moreover, we still need to control Lyy;12. In light of (4.47), we only need to study the case when all four time derivatives land

on Av, i.e.,
T —
—K f f @ 835,00 N} - ).
0 r

Integrating d by parts, this term has the contributes to

T
~ 35~ Fad . ~~
K f f a0, 0v,0,v,00]v - iit®,
o Jr

up to terms with the same type integrand, whose analysis (and bound) is identical. To control the main term, one has
T _ _ T _ _ _
K f f " 3;0%,0,v,00}v - it = f f Q(0i, ), v \kddv
o Jr o Jr
T
S\/Ef QI 1OVl )10 Vil sl Vi Vil s
0
1 T T
<3(Ve [ QU oot + [ iveaizs)
0 0

T
iz [T
0

Finally, combining (4.1) with the computations above, we finally get the control of full time derivatives

T
ool + 1t o - anlf, + [3 (1)) < EO+ ED + 2y + CEAT) + P f P. (4.50)
0

4.2 Control of mixed space-time tangential derivatives

To finish the control of E(T), it remains to study the tangential energies generated by the 56?, 526,2, 536, and 53(170 - 0)-
differentiated x-problem. Generally speaking, the energy estimate becomes much simpler when the tangential spatial deriva-
tive(s) 8 is taken into account. This is due to that we can avoid the higher-order terms in the interior, i.e., terms associated with
;1 in (4.3). This can be done by having all top-order terms on the boundary, and those terms can be controlled thanks to the
extra 0.5 interior regularity.

The §>-tangential energy: Similar to (4.1), we have

1 (Td (=4
EJ;EL'&?,V

T
- _ 093 Aua ‘993
fo L 003 (A1 0,q)00%v, dy dt 451

I*

T T
+ f f 003 (bo - 0)* 112007 v, dy dt + f f 902 (by - 0)nadd? (by - d)v, dy dt.
0 Q 0 Q

2 = .3 2
o+ ]aa, (bo - a)n' dydr

By integrating (b - 0) by parts in the second term, we can get the cancellation with the third term at the top order
T o~ _ T o~ _
f f 302 (b - 0)*11,007v, dy dt + f f 303 (by - O)Nadd (by - v, dy dt
0 Jo 0o Ja
T o~ _ T~ _
=— f f 30 (b - 0)11,00? (by - D)V, dy dt + f f 302 (b - )1 002 (by - D)V, dy dt
0 Ja 0 Ja

- ~ ~ ” ~ (4.52)

+ f f 8. (bo - 0| 87 (bo - O™ - 67 ve = 30 (bo - O™ - [(bo - 9), 0] 67 v dy dt
0 Ja

T
< f P(Ibolls, 10, vl1, 107 V1) dt
0
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The main term I* is treated a bit different compare to 7 in (4.2). Specifically, one commutes A*® with 56? first and then
integrates by parts. This allows us to avoid the appearance of the higher-order interior terms.

T o T r_ s -
- f f 003, AP 9530,q — f f 90}va 007, A" | 0uq
0 Q 0 Q
>

T _ _ T _ o T _ o
& f f AP*9070,v,00; q — f f A0}, A300 g + f 30}V, A% 307 q +L;
0o Ja o Jr 0 Jry (4.53)

I Iy

T
f f 96? (cthv) 93 + f f | A4, 367 | 6ve 0q +13 + Iy + L.
0 Q

g

Here, Iy" = 0 because AB =A% =0,A¥ =1, and vs = 0 on Iy. Also, L} and L] can be directly controlled. For simplicity we
only list the computation of the highest order terms

T
- f f 00}va 867, A4 | 0,q dy dt
0 Q

, , (4.54)
- f f 302vy 00;AM9,q dy dt < f Pdt.
0 Q 0
and
T ~ — —
L= f f |41, 86} | 0,ve 007 q dy dt
0 Q
et ) , (4.55)
L f f 90} A1 0, v, 03, q dy dt < f Pdt.
0 Q 0
Next we analyze the boundary integral 77,
T - - ~
=— f f 003v,007 (A% q) dS dt
0 r
T _ — . T _ o —
+ f f 80°v,002 A% q dS dt + f f 003,07 A3 dq dS dr
0 r 0 r
T o~ T r_ =
+3 f f 303,007 A3 0,q dS dt + 3 f f 303,07 A3790,q dS dt
0 Jr 0o Jr (4.56)

T T
+3 f f 302v,00,A3 3 qdS dt + 3 f f 002v,0,A00%q dS dt
0 r 0 r

T — — ~
+ f f 30 v,0A% 3} q dS dt
0 r

=Jo+J1+---+J7.

Since we have H'(Q) regularity for 8}v and H'(Q) regularity for 3¢, the top order terms contributed by J; to J; can all be
directly controlled by the trace lemma. In the end, we have

T
J1+~--+J7sf50. 4.57)
0
By plugging the boundary condition

g = o \B(Aen - )i® + k(1 = D)(v - 7)) "

in Jy, we obtain

1 T _ T _ _
—Jo = f f 30} (\gAen - 10D, v, dS dt — g f f aa?[(a —A)v- ﬁ)) i100>v, dS dt (4.58)
0 r 0 r
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For the second term, after integrating one d by parts, it contributes to the positive energy term (after moving to the LHS)

K T
- f f 03V - 7if3 dS dt,
o Jo Jr

(4.59)
and some error terms. Here, the most difficult error term reads
x (T - -
— f f (@0 - i) (v - 830%7) dS dt (4.60)
o Jo Jr
which can be treated as follows:

K T — — L K
— f f (@3- i) (v - 020%7) dS dt =
o Jo Jr

T p— p—
f f (@ -i)v- 007 - i) dS dt
o Jo Jr
T — — —
< f P05l (r) W)l Vk0*8; vlo| Vkd*87v - o
0
TR B T, 2
< | INKG OV + sup Py, Wlisay) + (| 1 Vkd 07y - ilg)
0 t 0
T T By _
< f Va3 5 + ( f VKOV 5) "+ sup P(I07lL ), Wisary)
0 0 t

T
<EQ + (EQ) + Py + Pf P.
0

The first term in (4.58) is treated analogous to the first term in (4.19). The main term we need to study in this case reads
T — —
f f (80X (\EAN @) dS di
0 Jr

T
= f f 0070; (Vag'Tya " + Va(g'g" - ¢e™)dm" ') 96;v* dS dt
0 r
Integrating 0 by parts, we get
3 T o a—
Joo £ - f f V28" T130070 ' 30; v, dS dt
0 r
- f f Ve(gg" — g'¢™)d m* an’90,07v,0 0;dv, dS dt + Ry
0 r
= J()l + 102 + Ro,

4.61)

where Ry consists terms that can be treated in the same way as in log, - - - , Ipg in (4.26).
In Jo;, we can integrate 9, by parts and mimic the proof of (4.27) to get

_ 2 — 2 T
I+ [P < e(]a(naafv)'o + ||6,2v||§'5) P+ P f P di (4.62)
0
Joz can also be controlled similarly as Ip;. We find that the integrand is zero if / = i. So it suffices to compute the case
(1,i) = (1,2) and (2, 1). Similarly we get

1 5117 51625\/" 5177 52625\1*‘
Jo= | —det|= #7101 48
02 fr N [azn,lalafavﬂ Bo11, D270

T T
+ f P+ R (4.63)
0 0
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The main term can be computed as follows

fld (9177”(91(92(9\/” (3177;,626 (31)
Vg 021,01 > 6277#626 O

1 — — = — - -
- f 7 (alnyalafavﬂaznyazafavﬂ —alnyazafavﬂaznyalafavﬂ)
r

ol f 0\, o G50 dS (4.64)

<P (10nlL, 10 nlL~ ) 1967 V10607 vl

T
seldtviZs +Po+ [ P,
0
and thus we get the control of J,
T
oo 5 & (1073 5) + Po + P f P. (4.65)
0
Combining (4.51)-(4.62) and (4.65), we get the géf-tangential estimates as follows

6| + [0 - o + [ (Taa)|) < EO + B + sl + o + P f . (4.66)

The 526?, 0, and & (b - 9)-tangential energies: The control of the other tangential energies that involving at least one 4 is
follows from the arguments above by replacing 5(9,3 to the corresponding derivatives. Hence, we shall omit the details and only
illustrate the major differences.

First, we mention that the derivatives 536, and 53(190 - 0) behave the same since both v and (b - 9)ny are of the same interior
regularity.

Second, one needs to pay attention to the terms that analogous to the error term generated by (4.58) during the construction
of the energy term. In particular, we need to study the top order error term analogous to (4.60). Setting © = 4,, dor (by-d), and
s0 0282, 0°d,,0° (by - 9) can be denoted systematically by 8*D2. Now we consider

T p— p—
£ f f @D f)(v - B D) dS d. (4.67)
o Jo Jr
When D? = 62 then (4.67) is treated similar to (4.60). This is due to that
536,2~ = Q(Eﬁ)g“a,f» - it + lower-order terms,

and ﬁ)T |6fv|%_5 is included in E,(f). In the end, we obtain
< (T B2 392 3) (3)y2 !
— @0y - -00n)dSdt <E”+(E) +Po+P P.
g Jo r 0
On the other hand, when ©? = 4,, 5(190 - 0), then using the fact that D71 = Q(Eﬁ)bgﬁ - 1, we have
k (T 4 4 Lk (7 -4 =5
—f f(a o -n)(v-3"0:n)dS dt = —f f(ﬁ ov-n)(v-&v-n)ds dt, (4.68)
f f @*(bo - D)y - W) (v - 8*(by - D)ii) dS dt & f f (@*(bo - 0w - ) (v - B (by - D)7 - ) dS d. (4.69)

The terms on the RHS requires fOT | Wvlg and fOT | V(b - d)n|2, respectively, to control. However, owing to (3.30) and (3.32),

36



both of them can be controlled by My + C(e)E(T) + P fOT . Hence,

[ +[Fa2e0 - o[ + p(r@an)[ < EO + EDY + B0y + Py + P fo p (4.70)
[an; + [Fauvo- || + BOE)| < £ + EDY + eEut) + Mo+ P fo p @.71)
7o a)sz + 7o a)anz +[6(118° by - 6)77)'(2) SEQ +(EQ) + eE(T) + Mo + P fo p (4.72)

Notice that the RHS of (4.71) and (4.72) rely on My, which is given in Lemma 3.5. In Section 6, in fact, we are able to control
Mo by Cllvolla.s, llbollas, [vols).

5 Estimates for the higher order weighted interior norms

It remains to control EC(T) in order to complete the proof of Proposition 3.1.

5.1 Full time derivatives

We shall first study the first two terms, i.e.,

T
2 2
[ (Rt + ) vRaton - oml ) s = i + ke
These terms appear to be the most difficult ones to control. In particular, they yield error terms that contribute to the top order

and can only be controlled in L*(0, T) instead of L*(0, T). In other words, we cannot use the time integral to create terms that

can be controlled by fOT P.
The goal is to show:

T
Ki+ K, <Po+C(e)ELT) +7>f P. (5.1
0

The control of K|, K relies on the div-curl estimate and so the H'-norms of 6;‘\1 and af(bo - 0)n have to be studied together
owing to the strong coupling structure of the MHD equations. In particular,

T
K < f (I Vaiv ol + | Vieurt o[+ [ VRab ) de =: K+ Koo + Ko, (5.2)
i : :

T
K < fo (I Viciv b -yl + || Vcur! 37 o - o + | VKaibo - 00} e = Koy + Ko+ Kas. - (53)

Bound for K5 and K>3:
For K3, there holds

T T
Kis < f |y - il + f |V - (N =R,
0 0

<E®

and for the error term, we have
T T
4 =112 4 12 ) 2
j; [ V&d}v - (N - )] < fo | VkdiVlly s - IN = 7l7, < &P,

where (3.21) is used in the last inequality. To control K3, since d,;7 = v we have fOT | ﬁa? (bo- 6)v3|f and so it suffices to control

T 2 .
fo | \/E63v3|2. This term can then be treated similarly to K;3.
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Bound for K;; and K;,: First we state the following application of the Kato-Ponce inequality which shall be used frequently.
Let f € H>>(Q) and g be a smooth function. Then

1/ gllos < 1/ llosliglse- (5.4)

For K;;, we have
T
Ky < f (Il Vadiv a01VIIG 5 + | Vidiv 4—a07vI[G 5)- (5.5
0

Since ||la — Ez||f‘5Jr < kP(|Inll3.5) thanks to (3.26), the error term can be controlled as

T T
fo | Vidiv 4—a0f VI3 5 < fo lla — all? 5,1l Vkda vl s, (5.6)

which can be controlled by the RHS of (5.1) when « is small. For the first term, since div;v = 0 we have
T T LT
f | Vidiv 20 vIlg s = f | Vl8;, alovilg s = f | Vk(8:@*)8,0; vallg s + I VK(8; @ *)duvallg 5- (5.7)
0 0 0

It is not hard to see that that fOT | Vkd,add; vlfg 5 < fOT P as 82v € H'(Q) a priori. In addition, since 8,a** = Q(d#), we obtain

T T T
[ ivRataans £ [ ivkowmasivais < [ . (5:8)
0 0 0

The control of K3; is a bit more involved. We cannot commute 6;‘ to (3.67) as this would yield div & a(bo - &)n on the RHS
which cannot be controlled. However, by writing div 8} (bo - 9)n = div 8} (b, - 8)v and then we have

T T T
f | Vidiv 8; (b - O)VII5 5 < f | Vkdivad; (bo - D)V 5 + f | Vkdiv a-a8; (bo - OVIIG 5. (5.9)
0 0 0

The second term on the RHS is again easy to control similar to (5.6). For the first term, because
divz03(bo - d)v =02diva((bo - d)v) — (82, dival(bg - )y
=03([diva, (bo - O)Iv) — [87, dival(bo - H)v
= > @@ NG 0ve) = > G (ByDE") (B} v

0<i<3 0<i<3
= > @la")3u((bo - 3] M),
1<j<3

then it can be seen, after counting the derivatives that

T
> f VK@@ )by 0wallls, > I Vi, (b3,a) (830l 5.
0

0<i<3 0<i<3

T . .
>, [ k@l a, o000 vl

1<j<3

can be controlled by fOT P owing to the fact that 3*v € H*>*(Q), k = 2, 3.
Bound for K|, and K;;: We would like to state the following strategy that will come in handy when dealing with the leading

order terms in K, and K»,. Let X be the term such that fOT I VX II(%_5 is part of E,(f) and Y be a lower order term such that ||Y||f5 .
is controlled by E,(f). Then

T t T T
f f INRXYIR s dr <T f IVEXYIE < Tsup VI, f IVRXIE S
0 0 0 t 0

<f(fT||«/EX||2 Vo I supi (5.10)
=2, 0.5 2 tp 15+ .
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which is bounded by the RHS of (3.13) if T is sufficiently small.
Ki; and K>, will be considered together via studying the evolution equation verified by curl /v and curl 8}(by - d)n. But
this evolution equation cannot be derived by taking 7 to (3.75) as this would yield curl o34V in the source term which cannot

be controlled. Instead, we commute d¢curly to the equation 8,v + (by - 3)*n = V ;¢ and get
dteurlz0,v + dcurl;((bo - 8)*n) = 0.

This yields the following evolution equation by commuting three time derivatives through curly in the first term on the LHS:

drcurl ;0% + curl; (b - 8)20in) = —0,(107, curl;18,v) — [87, curl;1(bo - 8)*n := f, (5.11)
and, after expansion, the source term f becomes:
=0 Y an@a0,00v )+ Y. en@ld®oubo - 075 . (5.12)
1<j<3 1<j<4

By multiplying xd(curl a0M) to the evolution equation (5.11) and then integrating in space, we have

f kd;(curl ;01 v)d(curl ;0v) + f k(curlg((bo - 0)*;n)d(curl;ov) = f kfd(curl ;0%v), (5.13)
Q Q Q

| d
2d
Next, if we integrate (bo - 8) by parts in [, K(curl/;((bo : 6)26;‘n)6(curlg6fv) and then integrate 82 by parts, we obtain

where the first term contributes to 5 7 ||curl A&fvﬂ(z)j after integrating 9z by parts.

%%Ilcurl 1071 (bo - 6)77||(%_5 up to terms involving commutators (which will be recorded below). In particular, the following energy
inequality is achieved:

%n Vieurl ;0[5 5 + %u Vieurl ;87 (bo - Ill5 5

<Po + fo T||Wfllo.sllﬁcurlAG?vllo.s dt (5.14)
+ fo ' | Vilcurl 4, (bo - )1(bo - )d;nllosll Vicurl 307 vllos dt
+ fo ' | Vilcurl 4, (bo - )18 Vllo.sll Vkeurl z(bo - )d;llo.s dt

T
+ f | Vkeurl 4 28 (bo - A)nllo.sll Vieurl z(bo - )d}7llo.s dt. (5.15)
0

Hence, by integrating in time one more time, we get

1 (7 1 T
3 [ WReust saivig s+ 5 [ Rt 00 - ol
0 0
T T t
< f Py + f f VR llosll Veurl 53*vilos di
0 0 0
T !
" f f I VRLcutl 1. (bo - 9)1(bo - D)3 nllosll Veeurl 19*vlos di
0 0
T !
" f f I VKTeurl 1, (bo - 18 vllo sl Vkcurl 5(bo - 93 llos di
0 0

T t
+ f f | Vieurl 4 287 (b - d)mllosll Vieurl z(bo - )d}7llo.s dt, (5.16)
0 0

where we have dropped one dt for the sake of concise notations. This suggests that we should control

T ‘ T !
f f I ViAIR s d, f f I Vileurl 4, (bo - O)1(bo - DR di,
0 0 0 0
T . T !
f f “ \/E[curl i (bO . 5)]5?"”%5 dt, f f ” \/Ecurl al/ga?(bo . 6)77“(2]5 dt.
0 0 0 0
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For the second term, we have
T t T t 5
f f | Vilcurl 4, (bo - )(bo - DR 5 dt < f f | Vieapy A*E(0,b%)(D,(bo - )i |12 5 dt
0 0 0 0

T f
. f f 1| VReus (B0, A1), bo - Y712 5 di,
0 0

which can be controlled by the RHS of (5.1) by adapting (5.10). The third and forth term are treated analogously. For
fOT fot I Wfllé_5 dt, invoking (5.12), we need to consider

T . »
i= Zf f VK (eapy (0 A)3, 5l 5 i, (5.17)
1<j<3 V0 JO
T o »
i= 3 [ [ 1R @LA3,00 - 070 . (5.18)
1<j=4v0 YO

Here, i L fo g fo ' I \/E(atA)(aafv)Hg_s, which controlled appropriately by adapting (5.10). Moreover,

T t T t T
i L f f 1 VRengy (%), (bo - Y0371 5 f f INK@,A)38 (b - 9P nlIE 5 di < f P, (5.19)
0 0 0 0 0

since fOT I \/E&?(bo . 6)77||%_5 is included in E,((S) , and this concludes the control of K| + K5.

Remark. There is an alternative way to control the last integral in (5.19). We may use the equation to replace (by - 8)*n by
0,v + V4, and this allow us to control this integral without using fOT I \/E&?(bo . 6)77||%‘5. In fact, one can show

T r
f f | Vkd2 g2 s di < P
0 0

by employing the elliptic estimate we used in Section 3.1 (similar to the control of (5.24)), and so

T f T t T
fo fo INK@ A0 [(bo - IR di < fo fo VK@ AN s + | VK@ ATV 5qlR < di < fo P,
because fOT | Vkd?vil7 5 is part of E®.

5.2 Mixed space-time derivatives

The treatment for the remaining terms of EY is parallel and so we shall only sketch the details. We shall consider

T
I (Rt Rotceo- o e, k= 1.2

First, the boundary terms contributed by the time derivative(s) of (by - d)n, i.e., terms analogous to K>3, reads

T
f kb - PR, k= 1,2,3.
0

2
6k’

stops when k = 1. In particular, for each fixed k = 2, 3, we write fOT | V&5 (b - O3, as fOT | V05~ (bo - 9)v*|Z_,, which can

then be controlled together with fOT | Vkd! v3|§_i with j = 1, 2. On the other hand, when & = 1, the control of fOT [ VK8, (bo - O[3
requires that of ‘

Generally speaking, for each fixed k = 1, 2, 3, the control of the above term requires that of fOT | Vkd“1v32_ , and this process

T T
f [ Vi(bo - O[3 < P(llbolls.s) f R
0 0
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where, in view of (3.31), we have fOT [ Vkv2 < Mo + C(e)E(T) + P fOT P.
Second, the control of the analogous terms of ii (defined in (5.18)) for k = 1,2, 3 requires a similar analysis as above. For
each fixed k, we need to investigate

T ot . _i
i = Zf f 1 iy (/A48 bo - 978,/ 5 . (520
0 0

1<j<k

Again, it suffices to consider the most difficult term contributed by setting j = 1, i.e.,
T ~
i = [ [ 1R @10,(00 - 070k 1 dr (5:21)
0o Jo
T
< f f P(Vllas. 1Bolla.s. Inllss)l Ved* 0, nll5 s_ dt. (5.22)
0o Jo

In (5.22), it can be seen that when k = 2,3, [ [ | Vk&*0\ ' lls s dr is bounded by [ [ || Vk&*VIE sdrand [, [ | Vkd* P  dt,
respectively. Moreover, when k = 1, we need to consider (5.21) instead. The strategy here is to replace (bo - )’y by d,v + V 14,
and so

T t T t
il = f f | V€ap, (DAY, 007 |12 5 di + f f Il Vi€agy (0:A")3, V" gl 5 dt, (5.23)
0 0 0 0

where the first term is bounded by the RHS of (5.1) owing to (5.10). For the second term, since v € H*3(Q), so it suffices to
consider the case when all derivatives land on V ;q, whose control requires that of

T t
f f | VkV zqll; 5 dt (5.24)
0 0

after adapting (5.10). Actually, we are able to prove a slightly stronger bound by removing one time integral, i.e., we want to
bound fOT [ V&V Aq||i‘5. By the div-curl estimate, one has

T T
. 2
f ViV 3l 5 < f (Il Vkdiv V q183 5 + Il Vacurl Vg3 s + 1 VAN - Vzq]; + [ Vkqly)-
0 0

Here,

T T T
[ iRavwiaRs < [ VR + [ VR Vil (525)
0 0 0

and by invoking (3.19), (3.36), (5.10), and since v € H*(Q)a priori, we have

T T T
f | Vidiv ;_sViqlis < & f VKV 3qll3 5 + f P.
0 0 0

Similarly, because curl ;V ;g = 0, we have

T T T
[ iR Vaiks s e [ 1Rl [P
0 0 0

Moreover, invoking (3.21), (5.10) and the trace lemma, then
T T T
VeVt < [ VR agB+ [ INRY - 9B
0 0 0
T T T
< [ 1vEn Vgt e [ INRTalEs 4 [
0 0 0

As a consequence, (5.25) becomes

T T
~ 2
f I VeV qll; 5 < f (”‘/EAAqug,s+|\/En’VAQ|3+|‘/EQ|S)- (5.26)
0 0
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To control the RHS, we recall that ¢ verifies

~Aiq = —0,A"3yva + 3p((bo - D)if, )0, AP AP8 (o - OO (5.27)

with the Dirichlet and Neumann boundary conditions
Vzg = — o VE(Agn - 1) + k(1 = A)(v - 1), (5.28)
i-Vig=—0yv-ii+(by-d)’n-i. (5.29)

Now,
T T B Y
f I VRAqlE 5 < f iAoV s + f (o - D)) @ra)ad(by - AL (5.30)
0 0 0

and because v, (by - 0)ny € H*»(Q)a priori, the RHS is bounded by fOT P. Also, it is not hard to see, via the trace lemma and the

Dirichlet boundary condition, that
T T
f | Vigly < f P.
0 0

T . - . .
Next, we control fo | Vi - V Aq|§. In view of the Neumann boundary condition (5.29), it contributes to

T T
f o - i, f |V&(bo - 8)'n - .
0 0

For the first term, since d,v € H33(Q) and n € H*3(Q) a priori, as well as 8t = Q(dn)d*y, we have, after employing the trace
theorem, that
T T
f Ko - i3 < f P.
0 0
Also, for the second term,

T T T
f | Vi(bo - )’ - 2 & f [ Vi(bo - 0)*0°n - ilfy < f P(lbollas, lInllas) Vkd niZ,
0 0 0
which can be controlled by My + C(e)E(T) + P fOT P owing to (3.30).

5.3 Full spatial derivatives

It remains for us to bound

T 2 2
I (Rl + VR - o) a

in order to conclude the control of E,((S) (T). This will be treated via the div-curl decomposition, and since there is no time
derivative, the arguments are similar to those in Section 3.2. First, we assume that the quantity

Il Vknlls.s (5.31)

is bounded a priori. Second, for the divergence part of velocity, the perturbation argument yields
T T
[ iRz = [ vR@ - ol
0 0
T 1 T
< [CUNRC[ 0@ asa,ralfs < P (IRl VRolizyes) [ (5.32)
0 0 0

Also, for the divergence part of magnetic field, it suffices to study fOT Il Vidiv z(bo - 6)77”421.5 by invoking a perturbation argument
similar to (5.32). We differentiate (3.67) with v/kd*°> and then integrate in time to get

T
VK6 (diva(bo - O)n) = f Vkd* (0p(bo - )@ @0 ve — @ g, @70, (bo - OMa),
0
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and taking L7 L} norm yields that
T
VK& (div a(bo - 2y < T (|| ViVl s + 11V (Do - Ol s + | «/Enu;H;_s) fo P. (5.33)

Third, for the curl part of both velocity and magnetic field, it suffices to study fOT || Vcurl AV||42;_5 + || Veurlz (b - 6)77”421.5 by
differentiating (3.75) with 8*° and test it with k9*>curl zv in L7L}. We can show, parallel to (3.77), that

1d
S (|| Ved*Seurlppif, , + | VKo*Scurlz(bo a)nuiﬂf)
< Pl Vibolls 5. 1| Vi(bo - Onll2 s, | Vicvllz gss, 1| Viells ),

(5.34)

Since || Vknlls.s < 1| Vknolls.s + fOT Il Wxvlls.5, by the above estimates together with (3.34) and (3.35) obtained in the discussion of
Lemma 3.5, we get

T
VRV, 55+ I VEBo - D)l 5 + 1N s < Mo + C@EAT) + P f P. (5.35)
T y T y 0

In summary, we have
T
E® < My + C(&)ET) + P f P. (5.36)
0

Remark. The estimate (5.35), together with the trace lemma concludes the proof of Lemma 3.5.

6 Closing the nonlinear energy estimate

In this section we conclude the proof of Proposition 3.1.

6.1 Regularity of initial data

Our first task is to remove the extra regularity assumptions on the initial data. These additional regularities are introduced in
M (defined in Lemma 3.5). In addition to this, one has to control ||g(0)|l4.s, [|g:(0)|l3.5, [|g:(0)|l2.5 in terms of vy and by by the
elliptic estimate, and extra regularity on vy and by shall appear due to the viscosity term.

Note that g verifies the elliptic equation

—Aqo = (0vo)(9vo) — (8bo)(8bo) in Q

qo = k(1 — A)? onT (6.1)
giNO =0 on T

by standard elliptic estimates, we get
<10 2 ob 2 3 3
ligolls.s < lovoll; 5 + 110boll; 5 + &lIvglla.s + &lvgle.-

Moreover, note that the energy functional contains time derivatives of v and (by - 9)1, so we need to express their initial data
in terms of vy and by as well. We invoke 9,v(0) — (bg - 9)by = —0q to get

16:v(0)ll3.5 < llboll3.sllbollas + llgolla.s,

and
[10:(bo - D)n(0)lI3.5 < llboll3.slvollas.

Similarly, we consider the 9;-differentiated elliptic equation of g to get

10,:g(0)ll3.5 < P(Ivollas, 1Bollas)([vils + kldv(0)ls),

and further _
102g(0)lls + 1107 g(O)Il; < P(Uvollas, lIbolla.s, vols)(1 + kIAG W (O)2).
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By Sobolev trace lemma, we need to bound KII6?V(0)I|4,5 which requires the control of «(|[volls.s + ||bolls.s + 110:g(0)lls5). We
replace 3.5 by 5.5 in the estimates of 9,g(0), and thus we need to control

o0z < (Ilbollz sllbolls.s + ligolls.s)-

Finally, replacing 4.5 by 8.5 in the estimates of gy, we need to control
(voll3 5 + 1Boll3 5) + & (vols + olio)-

In view of the above analysis and the definition of My, we need to control xk-weighted norms of ||vy|ls s, ||bolls.s and [vo|io-
However, our given initial data is vo € H*>(Q) N H>(') and by € H*> and so we have to remove the additional regularity
assumptions on the initial data. This can be done by adapting a similar argument in Section 12 of Coutand-Shkoller [11]. We
define Q, to be the regularized version of Q tangentially mollified by .-« and define Eq,_ to be the extension operator from
to Q. Next we set

Vo 1= Lexp+ * Eq,(V0), Do := Lexp~ * Eq,(bo), Qg := Lexp~ * Eq,(q0)-

Therefore, integrating by parts repeatedly to transfer derivatives to the mollifier Jexp—+, we get
llkvolls.s + llkbolls.s + [Ikqolls.s + [kVolio < lvollas + lbollas + ligollas + vols < C, (6.2)

where C is the constant that appears in (3.7).

6.2 Nonlinear a priori estimates

Now we summarize the a priori estimates of the nonlinear xk-approximation system (3.2).
1. (3.36) gives the elliptic estimates of ¢ and its time derivatives.
2. (3.64)-(3.66) and (3.73), (3.74) give the divergence estimate and (3.77)-(3.78) give the curl estimate.
3. (3.79) and (3.86) control the boundary part of v, (by - d)ny and its time derivative.

4. (4.50), (4.66), (4.70)-(4.72) provide control of the mixed tangential derivatives of v and (by - )iy and the Eulerian normal

projections of v. Note that these estimate depends on E,((S) on the RHS.
5. Finally, (5.36) provides the estimate for E,(<3).

Thus, by combining these estimates and then invoking (6.2), we obtain a Gronwall-type inequality:

T
E(T) = E0) s C(&)E(T) + C(lIvolla.s. llbollas) + P(EK(T))j; E(t)dt. (6.3)

We pick € > 0 suitably small such that the e-terms can be absorbed to LHS. Therefore, by the nonlinear Gronwall inequality in
Chapter 2 of Tao [53], we know there exists some time 7 > 0 independent of «, such that

sup E () <C. (6.4)

0<t<T

This concludes the proof for Proposition 3.1.

7 Existence and uniqueness for the linearized approximate system

Since we have obtained a uniform-in-« a priori energy estimate for the approximate x-problem (3.2), our next goal is to construct
a solution for this system for each fixed « > 0 that is sufficiently small. We shall assume that 0 < x < 1 is fixed throughout the
rest of this manuscript.

Let T > 0. We define

X ={ue L™0,T; H(Q)) : sup|lullas < 2(Ivollas + Ibollas) + 1}, (7.1)
[0,T]
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which is a closed subset of the space L (0, T; H*>(€)). In order to solve the approximate k-problem (3.2) for each fixed « > 0,
we study the following linearized problem whose fixed-point shall provide the desired solutions. Fix an arbitrary function
n = n(t,y) € X whose time derivative 77, € X, we denote by 4, g, J and 4 the associated quantities in Lagrangian coordinates.
Also, we define 77 by

~-Af=-Aj,  inQ,

= A on 0Q,

and let & := [on-, f = det[ﬁﬁ], /i = Jgé and 7 to be the associated smoothed quantities.
We aim to construct 7 and v that solve

on=v in[0,T] x Q;

O —=(bo-9)’n+V:q=0 in [0, 7] x Q;

div;v=0, divby=0 in[0,T] x Q: o)
v =by=0 on I'y;

g = —o \J3(Agh - R + k(1 - B)(v- AR onT;

(n,v) = (Id,vo) on {t = 0}xQ.

The rest of this section is devoted to showing the existence of (7, v) by first establishing the existence of the weak solution and
then boosting up their regularity. The construction of the solution for the nonlinear k-problem will be postponed until the next
section.

We will adapt the method developed in Coutand-Shkoller [11] to construct the weak solution for (7.2). In particular, we
study the penalized A-problem (7.4) whose solution (&3, w,, 1) can be obtained by the Galerkin’s approximation. Also, we
show that this solution converges to that of (7.2) when 4 — 0. We mention here that in [11], the authors were able to prove
wy € L*(0,T; H'(Q)), which allowed them to obtain a strong solution of the incompressible Euler equations after taking the
limit. However, the coupling between the velocity and magnetic field prevents us from employing this technique, as we cannot
boost the regularity of w, alone without considering (by - 9)¢,. Because of this, it appears that we have to first construct the
weak solution of (7.2) in L*(0, T; H™'(Q)) (Section 7.1), and then prove that this solution in fact has L*0,T; H(Q)) regularity
by employing a bootstrap argument (Subsection 7.2.2).

Remark. There is another reason that prevents us from improving the regularity of (w,, (bo - 0)¢,). Unlike w,, the energy
estimate (7.18) fails to give any control of the normal component of (by - 3)¢,; on the boundary. This is, however, required for
estimating (b - )&, in H'(Q).

7.1 The penalized problem

The goal of this subsection is to study the penalized version (of the divergence-free condition on the velocity) of the linearized
k-problem (7.2). In particular, for 0 < 1 < 1, let w,, &, be the solutions for (7.2) with

div/iw,l = —-Aqy, (7.3)

where ¢, is defined to be the penalized pressure. In this case, (7.2) becomes

061 = wa in[0,T]x Q;

Owi—(bo -0V &1+ V:q1=0 in [0, T] x Q;

div ;wy = —Aqa,  divhy =0 in[0,T] x Q; -
w} =by=0 on I'y;

A%g) = —a \Js(Aefy - )i + k(1 — A)(wy - )i®  onT;

(€r,wa) = (Id, vo) on {r = 0}xQ.

Since each penalized problem is indexed by A (recall « is fixed), we shall denote them by “A-problem” throughout the rest of
this section.
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7.1.1 Weak solution for the A-problem via Galerkin’s approximation

First of all, for each fixed A, we will solve the A-problem by the Galerkin approximation and obtain a weak solution. By
introducing a basis (ex);~, of L2(Q) N H'Y(Q), and considering the approximation

Enlt,) = D ZiDes(y), m =2, (7.5)
j=1
Wilt,Y) =0n(t,) = Y Zi(De ), (7.6)
k=1

one can form a system of ODE by multiplying a test vector field ¢ € span(ey, - - - , e;,) to the A-problem. Specifically, we have

[~ [ 10007510, + [ 1870,0,10, =0 .7
Q Q Q
We recall that (b - 0)|r is tangential to I'. Owing to this and the boundary condition of g,,, i.e.,
Aqy =~ V& (Agihn - 1) A% + k(1 = D)Ywy - DA, on T, (7.8)
where 7,, denotes the projection of 7 onto span(ey, - - - , e,,), We obtain, after integration by parts, that

A NCROEA RO RS Y R e R

1=0,1
- f qulA"*0y0) = & f( V&N - 1) - 7). (7.9)
Q r
Also, invoking the identity holds for the penalized pressure
div 2wy, = —Aqm, (7.10)

we obtain

A NCROEA TR RS Y R )

1=0,1
1 o o
+o fg (divw,)(divig) = o f (V&A1& - F). (7.11)
r

Let ¢ = ey, for each fixed k = 1,2, -+ ,m. Then (7.11) yields a system of ODE:

Zo+ Y, ( fg [(bo - D)e1[(bo - a)(ek)a])zj(r) k] ( fr d'e; - ) (ex - ﬁ))z;(w
j=1

=01 j=1

1 N 3 . ’ o o 2 2
+ 1 Z (L(leﬁe‘j)(leAzek)) Z(1) = aj;( ‘/§A§77m i) (ex - 1), (7.12)
=1
equipped with initial data

Z1(0) = (Id, er),  Z;(0) = (vo, ex). (7.13)

The standard ODE theory gives the the existence and uniqueness of &, and w, in [0, 7] for some 7, > 0. We remark here that
it is important to introduce the penalized pressure (7.10) because we are not able to formulate a system of ODE directly from
(7.9). This is because ¢ is not divergence-free in general.

Setting ¢ = wy, in (7.11), and since o] @Agﬁm - 7ilo < Ny, where Ny denotes a generic polynomial function such that

No = P(llvoll.s, l1bolla.s),
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then

1 T, T, .
2 2 . 2 20
Il + oo - Dl + f Idiv w2+ [ w7 < No.
0 0

Because N is independent of m, there is a subsequence, which is still indexed by m, satisfying

Wi =Wy, (bo - 0)ém — (bo - )y, in L0, Ty; LA(Q)),
div pw, = divewa, in L2(0, Ty; L*(Q)),
W 18— wy - i, in L*(0, Ty; H' (),

as m — oo, and the following estimate holds:

1 T, T, .
2 2 : 2 212
Iwally + (ko - D)éally + 7 f lldiv swallg + « lwa - nly < No.
0 0

In addition, since g,, = —4div;w,, and g4 = —1div;wy, (7.16) implies that

Gm = qa»  in L*(0,Ty; LA(Q)).

(7.14)

(7.15)
(7.16)
(7.17)

(7.18)

(7.19)

Let Y be a Banach space, and we denote its dual by Y’. For ¥ € H*(Q)’ and ® € H*(Q), the pairing between ¥ and ©
is denoted by (¥, ®),. It follows from the ODE defining w,,, that d,w, € L*(0,Ty; H %"(Q)’), where H** := H**° for some

O<ox 1. Letpe L0, Ty; H%JF(Q)) with ﬁ)T" ||<p||% L= 1 be a test vector field. Then there holds the identity:
3

T} T,!

Ta
@wa, @)z, = | Aqundivigdr, == | ((bo- D 9)3,y
0 0 0

1
2

T, Ta _ . .
vo [ [(Vamiine-i -« Y, [ [ on i,
o Jr SiJo Jr

Thanks to (7.18), we have

T T2
— | o0& @)z, = | ((Bo- D (bo- D)1, < No.
0 0

Also, invoking o] /&A1 - filo < Np and « fOT* lw, - 71> < N (inferred from (7.18)), we obtain

T, T,
The second line of the RHS of (7.20) < O'N()f ||t,0||21+ + kNy f ||t,0||§+ < (c+ Ny < Np.
0 2 0 2

and so
RHS of (7.20) < Nj.

Since 9w, € L*(0,Ty; H%J“(Q)'), (7.20) and (7.23) indicate
g1 € LXO. T H*(Q)),  and Vg, € L2(0, Ty H™ ().
Therefore, we have that

diwy — (bo - 061+ Vg1 =0, in L*0,T;; H'(Q)).

7.1.2 Thelimitas1 — 0

Because N is independent of A, the energy estimate (7.18) indicates that

Wall2 + 1I(bo - DR < No.
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Thus, there exists a A-independent T > 0, such that the sequences {w,} and {(b¢ - 9)¢,} admit converging subsequences (still
indexed by 1) as 4 — 0, i.e.,

wi—v, (by-0)é — (by-d)n, in L¥(0,T;L*(Q)). (7.26)
Furthermore, we must have
1 (T T .
Zj; l[div swalI§ + Kfo Iwa - 7ilf < No,
and thus
divywy = divzy =0, in L*(0,T; L*(Q)), (7.27)
wi-i—=v-i in L*0,T; H()). (7.28)

Moreover, the following energy estimate holds:

T
VIR + 11(bo - D)l + « f v i} < No. (7.29)
0

Our next goal is to show that (1, v) is indeed a wealf solution for (7.2). To achieve this, we need to show d,w, converges to
0,v, and (bg - 6)2{;‘ ) converges to (b - 6)277 in L2(0, T; Hz*(Q)"). In addition, we need to find g, in terms of the pressure function,
that belongs to L*0,T; H%Jr(Q)’). First, analogous to (7.20), we have

T T
1 . .
fo (6,w1,(p)%++f0 ;(dlvjwl,dlvﬁcp)%+

T
- [ - 070, (7.30)

T T o .
vo [0 [Eadeine i -x ) [ [Fon i
o Jr Sado Jr
Second, let
. .1
q:= /lllil(l)q,l = —%13(1) EleAEW,], (7.31)
where the limit |
_}1132) EdivAzw,l

exists in L2(0, T; H2*(Q)) owing to d,w,; € L*0, T; H2*(Q)), and the RHS of (7.30) < N, which is independent of 1. We
then have g € L2(0, T; H:*(Q)') and V:q € L*(0,T; H™'(Q)), analogous to (7.24). Invoking (7.26), this yields

dwy — 8, in LXO0,T; H*(Q)), (7.32)

as well as ;
lim f lowal® 5, < No. (7.33)
-0 Jo H2"(Qy

On the other hand, by employing similar arguments on

T T T
1 . .
fo (bo - 1 0);, = - fo O )y - fo Ldivjwn divi)y,

T o o T - o = o (734)
vo [0 [aadie i -« Y, [ [Fon-ide- .
0 Jr j=oa Y0 Jr
we have .
(bo - 0)*1 — (bo - 0)*n, in L*(0,T; H2*(Q)), (7.35)
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and

T
. VR
£%£ lI(bo - 9) §A||H%+(Q)/ < No. (7.36)

Lastly, we infer from (7.30), and the convergence of d,w,, (bg - 6)2§ 1, and g, that

T T T
f<6tv,<p>g++f<(bo'6)2n,90>;+—f<q,diV/§so>%+
0 0 0

T a a e (7.37)
=(rf f(«/EAgﬁ-ﬁxw-ﬁ)—KZf fa’(v-ﬁ)a’(so-ﬁ).
0o Jr =010 Jr
This implies that (1, v, g) verifies
dv—(by-0’n+Vq=0, and div;y=0, in L*(0,T;H'(Q)), (7.38)

and so we’ve shown that 7, v is indeed a weak solution for (7.2).

Remark. We find that it is easier to construct g directly by (7.31) instead of employing the representation argument used in
Section 8 of [11].

Finally, we consider the difference between (7.37) with v and v/, respectively, i.e.,

T T T r_ o = .
[faw-vron+ [ oara-mon e Y [0 [F-v)-ide-b
’ ’ =010 T (7.39)

T o
_f (g =4 A" dup)1, = 0.
0

where (17',V',¢q’) is assumed to be another solution with the initial data. The uniqueness of the weak solution follows from
setting ¢ = v —V'.

7.2 H'-Regularity estimates of v, (b, - )n and ¢
We shall show that v, (by - 9)n and ¢ are in fact L0, T; H(Q)). Let

!
e(t) := f Ills + IVIIT + ll(bo - Olly dt, ¢ €10, T1. (7.40)
0

Our goal is to show
1
e(T) < —=No, (7.41)
K

for some T = T(Nj, «). It suffices to consider fOT [Ivl[3 and fOT ll(bo - H)nll3 only since

T T t
< [ (il [ i an) .
0 0 0

Thanks to Lemma 2.5(2), it suffices for us to control

T T T
: 2 2 312
f lldiv vI2, f llcurl vi2, f Ve,
0 0 0

T T T
f lIdiv (bo - A3, f llcurl (bg - A)li3, f (bo - I3 s,
0 0 0

in order to control [ V| and [ [I(bo - &)l

as well as
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7.2.1 Control of the divergence and curl

The estimates we need here are essentially the same as those in Section 3.2 but without considering the time differentiated

quantities. First, since (3.18) in Lemma 3.3 remains true with A replaced by j, then

T T T
f lIdiv I3 < f (A" = 8", v,k < & f llovls < ee(T).
0 0 0

Second, because div j(bo - 0)n verifies the evolution equation

Brdiv ;((bo - ) = [div . (bo - D)y + (BAF), (bo - D).

T t
f f IRHS of (7.43)|3 dt
0 0

in order to control fOT [|div ﬁ((bo . 6)77)||(2). We have

T t o T ! °
f f 10,443, ((bo - DY)Ilg dt < f f 10, Al 10((bo - D))Ilg dt
0 0 0 0

So, one needs to bound

T f
< f f Nollo((bo - OMIE di < T Noe(T).
0 0

Moreover, by writing [div , (bo - Ny = Ae*‘”((aﬂbo) - Mg — ((by - 6)j”“)6yva, one gets

T t T t
f f lILdiv £ (bo - D)IVIIG < f f Nollovl3 dt < T Noe(T).
0 0 0 0

T
fo Idiv ;((bo - OPIE < TNoe(T).

Thus,

In addition, since
lldiv (bo - D)5 < IIdiv £ (bo - O)llg + 1A = 8117 110(bo - D)l
invoking (3.18), we conclude that
T
f lIdiv (bo - Il < ee(T) + T Noe(T).
0

Third, the evolution equation satisfied by curl ;v and curl :(bo - O)n reads

di(curlzv)q = (b - O)curl z((bo - D)o = [curly, (bo - )](bo - O))e + curl ,; 2va,

and this yields the following L?(0, T; L*(Q)) energy identity after testing with curl ;v and integrating in space and time:

f f
llcurlgvi[g + lleurl; (bo - Dnlly SNo + fo (o - ), curl;1(bo - Al + fo lleurl , cvIlg

r r
+ f IL(bo - ), curl £1(bo - DIVIIG + f llcurl ,, 2(bo - D).
0 0 !

Integrating in time one more time, we achieve

T T t
" (teurtot oo - i) SN+ [ [ (b0 - 00curt o - Ol + eur , i)

T !
t [ [ (00 0)curti - aiG + eurt g bo - i)
0 0
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(7.47)
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It suffices to control the first two terms on the RHS since the third and fourth terms can then be controlled by an analogous
method with the same bound.
For the first term on the RHS, since one can express

[(bo - 9), curl 1(bo - A)la = €asy((bo - DA — eupy AP (@0 - D)

and so .
f f I[(bo - ), curl1(bo - D)mallo dt < T Noe(T). (7.50)
0o Jo

Similarly,
Il(bo - 8), curl¢](bo - Dvallo < T Noe(T). (7.51)

In addition, for the second term, writing curl oAV = enﬁy(a,fivﬁ)avvy, one obtains
T ot
f f [|curl a/i"”‘) dt < T Nye(T). (7.52)
0 Jo !

Summing these up, we obtain
T t
fo j; (eurd ¢vII3 + llcurl (b - )nllg) dr < T Noe(T). (7.53)

7.2.2 Control of the boundary terms

First we state some supplementary results which will come in handy when treating the boundary estimates. The following
inequality is a direct consequence of (2.10). Let f € H%3(AQ) and g be a smooth function. Then

Ifglos < 1floslglis. (7.54)

Also, we remark here that (3.20), (3.21) remain true by replacing 7 by 7.
Control of fOT |v3|%.5: It suffices to control fOT [v- ioilg_s since

T T . T ,
f Wlos < f v filg s + f V- G- NEs, (7.55)
0 0 0

where, after invoking (7.54) and the trace lemma, we have
T o T o
f V- (i = N)lgs < f Vsl = NI, < ee(T). (7.56)
0 0

T 2 . .
Moreover, the control of fo v - nl(z)_5 is a direct consequence of (7.29),

T T
. 1 o N
f |v-ﬁ|gs~—f v-af < 22, (7.57)
0 i K Jo K
Control of fOT [(bo - O3 ¢
Similar to the control fOT |v3|%_5, it suffices to bound fOT [(bo - O)(np - ioi)lg_5 only.

Since (bg - )l = by - d and (7 - W)= = O |i—o = 0, we have

T
(by - O)(n- 1) = j; di(bo - O)(n - 1) dr. (7.58)

Hence,

2 T ot .
ars [ [ oo 00 i sar
0 0

0.5

fo By - B)n - F)

T . T
f ((bo - D) - I} 5 < f
0 0
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by Jensen’s inequality. Here, the term on the RHS is equal to
T . T .
[ [ wen-o0igsars [ [ oo aivis =1+ 11
0o Jo 0o Jo

Since 0n = Q(an)gv 71, invoking (7.54) and the trace lemma, we have 11 < T Nye(T). Next, invoking (7.54), we have

T !
212
< lbalos [ [ i
0 0

By employing the boundary condition we obtain the following elliptic equation verified by v-2on T’
(7.59)

%((v-rst) + \/éq + U\/gAgnﬁ)

AW - it) =

By the virtual of the elliptic estimate, we have
(7.60)

[ [ S [ [ v+ 1ol + ot VEnrR )

where C denotes a generic constant. It is clear that the third term can be controlled by 7T N, and the first term is bounded by

T Ny in view of (7.57). Therefore,
(7.61)

f flv n|2+_ TN0+—TN0+ f fN0|q|0+dt

Now, we impose the bootstrap assumption
N
f lgie,. <2 (7.62
HI'Q) © K
In light of this and the trace lemma, the second term on the RHS of (7.61) is bounded by -7 N,. Hence
f f v, < ( ) TNy. (7.63)
(7.64)

In summary, we have
1 1
e(T) < No + (— + )TN() +ee(T) + T Nye(T),

and this implies (7.41) if T is chosen sufficiently small, say T mln(v, K7)
S H? , = 1, and integrate in time, to get

Closing the bootstrap argument: We test (7.2) with ¢ € L*(0, T; Hz(Q)), |l¢l|1
f O )y f (bo- 9.0, f (g.divie)y.
(7.65)

_o-f f(ngn n)(cp n)—KZf f&l(v n)(?l((p n)

1=0,1

The first term on the RHS is < 0Ny < Ny. For the second term on the RHS, we integrate d by parts and obtain

» f f 3 wdp- i) =« f f Fw- e B
1=0,1,2

1=0.1
SKN()f v - il
0

52



It suffices to control « fOT v - Filas. Invoking (7.59) and we have, by the elliptic estimate, that

T T T T
« f vy < f - o + f |\ JBdlos + f o1 VEA o (7.66)
0 0 0 0

The third term is bounded by T Ny. We square the second term and then apply Jensen’s inequality to obtain

T 2 T
( | |\/§q|0+) <TNo [ I, < NG 7.67)
0 0 2

where the last inequality follows from 7' < k* < «, and so

T
| 1ea. < o (7.68)
0

Similarly,
oY o, T
(f v ﬁ|0+) < Tf v-iill s, < —No, (7.69)
0 0 N K
after invoking (7.57), and so
T
f v - iilos < No. (7.70)
0
Summing up, the RHS of (7.65) is bounded by Ny. Therefore, by employing arguments parallel to (7.30)-(7.36), we have
T T
lim ( f I0vIP .  + f litbo - 9nlE . ) < No. (7.71)
-0\ Jo HZ QY 0 H2™(Qy
Moreover, by employing the Lagrange multiplier lemma (i.e., [11, Lemma 7.4]), (7.65) implies that
T
[ a2, < Mo a7
0 H2(Q)

which improves the bootstrap assumption (7.62) whenever « is fixed to be sufficiently small.

Remark. We need to modify the Lagrange multiplier lemma slightly. Since we need our g € H %J'(Q), we need to consider the
linear functional {(div 2 q)il . defined on X(¢), where X(7) = {¢ : div P E H %"(Q)'}.

7.2.3 The strong solution for the linearized equations

Since v, (b - O)n € L*(0,T; H'(Q)) and so d,v, (by - d)*n € L*0,T;L*(Q)), we can now adapt Lemma 2.6 to bound ¢ in
L*(0,T; H'(Q)).

Therefore, we have obtained a strong solution for the linearized x-problem (7.2). This allows us to further boost the
regularity of the linearized solution to H*>(Q) via classical methods in the upcoming section. Then we can achieve a solution
for the nonlinear x-problem by approximating it by a sequence of linearized solutions.

8 Existence for the nonlinear approximate x-problem

We aim to construct a solution for the nonlinear x-problem for fixed 0 < « < 1. Let (17(0), V(o)) = (Id, 0). For each m > 0, Let
(Momy» Vomy qemy) be the solution for

OMmy) = Vomy in [0, T] % Q;

OVamy = (bo - Y1y + Vi, domy = 0 in [0, 7] x Q;

div 4, Ve =0, divbhy=0 in [0, T] x Q; a1
V?m) = bg =0 onIy; '
A?,Z,Iﬂ(m) = =0 \8m-1(Dg(y m-1) 'ﬁ(mfl))ﬁgn,l) + k(1 = A) (Vi) .ﬁ(m,l))ﬁ&H) onTl; _

Momys vomy) = (Id, vo) on {t = 0}xQ.

Here, the (linearized) coefficients, e.g., A(W,_ 1)> 8am—1)> Aign—1y are determined by (7gn-1), Viu-1))-
The goal is to prove that the sequence {(7¢n), Vin))Im=0 strongly converges (and so does g(n)), and the limit verifies the
nonlinear approximate k-problem. This is done by applying Picard’s iteration.
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8.1 A priori estimate of the linearized approximate problem

We first establish the H*-energy estimate for (17¢m, V(m)), and then this estimate can be carried over to the difference between
two successive systems (8.1) which yields the convergence of (1), Vim)) in H> as m — co. Let m > 1 be fixed and assume the
solutions (17¢), v()) are known for all / < m. For the sake of clean notations, we will denote (17¢x), Vom)) by (17, v) and (-1, Vim-1))

by (7, v) if no confusion is raised. Let A(W,_ = ﬁ, 8m=1y := &, fim-1) := #. Then (8.1) reduces exactly to the linearized system
(7.2).
Proposition 8.1. For each fixed « > 0, there exists some T, > 0 such that the solution (7, v) for (7.2) satisfies

sup &(f) < C, (8.2)

0<t<T,

where C is a constant depends on ||vo|la.s, ||Polla.s, [vols, provided that
I (0) = U35 + 1Id = A@Dlls5 + 1d = ATA@D)|13.5 < &. (8.3)
holds for all 7 € [0, T]. Here the energy functional & of (7.2) is defined to be
& = V(0 + X, (8.4)

where ) 5 5
EV (@) 1= lnllys + M5 + 1013 5 + (|67, 5 + (|67 5 + |67l

1o - Ol 5 + 10,bo - D)l + ||62o - D)nl[s 5 + |97 o - ;< + |63 o - D)

@ K (T e e g 2
£2() :=;j; o - A dt+/<(j; ||a,v||1_5+f0 ||6,(b0-6)77||1_5).

Thanks to the Gronwall’s inequality, (8.2) is a direct consequence of
T
sup &(1) St Cllvollas, lIbollas, Ivols) + C(g) sup &(7) + ( sup P) P, (8.5)
0</<T, 0<1<T, 0<1<T, 0
where P = P(E(1), |[Vllas, [(bo - A)7lla5) (after a slight abuse of notations). Also, since « is fixed, we will drop the subscript « and
denote T, = T for the sake of clean notations. Similar to (3.13) we shall assume that sup,,.r E(t) = &), and this allows us
to drop sup sup,., in (8.5). In other words, we only need to show

T
E(T) < Po + CET) + P f P, 8.6)
0

where Py = P(E(0), [lg(0)|la.s, [|g:(0)ll3.5, l1g:(0)ll2.5). Also, it suffices to put Py on the RHS of (8.6) since (6.2) allows us to
control Py by C.

Remark. It can be seen that &(f) constructed above is significantly simpler than E,(f) given in (3.9). The main reason is that
the energy estimate for (8.4) does not have to be uniform in . Instead, the right side of (8.6) may depend on x~'. Besides, the
surface tension term —o /g(Ag) - 72)ii now serves as a given source term in the boundary condition. Based on these two facts,
we can significantly simplify the following steps, compared with the nonlinear estimates in Section 4 — Section 6.

1. Elliptic estimates for the boundary normal traces. Unlike section 3.3, we now regard the boundary condition of (7.2)
as an elliptic equation of v - 71

K(V'I%)ZV'}%!—K1(\/§q+0'\/§A§ﬁ-i’il).

Since the surface tension term is a given fixed-term here, one can directly control v-i (and its time derivatives) via elliptic
estimates. Therefore, we now only need to perform the tangential energy estimate of full-time derivatives. We refer to
Subsection 8.1.1 for the details.

2. Removing extra (tangential) spatial derivatives via the mollifier properties. In light of (2.20), we can absorb addi-
tional tangential spatial derivatives when necessary. This will allow us to greatly simplify most of the estimates including
the surface tension terms, artificial viscosity terms, and the error terms involving N — # on the boundary. Compared to
Eﬁ”, E,(<3) in (3.9), much fewer k-weighed higher-order terms are needed here in E® () to close the energy estimates. In
addition to that, we do not need to establish the improved boundary regularity as in Lemma 3.5.
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We will mainly focus on the simplified parts as mentioned above in the following calculations. The div-curl estimates and the
elliptic estimates for g are essentially identical to Section 3.1, so we will only outline them in Subsection 8.1.3 but without
repeating the detailed proof.

8.1.1 Boundary estimates
This subsection is devoted to the control of boundary normal traces |0*v?|4_; and |0%(bg - O)n’|4—x for k = 0,1,2,3.

Lemma 8.2. Fork =0,1, 2,3, we have
T
105V 3, St Po + C@ET) + P f P, (8.7)
0

T
105 (bo - OP1_ St Po + C@ET) + P f P. (8.8)

0
Note that we no longer require the energy bound to be x-independent. Hence, we are able to use (2.20) to absorb extra

tangential spatial derivatives on the smoothed variables, i.e., variables with ~ on top. We can absorb at most two tangential
spatial derivatives since * = A2- on the boundary. Recall that the boundary condition in the linearized equations reads

\/é;rq = —o \8A - i+ k(1 = A)(v - ). (8.9)
This can be converted to an elliptic equation satisfied by v - /i, i.e.,
K(v-;%):v%-x1(\/§q+a\/§A§f7.%). (8.10)
Now, invoking the standard elliptic estimate and (2.6), we get

\/gq

[v- Igﬂi <lv- ﬁl% +x7! [

2
+ P10, |azﬁ|m>|ﬁ|i]
2

, (8.11)
<1 Po + f P,
0
where the used the trace lemma and (3.36) in the second inequality.
For the magnetic field, since (bg - 9) = b(/)@j on I" and hence (bg - 9)(17 - #)|i—o = 0. Thus,
o T o T o T o
(bo- D) #) = f 0((bo - 0y - 7)) = f (bo - )(v-#) + f (bo - )1 - D). (8.12)
0 0 0
Since 8,it = =gV - 1Ay = QAR)AV - i, and invoking (2.20) and the Jensen’s inequality, we have
T P T . T
‘f (bo - 9)(n- Oin)| < Tf |(bo - 0)( - )]} S f P (8.13)
0 4 0 0

Here, we need (2.20) in order to control the leading order term generated when 54(190 - 0) fall on v (which is part of amn), ie.,

T T T
f Ol 10l )I(bo - D)V < f bol3 QL , 107l )03 S f bol2 Q(ijl = |07l = )IP13.
0 0 0

T o
UO (bo- D))

and the RHS can be controlled by studying the elliptic equation satisfied by (bg - 8)(v - 7). Taking (b - d) on (8.10) and we get

In addition,

2 T
<7 f b0 - D) - I, (8.14)
4 0

Albo - 0)(v - 1) = [A, (by - ) - 1) + (bo - D)(v - 71) = ! ((bo - 0)( \/éq) + by - O)(VEAH - n)) (8.15)
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then the elliptic estimate implies

d . T . —- 2 T

f I(bo - ) - W) St Pllbola) f [|v AP+ \/éq + o P(Ifl o)l (bo - a)ﬁli] S f P. (8.16)

0 0 3 0

Thus,
. T
(b - ) D < f P, 8.17)
0

We can obtain the bounds for [v*[5 and |(bo - 8)n’[3 from (8.11) and (8.17), respectively. Indeed, we have
VI3 <lv-dilf + v - (N =), (8.18)
(bo - O[3 <I(bo - 8)(7 - W) + |(bo - D) - (N — )3 (8.19)

Since

o T o T ——o. _"<o o
N—ﬁz—f 6,71=f (/)05 - 7,
0 0

invoking (2.20) and the proof of (3.21) , we have
. T
IN = nls S f P. (8.20)
0
Therefore,
9 9 T
V- (N = )3 +1(bo - D)1 - (N = )l S, Pf P. (8.21)
0
Now, we can take time derivative 9, in (8.10) to get the elliptic equation of d,(v - /1) on the boundary, i.e.,

AD,(v-11) =0,(v - 71) — k" (a,( 3q) + 00, (e - ;%)) . (8.22)

Then standard elliptic estimate gives

2

10:(v - D) S 10,(v - AP + ot o P(108 1, [0° |, 1091 IPI3

T
Se! 500+f P.
0

This estimate implies the estimate for |6tv3|§ by writing |03 < 18,(v - 121)|§ +10,(v- (N - ioi))lg and then adapting the arguments
from (8.18)-(8.21). Moreover, in light of the estimate for |v3|i, we have

8, (/i33q)

(8.23)

T
10:(bo - 9’13 = I(bo - OWV’; < Pbol)V[; St Po + P f P. (8.24)
0
Similarly, by taking two time derivatives to (8.10), we can control |6,2(v . ioi)lz by the standard elliptic estimate, i.e.,

T
07(v - W3 S Po + f P, (8.25)
0

and this yields
T
102V St Po + P f P. (8.26)
0

In addition to this, |87 (bo - d)n’|3 reduces to |9,v*[3, whose bound is given above. Also, in the case when there are three time
derivatives, |8; (b - )1’ |7 reduces to |§2v?|3, which is just (8.26).
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Finally, |8;v*|? can be controlled with the help &?. We can make use of the k-weighted higher-order terms to directly
control the time-integrated terms on the boundary. Specifically, by writing [33v3|; < Py + fOT |0v3]1, we have

2

T T
103V < Po + ( f |a;‘v3|1) <P+ T f 032, (8.27)
0 0

T T T
T f VR <T f lofv i +T f 0}y - (N = i) (8.28)
0 0 0

Here, the second term on the RHS is < k™! TC(e) fOT I \//?6?\/”%5 whereas the first term is < ' T fOT | \/E@fv . ioilf. Therefore, by
choosing T sufficiently small, we have

where

T
3V St Po + CEET) + P f P. (8.29)
0

8.1.2 Tangential estimate with four time derivatives

We still need to control
183vI5, 1187 (bo - D)l

in order to finish the control of &. In fact, we only need to control ||6fv||% since ||6f(b0 . 6)77||S reduces to ||6?v||f which has been
done previously.
Now we compute the L>-estimate of d}v and 87(by - d)n. Invoking (7.2) and integrating (b, - d) by parts, we get

1 (d 2 T .
- f = f 67v1* + |07 (bo - )| dydt = — f f v, 0HAFd,q) dy dt
Q
f f AP 0,q dy di f f e 64 A”"]ﬁ,lqdydt

T _— , T i S T 3004 . (8.30)
:f fAW(?t 0,va0;qdy dt—f f@t VoA ;qdS dt+f 0/ v, A”%0q dS dt +1,
0 Jo 0 Jr 0 Jr,

=0

T 2 o o
f f 64(d1V ) @ qdydi+ f f [Aﬂa,a;‘]a,,va Otqdydi+iz + .
Q— 0 Q
i

Here, /, and [, can be straightforwardly controlled by fOT P. We start to analyze the boundary integral 5.

T 2 T o o
- f f 0/vaA*8lq = - f f \/§<6i‘v~ﬁ><a:‘q>
0 r 0 r
T o o o 1 o
o f f Vi@t R (B A B (8.31)
0 r
T
—k f f @(a?v-ﬁ)a;‘(g%—f(l—A)(v-i‘%)) = I + Ipo.
0 r

Invoking the identity (2.6), we have

T
o =0 f f i@ty Hor (e 2750 - )

_o-f f\[(a v - 1)d; (\/7 I848,13:8 7,807 - ) (8.32)

=ip11 + Ip12.
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Since ,
Ion & Uf f(ﬁfv R)(\2878,0;037 - )
o Jr

we integrate 0 by parts and get
° L T — o L — o
Ipi1 = - O'f f(ﬁ,ﬁfv -n)( \/Eé”&ﬁ?f/ - 1)
0o Jr

T T T
S1€ f | Va7 5 + f P < e&(T) + f P,
0 0 0

and / 12 can be treated in the same fashion.
Next we study /p,. We have

T T
s £k f f @ - DAY - F) + & f f O - A - 0'F1) = gy + Ipoa, (8.33)
0 r 0 r

o . .. T 2 . . = . .
where Igy; contributes to the positive energy term fo |03 - nlf after integrating 0 by parts and moving the resulting term to the
LHS. In addition, since 0% = Q(817)0d>V - 11+ lower-order terms,

. L
Ipy» =

T —_ o —— o o o

-k f f (00 - W)(v - QO - i)
0 r
T T — _ .
se [ obik s+ [ b QU@ 0}
0 0
T L T
ScieB(T)+ [ V- QB0 < s+ [ . (8.34)
0 0

where we used (2.20) in the second to the last inequality to control [?3;V[? < «~'|00; VI3

8.1.3 Interior estimates

To control ||6’fv||42t_57k and ||6’,‘(b0 . 6)’7”421.571& k=0,1,2,3, we only need to apply the div-curl estimate:

ko2 kioo2 k 2 k312
107 VIly s_p SN0 divvIl5 s, + 107 curl vII5 s_, + 105V 5 (8.35)

16%(bo - I3 5, <N0Xdiv (bo - AmIl3 5, + 0k curl (bo - A3 5, + 105 (bo - D' I3. (8.36)

The boundary terms [9fv*|3_, and [05(bo - d)n’[;_, are treated in Lemma 8.2. The estimates for the divergence and curl of v
and (bg - 0)n, together with their time derivatives are identical to those in Section 3.2, and so we shall not repeat the proofs.
Furthermore, the estimate for the top order interior term in &P je.,

T T T
( f 83vII; 5 + f 167 (bo - D)l 5) < Po + C(E)ET) + P f P (8.37)
0 0 0

is identical to what has been done in Section 5.
We also need the estimates for the interior Sobolev norms of the pressure g. g satisfies the following elliptic system

~Aiq = 0AR Gy + divybo - 0P inQ,
g_]% = (6/13 _ AH&A?a)aﬂq _ A3a6rva + A’3a(b0 . 6)277a onT, (8.38)
3—1‘6 =0 on .

The elliptic estimates are identical to (3.36) in Section 3.1, so we omit the details here. This concludes the proof of Proposition
8.1.
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8.2 The Picard iteration

We now prove that the sequence {(17(n), Von)» §(m))}men+ has a strongly convergent subsequence. We define [ flim) 1= fun+1) = fim)
for any function f and then ([57]m), [V]m), [qlom)) satisfies the following system

0inlemy = [V inQ,
OVl = (bo - Y [y + Vi, (@) = =Viay, gy INQ,
div Ao [Vl = —div [Alry V) in Q, (8.39)
(@l = k(1= DYV Fim) + Frmy onT,

([7)amys [VIampli=0 = (0, 0).

where

Bmy =k(1 = A)Vmy * [l n-1))
= (VB &y Woa 0i0 omaiily) = \Bm 10801y Wi 11000 147 1))

and H(m) = ﬁ(m) ® }”\l(m).
We also define the energy functional of ([7]¢n), [VIgm), [¢]m)) to be

[Elm = [E]},) + [E]), (8.40)

where
[E1)(T) = ||[7] <m>||35 + vl <m>||35 + [[aiv] (m)st Al <m>||1 s+ a7t V]<m>||o
2

+ o - e + 810 - Dmans 5 + 187 o - Dol [} 5 + 167 o - Dl (8.41)
T
[Elo)(T) = f 10 Ve« i dt+K f 197 Va7 5 + f ||a?<bo-a>[n]<m>||%_5).
0
8.2.1 The div-curl estimates
Fork=0,1,2
105 VT amyll3.5- SN VImllo + lIdiv O [VIemlls—k + llcurl 3 [vmlla.s—k + 108 [VIom) - Nla—ks (8.42)
165 (bo - D) [Mlemyll3.5-k SN0*(Bo - D) Mlemyllo + lIdiv 85(bo - D) mlmlla.5-x (8.43)

+ lleurl 8% (bo - A)lumll2s—k + 105 (bo - )My - Nla—s.

Again, each part in the div-curl estimates should follow in the same way as in Section 3.2 so we omit the proof. For example,
one can take curl ;- in the equation of [v].) to get the evolution equation of the curl:

dy(curl 5, [Vlan) = (bo - 0) (curl 5, (bo - O)[nlw)
= —curl 4, (Vg dom) — €pyAL ulvlunyy — [(bo - 3). curl 5, 1((bo - )[17lm)-

Then standard energy estimates give the control of curl part. One can control the divergence of [v] viadiv 145, v, and control

the divergence of (b - 9)[n] in the same way as in Section 3.2. To control the interior terms in [8](m), we also need a similar
div-curl decomposition for the x-weighted terms and follow the method in Section 5. Then we have

T
f 102 [V |12 5 + fo ||a?<bo-a>[n]<m>||§5)

T
<Po + &[E)m)(T) + P([E)m)(T), 8(m),(m71)(T))f0 P([E]m),m-1)(0), Emy,in-1) (D)) d. (8.44)
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8.2.2 Elliptic estimates of pressure

The quantity [g],) verifies the elliptic equation equipped with the Neumann boundary condition:

Agoolalom = =div 5, (Vg dow = (bo - 0 [Mlom) + AL B[V Iima — 0(div (i, , Viw)» in Q, (8.45)
A Al 0 Ouldlm = A3 (=Y iz dom = 0ilVIem + (bo - 0)*[M]em)as o0 T. (8.46)

Compared to the estimates in Section 3.1, we need to control the contribution of div [/;]w)(V[A]Wl)q(m)) on the RHS of (8.45), as
well as the contribution of A?Z)V[A](/,,,I)Q(m) on the RHS of (8.45), when estimating |[[¢]ll3 5, but this is straightforward.

Idiv 5, (Vi o de)lis S PAUATm-bll2s, gz 5. 1A ll2s), (8.47)
In addition to this, for the boundary contribution, we have
AN - Viay doml2 S PUATm-vll25, g5, 1Awm)l2.5)- (8.48)

The quantities [|[0;qlom)ll2.5, ||[6t2q](m)||1,5 and ||[6r3q](m)||0 are treated analogously by invoking the arguments in Section 3.1.

8.2.3 Boundary estimates

The boundary estimates are parallel to those in Section 8.1.1. Analogous to (8.10), we have
KAV~ o) = KV T + iy = (@l (8.49)
Then using the boundary elliptic estimates, we get
[V1omy - gmyl3 St 1vImy - iyt + Thaml + gl omlli.s

<IVom - il + M@l s + Mo l3 PAAF n-1)s 8 7l in-1) 15 [07m-1)2) (8.50)

T
<Po + P(Eumy,mn-1)(T)) f P([Eimy,im—-1)(D), Emy,em-1)(1)) dt.
0

As for the magnetic field, we use the fact that (bg - 9) = béai on T to get

T
(bo - D1y - figmy = 0 + f (bo - D)[WVim) - figmy + (bo - D) m) - Orfimy.-
0

Similarly as in Section 8.1.1, one can directly control the H*(I')-norm of the second term. Then the first term can be controlled
by using elliptic estimates in (by - d)-differentiated elliptic equation (8.49). We omit the detailed proof because there is no
essential difference from the arguments in Section 8.1.1.

T
1(bo - DMlim  igm)lz Sie fo P([E]m)(1), Emy (1)) dt. (8.51)

Taking one time derivative, we can similarly control the boundary norm of 9:[v],y and d:(bo - 9)[n]m). We skip the details.

T
|0:01am) - oy B1(bo - )Ml |y S Po + PEmy.im—1)(T)) j(: P([E)im),m-1)(1) Emy m-1)(1)) dt. (8.52)

2

om) and Sobolev trace lemma

For the H!(I')-norm of 6,2[\/](,”) and af(bo -0)[n]my, one can use the k-weighted interior terms in [E]
to get the control
|67 [VTy> 07 (b - D)1y |, < (107 10Nom» 87 (Bo - )l

T
<Po + f 93071 6my - iy 0 B0 - D) |, 5
0 (8.53)

T
<Py + \/; [ V& Wiy Vi (b0 - D 205

<1 Po + NTP(EIZ)(T)).
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Finally, we need to control the difference between X - N and X - 7i,;), which should be done in the same way as (8.18)-(8.20), so
we do not repeat the calculations. For k = 0, 1, we have for X = [V, (Do - D)[17]m)

T
105X = OF (X - figm)la—k S f P([E]my» Eamy,om-n(D)) dt. (8.54)
0
Combining (8.50)-(8.54), we get the boundary estimates as
2 T
DB (bo - D], St Po + PEamm1y(T) fo P([Em).m=1)(D): Emy,m-1y (1)) dlt. (8.55)
k=0

8.2.4 Estimates of full-time derivatives

Now it remains to control the L?>-norm of full time derivatives. By replacing 4} in Section 8.1.2 by 87, we can do analogous
computation to control ||6,3 [VImllo and ||6r3 (bo-0) 1w llo- The k-weighted boundary terms in [E] Erzn)) are produced in the analogues
of (8.31). The only difference is that we should control the extra contribution (under time integral) of Vi4; | g in the interior
and the o-coefficient part in the term /4, on the boundary. These quantities can all be directly controlled

||3,3V[A]<m,,)CI(m)||o S P(||[V](m—1),3r[V](m—1),(9,2[V](m—1)||2, 187 g1 ||3,261(m),(9r61(m),61(m)||2)-

10 hmy orlo < P(|5t2V(m),(m71)|2, |a77(m),(m—l),av(m),(m—l),aatv(m),(m—l)|L°")-

Therefore, one can get

T
K
17 V1 onl5 + 1197 (o - D)lorlemllg + — f 16301y - i}
0 (8.56)

T
<Py + f PUE (0, Eimom (D) di
0

8.3 Well-posedness of the nonlinear approximate problem
We conclude this section with the following proposition.

Proposition 8.3 (Local well-posedness of the nonlinear x-approximation problem). For each fixed x > 0, there exists T, > 0
such that the nonlinear x-approximation problem (3.2) has a unique strong solution (7(x), v(x), g(x)) in [0, T;] that satisfies

sup &) <C (8.57)

0<1<T!
where & (1) = 8V (1) + ¥ (1)
EY (1) 1= B 5 + VI s + 19012 5 + |02 5 + |31 5 + [lav];

+ 1o - I 5 + 10,0 - Dl 5 + (|07 o - Dl 5 + 6300 - ] s + 1107 o - (8.58)

@y K (T o S T 2
& (t)::;j; |o7v -, dt+,<(f0 ||6,v||1_5+f0 ||a,(b0-a)n||1_5).

Proof. Summarizing (8.42)-(8.44), (8.55)-(8.56), we can get the following inequality
[Elem(T) Sir Po + e[ENT) + TP([E)my(T))

T
+ P([Eim)(T), Emy,(m-1)(T)) f P([E]m),im—-1)(®), Emy, (m-1) (D).
0
By Gronwall-type inequality in Tao [53] and the conclusion of Proposition 8.1, there exists some 7, > 0, such that V¢ € [0, 7]

1
[8](n1)(t) < Z[S](mfl)(t),

which implies [E]n(H) < 47"Py. Let m — oo, we know the sequence {(17¢n), Vin)> gom)} must strongly converge. The strong
limit is denoted by (1(x), v(x), g(x)) which exactly solves the nonlinear xk-approximation problem (3.2). By taking m — oo in
the energy of linearized equation (7.2), one can also get the energy estimates. O
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9 Local well-posedness

9.1 Uniqueness and well-posedness

Combining the conclusions of Proposition 3.1 and Propostion 8.3 and letting k — 0., we actually prove that there exists some
time 7’ > 0 (only depends on the initial data), such that the original system (1.13) has solution (7, v, ¢) satisfying the energy
estimates

sup E(f) <C,

0<t<T

where C = C(||vollas, l1Pollas, [vols), and the energy functional E is defined to be

E() :=lylE 5 + i (@ 0ie0 - am)[_ +(@v.0tceo- o)
= ‘ ©.1)

+ ,23:1 ]5 (n53—fa{v)'z + '5(1153(190 : a)n)'z ,

To establish the local well-posedness, it remains to prove the uniqueness. Let {(#7n), Vinys §im))Im=1,2 be two solutions of
(1.13) satisfying the energy estimates. Then we define

[7] := nay = ney, V] :=vay — v, 9] == qa) — q@), [a] == aqy — ap).

Then ([7], [v], [¢]) satisfies the following system

Oinl = [v] in[0,T] x Q;
[v] = (bo - 9*[n] + Vay, [4] = ~Viaqe) in [0, 77 x ©;
div am[v] = —div gv(2), in [0,T] x Q;
divbyg =0 in [0,T] x Q; 9.2)
V]1=b=0 onTy; :
[qlng) = —og\[l0d7 0] = o B Ane — onT;
b?) =0 onT,
([, vD = (0,0) on {t = 0}xQ.
Define , ,
(1) =I5 + VIR s + 10 1E s + |67 0v1]], 5 + [[o7 v
+1(bo - NI 5 + 110, (bo - DIIB.5 + |92y - D[ 5 + 107 o - D), 93)
— 2 2 — — 2 — = 2 — = 2
+ |a (11163 [v])10 + 'a (H<1)aa,[v])|0 + |a (D v)'o + |a(n<1)a (bo - a)n)'o .

Then we can mimic the proof in Section 3 to get the energy estimates of [E]

T
[EXT) < P(LEXT), E(T))f P([E1(0), E(n)) d1,
0
which together with Gronwall-type inequality yields
ar € [0,T’], [E](®) =0 VYre[0,T]

which establishes the local well-posedness of (1.13) in [0, T].

9.2 Regularity of initial data and free surface

Finally, we need to prove that the norms of time derivatives can be controlled by |[vollas, [1boll4.s and |vg|s. This part is exactly
the same as in Section 6.1 or [38, Section 7.1]. Finally, the boundary condition of (1.13) gives us an elliptic equation of 7 on T"

-0 VEA" = a*y.
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By using elliptic estimates in Dong-Kim [16] (see also [13, Proposition 3.4]), one has

nls < 1a**qls < (A0 x dngls < P(inllas)liglls.s.

Similarly, taking a time derivative gives us the elliptic equation of v*

V3887V = Vg TS0 — 8i( V38" — 8i( Vg8 TE)dun"
- 0"1(6,a3"q + a3“8,q),

and thus by the similar argument in [38, Section 5.1] we get

v(®ls < P(E()) in[0,T].

This concludes the proof of Theorem 1.2.
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