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WELL-POSEDNESS FOR THE DISPERSIVE HUNTER-SAXTON

EQUATION

ALBERT AI AND OVIDIU-NECULAI AVADANEI

Abstract. This article represents a first step towards understanding the well-posedness
for the dispersive Hunter-Saxton equation. This problem arises in the study of nematic
liquid crystals, and although the equation has formal similarities with the KdV equation,
the lack of L2 control gives it a quasilinear character, with only continuous dependence on
initial data.

Here, we prove the local and global well-posedness of the Cauchy problem using a normal
form approach to construct modified energies, and frequency envelopes in order to prove the
continuous dependence with respect to the initial data.
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1. Introduction

In this article we consider the Cauchy problem for the dispersive Hunter-Saxton equation

(1.1)







ut + uux + uxxx =
1

2
∂−1
x (u2x)

u(0) = u0,

where u is a real-valued function u : [0,∞) × R → R. Due to the Galilean invariance of
(1.1), we may fix a definition for ∂−1

x ,

∂−1
x f(x) =

∫ x

−∞

f(y) dy,

where f ∈ L1
x(R). The dispersive Hunter-Saxton equation is a perturbation of the Hunter-

Saxton equation

(1.2) ut + uux =
1

2
∂−1
x (u2x),
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which was introduced in [13] as an asymptotic model for the formation of nematic liquid
crystals under a director field. The Hunter-Saxton equation (1.2) is completely integrable
[14, 1] with a bi-Hamiltonian structure [18]. In the periodic case, the local well-posedness
and blow up phenomena were studied in [13, 21], while global weak solutions were studied
in [2, 3]. For the non-periodic case, the Cauchy problem local well-posedness and blow up
were studied in [20].

The Hunter-Saxton equation is also the high frequency limit of the Camassa-Holm equa-
tion,

(1− ∂2x)ut = 3uux − 2uxuxx − uuxxx.

The local well-posedness and ill-posedness of the Camassa-Holm equation were studied in
[7, 8, 10]. The global existence of strong solutions and blow up phenomena were investigated
in [4, 6, 5, 7].

The dispersive Hunter-Saxton equation (1.1) first appeared in [15] as a dispersive regular-
ization of (1.2). Complete integrability was later observed in [9].

In this paper, we initiate the study of the well-posedness for the dispersive Hunter-Saxton
equation (1.1). For this purpose, we use the conserved quantities

E1(t) =

∫

R

ux(t)
2 dx,

E2(t) =

∫

R

uxx(t)
2 − u(t)ux(t)

2 dx.

Throughout, we denote

Xs = L∞
x ∩ Ḣ1

x ∩ Ḣ
1+s
x ,

where s ∈ [0, 1]. For brevity, we denote X = X1. Our first main result is the following local
well-posedness statement:

Theorem 1.1. The dispersive Hunter-Saxton equation (1.1) is locally well-posed in X. Pre-

cisely, for every R > 0, there exists T = T (R) > 0 such that for every u0 ∈ X with

‖u0‖X < R, the Cauchy problem (1.1) has a unique solution u ∈ C([0, T ], X). Moreover, the

solution map u0 7→ u from X to C([0, T ], X) is continuous.

In both the dispersive and nondispersive cases of the Hunter-Saxton equation, the main
difficulty is that the source term 1

2
∂−1
x (u2x) is unbounded in any Lp space if p < ∞, and in

particular, in L2. As a result, it is necessary to consider the problem assuming only pointwise
L∞ control on u, similar to the analysis in [20] for the nondispersive case (1.2). Further,
the lack of spatial decay obstructs direct access to local smoothing estimates, so that (1.1)
exhibits quasilinear behavior even in the presence of KdV-like dispersion. In particular,
our solutions exhibit only continuous dependence on the initial data, instead of Lipschitz
dependence.

Our proof follows a bounded iterative scheme which treats separately the high and low
frequency components. To prove continuous dependence on the initial data in our quasi-
linear setting, we have used frequency envelopes, introduced by Tao in [19]. A systematic
presentation of the use of frequency envelopes in the study of local well-posedness theory for
quasilinear problems can be found in the expository paper [17], which we broadly follow in
the present work.

Our second result is the following global well-posedness statement:
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Theorem 1.2. The Cauchy problem (1.1) is globally well-posed in X. Moreover, for every

t ≥ 0, we have the global in time bounds

‖u(t)‖L∞
x
. ‖u0‖X0 + t(E1 + E

1/2
1 ),

‖u(t)‖2
Ḣ2

x
. ‖u0‖

2
Ḣ2

x
+ ‖u0‖X0E1 + t(E1 + E

1/2
1 )E1.

Its proof relies on Theorem 1.1 and on the conserved quantities E1(t) and E2(t). We

remark that the L∞ estimate holds even for solutions which are only in X0 = L∞ ∩ Ḣ1.

Using the X1 well-posedness as a starting point, our third and fourth results extend well-
posedness to lower regularity data:

Theorem 1.3. For each s ∈ (1
2
, 1), the Cauchy problem (1.1) is locally well-posed in Xs.

The local well-posedness of Theorem 1.3 is in the same sense as in Theorem 1.1. Here, we
leverage Theorem 1.1 to construct Xs solutions as limits of sequences of smooth solutions, by
proving an estimate for differences of two solutions in order to establish convergence. This
in turn is a consequence of an estimate for the linearized equation associated to (1.1),

(1.3) wt + (uw)x + wxxx = ∂−1
x (uxwx).

Theorem 1.4. For each s ∈ (1
2
, 1), the Cauchy problem (1.1) is globally well-posed in Xs.

Moreover, for every t ≥ 0,

(1.4)
‖u(t)‖L∞

x
. ‖u0‖X0 + t(E1 + E

1/2
1 )

‖u(t)‖2
Ḣ1+s

x
. 〈t〉4E2

1〈‖u0‖X0 + E1〉
2 + ‖u0‖

2
Ḣ1+s

x
.

To prove Theorem 1.4, we construct a modified energy functional for Ḣ1+s which is based
on the quadratic normal form for (1.1). The approach of constructing normal form inspired
modified energies in the quasilinear setting was first introduced by Hunter-Ifrim-Tataru-
Wong [12] which considered the Burgers-Hilbert equation. This approach was further de-
veloped in the gravity water wave setting by Hunter-Ifrim-Tataru in [11], which established
almost-global well-posedness, and in the Benjamin-Ono setting by Ifrim-Tataru [16] which
established dispersive decay.

Our paper is organized as follows. In Section 2, we present some existence results at
various degrees of regularity for linear equations that arise throughout the proofs of the
main results. In Section 3, using an iterative scheme, we prove the higher regularity local
well-posedness result, while in Section 4, by using the conserved quantities E1 and E2, we
show that the dispersive Hunter-Saxton equation (1.1) is globally well-posed.

Section 5 analyzes a modified energy for the equation, which is based on the normal form
associated to the Hunter-Saxton equation, in order to obtain bounds on the growth of the
Xs-norm, whereas Section 6 discusses an estimate for the linearized equation (1.3), as well
as one for differences of solutions. These results are then used to prove the low regularity
local well-posedness result in Section 7.

1.1. Acknowledgements. This material is based upon work supported by the National
Science Foundation under Grant No. DMS-1928930 while the authors participated in a
program hosted by the Mathematical Sciences Research Institute in Berkeley, California,
during the Spring 2021 semester.
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2. Preliminaries

In this section we state and prove some results that will be used in the sequel. We begin
by studying well-posedness for a linear equation which will be used in the iteration for the
proof of Theorem 1.1.

We first prove well-posedness and energy estimates for initial data in L2.

Lemma 2.1. Let T > 0, a, b ∈ L∞
t ([0, T ], Ẇ 1,∞), F ∈ L1

t ([0, T ], L
2
x), v0 ∈ L2

x(R). Then the

Cauchy problem

(2.1)

{

vt + avx + bxv + vxxx = F

v(0) = v0

admits a unique solution v ∈ L∞
t ([0, T ], L2

x) which satisfies the energy estimate

d

dt
‖v‖2L2 . ‖F‖L2

x
‖v‖L2

x
+ (‖ax‖L∞

x
+ ‖bx‖L∞

x
)‖v‖2L2

x
.

Proof. Let us assume that v is a solution to the Cauchy problem. We have

(2.2)

d

dt

∫

R

v2(t) dx = 2

∫

R

v(t)vt(t) dx

= 2

∫

R

v(t)(F (t)− a(t)vx(t)− bx(t)v(t)− vxxx(t)) dx

= 2

∫

R

v(t)F (t) dx+

∫

R

ax(t)v
2(t) dx− 2

∫

R

bx(t)v
2(t) dx

. ‖v(t)‖L2
x
‖F (t)‖L2

x
+ ‖v(t)‖2L2

x
(‖ax(t)‖L∞

x
+ ‖bx(t)‖L∞

x
).

We obtain the desired energy estimate, which also establishes uniqueness.

It remains to show existence, for which we follow a standard duality argument. We first
determine the adjoint problem. For an arbitrary w, a formal computation shows that
∫ T

0

∫

R

(vt + avx + bxv + vxxx)w dx dt =

∫

R

v(T )w(T ) dx−

∫

R

v(0)w(0) dx

−

∫ T

0

∫

R

(wt + awx + axw + bxw + wxxx)v dx dt.

We write wt + awx + (ax + bx)w + wxxx = G and w(T ) = wT . Thus,
∫ T

0

∫

R

Fw dx dt+

∫

R

v0w(0) dx =

∫

R

v(T )wT dx−

∫ T

0

∫

R

Gv dx dt

and we have the adjoint problem

(2.3)

{

wt + awx + (ax + bx)w + wxxx = G

w(T ) = wT .
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Using the energy estimate of the original equation, we have

‖w(t)‖L2
x
. ‖wT‖L2

x
+ ‖G‖L1

tL
2
x
.

In particular, we conclude that if the adjoint problem has a solution, then it is unique.

Let

Y = {(g, G̃) ∈ L2
x × L1

tL
2
x([0, T ]× R) |

there exists h ∈ L∞
t L

2
x solving the adjoint problem with (wT , G) = (g, G̃) }.

We define the functional α : Y → R by

α(g, G̃) =

∫ T

0

∫

R

Fh dx dt+

∫

R

v0h(0) dx,

which is well-defined by uniqueness for the adjoint problem. It is also bounded, as

|α(g, G̃)| . ‖v0‖L2
x
‖h(0)‖L2

x
+ ‖F‖L1

tL
2
x
‖h‖L∞

t L2
x

. ‖v0‖L2
x
(‖g‖L2

x
+ ‖G̃‖L1

tL
2
x
) + ‖F‖L1

tL
2
x
(‖g‖L2

x
+ ‖G̃‖L1

tL
2
x
)

. (‖v0‖L2
x
+ ‖F‖L1

tL
2
x
)(‖g‖L2

x
+ ‖G̃‖L1

tL
2
x
).

Using the Hahn-Banach Theorem, we extend α to a functional β defined on L2
x × L1

tL
2
x.

This uniquely corresponds an element of L2
x×L

∞
t L

2
x, whose second component is the desired

solution v.
�

We extend the previous result to the case when the initial data is in H1:

Lemma 2.2. Let T > 0, a, b ∈ L∞
t Ẇ

1,∞
x , b ∈ L∞

t Ḣ
2
x, F ∈ L1

tH
1
x, and v0 ∈ H1

x. Then the

Cauchy problem (2.1) has a unique solution v ∈ L∞
t H

1
x which satisfies the energy estimate

d

dt
‖v‖2

Ḣ1
x
. (‖F‖Ḣ1

x
+ ‖bxx‖L2

x
‖v‖L∞

x
)‖v‖Ḣ1

x
+ (‖ax‖L∞

x
+ ‖bx‖L∞

x
)‖v‖2

Ḣ1
x
.

In particular, if u is a solution of the dispersive Hunter-Saxton equation (1.1), then

d

dt
‖ux‖

2
Ḣ1

x
. ‖ux‖L∞

x
‖ux‖

2
Ḣ1

x
.

Proof. We first consider the regularized equation

vt + vxxx + avx + (b≤m)xv = F.

By applying Lemma 2.1, we obtain a unique solution vm ∈ L∞
t L

2
x. We first observe that

vm ∈ L∞
t H

1
x. Indeed, note that vmx formally satisfies

(2.4) ṽt + ṽxxx + (ax + (b≤m)x)ṽ + aṽx = Fx − (bxx)≤mv
m

where

‖Fx − (bxx)≤mv
m‖L∞

t L2
x
≤ ‖Fx‖L∞

t L2
x
+ ‖(bxx)≤mv

m‖L∞

t L2
x

≤ ‖Fx‖L∞

t L2
x
+ ‖(bxx)≤m‖L∞

t,x
‖vm‖L∞

t L2
x
<∞.

By applying Lemma 2.1 once again, we obtain that (2.4) admits a unique solution ṽm ∈ L∞
t L

2
x

so that vmx = ṽm and vm ∈ L∞
t H

1
x.
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Using (2.2), we find

d

dt

∫

R

(vm)2 dx . ‖vm‖L2
x
‖F‖L2

x
+ (‖ax‖L∞

x
+ 2‖bx‖L∞

x
)‖vm‖2L2

x

and

d

dt

∫

R

(vmx )2 dx . ‖vmx ‖L2
x
‖Fx − (bxx)≤mv

m‖L2
x
+ ‖ax + 2(b≤m)x‖L∞

x
‖vmx ‖

2
L2
x

. ‖vmx ‖L2
x
‖Fx‖L2

x
+ ‖bxx‖L2

x
‖vm‖L∞

x
‖vmx ‖L2

x
+ (‖ax‖L∞

x
+ ‖bx‖L∞

x
)‖vmx ‖

2
L2
x
.

Denoting

Em(t) =

∫

R

(vm(t))2 dx+

∫

R

(vmx (t))2 dx,

we have

d

dt
Em(t) . (Em(t))1/2‖F (t)‖H1

x
+ (‖ax(t)‖L∞

x
+ ‖bx(t)‖L∞

x
+ ‖bxx(t)‖L2

x
)Em(t).

From Grönwall’s lemma, we infer that

Em(t) ≤ e
C
2

∫ T
0

‖ax(s)‖L∞
x

+‖bx(s)‖L∞
x ∩Ḣ1

x
ds
·

(

‖v0‖H1
x
+

∫ T

0

e
−C

2

∫ s
0
‖ax(τ)‖L∞

x
+‖bx(τ)‖L∞

x ∩Ḣ1
x
dτ
‖F (s)‖H1

x
ds

)

,

uniformly in m and t ∈ [0, T ].

Let l ≥ 0 and z = vm+l − vm ∈ L∞
t L

2
x. We see that z solves

zt + zxxx + azx + (bx)≤m+lz = −(bx)m<·≤m+lv
m =: H.

Let e := sup
m≥1

sup
t∈[0,T ]

Em(t) <∞. We estimate the source term:

‖H‖L∞

t L2
x
. ‖(bx)m<·≤m+l‖L∞

t L2
x
‖vm‖L∞

t,x
. 2−m‖(bm<·≤m+l)xx‖L∞

t L2
x
‖vm‖L∞

t H1
x

. 2−m‖bxx‖L∞

t L2
x
e1/2.

By applying the energy estimate provided by Lemma 2.1 with Grönwall, we obtain

‖z(t)‖L2
x
≤ e

C
2

∫ t
0
‖ax(s)‖L∞

x
+2‖bx(s)‖L∞

x
ds

(

C

2

∫ t

0

e−
C
2

∫ s
0
‖ax(τ)‖L∞

x
+2‖bx(τ)‖L∞

x
dτ‖H(s)‖L2

x
ds

)

. T2−me1/2‖bxx‖L∞

t L2
x
.

Thus, vm is a Cauchy sequence in L∞
t L

2
x, which means that it converges to a solution v.

As vm is bounded in L∞
t H

1
x, Lemma 2.5 implies v ∈ L∞

t H
1
x. The energy estimates of Lemma

2.1 also prove uniqueness. A similar computation to the one carried out for vm provides the
desired energy estimate. In particular, if u is a solution of (1.1), then ux is a solution of
(2.1) with a = u, b = −ux/2, and F = 0, so that the desired estimate follows. �

Using this, we establish persistence of regularity for (1.1):
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Lemma 2.3. Let T > 0, and u ∈ C([0, T ], X) a solution for the dispersive Hunter-Saxton

equation (1.1). If u(0) ∈ X ∩ Ḣn+1
x (R), then u ∈ L∞

t ([0, T ], X ∩ Ḣn+1
x ). Furthermore, in the

case n = 2, we have the energy estimate

d

dt
‖uxx(t)‖

2
H1

x
. ‖ux(t)‖L∞

x
‖uxx(t)‖

2
H1

x
.

Proof. Observe that uxx formally satisfies

vt + uvx + 2uxv + vxxx = 0.

As u ∈ L∞
t X , by applying Lemma 2.2, we infer that the problem admits a unique solution

v ∈ L∞
t H

1
x. In particular, v solves the problem in the sense of distributions, so that v = uxx

and u ∈ L∞
t (X ∩ Ḣ3

x), along with the energy estimate, as desired.
For n > 2, observe that ∂nxu formally satisfies

(2.5) vt + uvx + 2uxv + vxxx = P (uxx, ..., ∂
n−2
x u),

where P is a quadratic polynomial. The result follows by induction and Lemma 2.2. �

We now establish the following L∞ estimate that will be used in the proof of several other
results, including the iteration for the proof of Theorem 1.1:

Lemma 2.4. Let T > 0, a ∈ L∞
t ([0, T ],W 1,∞), and w ∈ L∞

t ([0, T ], L∞) satisfy

(2.6) wt + awx + wxxx = f.

Then w satisfies

d

dt
‖w≤0‖L∞ . ‖w≤0‖L∞ + ‖f≤0‖L∞ + ‖a‖W 1,∞‖w‖L∞

.

Proof. By applying the frequency projection P≤0, we obtain

(w≤0)t + (awx)≤0 + (w≤0)xxx = f≤0

and estimate
‖(awx + wxxx)≤0‖L∞ . ‖((aw)x − (axw))≤0‖L∞ + ‖(w≤0)xxx‖L∞

. (‖a‖L∞ + ‖ax‖L∞)‖w‖L∞ + ‖w≤0‖L∞ .

�

Lastly, we observe a technical result which will be used in the proof of Theorem 1.1 to
show that the solution of (1.1) has the desired regularity:

Lemma 2.5. Let T > 0 and {vn}n≥0 ∈ L∞
t ([0, T ], H1

x) be a bounded sequence such that

vn → v ∈ L∞
t ([0, T ], L2

x).

Then v ∈ L∞
t ([0, T ], H1

x).

Proof. Let M > 0 be such that ‖vn‖L∞

t H1
x
≤ M for every n ≥ 0. Fix t ∈ [0, T ] such that

vn(t) converges to v(t) in L2
x(R), and ‖vn(t)‖H1

x
≤M . It suffices to show that ‖v(t)‖H1

x
≤M ,

independently of t. We omit t in the notations below.
As vn is bounded in H1

x(R), which is a Hilbert space and hence reflexive, we infer that
there exists a subsequence {vnk}k≥0 that converges weakly to some g ∈ H1

x(R). In particular,
vnk converges to g in the sense of distributions. On the other hand, vn converges to v in
L2
x(R) and in the sense of distributions, so v = g ∈ H1

x(R).



8 ALBERT AI AND OVIDIU-NECULAI AVADANEI

Let w ∈ H1
x(R) with ‖w‖H1

x
= 1, and observe that

|〈v, w〉| = lim
k→∞

|〈vnk , w〉| ≤ lim
k→∞

‖vnk‖H1
x
≤M.

We infer that ‖v‖H1
x
≤M . This finishes the proof.

�

3. Local well-posedness

In this section we prove Theorem 1.1.

Let C > 0 be a large absolute constant which may vary from line to line, and let small T >
0 be fixed later. Let ‖u0‖X < R. We inductively define a sequence {un}n≥0 ∈ L∞

t,x([0, T ]×R).

For n = 0 we set u0(t, x) = u0(x). For n > 0, we will set un+1 ∈ L∞
t,x([0, T ] × R) as the

unique solution of the Cauchy problem

(3.1)







un+1
t + un+1

xxx + unun+1
x =

∂−1
x ((unx)

2)

2
,

un+1(0) = u0.

3.1. Existence and uniform bounds for (3.1). Here we show existence and estimates for
(3.1) in L∞

t ([0, T ], X).

3.1.1. Existence for un+1 in L∞
t (Ḣ1

x ∩ Ḣ2
x). We first show that (3.1) has a solution un+1 ∈

L∞
t (Ḣ1

x ∩ Ḣ
2
x) with

En+1(t) :=

∫

R

(un+1
xx (t))2 + (un+1

x (t))2 dx ≤ K‖u0‖
2
X =: E,

for K > 0 a large absolute constant. We assume by induction that this is true for un.
We consider the Cauchy problem

(3.2)







vt + vxxx + (un)xv + unvx =
(unx)

2

2
,

v(0) = (u0)x.

By applying Lemma 2.2, we obtain that (3.2) admits a unique solution v ∈ L∞
t H

1
x. By

Sobolev embedding, we obtain that v ∈ L∞
x , which implies that for almost every t ∈ [0, T ],

v(t) is locally integrable. Then we may define

un+1(t, x) = u0(0, 0) +

∫ x

0

v(t, y) dy.

For the energy estimate, we apply the energy estimate of Lemma 2.2 to (un+1)x with the
induction hypothesis to obtain that for every t ∈ [0, T ], with T chosen appropriately small
depending on C and ‖u0‖X ,

(En+1(t))1/2 ≤ e
C
2

∫ t
0
(En(s))1/2 ds

(

(En+1(0))1/2 +
C

2

∫ t

0

e−
C
2

∫ s
0
(En(τ))1/2 dτEn(s) ds

)

≤ e
CTE1/2

2

(

E1/2

2
+
CTE

2

)

. E1/2.

In addition, the energy estimates for un+1 show that it is a unique solution, hence the
iteration is well-defined.
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3.1.2. L∞
x control for un+1. Applying Lemma 2.4 and choosing T appropriately small de-

pending on E, we have

‖(un+1)≤0‖L∞

t,x
. ‖(u0)≤0‖L∞

x
+ T (‖(∂−1

x (unx)
2)≤0‖L∞

t,x
+ ‖un‖L∞

t W 1,∞‖un+1‖L∞

t Ḣ1
x
)

. ‖(u0)≤0‖L∞
x
+ T (‖unx‖

2
L∞

t L2
x
+ ‖un‖L∞

t X‖u
n+1‖L∞

t Ḣ1
x
)

.
1

2
E1/2 + TE . E1/2.

Combined with Sobolev embedding for the high frequencies,

‖(un+1)>0‖L∞

t,x
. ‖un+1‖Ḣ1

x∩Ḣ
2
x
. E1/2,

we conclude that our iteration is well-defined with the uniform bound

‖un+1‖L∞

t X ≤ E1/2.

3.2. Convergence for un. We shall now prove that un is a Cauchy sequence in L∞
t (L∞

x ∩

Ḣ1
x). Let m ≥ 0 be an arbitrary integer and z = un+2 − un+1. In this case, z satisfies

(3.3) zt + un+1zx + zxxx =
∂−1
x ((un+1

x )2 − (unx)
2)

2
− (un+1 − un)un+1

x =: H

and thus zx satisfies

(3.4) (zx)t + un+1
x zx + un+1zxx + zxxxx = Hx.

We estimate the source term:

‖Hx‖L∞

t L2
x
≤ ‖(un+1

x )2 − (unx)
2‖L∞

t L2
x
+ ‖(un+1 − un)un+1

xx ‖L∞

t L2
x
+ ‖(un+1 − un)xu

n+1
x ‖L∞

t L2
x

≤ ‖un+1
x − unx‖L∞

t L2
x
‖un+1

x + unx‖L∞

t,x
+ ‖un+1 − un‖L∞

t,x
‖un+1

xx ‖L∞

t L2
x

+ ‖un+1
x − unx‖L∞

t L2
x
‖un+1

x ‖L∞

t,x

. E1/2‖un+1 − un‖L∞

t (L∞
x ∩Ḣ1

x)
,

and
‖H‖L∞

x
. ‖∂−1

x ((un+1
x )2 − (unx)

2)‖L∞
x
+ ‖(un+1 − un)un+1

x ‖L∞
x

. ‖un+1
x − unx‖L∞

t L2
x
‖un+1

x + unx‖L∞

t L2
x
+ ‖un+1 − un‖L∞

t,x
‖un+1

x ‖L∞

t,x

. E1/2‖un+1 − un‖L∞

t (L∞
x ∩Ḣ1

x)
.

By applying the energy estimate provided by Lemma 2.1 and choosing T sufficiently small,
we have

‖zx(t)‖L2
x
≤ e

C
2

∫ t
0
‖(un+1(s))x‖L∞

x
ds

(

C

2

∫ t

0

e−
C
2

∫ s
0
‖(un+1(τ))x‖L∞

x
dτ‖Hx(s)‖L2

x
ds

)

. e
TCE

2 TE1/2‖un+1 − un‖L∞

t (L∞
x ∩Ḣ1

x)

≪ ‖un+1 − un‖L∞

t (L∞
x ∩Ḣ1

x)
.

For the L∞ estimates, applying Lemma 2.4 and choosing T appropriately small depending
on E, we have

‖z≤0‖L∞

t,x
. T (‖H≤0‖L∞

t,x
+ ‖un+m‖L∞

t W 1,∞‖z‖L∞

t Ḣ1
x
) ≤

1

4
‖un+1 − un‖L∞

t (L∞
x ∩Ḣ1

x)
.

For the high frequencies, we use Sobolev embedding:

‖z>0‖L∞

t,x
. ‖z‖L∞

t Ḣ1
x
≪ ‖un+1 − un‖L∞

t (L∞
x ∩Ḣ1

x)
.
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Putting everything together, and choosing T sufficiently small (depending on R), we get

‖un+2 − un+1‖L∞

t (L∞
x ∩Ḣ1

x)
≤

1

2
‖un+1 − un‖L∞

t (L∞
x ∩Ḣ1

x)
.

By iterating, we get

‖un+2 − un+1‖L∞

t (L∞
x ∩Ḣ1

x))
≤ 2−n−1‖u1 − u0‖L∞

t (L∞
x ∩Ḣ1

x))
. 2−nE

1

2 ,

which shows that un is a fundamental sequence in L∞
t (Ḣ1

x ∩ L
∞
x ) converging to an element

u ∈ L∞
t (Ḣ1

x ∩ L
∞
x ). In particular, unx converges to ux in L∞

t L
2
x. As unx is bounded in L∞

t H
1
x

(because un is bounded in L∞
t X), Lemma 2.5 implies that ux ∈ L∞

t H
1
x. Therefore, u ∈ L∞

t X .

3.3. Uniqueness. Let u and v be two solutions to (1.1) with initial data u(0) = u0 and
v(0) = v0 such that ‖u0‖X < R and ‖v0‖X < R. Let w = u − v. Recall that we have the
bounds ‖u‖L∞

t X , ‖v‖L∞

t X ≤ E1/2.
In this case, w satisfies

(3.5) wt + uwx + wxxx = −wvx +
∂−1
x (wx(ux + vx))

2
=: H

so that wx satisfies

(3.6) (wx)t + uwxx +
1

2
(ux + vx)wx + wxxxx = −wvxx.

By applying the energy estimate provided by Lemma 2.1 and choosing T sufficiently small,
we get that

(3.7)

‖wx‖L∞

t L2
x
≤ e

C
2

∫ t
0
‖ux(s)‖L∞

x
+‖vx(s)‖L∞

x
ds(‖(u0)x − (v0)x‖L2

x

+
C

2

∫ t

0

e−
C
2

∫ s
0
‖ux(τ)‖L∞

x
+‖vx(τ)‖L∞

x
dτ‖wvxx‖L2

x
ds)

. ‖(u0)x − (v0)x‖L2
x
+ TE1/2‖w‖L∞

t,x
.

For later use, we see that formally, we also have the energy estimate of Lemma 2.2,

(3.8)

‖wx‖L∞

t H1
x
≤ e

C
2

∫ t
0
‖ux(s)‖L∞

x ∩Ḣ1
x
+‖vx(s)‖L∞

x ∩Ḣ1
x
ds
(‖(u0)x − (v0)x‖H1

x

+
C

2

∫ t

0

e
−C

2

∫ s
0
‖ux(τ)‖L∞

x ∩Ḣ1
x
+‖vx(τ)‖L∞

x ∩Ḣ1
x
dτ
‖wvxx‖H1

x
ds)

. ‖(u0)x − (v0)x‖H1
x
+ T‖vxx‖L∞

t (L∞
x ∩Ḣ1

x)
‖w‖L∞

t (L∞
x ∩Ḣ1

x)
.

For L∞ estimates, we estimate the source term:

‖H‖L∞
x
=

∥

∥

∥

∥

−wvx +
∂−1
x (wx(ux + vx))

2

∥

∥

∥

∥

L∞
x

. ‖wx‖L∞

t L2
x
‖ux + vx‖L∞

t L2
x
+ ‖w‖L∞

t,x
‖vx‖L∞

t,x

. ‖(wx, vx)‖L∞

t H
1
2
+‖w‖L∞

t (L∞
x ∩Ḣ1

x)
.

Then applying Lemma 2.4 and choosing T appropriately small, we have

(3.9)
‖w≤0‖L∞

t,x
. ‖(w(0))≤0‖L∞

x
+ T (‖H≤0‖L∞

t,x
+ ‖u‖L∞

t W 1,∞‖w‖L∞

t Ḣ1
x
)

. ‖u0 − v0‖L∞
x
+ T‖(wx, vx)‖L∞

t H
1
2
+‖w‖L∞

t (L∞
x ∩Ḣ1

x)
.

Moreover, by Sobolev embedding,

‖w>0‖L∞

t,x
. ‖wx‖L∞

t L2
x
.
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By adding this inequality, along with equations 3.7 and 3.9, we get that

‖w‖L∞

t (L∞
x ∩Ḣ1

x)
. ‖(u0)x − (v0)x‖L2

x
+ ‖u0 − v0‖L∞

x
+ TE1/2‖w‖L∞

t (L∞
x ∩Ḣ1

x)
.

Choosing T sufficiently small, we find

(3.10) ‖w‖L∞

t (L∞
x ∩Ḣ1

x)
. ‖u0 − v0‖L∞

x ∩Ḣ1
x

which establishes uniqueness.

3.4. Continuity with respect to the initial data. Consider a sequence of initial data

u0j → u0 ∈ X.

Here, since ‖u0‖X < R, we may assume that ‖u0j‖X < R for every j, and the existence part
implies that uj and u may be defined on a common time interval [0, T ], with uniform bounds
in j. Furthermore, by the Lipschitz estimate from the proof of uniqueness,

uj → u ∈ L∞
t (L∞

x ∩ Ḣ1
x).

By interpolation, it follows that

uj → u ∈ L∞
t ([0, T ], L∞

x ∩ Ḣ1
x ∩ Ḣ

2−ε
x ).

To obtain the endpoint, we take an approach similar to the one presented in [17].

We define uh0j = (u0j)≤h and uh0 = (u0)≤h, and may assume that

‖uh0j‖X . ‖u0‖X ,

so that there exists T = T (‖u0‖X) > 0 and solutions uh and uhj that belong to L
∞
t X . Further,

Lemma 2.3 shows that uh and uhj belong to L∞
t (X ∩ Ḣ3

x). As
∫ T

0

‖uhx(s)‖L∞
x
ds . T‖uh‖L∞

t (Ḣ1
x∩Ḣ

2
x)
,

we have from the energy estimate of Lemma 2.3 that

‖uh‖L∞

t (Ḣ1
x∩Ḣ

3
x)
. ‖uh0‖Ḣ1

x∩Ḣ
3
x
,

and likewise for uhj .
We consider H1

x sharp frequency envelopes for (u0)x and (u0j)x, denoted by {ck}k∈Z and

{cjk}k∈Z. As (u0j)x → (u0)x in H1
x, we can assume that cjk → ck in l2. Moreover, as in [17],

we can choose ck having the following properties:

a) Uniform bounds:

‖Pk(u
h
0)x‖H1

x
. ck

b) High frequency bounds:

‖(uh0)x‖H2
x
. 2hch

c) Difference bounds:

‖uh+1
0 − uh0‖Ḣ1

x
. 2−hch

d) Limit as h→ ∞:

Dxu
h
0 → Dxu0 ∈ H1

x
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and likewise for cjk.

We first establish estimates for (u − uh)>0 and (uj − uhj )>0 in L∞
t X . We treat the low

frequencies separately because the frequency envelopes that we are using are Ḣ1∩ Ḣ2-based,
and don’t allow us to control the L∞-component of the norm of X at low frequencies. By
applying the Lipschitz estimate from the proof of uniqueness, we can see that

‖uh+1 − uh‖L∞

t (Ḣ1
x∩L

∞
x ) . ‖uh+1

0 − uh0‖Ḣ1
x∩L

∞
x
. ‖uh+1

0 − uh0‖Ḣ1 . 2−hch.

Taking the high frequencies and interpolating with the estimate

‖uh>0‖L∞

t (X∩Ḣ3
x)

. ‖uh‖L∞

t (Ḣ1
x∩Ḣ

3
x)
. ‖uh0‖Ḣ1

x∩Ḣ
3
x
. 2hch,

we get that

‖uh+1
>0 − uh>0‖L∞

t X . ch.

The analogous analysis and estimates hold for uhj . Moreover, as in [17], we get that

‖u>0 − uh>0‖L∞

t X . c≥h =

(

∑

k≥h

c2k

)1/2

, ‖(uj)>0 − (uhj )>0‖L∞

t X . cj≥h =

(

∑

k≥h

(cjk)
2

)1/2

.

Next, we show that for fixed h, lim
j→∞

uhj = uh in L∞
t X([0, T ]×R). Let us write w = uh−uhj ,

which by (3.8) satisfies

‖wx‖L∞

t H1
x
. ‖wx(0)‖H1

x
+ T‖(uhj )xx‖L∞

t (L∞
x ∩Ḣ1

x)
‖w‖L∞

t (L∞
x ∩Ḣ1

x)
.

As h is fixed, the previous discussion ensures that ‖(uhj )xx‖L∞

t (L∞
x ∩Ḣ1

x)
is uniformly bounded

with respect to j. Using as well (3.10), we conclude that

‖w‖L∞

t X .h ‖u0 − u0j‖X

as desired.

To complete the argument, we have

‖u>0 − (uj)>0‖L∞

t X . ‖uh − uhj ‖L∞

t X + ‖u>0 − uh>0‖L∞

t X + ‖(uj)>0 − (uhj )>0‖L∞

t X

. ‖uh − uhj ‖L∞

t X + c≥h + cj≥h

so that fixing h,

lim sup
j→∞

‖u>0 − (uj)>0‖L∞

t X . c≥h + cj≤h

Then letting h tend to ∞, we get that

lim
j→∞

‖u>0 − (uj)>0‖L∞

t X = 0.

For the low frequencies, we directly estimate

‖u≤0 − (uj)≤0‖L∞

t X . ‖u≤0 − (uj)≤0‖L∞

t (Ḣ1
x∩L

∞
x ) . ‖u− uj‖L∞

t (Ḣ1
x∩L

∞
x ) . ‖u0 − u0j‖Ḣ1

x∩L
∞
x

As uj0 → uj in X , it follows that

lim
j→∞

‖u≤0 − (uj)≤0‖L∞

t X = 0.

Combining the low and high frequencies, we obtain uj → u in L∞
t X .
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3.5. Continuity in time. Let h > 0 be an arbitrary parameter, and uh solve (1.1) with
initial data (u0)≤h. In particular,

(3.11) uht =
∂−1
x ((uhx)

2)

2
− uhuhx − uhxxx.

From Lemma 2.3, we know that uh ∈ L∞
t (X ∩ Ḣ5

x), so that the right hand side belongs to
L∞
t X . Thus, uh ∈ C0

tX . From the previous section, we know that uh converges to u in
L∞
t X , hence in C0

tX . This concludes the proof of Theorem 1.1.

4. Global well-posedness

In this section, we prove Theorem 1.2. Recall that the dispersive Hunter-Saxton (1.1) has
the conserved quantities (see [9])

E1(t) =

∫

R

ux(t)
2 dx

E2(t) =

∫

R

uxx(t)
2 − u(t)ux(t)

2 dx.

Throughout the proof, C > 0 shall denote a universal large constant. Consider a solution
u of (1.1) on [0, T ) where T is finite. We shall determine a uniform bound for ‖u(t)‖X .

We begin with the L∞ estimate. The high frequencies can be controlled by the Ḣ1 norm,
which is conserved via E1, but the low frequencies need to be treated separately as follows.
Projecting (1.1) onto frequencies less than or equal to 1, we consider

(u≤0)t + (uux)≤0 + (u≤0)xxx =
(∂−1

x (u2x))≤0

2
.

For the transport term, write

(uux)≤0 − u≤0(u≤0)x = (u>0ux)≤0 + [P≤0, u≤0]ux

= (u>0ux)≤0 + [P≤0, P0u]ux + [P≤0, u<0]P0ux

and estimate

‖(u>0ux)≤0‖L∞
x
. ‖u>0ux‖L2

x
. ‖ux‖L2

x
.

The same estimate holds for the first commutator directly, without using the commutator
structure. For the second commutator,

‖[P≤0, u<0]P0ux‖L∞ . ‖[P≤0, u<0]P0ux‖L2 . ‖∂xu<0‖L∞‖P0u‖L2 . ‖ux‖
2
L2 .

Besides this, we may estimate the dispersive and source terms by

‖(u≤0)xxx‖L∞
x
. ‖ux‖L2

x
, ‖(∂−1

x (u2x))≤0‖L∞
x
. ‖ux‖

2
L2
x
.

Therefore, denoting

F =
(∂−1

x (u2x))≤0

2
− ((uux)≤0 − u≤0(u≤0)x)− (u≤0)xxx,

we have

‖F‖L∞
x
. ‖ux‖

2
L2
x
+ ‖ux‖L2

x
= E1 + E

1/2
1 .
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As u ∈ C0
tX([0, T )×R), we see that u is continuous with respect to t and x, and Lipschitz

with respect to x, uniformly in t. As in [20], let us consider the flow

qt = u≤0(t, q(t, x)), q(0, x) = x.

By standard ordinary differential equations theory, q exists, is unique, and is defined on the
whole interval [0, T ) as a function in C1([0, T )). Moreover, it is not difficult to see that it is a

C1-diffeomorphism. We also note that qxt = uxqx, which means that qx = e
∫ t
0
ux(s,q(s,x)) ds > 0,

hence q is strictly increasing in x for every t. Further,

d

dt
u≤0(t, q(t, x)) = (u≤0)t + u≤0(u≤0)x = F.

Then

‖u≤0(t, q(t, x))‖L∞
x
. ‖u≤0(0)‖L∞

x
+

∫ t

0

‖F‖L∞
x
ds . ‖(u0)≤0‖L∞

x
+

∫ t

0

E1 + E
1/2
1 ds.

As q is a diffeomorphism, we now infer that

‖(u(t))≤0‖L∞
x
. ‖(u0)≤0‖L∞

x
+ t(E1 + E

1/2
1 ).

For the high frequencies, we apply Sobolev embeddings and Bernstein’s inequalities to esti-
mate

‖(u(t))>0‖L∞
x
. E

1/2
1 .

Combining these estimates, we conclude that for every t ∈ [0, T ),

‖u(t)‖L∞
x
. ‖u0‖X0 + t(E1 + E

1/2
1 ).

Thus, for some constant C > 0, and for every t ∈ [0, T ), we have

‖uxx(t)‖
2
L2
x
. |E2|+ ‖u(t)‖L∞

x
‖ux(t)‖

2
L2
x

. ‖u0‖
2
Ḣ2

x
+ ‖u0‖X0E1 + t(E1 + E

1/2
1 )E1.

We obtain the desired estimate for ‖u(t)‖X, where t ∈ [0, T ). In particular, the lifespan for
u may be extended indefinitely.

5. A normal form analysis

In this section, we use normal forms to construct an energy functional corresponding to
Ḣ1+s. Since (1.1) exhibits a quasilinear behavior at low frequencies, we use a modified energy
approach as introduced in [12].

We may re-express the dispersive Hunter-Saxton (1.1) as

ut + uxxx = ∂−2
x (uxuxx)− uux =: Q1 +Q2 =: Q.

Thus we see that the formal normal form variable, based on the normal form correction for
the KdV equation, is

ũ = u+B(u, u) = u−
1

6
∂−2
x (u2) +

1

6
(∂−1

x u)2.

To construct a modified energy for Ḣ1+s, write

A(D) = DsP>0
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and consider
∫

Aux ·A

(

ux −
1

3
∂−1
x (u2) +

2

3
(∂−1

x u)u

)

dx.

Integrating by parts on the last two terms and rearranging, we obtain
∫

(Aux)
2 −

1

3
Au · A

(

u2 + 2∂−1
x u · ux

)

dx.

Then commuting A through the last term, we have
∫

(Aux)
2 −

1

3
Au · (A(u2) + 2[A, ∂−1

x u]ux + 2∂−1
x u · Aux) dx.

Lastly, integrating by parts on the last term, we define the modified energy

Ẽ(t) :=

∫

(Aux)
2 −

1

3
Au · (A(u2) + 2[A, ∂−1

x u]ux − Au · u) dx.

Lemma 5.1. If u ∈ C0
tX

s([0, T )× R), then for every t ∈ [0, T ), we have

‖(u(t))>0‖
2
Ḣ1+s

x
= Ẽ(t) +O(E1‖u(t)‖L∞

x
),

and
d

dt
Ẽ(t) . ‖Au‖2L2

x
(‖ux‖

2
L2
x
+ ‖ux‖L∞

x
‖u‖L∞

x
).

Proof. We have
‖[A, ∂−1

x v]wx‖L2
x
. ‖Aw‖L2

x
‖v‖L∞

x
+ ‖Av‖L2

x
‖w‖L∞

x
,

‖A(vw)‖L2
x
. ‖Av‖L2

x
‖w‖L∞

x
+ ‖Aw‖L2

x
‖v‖L∞

x
.

Thus, the first bound is immediate.

We now prove the energy estimate. First observe that d
dt
Ẽ consists only of quartic terms.

Precisely, if we set

LA(v, w) := −
1

3
A(vw)−

2

3
[A, ∂−1

x v]wx +
1

3
Av · w,

then a straightforward computation shows that

d

dt
Ẽ =

∫

AQ · LA(u, u) + Au · LA(Q, u) + Au · LA(u,Q) dx.

We consider first the contribution from Q1. Since

‖LA(v, w)‖L2
x
. ‖Av‖L2

x
‖w‖L∞

x
+ ‖Aw‖L2

x
‖v‖L∞

x
,

we have
∫

AQ1 · LA(u, u) + Au · LA(Q1, u) + Au · LA(u,Q1) dx

. ‖Au‖L2
x
(‖AQ1‖L2

x
‖u‖L∞

x
+ ‖Au‖L2

x
‖Q1‖L∞

x
).

To bound Q1, we have

‖∂−1
x (u2x)‖L∞

x
. ‖ux‖

2
L2
x
,

‖A∂−1
x (u2x)‖L2

x
. ‖ux‖L∞

x
‖Au‖L2

x

which suffices.
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For the contribution from Q2, we consider each of the three terms in

LA(u, u) = −
1

3
A(u2)−

2

3
[A, ∂−1

x u]ux +
1

3
Au · u

successively. From the third term, and the Q2 contribution arising from the case where the
time derivative falls on the lone u,

∫

1

3
Au · Au · uux dx . ‖u‖L∞‖ux‖L∞‖Au‖2L2.

On the other hand, when the derivative falls on Au, we write
∫

1

6
Au · A∂x(u

2) · u dx =

∫

1

3
Au · [A, u]ux · u+

1

3
Au · u · Aux · u dx.

The latter term is the same as the previous case after an integration by parts, while
∫

1

3
Au · [A, u]ux · u dx . ‖Au‖2L2‖ux‖L∞‖u‖L∞.

From the first term in LA, the case when the time derivative falls on Au vanishes via an
integration by parts. Then from the remaining contribution,

∫

1

3
Au · A∂x(u

3) dx =

∫

Au · [A, u2]ux + Au · u2 · Aux dx.

The latter term has already appeared, while
∫

Au · [A, u2]ux dx . ‖Au‖2L2‖ux‖L∞‖u‖L∞.

Lastly, we have the commutator term from L. When the time derivative falls inside the
commutator, we have

∫

Au · [A, ∂−1
x (uux)]ux dx . ‖Au‖L2‖[A, ∂−1

x (uux)]ux‖L2 . ‖Au‖2L2‖ux‖L∞‖u‖L∞.

From the remaining contributions of Q2, we are left with
∫

A(uux) · [A, ∂
−1
x u]ux + Au · [A, ∂−1

x u](uux)x dx.

Integrating by parts on the second term, and since
∫

Au · [A, u](uux) dx . ‖Au‖L2‖ux‖L∞
x
‖A(u2)‖L2 . ‖Au‖2L2‖ux‖L∞‖u‖L∞,

it remains to bound

(5.1)

∫

A(uux) · [A, ∂
−1
x u]ux − Aux · [A, ∂

−1
x u](uux) dx = −

∫

ux · [A[A, ∂
−1
x u], u]ux dx.

Before exploiting the full commutator structure, we first reduce to paraproducts.
From the first integral on the left hand side of (5.1), we write

∫

A(uux) · [A, ∂
−1
x u]ux dx =

∫

A(uux) · [A, T∂−1
x u]ux dx

−
1

2

∫

A(u2) · ∂x(A(Tux∂
−1
x u) + AΠ(ux, ∂

−1
x u)) dx

+
1

2

∫

A(u2) · ∂x(TAux∂
−1
x u+Π(Aux, ∂

−1
x u)) dx.
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The last two lines are perturbative and may be discarded. Precisely, we have

‖A(u2)‖L2
x
. ‖u‖L∞

x
‖Au‖L2

x

while

‖∂xA(Tux∂
−1
x u)‖L2

x
. ‖ux‖L∞

x
‖Au‖L2

x
,

‖∂x(TAux∂
−1
x u)‖L2

x
. ‖ux‖L∞

x
‖Au‖L2

x
,

with the same estimate for the balanced frequency terms.
Next, we proceed further to write
∫

A(uux) · [A, T∂−1
x u]ux dx =

∫

A(Tuux) · [A, T∂−1
x u]ux dx

+

∫

A(Tuxu) · [A, T∂−1
x u]ux dx+

∫

AΠ(ux, u) · [A, T∂−1
x u]ux dx.

The second line is perturbative as before. Precisely,
∫

A(Tuxu) · [A, T∂−1
x u]ux dx . ‖ux‖L∞

x
‖Au‖L2

x
· ‖u‖L∞

x
‖Au‖L2

x

with the same estimate for the balanced frequency term.
A similar analysis holds for the second term on the left hand side of (5.1), so we are only

left to estimate
∫

A(Tuux) · [A, T∂−1
x u]ux dx−

∫

Aux · [A, T∂−1
x u](Tuux) dx = −

∫

ux · [A[A, T∂−1
x u], Tu]ux dx.

Define
L(u, v, w) = D−s∂x[A[A, T∂−1

x u], T∂−1
x v]D

−swx

and let Lk denote the frequency k component.
Let a(ξ) = |ξ|s(1−φ(ξ)) be the symbol of A, where φ is the symbol of the Littlewood-Paley

projector P≤0, and

φk(ξ) = φ

(

ξ

2k−4

)

, ψk(ξ) = φ

(

ξ

2k

)

− φ

(

ξ

2k−1

)

.

The symbol of Lk is

Lk(ξ, η, ζ) = φk(ξ)φk(η)ζψk(ζ)(ξη|ξ + η + ζ |s|ζ |s)−1

· (a(ξ + η + ζ)(a(ξ + η + ζ)− a(η + ζ))− a(ξ + ζ)(a(ξ + ζ)− a(ζ))) .

This symbol is supported in the region {(ξ, η, ζ)|ξ, η . 2k, ζ ∼ 2k}, is smooth, and its
associated kernel is bounded and integrable. Thus, we have the estimate:

−

∫

(uk)x · [A[A, ∂
−1
x u<k], u<k](uk)x dx =

∫

Auk · Lk(u, ux, Auk) dx

. ‖u‖L∞
x
‖ux‖L∞

x
‖Auk‖

2
L2
x
.

Thus,
∫

ux · [A[A, T∂−1
x u], Tu]ux dx .

∑

k

‖u‖L∞
x
‖ux‖L∞

x
‖Auk‖

2
L2
x
. ‖u‖L∞

x
‖ux‖L∞

x
‖Au‖2L2

x

By putting everything together, we obtain the desired estimate.



18 ALBERT AI AND OVIDIU-NECULAI AVADANEI

�

By combining the previous result with the L∞
x bounds from Theorem 1.2, we establish

bounds on the growth of the solutions in Ḣ1+s.

Proposition 5.2. Let T > 0, I = [0, T ] or I = [0, T ), and u ∈ C0
tX

s(I × R) solve (1.1).
Then we have the bounds (1.4).

Proof. We have from Theorem 1.2 the pointwise estimates. It remains to establish the energy
bounds.

Let Ẽ be the modified energy functional of Lemma 5.1, so that for t ∈ [0, T ),

d

dt
Ẽ(t) . ‖Au‖2L2

x
(‖ux‖

2
L2
x
+ ‖ux‖L∞

x
‖u‖L∞

x
)

. ‖ux(t)‖
4
L2
x
+ ‖ux(t)‖

3
L2
x
‖u(t)‖L∞

x
+ ‖ux(t)‖

2
L2
x
‖u(t)‖L∞

x
‖u(t)>0‖Ḣ1+s

x

and since we have the energy equivalence

‖(u(t))>0‖
2
Ḣ1+s

x
= Ẽ(t) +O(E1‖u(t)‖L∞

x
),

we find

d

dt
Ẽ(t) . E2

1 + E
3/2
1 ‖u(t)‖L∞

x
+ E1‖u(t)‖L∞

x
(Ẽ(t) + CE1‖u(t)‖L∞

x
)1/2

. E2
1 + E1‖u(t)‖L∞

x
(Ẽ(t) + E1 + CE1‖u(t)‖L∞

x
)1/2

. E1‖u(t)‖X0(Ẽ(t) + E1 + CE1‖u(t)‖L∞
x
)1/2

. E1‖u‖L∞

t X0(Ẽ(t) + E1 + CE1‖u‖L∞

t,x
)1/2.

Integrating in t, we find that for every t ∈ [0, T ),

(

CE1‖u‖L∞

t,x
+ E1 + Ẽ(t)

)
1

2

. tE1‖u‖L∞

t X0 +
(

CE1‖u‖L∞

t,x
+ E1 + Ẽ(0)

)
1

2

.

Thus,

Ẽ(t) . t2E2
1‖u‖

2
L∞

t X0 + E1(‖u‖L∞

t,x
+ 1) + Ẽ(0).

Using the first inequality from Lemma 5.1 and the low frequency bound

‖(u(t))≤0‖
2
Ḣ1+s

x
. E1,

we have

‖u(t)‖2
Ḣ1+s

x
. t2E2

1‖u‖
2
L∞

t X0 + E1(‖u‖L∞

t,x
+ 1) + ‖u0‖

2
Ḣ1+s

x
.

Combined with the pointwise estimates, we obtain the stated bound. �

This establishes the bounds in Theorem 1.4. Global well-posedness now follows from the
local result of Theorem 1.3, which we prove in the next two sections.
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6. An estimate for the linearized equation

The linearized equation corresponding to (1.1) is

wt + (uw)x + wxxx = ∂−1
x (uxwx),

which can be rewritten as

(6.1) wt + ∂−1
x (uxxw) + uwx + wxxx = f.

Applying Ds with s ∈ (1
2
, 1) to (6.1), and writing v = Dsw, we have

(6.2) vt + uvx + vxxx = −Ds∂−1
x (Tuxxw + Twuxx +Π(w, uxx))− [Ds, u]wx +Dxf.

Lemma 6.1. Let T > 0 and I = [0, T ]. If u ∈ L∞
t X

s is a solution of (1.1) in I and

w ∈ C0
t (L

∞
x ∩ Ḣs

x)(I × R) is a solution of (6.1), then by shrinking T enough depending on

‖u‖L∞

t Xs(I×R), we have

‖w‖L∞

t (L∞
x ∩Ḣs

x)
. ‖w0‖L∞

x ∩Ḣs
x
+ ‖f‖L1

t (L
∞
x ∩Ḣs

x)
.

Proof. We consider the homogeneous problem with f = 0, as the proof below easily gener-
alizes. We first bound the source terms of (6.2) in L2. For the first two source terms, we
have

‖Ds∂−1
x (Tuxxw)‖L2

x
. ‖w‖Ḣs

x
‖ux‖L∞

x
. ‖w‖Ḣs

x
‖u‖Ḣ1

x∩Ḣ
1+s
x

and
‖Ds∂−1

x (Twuxx)‖L2
x
. ‖w‖L∞

x
‖u‖Ḣ1+s

x
.

For the balanced frequency case, we have

‖Ds
x∂

−1
x Π(w, uxx)‖L2

x
. ‖D1∂−1

x Π(w, uxx)‖
L

2
3−2s
x

. ‖Ds
xw‖L2

x
‖D2−s

x u‖
L

1
1−s
x

. ‖Ds
xw‖L2

x
‖D

3

2
x u‖L2

x
. ‖w‖Ḣs

x
‖u‖Ḣ1

x∩Ḣ
1+s
x
.

Lastly, for the commutator term, we have

‖[Ds, u]wx‖L2
x
. ‖ux‖L∞

x
‖w‖Ḣs

x
.

By applying the energy estimate from Lemma 2.1, we get that for every t ∈ [0, T ],

‖w(t)‖Ḣs
x
≤ e

C
2

∫ t
0
‖ux(τ)‖L∞

x
dτ

(

‖w0‖Ḣs
x
+

∫ t

0

e−
∫ τ
0
‖ux(η)‖L∞

x
dη‖u(τ)‖Ḣ1

x∩Ḣ
1+s
x

‖w(τ)‖L∞
x ∩Ḣs

x
dτ

)

. ‖w0‖Ḣs
x
+ T‖u‖L∞

t Xs‖w‖L∞
x ∩Ḣs

x
.

Next, to obtain an L∞ estimate, it suffices to consider the low frequencies since by Sobolev
embedding,

‖w>0‖L∞
x
. ‖w‖Ḣs

x
.

For the first source term, we decompose into paraproducts as before to estimate

‖P≤0∂
−1
x (Tuxxw)‖L∞

x
. ‖P≤0∂

−1
x (Tuxxw)‖

L
1

1−s
x

. ‖D
− s

2
x ux‖

L
2

1−s
x

‖D
s
2
xw‖

L
2

1−s
x

. ‖ux‖L2
x
‖w‖Ḣs

x
. ‖w‖Ḣs

x
‖u‖Ḣ1

x∩Ḣ
1+s
x
,

‖P≤0∂
−1
x (Twuxx)‖L∞

x
. ‖∂−1

x (Twuxx)‖Hs
x
. ‖w‖L∞

x
‖u‖Ḣ1

x∩Ḣ
1+s
x
,

and

‖P≤0∂
−1
x Π(uxx, w)‖L∞

x
. ‖P≤0Π(uxx, w)‖L1

x
. ‖ux‖Ḣ1−s

x
‖w‖Ḣs

x
. ‖u‖Ḣ1

x∩Ḣ
1+s
x

‖w‖Ḣs
x
.
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Thus,

‖P≤0∂
−1
x (wuxx)‖L∞

x
. ‖w‖L∞

x
‖u‖Ḣ1

x∩Ḣ
1+s
x

+ ‖u‖Ḣ1
x∩Ḣ

1+s
x

‖w‖Ḣs
x
.

From Lemma 2.4, with T ′ sufficiently small, we have

‖w≤0‖L∞

t,x
. ‖(w0)≤0‖L∞

x
+ T ′‖u‖L∞

t Xs‖w‖L∞

t Ḣs
x
.

Putting everything together, for t ∈ [0, T ′] we get

‖w(t)‖L∞
x ∩Ḣs

x
. ‖w0‖L∞

x ∩Ḣs
x
+ T ′‖u‖L∞

t Xs‖w‖L∞
x ∩Ḣs

x
.

By further shrinking T ′ depending on ‖u‖L∞

t Xs , we obtain the desired estimate. �

We now prove a result regarding differences of solutions, that is going to be used in order
to justify uniqueness of C0

tX
s-solutions in the proof of Theorem 1.3.

Lemma 6.2. Let T > 0 and I = [0, T ]. Let u, v ∈ C0
tX

s(I × R) solve (1.1) with u0 − v0 ∈
L∞
x ∩ Ḣs

x. Then u − v ∈ L∞
t (L∞

x ∩ Ḣs
x)(I × R), and for T sufficiently small depending on

‖(u, v)‖L∞

t Xs, we have

‖u− v‖L∞

t (L∞
x ∩Ḣs

x)
. ‖u0 − v0‖L∞

x ∩Ḣs
x
.

Proof. Let z = u− v, which solves the equation

(6.3) zt + uzx + vxz + zxxx =
∂−1
x (zx(ux + vx))

2
.

We apply Ds
x and rearrange to consider the Cauchy problem

wt + wxxx = Ds
x

(

∂−1
x (zx(ux + vx))

2

)

−Ds
x(uz)x +Ds

x(zzx) := H

with initial data w(0) = Ds
x(u0 − v0) ∈ L2

x(R). For the first term in H , we decompose into
paraproducts and have the L2 bounds

‖Ds
x∂

−1
x (Tzx(ux + vx))‖L2

x
. ‖z‖L∞

x
‖u+ v‖Ḣ1+s

x

‖Ds
x∂

−1
x (Tux+vxzx)‖L2

x
. ‖z‖Ḣ1+s

x
‖u+ v‖L∞

x

‖Ds
x∂

−1
x Π(ux + vx, zx)‖L2

x
. ‖Dx∂

−1
x Π(ux + vx, zx)‖

L
2

3−2s
x

. ‖z‖Ḣ1
x
‖Dx(u+ v)‖

L
1

1−s
x

. ‖z‖Ḣ1
x
‖Ds+1/2

x (u+ v)‖L2
x
.

The other terms are estimated directly using product estimates:

‖Ds
x∂x(uz)‖L2

x
. ‖u‖L∞

x
‖z‖Ḣ1+s

x
+ ‖z‖L∞

x
‖u‖Ḣ1+s

x

‖Ds
x∂x(z

2)‖L2
x
. ‖z‖L∞

x
‖z‖Ḣ1+s

x
.

Thus, H ∈ L∞
t L

2
x([0, T ] × R). By applying Lemma 2.1, we infer that (6.3) has a unique

solution in L∞
t L

2
x([0, T ] × R). However, both w and Ds

xz are solutions (in the sense of
tempered distributions), hence w = Ds

xz, and z = u− v ∈ L∞
t Ḣ

s
x([0, T ]×R). It is also clear

that u− v ∈ L∞
t,x([0, T ]× R).

We now observe that z satisfies the linearized equation (6.1) with source,

zt + ∂−1
x (uxxz) + uzx + zxxx = zzx −

∂−1
x (z2x)

2
=: f.
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After taking T small enough (depending on ‖u‖L∞

t Xs), we can apply Lemma 6.1, But first,

we have to estimate f ∈ L1
t (L

∞
x ∩ Ḣs

x)([0, T ]× R). For the first term of f ,

‖Ds
x∂x(z

2)‖L2
x
. ‖z‖L∞

x
(‖u‖Xs + ‖v‖Xs),

‖∂x(z
2)‖L∞

x
. ‖z‖L∞

x
(‖u‖Xs + ‖v‖Xs).

For the second, we have

‖Ds
x∂

−1
x (Tzxzx)‖L2

x
. ‖z‖Ḣs

x
‖zx‖L∞

x
. ‖z‖Ḣs

x
(‖u‖Xs + ‖v‖Xs)

‖Ds
x∂

−1
x Π(zx, zx)‖L2

x
. ‖Π(zx, zx)‖

L
2

3−2s
x

. ‖Ds
xz‖L2

x
‖D2−s

x z‖
L

1
1−s
x

. ‖z‖Ḣs
x
‖D3/2

x z‖L2
x

. ‖z‖Ḣs
x
(‖u‖Xs + ‖v‖Xs).

For the L∞
x estimate, it suffices to consider the low frequencies since by Sobolev embedding,

‖∂−1
x (z2x)>0‖L∞

x
. ‖∂−1

x (z2x)>0‖Ḣs
x
.

We then have for the low frequencies

‖P≤0∂
−1
x (Π(zx, zx))‖L∞

x
. ‖P≤0Π(zx, zx)‖L1

x
. ‖z‖Ḣs

x
‖z‖Ḣ2−s

x
. ‖z‖Ḣs

x
(‖u‖Xs + ‖v‖Xs)

‖P≤0∂
−1
x (Tzxzx)‖L∞

x
. ‖∂−1

x (Tzxzx)‖Hs
x
. ‖z‖L∞

x
(‖u‖Xs + ‖v‖Xs).

Thus,

‖f‖L1
t (L

∞
x ∩Ḣs

x)
. T‖z‖L∞

t (L∞
x ∩Ḣs

x)
(‖u‖L∞

t Xs + ‖v‖L∞

t Xs).

Thus, we get that

‖w‖L∞

t (L∞
x ∩Ḣs

x)
.‖u‖L∞

t Xs ‖w0‖L∞
x ∩Ḣs

x
+ ‖f‖L1

t (L
∞
x ∩Ḣs

x)

.‖u‖L∞

t Xs ‖w0‖L∞
x ∩Ḣs

x
+ T‖z‖L∞

t (L∞
x ∩Ḣs

x)
(‖u‖L∞

t Xs + ‖v‖L∞

t Xs).

After further shrinking T (depending on ‖(u, v)‖L∞

t Xs, Lemma 6.1 implies the desired con-
clusion. �

7. Local well-posedness at low regularity

In this section, we prove Theorem 1.3. As we have already noticed at the end of Section 4,
this will also imply Theorem 1.4.

Let R > 0 be arbitrary. Given data u0 satisfying ‖u0‖Xs < R, we consider the correspond-
ing regularized data

uh0 = P<hu0.

Since uh0 → u0 in Xs, we may assume that ‖uh0‖Xs < R for all h.

We construct a uniform Ḣ1
x ∩ Ḣ

1+s
x frequency envelope {ck}k≥0 for u0 having the following

properties:

a) Uniform bounds:

‖Pk(u
h
0)x‖H1

x∩Ḣ
1+s
x

. ck

b) High frequency bounds:

‖uh0‖Ḣ1
x∩Ḣ

2+s
x

. 2hch

c) Difference bounds:

‖uh+1
0 − uh0‖Ḣs . 2−hch
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d) Limit as h→ ∞:

Dx(u
h
0) → Dx(u0) ∈ Hs

x

By Theorem 1.2 and Lemma 2.3, uh0 generate global smooth solutions uh. Corollary 5.2
enables us to pick T = T (R) > 0 such that the hypotheses of Lemma 6.2 can be applied to
any C0

tX
s([0, T ]×R)-solutions with initial data whose Xs-norm is smaller than R. Moreover,

we also obtain uniform bounds for such solutions, including the family (uh)h∈Z. We now get
that

‖uh‖C0
t (Ḣ

1
x∩Ḣ

2+s
x ) . 2hch,

and
‖uh+1 − uh‖C0

t Ḣ
s
x
. 2−hch

By interpolation, we infer that

‖uh+1 − uh‖C0
t Ḣ

1+s
x

. ch.

Thus, for h ≥ 0,
‖uh+1 − uh‖C0

t (Ḣ
1
x∩Ḣ

1+s
x ) . ch

As in [17], we get that

‖Pku
h‖C0

t (Ḣ
1
x∩Ḣ

1+s
x ) . ck.

and that

‖uh+k − uh‖C0
t (Ḣ

1
x∩Ḣ

1+s
x ) . ch≤·<h+k =

(

h+k−1
∑

n=h

c2n

)

1

2

for every k ≥ 1. Thus, uh converges to an element u belonging to C0
t (Ḣ

1
x ∩ Ḣ

1+s
x )([0, T ]×R).

Moreover, we also obtain

(7.1) ‖uh − u‖C0
t (Ḣ

1
x∩Ḣ

1+s
x ) . c≥h =

(

∞
∑

n=h

c2n

)
1

2

.

For pointwise convergence, we use Sobolev embedding for the high frequencies,

‖(uh+k)>0 − (uh)>0‖C0
t L

∞
x
. ‖uh+k − uh‖C0

t Ḣ
1
x
.

and the estimate (3.9) for the low frequencies:

‖(uh+k)≤0 − (uh)≤0‖C0
t L

∞
x
. ‖uh+k

0 − uh0‖L∞
x
+ TR‖uh+k − uh‖C0

t Ḣ
1
x
.

We conclude that uh → u ∈ C0
tX

s([0, T ]× R).

Lemma 6.2 also implies uniqueness for (1.1). For continuity with respect to the initial
data, consider a sequence

u0j → u0 ∈ Xs

and an associated sequence of Ḣ1
x ∩ Ḣ1+s

x -frequency envelopes {cjk}k≥0, each satisfying the
analogous properties enumerated above for ck, and further such that cj → c in l2(Z).

We may assume that ‖u0j‖Xs < R for every j ≥ 0. As before, we get uniform bounds for
(uhj )(j,h)∈N×Z, and we can interpolate to conclude

‖uh+1
j − uhj ‖C0

t (Ḣ
1
x∩Ḣ

1+s
x ) . cjh
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and

‖Pku
h
j ‖C0

t (Ḣ
1
x∩Ḣ

1+s
x ) . cjk,

‖uh+k
j − uhj ‖C0

t (Ḣ
1
x∩Ḣ

1+s
x ) . cjh≤·<h+k =

(

h+k−1
∑

n=h

(cjn)
2

)

1

2

,

‖uhj − uj‖C0
t (Ḣ

1
x∩Ḣ

1+s
x ) . cj≥h =

(

∞
∑

n=h

(cjn)
2

)
1

2

.

Using the triangle inequality, we write

‖uj − u‖C0
t (Ḣ

1
x∩Ḣ

1+s
x ) . ‖uh − u‖C0

t (Ḣ
1
x∩Ḣ

1+s
x ) + ‖uhj − uj‖C0

t (Ḣ
1
x∩Ḣ

1+s
x ) + ‖uhj − uh‖C0

t (Ḣ
1
x∩Ḣ

1+s
x )

. c≥h + cj≥h + ‖uhj − uh‖C0
t (Ḣ

1
x∩Ḣ

1+s
x )

For every fixed h, Theorem 1.2 tells us that uhj → uh in X . This implies that uj → u in

C0
t (Ḣ

1
x ∩ Ḣ1+s

x )([0, T ] × R). For pointwise estimates, by applying Sobolev embeddings and
using Bernstein’s inequalities, we get that

‖(uj)>0 − u>0‖C0
t L

∞
x
. ‖uj − u‖C0

t (Ḣ
1
x∩Ḣ

1+s
x ).

Besides this, (3.9) implies that

‖(uj)≤0 − u≤0‖C0
t L

∞
x
. ‖(uj)≤0 − u≤0‖C0

t L
∞
x
+ CT‖uj − u‖C0

t Ḣ
1
x
.

Therefore, uj → u in C0
tX

s([0, T ]× R). This finishes the proof.
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