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LOCAL WELL-POSEDNESS OF A SYSTEM DESCRIBING

LASER-PLASMA INTERACTIONS

SEBASTIAN HERR, ISAO KATO, SHINYA KINOSHITA, AND MARTIN SPITZ

Abstract. A degenerate Zakharov system arises as a model for the descrip-
tion of laser-plasma interactions. It is a coupled system of a Schrödinger and
a wave equation with a non-dispersive direction. In this paper, a new local
well-posedness result for rough initial data is established. The proof is based
on an efficient use of local smoothing and maximal function norms.

1. Introduction

In view of numerous applications, there is strong interest in plasma dynamics
and laser-plasma interactions. Ideally, one wants to use numerical simulations to
gain insight in these processes. This requires reliable models and a thorough un-
derstanding thereof.

In 1972, Zakharov introduced in [23] the system

i∂tE +∆E = En in (−T, T )× Rd,

∂2
t n−∆n = ∆|E|2 in (−T, T )× Rd,

(1.1)

to study Langmuir waves in a non- or weakly magnetized plasma, where the physical
dimension is d = 3. Here, E denotes the complex envelope of the electric field and
n the ion density fluctuation.

A different situation arises when modelling the interaction of a plasma with a
laser beam. Using the paraxial approximation (see e.g. [19, Section 4]) to describe
this interaction, one obtains the system

i(∂tE + ∂xd
E) + ∆′E = nE in (−T, T )× Rd,

∂2
t n−∆′n = ∆′|E|2 in (−T, T )× Rd,

(1.2)

where E now denotes the complex amplitude of the laser beam and n the real-valued
electron density fluctuation. Both are functions of the variables (t, x1, . . . , xd) ∈
(−T, T )× Rd. Since the last spatial variable xd plays a distinguished role (the di-
rection of propagation of the laser beam), we use the notation x = (x1, . . . , xd−1) ∈
Rd−1 and ∆′ =

∑d−1
i=1 ∂2

xi
. We refer to [16] and [20] for a derivation in d = 3.

In [16] a reduced version of (1.2) was used to analyze self-focusing from local inten-
sity peaks (hot spots) in laser plasmas, which is a possible instability for inertial
confinement fusion.

A more precise description of laser-plasma interaction takes into account that
part of the incident light field is backscattered by Raman- and Brillouin-type pro-
cesses. The three resulting light fields interact with the electric field of the plasma
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as well as with the density fluctuation. The resulting system can be seen as a
nonlinear coupling of equations of the form (1.1) and (1.2). A reduced model sys-
tem of this type was used in [17] for numerical simulations, see also [7]. The first
step in the analysis of these advanced models is the understanding of systems (1.1)
and (1.2). Finally, we note that the system (1.2) also arises as WKB approximation
for the Euler-Maxwell equations in the cold ion case for highly oscillatory initial
data, see [21].

In the present paper, we study the initial value problem associated with (1.2),
i.e. we prescribe

(E, n, ∂tn)|t=0 = (E0, n0, n1) in Rd. (1.3)

We prove the following local well-posedness result.

Theorem 1.1. Let d ≥ 3, s > d−2
2 , s′ > 1

2 . Then, (1.2)–(1.3) is locally well-posed

if the initial data satisfies

(E0, n0, |∇′|−1n1) ∈ Hs,s′(Rd)×
(
Hs− 1

2
,s′(Rd)

)2
.

We define the non-isotropic Sobolev spaces Hs,s′(Rd) as the collection of all
f ∈ S ′(Rd) satisfying

‖f‖Hs,s′(Rd) :=
(∫

Rd

〈ξ〉2s〈ξd〉2s
′

|Fx,xd
f(ξ, ξd)|2dξdξd

)1/2
< +∞,

where ξ = (ξ1, . . . , ξd−1) ∈ Rd−1, ξd ∈ R, and |∇′|−1 = (
√
−∆′)−1 is the Fourier

multiplier. We refer to Theorem 3.2 for a more precise version of our main result.
Without going into detail, we remark that our proof in Section 4 also implies

certain refinements in Besov spaces at the threshold regularities if d ≥ 4, and in
addition, one could avoid low frequency conditions (see Section 3).

Previous results. Coupling two of the fundamental dispersive equations, the Za-
kharov system (1.1) and the corresponding initial value problem have attracted a
lot of attention. We refer to [10, 20] and the references therein for the history of the
problem and to [14, 4, 9] for a few milestones in the theory. The local well-posedness
theory for the Zakharov system is now comprehensively understood, see [5] for the
state of the art in dimensions d ≥ 4 and [18] for d ≤ 3.

Due to the lack of dispersion in the longitudinal direction in (1.2) the system (1.2)
is sometimes called the degenerate Zakharov system. This partial lack of dispersion
adds significant difficulties to the well-posedness theory, which therefore is still in
its infancy. In [7] the question of local well-posedness of (1.2) has been posed.
The periodic problem for (1.2) is ill-posed, see [8]. A positive answer in dimension
three was given in [13] for initial values (E0, n0, n1) in H5(R3)×H5(R3)×H4(R3)

with ∂
1

2

x1
E0, ∂

1

2

x2
E0 ∈ H5(R3) and ∂x3

n1 ∈ H4(R3), using local smoothing and
maximal function estimates. Improving upon the maximal function estimate, local
well-posedness for initial values (E0, n0, n1) ∈ H2(R3) × H2(R3) × H1(R3) with

∂
1

2

x1
E0, ∂

1

2

x2
E0 ∈ Ḣ2(R3) and ∂x3

n1 ∈ H1(R3) was shown in [1].
In view of these results, the assumptions on the initial data in Theorem 1.1 are

lowered significantly. Our approach is based on an efficient use of local smoothing
and maximal function norms. More precisely, we adapt the approach devised in [3]
(to solve the Schrödinger maps problem) to the setting of the degenerate Zakharov
system.
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Organisation of the paper. In Section 2 we introduce notation and provide
linear estimates. In Section 3 we prove the main result under the hypothesis that
two nonlinear estimates hold, which we then prove in Section 4. In an appendix,
we complement our results by showing that it is impossible to prove the nonlinear
estimates in Fourier restriction norms only.

2. Preliminaries

Notation. Throughout the paper, we use the following notations. A . B means
that there exists C > 0 such that A ≤ CB. Also, A ∼ B means A . B and
B . A. Let u = u(t, x, xd) and let Ftu, Fx, Fx,xd

u denote the Fourier transform
of u in time, Rd−1, and Rd, respectively. By Ft,x,xd

u = û we denote the Fourier
transform of u in time and space. Let N , M be dyadic numbers, i.e. there exist
n1,m1 ∈ N0 such that N = 2n1 and M = 2m1 . Let η ∈ C∞

0 ((−2, 2)) be an
even, non-negative function which satisfies η(t) = 1 for |t| ≤ 1. Letting ηN (ξ) :=
η(|ξ|N−1) − η(|ξ|2N−1), η1(ξ) := η(|ξ|), the equality

∑
N ηN = 1 holds. Here we

used
∑

N =
∑

N∈2N0 for simplicity. We also use the abbreviations
∑

M =
∑

M∈2N0 ,∑
N,M =

∑
N,M∈2N0 , etc. throughout the paper.

Let e ∈ Sd−2 and Pe = {ξ ∈ Rd−1 | ξ · e = 0} with the induced Euclidean
measure. For p, q ∈ [1,∞], define

‖f‖Lp,q
e

=
(∫

R

(∫

R×Pe

|f(t, re+ v)|qdtdv
)p/q

dr
)1/p

.

We define I
(d−1)
N = {ξ ∈ Rd−1 | ξ ∈ supp ηN}. Let T > 0 and

L2
N(T ) = {f ∈ L2([−T, T ]× Rd−1) | suppFxf ⊂ [−T, T ]× I

(d−1)
N }.

Let φ ∈ C∞
0 (R) be non-negative and symmetric, such that φ(r) = 0 if |r| ≤

(4
√
d− 1)−1 or |r| > 4 and φ(r) = 1 if (2

√
d− 1)−1 ≤ r ≤ 2, and we set

φN (r) = φ(r/N). Then,

d−1∏

j=1

(1− φN (ξj)) = 0 for all ξ = (ξ1, . . . , ξd−1) ∈ I
(d−1)
N and N ∈ 2N. (2.1)

We define PN = F−1
x ηNFx and PN,e = F−1

x φN (ξ ·e)Fx. Since both PN and PNPN,e

have kernels in L1(Rd−1), they are bounded operators on each of the spaces Lp,q
e
′ .

Let d ≥ 3, T > 0, and pd = (2d + 4)/d. For N > 1 and f ∈ L2
N (T ), we define

the norms

‖f‖FN(T ) = ‖f‖L∞
t L2

x
+ ‖f‖

L
pd−1

t,x
+N− d−2

2

d−1∑

j=1

‖f‖L2,∞
ej

+N
1

2

d−1∑

j=1

‖PN,ejf‖L∞,2
ej

if d ≥ 4 and

‖f‖FN(T ) = ‖f‖L∞
t L2

x
+ ‖f‖L4

t,x
+ (logN)−1N− 1

2

2∑

j=1

‖f‖L2,∞
ej

+N
1

2

2∑

j=1

‖PN,ejf‖L∞,2
ej



4 S. HERR, I. KATO, S. KINOSHITA, AND M. SPITZ

in the case d = 3. To estimate the nonlinear terms, we introduce

‖g‖GN(T ) = inf
g=g1+g2

(
‖g1‖

L
p′
d−1

t,x

+N− 1

2

d−1∑

j=1

‖g2‖L1,2
ej

)
.

Here p′d−1 satisfies 1/pd−1+1/p′d−1 = 1 and e1, . . . , ed−1 denote the standard basis

of Rd−1. For N = 1 we modify the above definition as follows:

‖f‖F1(T ) = ‖f‖L∞
t L2

x
+ ‖f‖

L
pd−1

t,x
+

d−1∑

j=1

‖f‖L2,∞
ej

, ‖g‖G1(T ) = ‖g‖
L

p′
d−1

t,x

.

For T > 0 and s, s′ ≥ 0, we define the normed spaces F s,s′(T ) and W s,s′(T ) as

F s,s′(T ) = {f ∈ L2([−T, T ]× Rd) |

‖f‖F s,s′(T ) =
(∑

N,M

M2s′N2s
∥∥ηM (ξd)‖PNFxd

f‖FN (T )

∥∥2
L2

ξd

) 1

2 < ∞},

W s,s′(T ) = {f ∈ L2([−T, T ]× Rd) |

‖f‖W s,s′(T ) =
(∑

N,M

M2s′N2s
∥∥ηM (ξd)‖PNFxd

f‖L∞
t L2

x

∥∥2
L2

ξd

) 1

2 < ∞}.

For g ∈ L2
N(T ), we define the norms for the nonlinear terms as

‖g‖Gs,s′(T ) =
(∑

N,M

M2s′N2s
∥∥ηM (ξd)‖PNFxd

g‖GN(T )

∥∥2
L2

ξd

) 1

2 ,

‖g‖Y s,s′(T ) =
(∑

N,M

M2s′N2s
∥∥ηM (ξd)‖PNFxd

g‖L1

tL
2
x

∥∥2
L2

ξd

) 1

2 .

Linear estimates. In this subsection we collect the estimates for the flow of the
linear Schrödinger equation which we employ in the following. Besides the classical
Strichartz estimates, we crucially rely on local smoothing and maximal function
estimates. The local smoothing estimates follow from (4.18) in [12]. The maximal
function estimates for d ≥ 4 are stated in (4.6) in [12]. We refer to [11] (see (3.28)
in the proof of Lemma 3.3) for the maximal function estimates for d = 3. See also
Lemma 3.2 in [3].

Lemma 2.1. For all f ∈ L2(Rd−1), N ≥ 1 and e ∈ Sd−2, we have:

(a) (Local smoothing estimate).

‖eit∆′

PN,ef‖L∞,2
e

. N− 1

2 ‖f‖L2, (N > 1).

(b) (Maximal function estimate).

‖eit∆′

PNf‖L2,∞
e

. N
d−2

2 ‖f‖L2, d ≥ 4,

and

‖η(t)eit∆′

PNf‖L2,∞
e

. (1 + logN)N
1

2 ‖f‖L2, d = 3.

(c) (Strichartz estimate).

‖eit∆′

f‖
L

pd−1

t,x
. ‖f‖L2.
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Note that Lemma 2.1 implies

‖eit∆′−t∂xdϕ‖F s,s′ (T ) . ‖ϕ‖Hs,s′ (Rd) (2.2)

for all ϕ ∈ Hs,s′(Rd).
In order to prove the local well-posedness theory via a fixed point argument, we

also need estimates for the inhomogeneous terms in our function spaces. In the
case d ≥ 4, these are provided by Proposition 3.8 in [3], as one sees by checking
the definitions of the involved norms. We provide a proof here to include the case
d = 3.

Lemma 2.2. We have
∥∥∥
∫ t

0

ei(t−s)∆′

(u(s))ds
∥∥∥
FN (T )

. ‖u‖GN(T )

for all 0 < T < 1.

Proof. It is straightforward to prove Lemma 2.2 in the case N = 1. Thus, we
assume N > 1. We need to show

∥∥∥
∫ t

0

ei(t−s)∆′

(u(s))ds
∥∥∥
FN (T )

. ‖u‖
L

p′
d−1

t,x

, (2.3)

∥∥∥
∫ t

0

ei(t−s)∆′

(u(s))ds
∥∥∥
FN (T )

. N− 1

2

d−1∑

j=1

‖u‖L1,2
ej
. (2.4)

The former estimate (2.3) is a consequence of the Christ-Kiselev lemma. See [6]
and Lemma B.3 in [22]. Alternatively, Up and V p spaces were employed to show
(2.3), see the proof of Lemma 7.3 in [3]. For the latter estimate (2.4), we follow the
proof of Lemma 7.4 in [3], see also [15]. Because of (2.1), we have

PNf =

d−1∑

j=1

PN,ej

[ j−1∏

l=1

(1− PN,el)
]
PNf. (2.5)

Hence, without loss of generality, it suffices to show

∥∥∥PNPN,e1

∫ t

0

ei(t−s)∆′

(u(s))ds
∥∥∥
FN (T )

. N− 1

2 ‖u‖L1,2
e1

. (2.6)

We define the fundamental solution of the Schrödinger equation in Rd−1 as

K0(t, x) = (4πit)−
d−1

2 e
i|x|2

4t .

Then, the inhomogeneous term can be expressed as
∫ t

0

ei(t−s)∆′

(u(s))ds

=

∫

s<t

∫

Rd−1

K0(t− s, x− y)u(s, y)dyds−
∫

s<0

ei(t−s)∆′

(u(s))ds

=

∫

R

∫

s<t

∫

Rd−2

K0(t− s, x1 − y1, x
′ − y′)u(s, y1, y

′)dy′dsdy1 − eit∆
′

F (x)

=

∫

R

vy1
(t, x)dy1 − eit∆

′

F (x),
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where

vy1
(t, x) =

∫

s<t

∫

Rd−2

K0(t− s, x1 − y1, x
′ − y′)u(s, y1, y

′)dy′ds,

F (x) =

∫

R

e−is∆′(
1(−∞,0)u(s)

)
ds.

Since the latter term can be handled by Lemma 2.1 and the dual estimate of the
local smoothing estimate, it suffices to prove

‖PNPN,e1
vy1

‖FN (T ) . N− 1

2 ‖u(y1)‖L2 . (2.7)

To see this, we invoke Lemma 7.5 in [3] which implies that there exist functions v0
and w such that

PNPN,e1
vy1

(t, x) = (P<2−40N,e11{x1>y1}) · PNPN,e1
eit∆

′

v0 + w(t, x),

‖v0‖L2 +N−1(‖∆′w‖L2 + ‖∂tw‖L2) . N− 1

2 ‖u(y1)‖L2 ,

where P<2−40N,e1
is defined in the obvious way. The Sobolev embeddings in time

and space yield the necessary bound for w(t, x). To bound the first summand in
the previous decomposition, we write as in [3] for any 1 ≤ j ≤ d− 1

PN,ej [(P<2−40N,e11{x1>y1}) ·PNv] =
∑

N1∼N

PN,ej [(P<2−40N,e11{x1>y1}) ·PNPN1,ejv].

Consequently, the desired bound for the first summand follows from the linear
estimates in Lemma 2.1. �

As above, we point out that Lemma 2.2 yields
∥∥∥
∫ t

0

e(t−s)(i∆′−∂xd
)(u(s))ds

∥∥∥
F s,s′(T )

. ‖u‖Gs,s′(T ) (2.8)

for all 0 < T < 1 and u ∈ Gs,s′(T ).

3. Local well-posedness of the degenerate Zakharov system

For the purpose of this paper it is more convenient to work with the first order
reformulation of the degenerate Zakharov system (1.2). Setting N = n−i|∇′|−1∂tn,
system (1.2) is equivalent to

i(∂tE + ∂xd
E) + ∆′E = ℜ(N)E, in (−T, T )× Rd,

i∂tN + |∇′|N = − |∇′||E|2, in (−T, T )× Rd.
(3.1)

The initial condition (1.3) transforms into

(E,N)|t=0 = (E0, N0), (3.2)

where N0 = n0 − i|∇′|−1n1. Note that N0 belongs to Hs− 1

2
,s′(Rd) if and only if

(n0, |∇′|−1n1) ∈
(
Hs− 1

2
,s′(Rd)

)2
. Moreover, the term N can be treated in the same

way as N in our analysis so that we drop the real part in (3.1) for simplicity. We

remark that one can use a modified transformation involving (1 −∆′)−
1

2 to avoid
any low frequency conditions by following the argument in [2], we omit the details.

Besides the estimates from Section 2, the crucial ingredients in the proof of the
local well-posedness theorem are the following estimates for the nonlinear terms
appearing on the right-hand side of (3.1).
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Proposition 3.1. Let d ≥ 3, s > d−2
2 , and s′ > 1

2 . Then we have

‖uv‖Gs,s′(T ) . T
1

2 ‖u‖F s,s′(T )‖v‖W s− 1

2
,s′(T )

, (3.3)

‖|∇′|(u1u2)‖
Y s− 1

2
,s′ (T )

. T
1

2 ‖u1‖F s,s′(T )‖u2‖F s,s′(T ) (3.4)

for all T > 0.

We postpone the proof of Proposition 3.1 to Section 4 and first show how it
implies the local well-posedness of the degenerate Zakharov system.

Theorem 3.2. Let d ≥ 3, s > d−2
2 , and s′ > 1

2 . Then, for every initial data

(E0, N0) ∈ Hs,s′(Rd)×Hs− 1

2
,s′(Rd) there is a time T > 0 and a unique solution

(E,N) ∈ C([−T, T ], Hs,s′(Rd)×Hs− 1

2
,s′(Rd)) ∩ (F s,s′(T )×W s− 1

2
,s′(T ))

of the degenerate Zakharov system (3.1)–(3.2).

Proof. We define a mapping Φ by the right-hand side of the integral equation
corresponding to (3.1) (after dropping the real part), i.e.

Φ(E,N) =

(
eit∆

′−t∂xdE0 − i
∫ t

0 e
(t−s)(i∆′−∂xd

)(NE)(s)ds

eit|∇
′|N0 + i

∫ t

0
ei(t−s)|∇′| |∇′||E(s)|2ds

)
.

The estimates (2.2) and (2.8), the energy estimate for the half-wave equation, and
the nonlinear estimates from Proposition 3.1 now allow us to perform a standard
fixed point argument in the Banach space

C([−T, T ], Hs,s′(Rd)×Hs− 1

2
,s′(Rd)) ∩ (F s,s′(T )×W s− 1

2
,s′(T )),

which yields the assertion of the theorem. �

4. Nonlinear Estimates

We now provide the proof of the nonlinear estimates in Proposition 3.1.

Proof of Proposition 3.1. Here we only consider d ≥ 4. The case d = 3 can be
handled in a similar way. We consider (3.3) first. By Minkowski’s inequality, we
get that

‖uv‖Gs,s′(T ) .
(∑

N,M

M2s′N2s
∥∥ηM (ξd)‖PN

(
Fxd

u ∗ξd Fxd
v
)
‖GN (T )

∥∥2
L2

ξd

) 1

2

.
(∑

N,M

M2s′N2s
∥∥ηM (ξd)

∫

R

‖PN

(
(Fxd

u)(ξd − ηd)(Fxd
v)(ηd)

)
‖GN (T )dηd

∥∥2
L2

ξd

) 1

2 ,

where ∗ξd denotes the convolution in the variable ξd. Hence, it suffices to show the
estimate

‖PN (f1f2)‖GN (T ) . T
1

2N
− 1

2

2 N
d−2

2

min ‖f1‖FN1
(T )‖f2‖L∞

t L2
x

(4.1)

for all f1 ∈ FN1
(T ) and f2 ∈ L2

N2
(T ) ∩ L∞

t L2
x, where Nmin = min(N1, N2).

We consider the three cases N ≪ N1 ∼ N2, N2 ≪ N ∼ N1, and N1 . N ∼ N2.
In the first case, using Bernstein’s and Hölder’s inequality, we find that

‖PN (f1f2)‖GN (T ) ≤ ‖PN(f1f2)‖
L

p′
d−1

t,x

. T
1

2N
d−3

2 ‖PN(f1f2)‖Lα
t L

β
x

(4.2)

. T
1

2N
d−3

2 ‖f1‖Lα
t L

γ
x
‖f2‖L∞

t L2
x
. T

1

2N
d−3

2 ‖f1‖FN1
(T )‖f2‖L∞

t L2
x
,
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where
( 1
α
,
1

β
,
1

γ

)
=
( 1

d+ 1
, 1− 2

(d− 1)(d+ 1)
,
1

2
− 2

(d− 1)(d+ 1)

)
.

In the last estimate we also used that ‖f1‖Lα
t L

γ
x
. ‖f1‖FN1

(T ) which follows by

interpolating between L∞
t L2

x and L
pd−1

t,x . The second case N2 ≪ N ∼ N1 can be
treated in a similar way, employing Hölder’s inequality first and then Bernstein’s
inequality on f2.

It remains the case N1 . N ∼ N2. If N = 1, we again argue as in (4.2). If
N > 1, Hölder’s inequality yields

‖PN (f1f2)‖GN (T ) ≤ N− 1

2

d−1∑

j=1

‖PN(f1f2)‖L1,2
ej

. N− 1

2

d−1∑

j=1

‖f1‖L2,∞
ej

‖f2‖L2

t,x

. T
1

2N− 1

2N
d−2

2

1 ‖f1‖FN1
(T )‖f2‖L∞

t L2
x
,

which completes the proof of (4.1).
Next we prove (3.4). We compute that

‖|∇′|(u1u2)‖
Y s− 1

2
,s′

.
(∑

N,M

M2s′N2s+1
∥∥ηM (ξd)

∫

R

‖PN

(
(Fxd

u1)(ξd − ηd)(Fxd
u2)(ηd)

)
‖L1

tL
2
x
dηd
∥∥2
L2

ξd

) 1

2 .

Therefore, it is enough to show

‖PN (g1g2)‖L2
t,x

. N
− 1

2

maxN
d−2

2

min ‖g1‖FN1
(T )‖g2‖FN2

(T ) (4.3)

for all g1 ∈ FN1
(T ) and g2 ∈ FN2

(T ), where Nmax = max(N1, N2) and Nmin =
min(N1, N2). Without loss of generality, we may assume N2 ≤ N1. In the case
N1 = 1, we easily obtain (4.3) from Hölder’s inequality, Bernstein’s inequality and
interpolation.

We can thus assume N1 > 1 in the following. Recall from (2.5) that we have

g1 =

d−1∑

j=1

PN1,ej

[ j−1∏

l=1

(1− PN1,el
)
]
g1.

Since (PN1/2 + PN1
+ P2N1

)PN1,e is bounded on L∞,2
e
′ for all e, e′ ∈ Sd−2, Hölder’s

inequality allows us to estimate

‖PN (g1g2)‖L2

t,x
≤

d−1∑

j=1

∥∥∥
(
PN1,ej

[ j−1∏

l=1

(1 − PN1,el
)
]
g1

)
g2

∥∥∥
L2

t,x

.

d−1∑

j=1

‖PN1,ejg1‖L∞,2
ej

‖g2‖L2,∞
ej

. N
− 1

2

1 N
d−2

2

2 ‖g1‖FN1
(T )‖g2‖FN2

(T ),

which completes the proof of (4.3). �

The above proof shows that, if d ≥ 4, in the case s = d−2
2 and s′ = 1

2 one obtains

similar estimates in the ℓ1-based Besov norms.
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Appendix A. Examples involving Fourier restriction norms

In this section, we prove that it is impossible to solve the problem by using
Fourier restriction norms only. To that end, we define the additional frequency and
modulation projections PN,M , EL, and W±

L as

(Fx,xd
PN,Mf)(ξ, ξd) := ηN (ξ)ηM (ξd)(Fx,xd

f)(ξ, ξd),

ÊLu(τ, ξ, ξd) := ηL(τ + |ξ|2 + ξd)û(τ, ξ, ξd), Ŵ±
L v(τ, ξ, ξd) := ηL(τ ± |ξ|)v̂(τ, ξ, ξd).

For the parameters s, s′, b ∈ R and 1 ≤ p ≤ ∞ we define the Fourier restriction

spaces Xs,s′,b,p
E (Rd+1) and Xs,s′,b,p

W±
(Rd+1) as the collection of tempered distribu-

tions such that the following norms are finite:

‖u‖
Xs,s′,b,p

E

:=
∥∥∥
(
NsM s′

∥∥(Lb‖PN,MELu‖L2

t,x,xd

)
L∈2N

∥∥
ℓpL

)
N,M∈2N

∥∥∥
ℓ2N,M

,

‖u‖
Xs,s′,b,p

W±

:=
∥∥∥
(
NsM s′

∥∥(Lb‖PN,MW±
L u‖L2

t,x,xd

)
L∈2N

∥∥
ℓpL

)
N,M∈2N

∥∥∥
ℓ2N,M

.

The precise statement we prove in this section is the following:

Proposition A.1.

(1) Suppose that there exists C > 0 such that

‖u v‖
X

s,s′,b1−1,p1
E

≤ C‖u‖
X

s,s′,b1,p1
E

‖v‖
X

s− 1

2
,s′,b2,p2

W±

holds for all square-integrable u, v with compact Fourier support. Then,

either b1 < 1/2 or (b1, p1) = (1/2,∞) holds.
(2) Suppose that there exists C > 0 such that

‖
√
−∆′(|w|2)‖

X
s− 1

2
,s′,b2−1,p2

W±

≤ C‖w‖2
X

s,s′,b1,p1
E

holds for all square-integrable w with compact Fourier support. Then, either

b1 > 1/2 or (b1, p1) = (1/2, 1) holds.

Proof. For r > 0 and a ∈ Rd+1, we define the ball Br(a) = {x ∈ Rd+1 | |x−a| ≤ r}.
Let N ≫ 1, L ≥ 1, a±N = (∓N,N, 0, . . . , 0,−N2 ± N). We use SL = {(τ, ξ, ξd) ∈
Rd+1 |L ≤ |τ + |ξ|2 + ξd| ≤ 2L}.

Firstly, we show (1). We define the functions u, vN,± ∈ L2(Rd+1) as

û = χB1(0), v̂N,± = N−s−2s′+1/2χB1(a
±
N ),

where χA denotes the characteristic function of the set A. It is easily seen that for
all b1, b2 ∈ R, p1, p2 ∈ [1,∞], it holds that

‖u‖
X

s,s′,b1,p1
E

∼ 1, ‖vN,±‖
X

s− 1

2
,s′,b2,p2

W±

∼ 1.

Thus, it suffices to show that if p1 < ∞, we have

lim
N→∞

‖u vN,±‖
X

s,s′,− 1

2
,p1

E

= ∞. (A.1)
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We observe that if (τ, ξ, ξd) ∈ B1/2(a
±
N ) then (χB1(0) ∗χB1(a

±
N ))(τ, ξ, ξd) ∼ 1. There-

fore, for p1 < ∞, we get

‖u vN,±‖
X

s,s′,− 1

2
,p1

E

≥ Ns+2s′
( ∑

1≤L≤2−2N

L−
p1
2 ‖û ∗ v̂N,±‖p1

L2

τ,ξ,ξd
(B1/2(a

±
N )∩SL)

) 1

p1

≥ N
1

2

( ∑

1≤L≤2−2N

L−
p1
2 ‖χB1(0) ∗ χB1(a

±
N )‖

p1

L2

τ,ξ,ξd
(B1/2(a

±
N )∩SL)

) 1

p1

∼ N
1

2

( ∑

1≤L≤2−2N

L−
p1
2

( L

N

) p1
2 ) 1

p1 ∼ (logN)
1

p1 ,

which implies (A.1). Here, the third estimate holds because the measure of the set
B1/2(a

±
N ) ∩ SL is comparable to L/N if 1 ≤ L ≤ 2−2N .

Secondly, we prove (2). Let 1 < p1 < ∞. We define the functions wN,± ∈
L2(Rd+1) as

ŵN,± = χB1(0) + (logN)
− 1

p1 N−s−2s′+ 1

2

∑

1≤L≤2−2N

L−1χB1(a
±
N )∩SL

.

It is straightforward to check ‖wN,±‖
X

s,s′, 1
2
,p1

E

∼ 1. Our goal is to show that for all

b2, p2 it holds that

lim
N→∞

‖
√
−∆′(|wN,±|2)‖

X
s− 1

2
,s′,b2−1,p2

W±

= ∞. (A.2)

To see this, we note that if (τ, ξ, ξd) ∈ B1/2(a
±
N ), then

(χB1(0) ∗ χB1(a
±
N )∩SL

)(τ, ξ, ξd) ∼ L/N

holds. We compute that

‖
√
−∆′(|wN,±|2)‖

X
s− 1

2
,s′,b2−1,p2

W±

≥ (logN)
− 1

p1 N
∥∥∥

∑

1≤L≤2−2N

L−1
(
χB1(0) ∗ χB1(a

±
N )∩SL

)∥∥∥
L2

τ,ξ,ξd
(B1/2(a

±
N ))

∼ (logN)
− 1

p1 N
∥∥∥

∑

1≤L≤2−2N

L−1
( L

N

)∥∥∥
L2

τ,ξ,ξd
(B1/2(a

±
N ))

∼ (logN)
1− 1

p1 .

This completes the proof of (A.2). �
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