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WELL-POSEDNESS FOR THE DISPERSIVE HUNTER-SAXTON
EQUATION

ALBERT AI AND OVIDIU-NECULAI AVADANEI

ABSTRACT. This article represents a first step towards understanding the well-posedness
for the dispersive Hunter-Saxton equation. This problem arises in the study of nematic
liquid crystals, and although the equation has formal similarities with the KdV equation,
the lack of L? control gives it a quasilinear character, with only continuous dependence on
initial data.

Here, we prove the local and global well-posedness of the Cauchy problem using a normal
form approach to construct modified energies, and frequency envelopes in order to prove the
continuous dependence with respect to the initial data.
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1. INTRODUCTION

EEEEElm=e

In this article we consider the Cauchy problem for the dispersive Hunter-Saxton equation

(1.1)

where u is a real-valued function w
(L)), we may fix a definition for 9;*,

(1.2)

1
Up + Uy + Uppy = iﬁgl(ui)
u(0) = uyp,

o7 f(x) = / " ) dy,

1
Uy + U, = iﬁgl(ui),
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1

: [0,00) x R — R. Due to the Galilean invariance of

where f € L1(R). The dispersive Hunter-Saxton equation is a perturbation of the Hunter-
Saxton equation
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which was introduced in [I3] as an asymptotic model for the formation of nematic liquid
crystals under a director field. The Hunter-Saxton equation (L2 is completely integrable
[14, 1] with a bi-Hamiltonian structure [I8]. In the periodic case, the local well-posedness
and blow up phenomena were studied in [13] 2I], while global weak solutions were studied
in [2, B]. For the non-periodic case, the Cauchy problem local well-posedness and blow up
were studied in [20].

The Hunter-Saxton equation is also the high frequency limit of the Camassa-Holm equa-
tion,

(1 — 0*)uy = 3unty — 2Uplpy — Ullgyy.

The local well-posedness and ill-posedness of the Camassa-Holm equation were studied in
[7, 8, [10]. The global existence of strong solutions and blow up phenomena were investigated
in [4, 6] 5] [7].

The dispersive Hunter-Saxton equation (L)) first appeared in [I5] as a dispersive regular-
ization of (I.2). Complete integrability was later observed in [9].

In this paper, we initiate the study of the well-posedness for the dispersive Hunter-Saxton
equation ([ILT]). For this purpose, we use the conserved quantities

E\(t) :/Rux(t)2 dx,
Ey(t) = /qu(t)2 — u(t)uy(t)* dr.

Throughout, we denote

XS =L*NH:NHT,
where s € [0,1]. For brevity, we denote X = X'. Our first main result is the following local
well-posedness statement:

Theorem 1.1. The dispersive Hunter-Saxton equation ([ILT) is locally well-posed in X . Pre-
cisely, for every R > 0, there exists T = T(R) > 0 such that for every uy € X with
|lwollx < R, the Cauchy problem (L)) has a unique solution u € C([0,7T],X). Moreover, the
solution map ug — u from X to C([0,T], X) is continuous.

In both the dispersive and nondispersive cases of the Hunter-Saxton equation, the main
difficulty is that the source term %8; 1(u2) is unbounded in any L” space if p < oo, and in
particular, in L?. As a result, it is necessary to consider the problem assuming only pointwise
L* control on u, similar to the analysis in [20] for the nondispersive case (L2). Further,
the lack of spatial decay obstructs direct access to local smoothing estimates, so that (LTI
exhibits quasilinear behavior even in the presence of KdV-like dispersion. In particular,
our solutions exhibit only continuous dependence on the initial data, instead of Lipschitz
dependence.

Our proof follows a bounded iterative scheme which treats separately the high and low
frequency components. To prove continuous dependence on the initial data in our quasi-
linear setting, we have used frequency envelopes, introduced by Tao in [19]. A systematic
presentation of the use of frequency envelopes in the study of local well-posedness theory for
quasilinear problems can be found in the expository paper [17], which we broadly follow in
the present work.

Our second result is the following global well-posedness statement:
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Theorem 1.2. The Cauchy problem (1)) is globally well-posed in X. Moreover, for every
t > 0, we have the global in time bounds

u(®)] 22 < ol xo + t(EL + B/,
@)% < lluol% + lluollxo By + (B + Ey*)Ey.

Its proof relies on Theorem [[.Il and on the conserved quantities Ey(t) and Fy(t). We
remark that the L> estimate holds even for solutions which are only in X° = L> N H*.

Using the X! well-posedness as a starting point, our third and fourth results extend well-
posedness to lower regularity data:

Theorem 1.3. For each s € (3,1), the Cauchy problem (L)) is locally well-posed in X*.

The local well-posedness of Theorem is in the same sense as in Theorem [[LTl Here, we
leverage Theorem [I.T]to construct X* solutions as limits of sequences of smooth solutions, by
proving an estimate for differences of two solutions in order to establish convergence. This
in turn is a consequence of an estimate for the linearized equation associated to (I.1J),

(1.3) wy + (VW) g + Wage = O (Ugwy).

Theorem 1.4. For each s € (3,1), the Cauchy problem (L)) is globally well-posed in X*.
Moreover, for everyt > 0,

[u(®)] 22 < Nluollxo + t(EL + E}/?)

1.4
- lu() 3 S & EF([luollxo + E)® + [luol|Fres

To prove Theorem [[4] we construct a modified energy functional for H'** which is based
on the quadratic normal form for (II]). The approach of constructing normal form inspired
modified energies in the quasilinear setting was first introduced by Hunter-Ifrim-Tataru-
Wong [12] which considered the Burgers-Hilbert equation. This approach was further de-
veloped in the gravity water wave setting by Hunter-Ifrim-Tataru in [11], which established
almost-global well-posedness, and in the Benjamin-Ono setting by Ifrim-Tataru [16] which
established dispersive decay.

Our paper is organized as follows. In Section 2] we present some existence results at
various degrees of regularity for linear equations that arise throughout the proofs of the
main results. In Section [3] using an iterative scheme, we prove the higher regularity local
well-posedness result, while in Section [, by using the conserved quantities E; and FE,, we
show that the dispersive Hunter-Saxton equation (LIl is globally well-posed.

Section [l analyzes a modified energy for the equation, which is based on the normal form
associated to the Hunter-Saxton equation, in order to obtain bounds on the growth of the
X*-norm, whereas Section [0 discusses an estimate for the linearized equation (3], as well
as one for differences of solutions. These results are then used to prove the low regularity
local well-posedness result in Section [7

1.1. Acknowledgements. This material is based upon work supported by the National
Science Foundation under Grant No. DMS-1928930 while the authors participated in a
program hosted by the Mathematical Sciences Research Institute in Berkeley, California,
during the Spring 2021 semester.
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2. PRELIMINARIES

In this section we state and prove some results that will be used in the sequel. We begin
by studying well-posedness for a linear equation which will be used in the iteration for the

proof of Theorem [L.T]
We first prove well-posedness and energy estimates for initial data in L?.

Lemma 2.1. Let T > 0, a,b € L°([0,T], W), F € L}([0,T], L?), v € L2(R). Then the
Cauchy problem

Vg + Uy + 0¥ + Vpgy = F
(2.1) {

v(0) = vy

admits a unique solution v € L°([0,T), L2) which satisfies the energy estimate
d 2 < 2

Ve S IFNzzllvlizz + (laollzee + l10allzz)lvllzs.

Proof. Let us assume that v is a solution to the Cauchy problem. We have

% [ (t)de =2 /R (t)ur(t) da

2 /R V) (F(t) — alt)va(t) — by (£)0(t) — vase(t)) da

) /R (B F(E) da + /R au (£ (1) dar — 2 /R bo()02(t) da
Sz F @)z + o172 (law @)l e + 1102(8) [ £ee)-

We obtain the desired energy estimate, which also establishes uniqueness.

(2.2)

It remains to show existence, for which we follow a standard duality argument. We first
determine the adjoint problem. For an arbitrary w, a formal computation shows that

/OT /R(vt + avy + by + Vg )w dx dt = /RU(T)UJ(T) dx — /Rv(o)w(o) dx

T
— / /(wt + aw, + a;w + byw + Wypy)v da dt.

We write w; + aw, + (az + by)w + Wy = G and w(T') = wr. Thus,

/ /Fwdxdt+/v0w( )d:):—/ T)wTda:—/OT/RGvda:dt

and we have the adjoint problem
{wt + awy + (ag + bp)w + Weee = G

(23) w(T) = wy.
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Using the energy estimate of the original equation, we have
lw®)llzz < llwrllzz + Gl Lz

In particular, we conclude that if the adjoint problem has a solution, then it is unique.

Let
Y = {(9,G) € L2 x LLA([0,T] x R) |
there exists h € L°L? solving the adjoint problem with (wz, G) = (g, G}
We define the functional a: Y — R by

T
alg, G) :/ /thxdt—i—/voh(O) dz,
0 R R

which is well-defined by uniqueness for the adjoint problem. It is also bounded, as
(g, @) < Nlvoll ez 1AO) 122 + [ F |z [Pl o2
< lvollez(lgllez + 1Glzez2) + I1F iz (lollez + 1Gll i)
< (lvollzz + 1Flzizz) (gl zz + Gl ziz2)-

Using the Hahn-Banach Theorem, we extend « to a functional § defined on L2 x L}L2.
This uniquely corresponds an element of L2 x L L2, whose second component is the desired
solution v.

O
We extend the previous result to the case when the initial data is in H*:

Lemma 2.2. Let T > 0, a,b € LW, b€ LPH? F € LIHY, and vy € H:. Then the
Cauchy problem 1) has a unique solution v € Ly H which satisfies the energy estimate

d
100y S (F g + lbaall 2 llolloz) 0l + (lazllzz + 1b2llzz) 1211,

In particular, if u is a solution of the dispersive Hunter-Saxton equation (L)), then
d

el S lellze a2
Proof. We first consider the regularized equation

Ut + Vggg + a0z + (b<in)2v = F.

By applying Lemma 2.1l we obtain a unique solution v™ € L®L2. We first observe that
v™ € L°Hy. Indeed, note that v formally satisfies

(2.4) Ut + Vzgw + (a0 + (0<m)2)V + by = Fy — (bo) <mn0™
where
[ = (bax) <mV™ |l zeerz < [ Felloserz + [ (baa) <m™ | oo 2
< NFellzgerz 4 1(baw) <mll g, [|0™ || 5o 22 < 0.

By applying Lemma[2.T once again, we obtain that (2.4]) admits a unique solution v™ € L¥°L?
so that v = v™ and v™ € L°H_.
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Using (2.2)), we find

d m m m
7 R(v )2 da S o™ 2|1 Fllee + (laell s + 20100 llzge) 0™ 122
and
d m\2 < m m m||2
o R(vx) de S o 221 Fe = (baw) <m™ [ 22 + [|@a + 2(b<m )|l ee 07" 122
S v leal Fallzz + Nboell oz llv™ e ozl 22 + (lasllzee + Nballzge) w5 122
Denoting
B0 = [(n )P do+ [ (20 da,
R R
we have

%Em(t) S EMO)PNIEO ] ax + (lac®llzee + 10Ol rge + [baa(t) | 22) B (2)-

From Gronwall’s lemma, we infer that

B () < e d0 Nae@lluge +be (@l oy ds,

(&
T o b d
(el 4 [ e 10z 0Ol () s )
0

uniformly in m and ¢ € [0, 7.

Let { > 0 and z = v™* —ov™ € L°L2. We see that z solves
2t + Zpge + A2y + (bx)§m+lz - _(bx)m<-§m+lvm =: H.

Let e := sup sup E™(t) < co. We estimate the source term:
m2>1¢€[0,T

[ H | zzer2 S N (02)me<mrillperz V™ | Lge, < 27" | (< <mtt)ze | g2 [|0™ | g2
S 27" [baell o126

By applying the energy estimate provided by Lemma [2.1] with Gronwall, we obtain

C [ s
J(B)llz2 < €5 Jo Tae(olag+210ute)l e ds (5/ =5 I =g 210w Ol 07| F (52 ds)
0

SJ T2_m61/2’|bxw||L§oL§.

Thus, v™ is a Cauchy sequence in L{° L2, which means that it converges to a solution v.

As v™ is bounded in L H!, Lemma 25 implies v € L H!. The energy estimates of Lemma
2.1 also prove uniqueness. A similar computation to the one carried out for v™ provides the
desired energy estimate. In particular, if u is a solution of (ILTl), then u, is a solution of
(21) with @ = u, b = —u,/2, and F' = 0, so that the desired estimate follows. O

Using this, we establish persistence of regularity for (L.I)):
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Lemma 2.3. Let T > 0, and u € C([0,T], X) a solution for the dispersive Hunter-Sazton
equation (LI). If u(0) € X N H*Y(R), then u € L°([0,T], X N H'*Y). Furthermore, in the
case n = 2, we have the energy estimate

d
Tltae Oy S Ml (0)llnge lrtaa (8) [y

Proof. Observe that u,, formally satisfies

Uy + UV + 20UV + Vgpe = 0.
As u € L*X, by applying Lemma 2.2, we infer that the problem admits a unique solution
v € L*H!. In particular, v solves the problem in the sense of distributions, so that v = w,,

and u € LP(X N Hg’), along with the energy estimate, as desired.
For n > 2, observe that 07 u formally satisfies

(2.5) Uy + Uy + 2UgV F Vage = P(Usg, ..., 07 210),
where P is a quadratic polynomial. The result follows by induction and Lemma O

We now establish the following L estimate that will be used in the proof of several other
results, including the iteration for the proof of Theorem [L.Ik

Lemma 2.4. Let T >0, a € L([0,T], W), and w € L°([0,T], L>) satisfy

Then w satisfies

d
%HWSOHLOO S lw<ollze + || f<ollzee + [lallwre||w]] Lo

Proof. By applying the frequency projection P<(, we obtain
(<o)t + (aws) <o + (W<0)aza = f<o
and estimate
[(awe + Wage) <ol S [[((aw)e = (acw))<ollLoe + [[(w<o)azall Lo
< (lallze + gl ) [l + leoollzoe-
O

Lastly, we observe a technical result which will be used in the proof of Theorem [L.1] to
show that the solution of (I.I]) has the desired regularity:

Lemma 2.5. Let T > 0 and {v"},>0 € L*([0,T], H)) be a bounded sequence such that
v — v € L([0,T], L).
Then v € L°([0,T], H}).

Proof. Let M > 0 be such that ||v"| ey < M for every n > 0. Fix t € [0,T] such that
v™(t) converges to v(t) in L2(R), and [[v"(t)| z1 < M. It suffices to show that [|v(¢)|| 1 < M,
independently of t. We omit ¢ in the notations below.

As v™ is bounded in H!(R), which is a Hilbert space and hence reflexive, we infer that
there exists a subsequence {v™ };>( that converges weakly to some g € H!(R). In particular,
v™ converges to ¢ in the sense of distributions. On the other hand, v"™ converges to v in
L2(R) and in the sense of distributions, so v = g € H(R).
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Let w € HX(R) with ||w| ;1 = 1, and observe that

[{(v,w)| = lim |[("™ w)| < lim |0 || < M.
k—oo k—o0 r

We infer that ||v||g1 < M. This finishes the proof.

3. LOCAL WELL-POSEDNESS

In this section we prove Theorem [I.1]

Let C' > 0 be a large absolute constant which may vary from line to line, and let small 7" >
0 be fixed later. Let |lug||x < R. We inductively define a sequence {u"},>0 € Lg%, ([0, 7] xR).
For n = 0 we set u’(t,x) = ug(z). For n > 0, we will set u"™" € Lg%,([0,T] x R) as the
unique solution of the Cauchy problem
- 07 (u2))

n+1 n n+l _ “x
+ u:c:c:c +u u:c - 2 )

u"(0) = ug.

(3.1)

3.1. Existence and uniform bounds for (3.1]). Here we show existence and estimates for
B.I) in L=([0,T], X).
3.1.1. Ewistence for u™*! in L (H! N H?). We first show that (3 has a solution u™! €
Le°(FL 1 F2) with
EH0) = [ () + (1) do < Kuolfy = E.
R

for K > 0 a large absolute constant. We assume by induction that this is true for u™.
We consider the Cauchy problem

u
n n T
Ut“’”:c:c:c"’(” )I'U—FU Vy = 5

v(0) = (ug)y-

By applying Lemma 2.2, we obtain that ([3:2) admits a unique solution v € L¥*H!. By
Sobolev embedding, we obtain that v € L, which implies that for almost every ¢ € [0, 7],
v(t) is locally integrable. Then we may define

MM@@IMQW+/U@W@
0

For the energy estimate, we apply the energy estimate of Lemma 22 to (u"*1), with the
induction hypothesis to obtain that for every ¢ € [0,T], with T" chosen appropriately small
depending on C' and ||ug||x,

t
(E" 1 (1)/2 < % ho (B ()2 ds ((E"“(o))l/2 + % / e~ 5 Jo BN dr pn ) dS)
0

< B <E;/2 4 —CZE) < g2,

In addition, the energy estimates for u""
iteration is well-defined.

(3.2)

! show that it is a unique solution, hence the
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3.1.2. L control for u™™'. Applying Lemma 2.4 and choosing T" appropriately small de-
pending on E, we have

I(w" ) <ollzes, S I(wo)<ollzee + T((05 (up)*)<ollze, + l[u" || Lgewroe [ oo )
S l(uo)<ollzze + T([[ugll7pe Lz + llu" g xllu™ I o s )

< %EW +TE < B2,

Combined with Sobolev embedding for the high frequencies,

@™ ) sollzze, < ™l gnme < B2,

~

we conclude that our iteration is well-defined with the uniform bound
Hun+1HL§0X < E1/2.
3.2. Convergence for u™. We shall now prove that u" is a Cauchy sequence in L°(L° N

H!). Let m > 0 be an arbitrary integer and z = v — 41 In this case, z satisfies

(3_3) 2+ Wty s a;l((ug+1)2 - (u;‘)Z)
X TXrxr — 2

—Uu

o (un—i-l - un)u:-l—l — H

and thus z, satisfies
(3.4) (2e)e +up ™z + U™ 2 4 2y = Ho
We estimate the source term:
| Hollpserz < [|(u 22— (u n)2||L°°L2 + [[(u" = u™)u n+1||L°°L2 + ("t — Un)xUZHHLgOLg
< ™ =gl lup ™ + uplleee, + ™ = u® | gy e
it =l e ra lu | g,
N El/zHunH - Un”LgO(LgomH;)a

and
17| S 107 ((up™)? = (up)*) g + [[(@" = u™)uy™ | e
Sl =l e 2 ™+ | perz + lu™™ = " e [luf ™ | e,
N El/2||“nJrl - “nHLgo(LgonH;)-
By applying the energy estimate provided by Lemma 2.1l and choosing 7" sufficiently small,
we have

n C n
Ol < 5100 ([ G100t )] .

e T TE [ um — | oo ey
< ||un+1 — unHLtoo(LgoﬂH%)

For the L* estimates, applying Lemma 2.4l and choosing T" appropriately small depending
on F, we have

1
lz<ollzze, S T([[Heollrze, + [u™™™ | npewros |2l oo i) < ZHU"H = U"|| oo (o niny)-
For the high frequencies, we use Sobolev embedding;:

lzsollzge, S 2l gy < MU = ™| oo pory)-



10 ALBERT AI AND OVIDIU-NECULAI AVADANEI

Putting everything together, and choosing T' sufﬁciently small (depending on R), we get

n+2 n+1

Ju n+1||L°°(L°°ﬂH1) _||U - Un“LgO(LgomH;)-
By iterating, we get

n+2

e ok
[u UnHHLgo(LgomH;)) <27 H|ut - UOHLgo(LgomH;)) S27Ez,

which shows that u” is a fundamental sequence in L*(H! N L) converging to an element
uw € L°(HI N L), In particular, u” converges to u, in L°L2. As u” is bounded in L& H}!
(because u" is bounded in L° X ), Lemma 2.5 implies that u, € L°H). Therefore, u € L*X.

3.3. Uniqueness. Let u and v be two solutions to (LI with initial data u(0) = ug and
v(0) = vp such that |lug||x < R and ||vg]|x < R. Let w = u — v. Recall that we have the
bounds ||ul| ey, |v] Lo x < EY2.

In this case, w satisfies

8_1 z\ U T
(3.5) 0r w0, + w0, = —w, 4 28 (w (; ) _ g
so that w, satisfies
1

By applying the energy estimate provided by Lemma 2.1l and choosing T sufficiently small,
we get that

Jwe||per2 < €2 S Jo lua(s)llgo +lva(s) g (| (uo)e — (v0)al| 2
(3.7) ¢ / § 13 ez Hoe o g, 12 )

5 ||(u0>m - (U0>mHL% + TEl/szHL?’ox
For later use, we see that formally, we also have the energy estimate of Lemma 2.2]

meHL“’Hl < 62 fO |uz ||LOOﬂH1+”Uz( )”LgoﬂH% dS(H(UO)w . (’Uo)wHH%
t
(3.8) n Q/ e~ G I3 ey e Ol 4y, 1 i)
2 Jy :

S l(uo)e — (UO):cHH; + T||U:c:c||L;>°(Lg°mH;)||w||Lt°°(Lg°mH;)'
For L*> estimates, we estimate the source term:

O N (we(ug + vs))
2

|H| |z = ’ —WU, +

S el rallve + vel ez + lwllzge lvallge,
Lge

S ey va)ll oo e 0l oo -
Then applying Lemma [2.4] and choosing T" appropriately small, we have
39) lw<ollgs, < s [(w(0))<ollzee + T (1 H<ollzgs, + lleell o oe wll oo 1)
S llwo = vollzze + Tl (we, vo)ll oo g o llwll o (2o im)-
Moreover, by Sobolev embedding,

lwsollz, S llwall ez
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By adding this inequality, along with equations 3.7 and 3.9, we get that
1/2
[l poo(zgonimny S I (u0)e = (vo)ellzz + lluo = vollzge + TEY2[[w]l poo perii)-
Choosing T' sufficiently small, we find
(3.10) Hw||L;>°(Lg<>mH;) S lluo — UOHLgonH;
which establishes uniqueness.
3.4. Continuity with respect to the initial data. Consider a sequence of initial data
Ug; — Ug € X.

Here, since |lup||x < R, we may assume that |Jug,||x < R for every j, and the existence part
implies that u; and v may be defined on a common time interval [0, 7], with uniform bounds
in j. Furthermore, by the Lipschitz estimate from the proof of uniqueness,

uj —u € L(LE N HY).
By interpolation, it follows that
u; —u € L([0,T), L N H: N HF).

To obtain the endpoint, we take an approach similar to the one presented in [17].

We define uf); = (ug;)<n and ufy = (ug)<p, and may assume that

lugyllx < lluollx,

so that there exists 7' = T'(||ug||x) > 0 and solutions u” and u” that belong to Li°X . Further,
Lemma 23] shows that «" and u belong to L*(X N H3?). As

T
/0 ot ()l ds S TNl e s

we have from the energy estimate of Lemma that
||uh||Lg0(H;mHg) N ||Ug||H;mHga
and likewise for u? .

We consider H, sharp frequency envelopes for (up), and (ug;)s, denoted by {cy}rez and
{c  kez- As (ugj)z — (o), in H), we can assume that ¢, — ¢ in [>. Moreover, as in [17],
we can choose ¢; having the following properties:

a) Uniform bounds:

1Pe(ug)allm < e
b) High frequency bounds:

1(ug)allmz S 2"en

c) Difference bounds:

ot = ugllm S 27"

[u

d) Limit as h — oc:
Dxug — Dyug € H;
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and likewise for c,’c

We first establish estimates for (u — u")so and (u; — u?)so in L*X. We treat the low

frequencies separately because the frequency envelopes that we are using are H'N H2-based,
and don’t allow us to control the L*°-component of the norm of X at low frequencies. By
applying the Lipschitz estimate from the proof of uniqueness, we can see that

HUhH - “h||L°°(HlmLoo S ||thrl - UOHHlnLoo ~ HUhH - U0||H1 <27,
Taking the high frequencies and interpolating with the estimate
S

HUZOHL;”(XQHQ%) hHL;”(H;mHg) ,S HUSLHH;OH;% ,S 2hch7

we get that

h+1

> )
[ulft — ulgl e x S

The analogous analysis and estimates hold for u”. Moreover, as in [I7], we get that

1/2 1/2
[uso — ulollLex S eon = (Z Ci) s )50 = (@) sollLex S by, = (Z(Czif) :

k>h k>h

Next, we show that for fixed A, lim u =" in L X ([0, T] xR). Let us write w = u" —ul,
Jj—00
which by (B.8) satisfies

lwall e S lwe(O) i + Tl aall e oo 10 Lo rgoniny-

As h is fixed, the previous discussion ensures that ||(u}) e | oo 100z s uniformly bounded
with respect to j. Using as well (810), we conclude that

|wllrsex Sh lluo — uojllx

as desired.

To complete the argument, we have
luso = (u5)sollgex S llu = uf | gex + lluso — wlllogex + [(u5)s0 — (u)sollex
Sl = uflloex +esn+ Ly,
so that fixing h,

limsup [luso — (uj)ollpex < con + ngh
j—00

Then letting h tend to oo, we get that
lim [Juso — (4))>0llzex = 0.
J—00
For the low frequencies, we directly estimate

NEI u]||L°° HINLZ) ~ S Jluo — UOJHHlmLOO

|u<o — (U])<0||L°°X |u<o — (uj)<0||L°° HINLY)
As ujo — u; in X, it follows that
lim [Ju<o — (uj)<ollrpex = 0.
j—ro0

Combining the low and high frequencies, we obtain u; — u in L{*X.
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3.5. Continuity in time. Let & > 0 be an arbitrary parameter, and u" solve (LT)) with
initial data (ug)<p. In particular,

—1((yh)2
(3.11) up = O (ua)) ((2%) ) _ uul —ul .

From Lemma 2.3 we know that " € L°(X N Hg), so that the right hand side belongs to
L¥X. Thus, u" € C?X. From the previous section, we know that u" converges to u in
L X, hence in CPX. This concludes the proof of Theorem [l

4. GLOBAL WELL-POSEDNESS

In this section, we prove Theorem Recall that the dispersive Hunter-Saxton (L)) has
the conserved quantities (see [9])

Ei(t) = /Rum(t)2 dx
Ey(t) = /Ru:,;:,;(t)2 — u(t)uy(t)* dr.

Throughout the proof, C' > 0 shall denote a universal large constant. Consider a solution
w of (1) on [0,7) where T is finite. We shall determine a uniform bound for |[u(t)||x.

We begin with the L* estimate. The high frequencies can be controlled by the H® norm,
which is conserved via Ej, but the low frequencies need to be treated separately as follows.
Projecting (1)) onto frequencies less than or equal to 1, we consider

(0, (u2))<o .

(USO)I‘/ + (uux)SO + (u§0>mmm = 9

For the transport term, write

(utiy)<o — tu<o(U<0)e = (UsoUs)<o + [Peo, U<o]Us
= (U>0Ux)§0 + [PS(]a P(]u]um + [P§07 U<0]P0ux

and estimate
[(usotz)<ollre S lusotallrz S [luel| 2.

The same estimate holds for the first commutator directly, without using the commutator
structure. For the second commutator,

I[P<o, ucol Potte|| 1 < [|[Peos tco) Pote | 22 S |0stucoll oo | Pouell 2 S |72
Besides this, we may estimate the dispersive and source terms by
I(u<o)azallree S luzllz, 107" (W5)<ollzee S lluallze:

Therefore, denoting

- ((qu)so - USO(USO):U) - (Ugo)xm
we have

1Pl e S Nuall?e + lluallze = By + By
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Asu e C2X([0,T) xR), we see that u is continuous with respect to ¢ and x, and Lipschitz
with respect to x, uniformly in ¢. As in [20], let us consider the flow

qr = uSO(t> q(t>I))a Q(O>I) = .

By standard ordinary differential equations theory, ¢ exists, is unique, and is defined on the
whole interval [0, T) as a function in C*([0,T")). Moreover, it is not difficult to see that it is a

C'-diffeomorphism. We also note that ¢,; = w,q,, which means that ¢, = elo va(sa(s.)ds 0,
hence ¢ is strictly increasing in x for every t. Further,

d
%uﬁo(tv q(t,x)) = (US0>t + USO(USO)x = I

Then
t t "
rw@@ﬂ@xmuf5w@dmmf+/ﬁwmgdxsm%gm@«+/za+E/d&
0 0

As q is a diffeomorphism, we now infer that

1/2
I (u(t))<ollzee S Nl(wo)<oll oo + t(EL + ).

For the high frequencies, we apply Sobolev embeddings and Bernstein’s inequalities to esti-
mate

1/2

lCu®)sollze S By

Combining these estimates, we conclude that for every ¢t € [0, 7)),
lu®lzz S lluollxo + By + Ey').
Thus, for some constant C' > 0, and for every ¢ € [0,T), we have
luwe ()72 S 1Ea] + [lu(t)]] oo llue ()17
S o2z + ol xo By + H(Er + By
We obtain the desired estimate for ||u(t)||x, where t € [0, 7). In particular, the lifespan for
u may be extended indefinitely.
5. A NORMAL FORM ANALYSIS

~In this section, we use normal forms to construct an energy functional corresponding to
H's. Since (1)) exhibits a quasilinear behavior at low frequencies, we use a modified energy
approach as introduced in [12].

We may re-express the dispersive Hunter-Saxton (1)) as

Uy + Upge = Oy 2 (Upllpe) — Uty =: Q1 + Qy =: Q.

Thus we see that the formal normal form variable, based on the normal form correction for
the KdV equation, is

@ =u+ B(u,u) =u— é@;2(u2) + %(leu)z.

To construct a modified energy for H'**, write

A(D) = D*P.
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and consider
/Aux -A <ux - %8;1(u2) + %(Q;lu)u) dx.
Integrating by parts on the last two terms and rearranging, we obtain
/(Augc)2 - %Au A (W + 207w uy) da.
Then commuting A through the last term, we have

/(Aux)2 — %Au (A(u?) + 2[4, 0, ulu, + 20, u - Auy) da.

Lastly, integrating by parts on the last term, we define the modified energy
~ 1
E(t) := /(Aum)2 — gAu (A(u?) + 2[4, 0, ulu, — Au - u) da.

Lemma 5.1. Ifu € CP?X*([0,T) x R), then for every t € [0,T), we have
(u())soll e = E(t) + O(Enllu(t) || 1),
and p
PR OB [ AullZs (el Ze + el e llullzg)-
Proof. We have
1A, 07 v]we |2 S [[Aw| 2ol e + [[Av]|za lw] rge,
[A(vw)|lz S [[Av]e2[Jwl|zee + [[Aw]| 2 [[v]| 2ee-
Thus, the first bound is immediate.

15

We now prove the energy estimate. First observe that %E consists only of quartic terms.

Precisely, if we set
2
2l

1 1
La(v,w) := —gA(vw) ~3 A, 07 Mlw, + gAv S w,

then a straightforward computation shows that

%E = /AQ cLa(u,u) + Au- La(Q,u) + Au - La(u, Q) dx.
We consider first the contribution from ). Since
[Lav, w)llzz S | Avl|zz lwllzee + | Aw]| 22 |v]] e,

we have

/AQl s La(u,u) + Au- La(Q1,u) + Au - La(u, Q1) dx

S Aull g2 (1AQu | 2 [lull e + [[Aul| 22 | Q] e )-

To bound )1, we have
107" (W) llzee < IluallZ2,
1A (w2 S Iluellree || Aul 2

which suffices.
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For the contribution from ()5, we consider each of the three terms in

1 2 1
La(u,u) = —gA(uz) - §[A’ o7 Mulu, + gAu U

successively. From the third term, and the )5 contribution arising from the case where the
time derivative falls on the lone u,

3
On the other hand, when the derivative falls on Au, we write

1
/ Au- Au - utg dr < || o e | oo | At 22

1 1 1
/éAu A0, (u?) - udr = / gAu A ulug - u+ gAu - Aug - ude.
The latter term is the same as the previous case after an integration by parts, while
1
[ 5Au (A, ude S Al e =l

From the first term in L4, the case when the time derivative falls on Au vanishes via an
integration by parts. Then from the remaining contribution,

1
/ gAu - A0, (u?) do = /Au A wPuy + Au - u? - Aug, da
The latter term has already appeared, while
/A“‘ (A w?lug do < || Au| ol Jug || e [l 2.

Lastly, we have the commutator term from L. When the time derivative falls inside the
commutator, we have

[ A 14,07 o de 1 Aul214,0, )l S Auls o ]
From the remaining contributions of (), we are left with
/A(uux) (A, 07 ulu, + Au - [A, 0 ul(uuy), da.
Integrating by parts on the second term, and since
/Au (A ) (wug) do S || Aull el | e [A(u?) |22 S JAwl Zol s | oo [full o,
it remains to bound
(5.1) /A(uux) (A, 0 uuy — Aug - [A, 0 ] (uuy) do = — /um - [A[A, 07 M), u)u, da.

Before exploiting the full commutator structure, we first reduce to paraproducts.
From the first integral on the left hand side of (5.1I), we write

/ Aluny) - [A, 07 uju, dz = / Alu,) - [A, Ty Ju, de

- % / A(?) - 0y(A(To 0 ) + ATl(uy, 0 ) d

+ % / A(u?) - 0y (T, 0~ + T Auy, 0-0)) dr.
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The last two lines are perturbative and may be discarded. Precisely, we have
IA@") Iz < lullze | Aull 2
while
10: A(T., 07 ')z S Nl | Al 2,

10 (T, 07 )22 S Mt o= || Al 2,

with the same estimate for the balanced frequency terms.
Next, we proceed further to write

/A(uux) A Ty, Jug do = /A(Tuux) [A, Ty, Jug dv

+ /A(Tuzu) A, Ty, Jue do + / All(ug, u) - [A, Ty-r, Jug dz.
The second line is perturbative as before. Precisely,
/A(TMU) A T Jue do S HJual| e [[Aul| 2 - [|ul| e[| Aull 2

with the same estimate for the balanced frequency term.
A similar analysis holds for the second term on the left hand side of (5.1), so we are only
left to estimate

/A(Tuux) A, Ty, Jug do — /Aum (A Ty J(Tuus) de = — /um [A[A, Ty ), Tuug do.

Define
L(u,v,w) = D70, [A[A, Ty, ], Ty, | D™ *w,
and let Ly denote the frequency k component.

Let a(§) = |£]°(1—(€)) be the symbol of A, where ¢ is the symbol of the Littlewood-Paley
projector P, and

a©=0(5=).  wO-o(5)-0(5)
The symbol of Ly is

Li(&,m,¢) = on(&)dr(m)Cuon(Q) (EnlE + n+ ¢I°I¢)5)
(@€ +n+O(alE+n+¢) —aln+ ) —al€ + ¢)(al§ +¢) —al(C))).

This symbol is supported in the region {(&,7,¢)[¢,n < 2%,¢ ~ 2}, is smooth, and its
associated kernel is bounded and integrable. Thus, we have the estimate:

_ / (g - [ALA, O ucn], i) (1) doe = / Aug - Li(u, uy, Aug) dz
S lull e lluall oo | Aug |72
Thus,

/ux JAIA Ty ) TJue de S Nullzee el | Aul 72 S el nge llue|ose | Aull 7
k

By putting everything together, we obtain the desired estimate.
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O

By combining the previous result with the L2° bounds from Theorem [I.2] we establish
bounds on the growth of the solutions in H!*$.

Proposition 5.2. Let T > 0, [ = [0,T] or I = [0,T), and u € C?X*(I x R) solve (LT)).
Then we have the bounds (4.

Proof. We have from Theorem [[.2/the pointwise estimates. It remains to establish the energy
bounds.
Let E be the modified energy functional of Lemma [B.] so that for t € [0,7T),

d

=B () S 11 AullZs (luallZz + el e llull )

S a2 + lua(@Nz2 lu) ez + w72 () |ge lut) ol s
and since we have the energy equivalence
1(u(®)sollFr+e = E(t) + O(Brlut)| 1z),
we find
d .
CE0) S B+ B ()l + Bl (B + CBlu())"
S Ef + Efu(t)||e (E(t) + By + CE|u(t) | 1)

S Bullu(®)||xo(E(t) + By + CEy ||u(t)]| =)'/
S Eillullzpexo (E(t) + Ey + CEy|Jul| 5 ).

Integrating in t, we find that for every ¢t € [0,7),

D=

1

(CElulligs, + By + E(®)” S tEullizxo + (CEilulligs, + By + E(0))
Thus,

E(t) S B} ||ullfexo + Er([[ull g +1) + E(0).
Using the first inequality from Lemma [5.1] and the low frequency bound
I(u(t) <ollF+ S En,
we have
lu@) s S CEFlullZzoxo + Br(lJullzze, + 1) + uollFree

Combined with the pointwise estimates, we obtain the stated bound. 0

This establishes the bounds in Theorem [I.4l Global well-posedness now follows from the
local result of Theorem [I.3, which we prove in the next two sections.
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6. AN ESTIMATE FOR THE LINEARIZED EQUATION
The linearized equation corresponding to (L)) is
Wy + (UW) g+ Wege = 0, (Ugwy),
which can be rewritten as
(6.1) wy + 05 (UpeW) + Wy + Wage = f.
Applying D?® with s € (%, 1) to (6.1)), and writing v = D*w, we have
(6.2) Uy + Wy F Vage = — D0, (T, w + Tiptiy + 1w, Ugs)) — [D*, u]w, + D, f.
Lemma 6.1. Let T > 0 and [ = [0,T]. Ifu € LX® is a solution of (L) in I and

w e COLX N H)(I x R) is a solution of [B1), then by shrinking T enough depending on
||| oo xs (1xr), we have

||7~U||L;>°(Lg°mH;) S ||7~U0||LgomH; + ||f||Lg(LgomH;)'

Proof. We consider the homogeneous problem with f = 0, as the proof below easily gener-
alizes. We first bound the source terms of (6.2) in L2 For the first two source terms, we
have

1D (Toaw) 2 S Nwlligg luallzee S llwll grllell g
and

1D*0;  (Twttaa) |z S Mlwllzee lJual] 1+
For the balanced frequency case, we have

1D30; ' TI(w, w22 S [1D*0; ' TI(w, )

2 S IDSwll 1Dl

|| 3—2s I-s
Ly T

3
S 1Dywllrz || Diullrz < [[wl

Lastly, for the commutator term, we have

s [l o pas

I1D?, ulwal| 2z S Nuallge lwll -

By applying the energy estimate from Lemma 2.1], we get that for every t € [0, 77,

()| df)

t
lw(t)]| 4, < 05 Jo llux(7)ll g0 dr (HwO”H; +/ e~ Jo ||uac(77)||L§°d77||u(7-)||H%mH;+S
0

S llwollizg + Tllwll g xs lwll peorprs -

Next, to obtain an L estimate, it suffices to consider the low frequencies since by Sobolev
embedding,

[wsollLee S llwll s

For the first source term, we decompose into paraproducts as before to estimate

| P00y (Tew)llize S 11 Peody” (T )| 2y S 11D "l
iy S llwl

| P<00; M (Twtize) | e S 105 (Tiwtten)

2
I—s

Diw| -
L=

x

S M|z [[w] s lll e

s S llw |Lg°||u||H;mH;+Sv

and
| P<00; T (g, w) || 2o S NP0l (g, w) || 21 S Nt g1

w| Hs < ||u||H;mH;+S wHH;



20 ALBERT AI AND OVIDIU-NECULAI AVADANEI

Thus,

1P<00; (witas) e S llwlloge el myrires + Nl el -

From Lemma 2.4, with 7" sufficiently small, we have

||w§0||L;>j; S [[(wo) <oll s +T/||U||L§°XS 7~U||L;><>H;-

Putting everything together, for t € [0,7"] we get

||w(t)||Lg°mH; S ||w0||Lg°mH; ‘l'T,HuHL,?"XS w”LgomH;'

By further shrinking 7" depending on [|ul[z=x+, we obtain the desired estimate. O

We now prove a result regarding differences of solutions, that is going to be used in order
to justify uniqueness of C? X*-solutions in the proof of Theorem [L.3|

Lemma 6.2. Let T > 0 and I = [0,T]. Let u,v € CPX*(I x R) solve (ILT)) with up — vy €
LX N HS. Thenu—v e LP(LYP N HE)(I xR), and for T sufficiently small depending on
| (w, v)|[Leoxs, we have

Ju— U||L§°(Lg°mH;) S [luo — UOHLgomH;"

Proof. Let z = u — v, which solves the equation

O (2 (ug + vp))
5 .
We apply D; and rearrange to consider the Cauchy problem

O (ze (ug + vg))
2

with initial data w(0) = D%(uy — vg) € L2(R). For the first term in H, we decompose into
paraproducts and have the L? bounds
1D70, (T, (us + )2z S ll2llzgellu+ vll oo
1D20; (Tupws o) 2z S Nell e llu + vl 2z

1D20; T (us + vz, 20) 22 S [|1D20; T (us + vs, )l 52

Wi + Wagy = DY ( ) — D3 (uz)y + Di(zz,) == H

Szl Datu+ o) pas S all D52 (w4 0)llzs.

The other terms are estimated directly using product estimates:
1D30x(uz) ||z < llullose ll2ll gaes + 120 oo llell graes
1D30: () ez S llzllzge 2l o

Thus, H € L°L2([0,T] x R). By applying Lemma 1] we infer that (6.3) has a unique
solution in L{°L2([0,T] x R). However, both w and DSz are solutions (in the sense of
tempered distributions), hence w = Dz, and z = u — v € L H?([0,T] x R). Tt is also clear
that u — v € LY, ([0, 7] x R).

We now observe that z satisfies the linearized equation (6.1I) with source,

0 1(22)

T T

5 =: f.

1
2t 4 0y (Uge?) + U2y + Zpge = 220 —
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After taking 7" small enough (depending on [|u[|zxxs), we can apply Lemma [6.], But first,
we have to estimate f € L} (L N H?)([0,T] x R). For the first term of f,

10202 (=*) 22 < ll2llse lullx- + [lv]

10:(2)lzg < N2llzge (ullxs + o]

XS>7

Xs)-
For the second, we have

1D20; (T 20) Iz < ]

Zellzge S 12l (el xs + [Jo]lxs)

1D50;, (2, z2) || 22 S IIH(zx,zm)Herﬂ N ||DiZ||LgHD§_SZHL11—S S Mzl g 1 D322 2
xT xT
S 2l gs (Jullxes + llollxs)-

For the LS° estimate, it suffices to consider the low frequencies since by Sobolev embedding,
107 (22)s0llzze S 1195 (22)0ll gz -
We then have for the low frequencies
1P<00; (20, 2))ll2ge S 1Pl o) ey S Nl gzl gz S N2l g (]
1P<00; H(Teu ) |2 S 1105 (T 20) xe + ]

xs + [Jv]lxs)

ay S |2llzg (flul o).
Thus,
1l zeene) S TNzl oo zoniy (Il zooxcs + vl e xe)-

Thus, we get that

1wl Lo zgermmrgy Shullpgoxs 1wollpoonizs + 11|t zeenig)

Stullzgexcs 1Wollpgorizs + T2l o (noonsg) (lullzgexs + [0l e xs).

After further shrinking 7" (depending on [|(u, v)||rsxs, Lemma [6.1] implies the desired con-
clusion. U
7. LOCAL WELL-POSEDNESS AT LOW REGULARITY

In this section, we prove Theorem As we have already noticed at the end of Section [4],

this will also imply Theorem [T.4l

Let R > 0 be arbitrary. Given data ug satisfying ||ug|
ing regularized data

xs < R, we consider the correspond-

h
Since ul — ug in X*, we may assume that ||u?|xs < R for all h.

We construct a uniform H! N H!** frequency envelope {cy }r=o for ug having the following
properties:

a) Uniform bounds:
1P ()l praras S e
b) High frequency bounds:
lugll ginpzs S 2"en

c¢) Difference bounds:

lug* = ugll e S 27"en
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d) Limit as h — oc:
D, (ul) = Dy(uo) € HE

By Theorem and Lemma 23] u} generate global smooth solutions u". Corollary
enables us to pick 7' = T'(R) > 0 such that the hypotheses of Lemma can be applied to
any C?X*([0, T] xR)-solutions with initial data whose X *-norm is smaller than R. Moreover,
we also obtain uniform bounds for such solutions, including the family (u"),cz. We now get
that

14"l cogrranpzy S 2"en,

and
[u"*t — " gozs S 27 cn
By interpolation, we infer that
! = e ass S .
Thus, for h > 0,
||thrl - Uh||cg(H;mH;+S) S e

As in [17], we get that
1P| ooy S e
and that

h+k—1 2
htk _ h o _ 2
[ —u Hcg(H;nH;“) S Chs<hik = E Cn
n=h

for every k > 1. Thus, u" converges to an element u belonging to CO(H! N H!+%)([0, T] x R).
Moreover, we also obtain

1
00 2
(7.1) lu" = ulleograng+) S czn = (Z ci) -

n=h
For pointwise convergence, we use Sobolev embedding for the high frequencies,

||(“h+k)>0 - (uh)>0||c§Lg° S ||“h+k - Uh“cgl'{;-
and the estimate (3.9) for the low frequencies:
(") <0 = (@) <ollopres < lug™ = ugllzee + TRIU — u"{lcopy.

We conclude that u" — uw € C?X*([0,T] x R).

Lemma also implies uniqueness for (ILI). For continuity with respect to the initial
data, consider a sequence
Ug; — Ug € X°

and an associated sequence of H; N H;Jrs—frequency envelopes {C;i}kzo, each satisfying the
analogous properties enumerated above for ¢, and further such that ¢/ — ¢ in [*(Z).

We may assume that |ug;||xs < R for every j > 0. As before, we get uniform bounds for
(u?)(j,h)eNx27 and we can interpolate to conclude

X ‘
[ ™ = | cogramits) S ch
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and

1Pt llco rraniitsy S Chs

htk—1 2
HU?M - U?Hcg(H;mH;“) S C;L§-<h+k = Z (0171)2 )
n=h
00 2
= wsllcompmmtsy S Ly = D_(c)

n=h

Using the triangle inequality, we write
Ju; — U||cg(H;nH;+S) N ||Uh - U||cg(H;nH;+S) + ||U? - uj||cg(H;mH;+S) + ||U? - uh||cg(H;nH;+S)
Sesntcly, + ||U§L - Uh||cg(H;mH;+S)

For every fixed h, Theorem tells us that u;‘ — u" in X. This implies that uj — u in
CO(H! N H*#)([0,T] x R). For pointwise estimates, by applying Sobolev embeddings and
using Bernstein’s inequalities, we get that

()50 = wsolleprse S llug — wlloogranms)-
Besides this, (3.9) implies that
() <o — u<ollcoree S [[(ws)<o — u<ollcoree + CTJuy — ullcop -

Therefore, u; — u in CYX*([0,T] x R). This finishes the proof.
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