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We propose a novel statistical test to assess the mutual independence of multidimensional random vectors. Our
approach is based on the 𝐿1-distance between the joint density function and the product of the marginal densities
associated with the presumed independent vectors. Under the null hypothesis, we employ Poissonization tech-
niques to establish the asymptotic normal approximation of the corresponding test statistic, without imposing any
regularity assumptions on the underlying Lebesgue density function, denoted as 𝑓 (·). Remarkably, we observe that
the limiting distribution of the 𝐿1-based statistics remains unaffected by the specific form of 𝑓 (·). This unexpected
outcome contributes to the robustness and versatility of our method. Moreover, our tests exhibit nontrivial local
power against a subset of local alternatives, which converge to the null hypothesis at a rate of 𝑛−1/2ℎ

−𝑑/4
𝑛 , 𝑑 ≥ 2,

where 𝑛 represents the sample size and ℎ𝑛 denotes the bandwidth. Finally, the theory is supported by a compre-
hensive simulation study to investigate the finite-sample performance of our proposed test. The results demonstrate
that our testing procedure generally outperforms existing approaches across various examined scenarios.

Keywords: Asymptotic normality; distribution-free tests; independence test; kernel density function estimator;
𝐿1-distance; Poissonization.
MSC2020 subject classifications: 60F05; (60F15, 60F17, 62G07).

1. Introduction

One of the classical and important problems in statistics is testing the independence between two or
more components of a random vector. Testing for mutual independence, which characterizes the struc-
tural relationships between random variables and is strictly stronger than pairwise independence, is
a fundamental task in inference. Independent component analysis of a random vector, which consists
of searching for a linear transformation that minimizes the statistical dependence between its compo-
nents, is one of the fields in which mutual independence plays a central role; for instance, see Bach
and Jordan (2003), Chen and Bickel (2006), Samworth and Yuan (2012) and Matteson and Tsay (2017).
Testing independence also has many applications, including causal inference (Pearl (2009), Peters et al.
(2014), Pfister et al. (2018), Chakraborty and Zhang (2019)), graphical modeling (Lauritzen (1996),
Gan, Narisetty and Liang (2019)), linguistics (Nguyen and Eisenstein (2017)), clustering (Székely and
Rizzo, 2005), dimension reduction (Fukumizu, Bach and Jordan, 2004, Sheng and Yin, 2016). The tra-
ditional approach for testing independence is based on Pearson’s correlation coefficient; for instance,
refer to Binet and Vaschide (1897), Pearson (1920), Spearman (1904), Kendall (1938). However, its
lack of robustness to outliers and departures from normality eventually led researchers to consider al-
ternative nonparametric procedures. To overcome such a problem, a natural approach is to consider the
functional difference between the empirical joint distribution and the product of the empirical marginal
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distributions, see Hoeffding (1948), Blum, Kiefer and Rosenblatt (1961) and Bouzebda (2011). This
approach can also use characteristic empirical functions; see Csörgő (1985). Inspired by the work of
Blum, Kiefer and Rosenblatt (1961) and Dugué (1975), Deheuvels (1981) studied a test of multivariate
independence based on the Möbius decomposition, generalized in Bouzebda (2014). Rosenblatt (1975),
Rosenblatt and Wahlen (1992) and Ahmad and Li (1997) presented the application of nonparametric
kernel estimation method to evaluate the independence of two random vectors. This method involves
comparing the 𝐿2 norm of the difference between the joint density and the product of their marginals.
The work conducted by Han, Chen and Liu (2017) delves into two families of distribution-free test
statistics, notably featuring Kendall’s tau (a rank-type 𝑈-statistic) and Spearman’s rho (a simple linear
rank statistic), both serving as significant examples. Leung and Drton (2018) addressed the problem
of testing the independence of 𝑚 continuous variables when 𝑚 is greater than the sample size 𝑛. The
authors considered three types of test statistics constructed as the sums or sums of squares of pairwise
rank correlations. Drton, Han and Shi (2020) investigated the testing of the mutual independence of
a 𝑝-dimensional random vector, when 𝑝 = 𝑝𝑛 increases to infinity. The authors derive maximum-type
tests based on pairwise rank correlation measures. The rank correlations are presented in an elegant𝑈-
statistic framework and then aggregated to create maximum-type test statistics with a null distribution
that converges to a nonstandard Gumbel distribution. Recent studies have focused on testing random
vectors’ pairwise independence. The concept of distance covariance was introduced by Székely, Rizzo
and Bakirov (2007) to quantify the dependence between two random vectors, and Székely and Rizzo
(2009) investigated it further. This distance covariance is defined as a weighted 𝐿2-norm between the
joint distribution’s characteristic function and the product of the marginal distribution’s characteristic
functions. To test the independence of two random vectors, Gretton et al. (2005) proposed a kernel-
based independence criterion called the Hilbert-Schmidt independence criterion (HSIC). Due to the
“curse of dimensionality,” these tests may fail to detect the non-linear dependence when the random
vectors are of high dimension. To address this issue, Qiu, Xu and Zhu (2023) proposed a general frame-
work for testing the dependence of two random vectors by randomly selecting two subspaces composed
of vector components. Zhang, Gao and Ng (2023) proposed a new class of independence measures
based on the maximum mean discrepancy in Reproducing Kernel Hilbert Space. In the literature, addi-
tional methods for testing the independence of two multidimensional random variables have emerged,
including those based on the 𝐿1-norm between the distribution of the vector and the product of the
distributions of its components (Gretton and Györfi (2010)), on ranks of distances (Heller, Heller and
Gorfine, 2013), on nearest neighbor methods (Berrett and Samworth, 2019) and on applying distance
covariance to center-outward ranks and signs (Shi, Drton and Han, 2022a). In Jin and Matteson (2018),
three distinct measures of mutual dependency are proposed. One of the approaches extends the concept
of distance covariance from pairwise dependency to mutual dependence, and the remaining two mea-
sures are derived by summing the squared distance covariances. Finally, Auddy, Deb and Nandy (2024)
considered the problem of testing for independence using the correlation from Chatterjee (2021).

A common idea to measure the difference between two functions is to consider the 𝐿𝑞-norm, 𝑞 ≥ 1.
Csörgő and Horváth (1988) was the first to prove a central limit for the 𝐿𝑞-norm, 𝑞 ≥ 1, between a den-
sity function and its estimator, and Horváth (1991) introduced a Poissonization technique into the study
of central limit theorems for the 𝐿𝑞-norm. It is noteworthy that the key Poissonization techniques date
back to Le Cam (1970) and Araujo and Giné (1980). Beirlant and Mason (1995) developed a general
method for deriving the asymptotic normality of the 𝐿𝑞-norm of empirical functionals without assum-
ing restrictive regularity conditions. Giné, Mason and Zaitsev (2003) established the weak convergence
of an 𝐿1-norm density estimator process indexed by kernel functions.

This work presents a different approach to the problem of testing the mutual independence of random
vectors in arbitrary dimensions based on the 𝐿1-norm between the joint density and the product of 𝑝 the
marginal densities, for 𝑝 ≥ 2. The motivation for 𝐿1-norm is connected with the fact that

∫
R𝑑

| 𝑓 (x̃) −
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𝑔(x̃) |𝑑x̃ is the total variation distance between the measures with densities 𝑓 (·) and 𝑔(·). As a result,
this criterion does not share any good qualities associated with the 𝐿2 (see Remark 3.6 below) or 𝐿∞
norms, both of which are mathematically simpler to work with; for instance, see Devroye (1987) and
Scott (1992) for more details. Cox and Czanner (2016) pointed out that the choice of 𝐿1-norm for the
comparison of curves poses several mathematical challenges, which are caused by the fact that the
mapping 𝑓 →

∫
R𝑑

| 𝑓 (x̃) |𝑑x̃ is in general not (Hadamard-) differentiable. Since the Lebesgue density
functions, by definition, sit in 𝐿1 (R𝑑 ,B, 𝜆), where 𝜆 denotes the Lebesgue measure and B is the class
of all Borel sets of R𝑑 , Devroye and Györfi (1985) has repeatedly stated that the 𝐿1-norm is the most
appropriate metric for characterizing the error in estimation between a density function 𝑓 (·) and its
estimator.

To our best knowledge, this is the first time that the general context 𝐿1-norm for testing the inde-
pendence appeared in the literature and gives the main motivation of the present work by responding
to the open problems mentioned in Gretton and Györfi (2010). The main contribution of this paper
is to establish the asymptotic distribution of the proposed test statistic under the null hypothesis and
under the local alternatives that converge to the null at the rate of 𝑛−1/2ℎ

−𝑑/4
𝑛 . As an important fea-

ture, the 𝐿1-based tests are all model-free. Furthermore, no regularity requirements for the densities
are necessary to demonstrate the asymptotic normality of our statistic, a desired attribute. We conduct
simulations to determine the size and power of the test. We illustrate that the proposed test has superior
power characteristics compared to existing tests for various analyzed situations. The proposed test en-
compasses all dependency types, including complicated dependence structures, particularly sinusoidal
dependence. As it will be seen later, the problem requires much more than ‘simply’ combining ideas
from existing papers. Delicate mathematical derivations will be required to cope with 𝐿1-based tests.
We highlight that the use of the Poissonization techniques due Giné, Mason and Zaitsev (2003) is sub-
stantially more difficult in our context presenting the technical merits of our contribution, see Remark
3.4 below. More precisely, several problems arise when the 𝐿1-norm is used in nonparametric tests.
Even when the sample consists of independent random vectors, the 𝐿1-norm introduces a dependence
structure. This is the fundamental challenge. The solution to these problems is broken down into three
distinct steps: Truncation, Poissonization, and dePoissonization devices are appropriate tools to reach
the results. Particularly, Poissonization involves randomizing the sample size using a Poisson random
variable, allowing the application of techniques requiring the independence of increments.

The layout of the article is as follows. Section 2 gives the notation and the definitions we need.
Section 3 provides the asymptotic behavior of the 𝐿1-based test under the null hypothesis and gives the
consistency against the alternative at the nominal level 𝛼. Section 4 provides the limiting law of the 𝐿1-
based test under the contiguous hypothesis. We discuss a bandwidth choice for practical use in Section
5. Section 6 summarizes comprehensive simulation tests to evaluate the finite-sample properties of our
approach across various dependency scenarios and compare it to several state-of-the-art approaches.
A summary of the findings highlighting remaining open issues are given in Section 7. All proofs are
deferred to Section A. Due to the lengthiness of the proofs, we restrict our analysis to the most important
arguments. Finally, technical proofs can be found in the supplementary material Berrahou, Bouzebda
and Douge (2024).

2. Notation and setting

We want to test the mutual independence of 𝑝 continuous random vectors X1, . . . ,X𝑝 of dimensions
𝑑1, . . . , 𝑑𝑝 respectively, based on the 𝐿1-distance of the discrepancy between the product of their densi-
ties and the joint density. Let 𝑑 = 𝑑1 + · · · +𝑑𝑝 be the dimension of the random vector (X1⊤, . . . ,X𝑝⊤)⊤,
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𝑝 ≥ 1, where x⊤ denotes the transpose of x. Accordingly, x̃ = (x⊤1 , . . . ,x
⊤
𝑝)⊤ ∈ R𝑑1 × · · · ×R𝑑𝑝 is a vec-

tor of length 𝑑. Let 𝑓 (·) denote the density function of X̃ = (𝑋1, . . . , 𝑋𝑑)⊤ = (X1⊤, . . . ,X𝑝⊤)⊤ with
respect to the Lebesgue measure 𝜆 on R𝑑 . For each 𝑙 = 1, . . . , 𝑝, let 𝑓𝑙 (·) be the density function of X𝑙

with respect to the Lebesgue measure 𝜆𝑙 on R𝑑𝑙 . Let us formulate the null hypothesis

H0 :
∫
R𝑑

���� 𝑓 (x̃) − 𝑝∏
𝑙=1

𝑓𝑙 (x𝑙)
���� 𝑑x̃ = 0, against the alternative H1 :

∫
R𝑑

���� 𝑓 (x̃) − 𝑝∏
𝑙=1

𝑓𝑙 (x𝑙)
���� 𝑑x̃ > 0.

We next consider sequences
{
X̃𝑖 : 𝑖 ≥ 1

}
and

{
X𝑙
𝑖

: 𝑖 ≥ 1
}
, 𝑙 = 1, . . . , 𝑝, of independent and identi-

cally distributed [iid] random copies of the random vector [rv] X̃ and X𝑙 , 𝑙 = 1, . . . , 𝑝, respectively.
We now introduce the kernel functions 𝐾𝑙 (·) defined on R𝑑𝑙 , 𝑙 = 1, . . . , 𝑝; fulfilling the condition
(A1) below. For each 𝑛 ≥ 1, and for each choice of the bandwidth ℎ𝑛 > 0, we define the classical
Akaike–Parzen–Rosenblatt [refer to Akaike (1954), Parzen (1962), Rosenblatt (1956)] kernel estima-
tors of the density functions 𝑓 (·) and 𝑓𝑙 (·), 𝑙 = 1, . . . , 𝑝, respectively, by

𝑓𝑛 (x̃) = 𝑓𝑛,ℎ𝑛 (x̃) =
1
𝑛ℎ𝑑𝑛

𝑛∑︁
𝑖=1

𝑝∏
𝑙=1

𝐾𝑙

(
x𝑙 −X𝑙𝑖
ℎ𝑛

)
, 𝑓𝑛,𝑙 (x𝑙) = 𝑓𝑛,ℎ𝑛 ,𝑙 (x𝑙) =

1

𝑛ℎ
𝑑𝑙
𝑛

𝑛∑︁
𝑖=1

𝐾𝑙

(
x𝑙 −X𝑙𝑖
ℎ𝑛

)
.

Parzen (1962) has shown, under some assumptions on the kernel function, that 𝑓𝑛 (·) is an asymptoti-
cally unbiased and consistent estimator for 𝑓 (·) whenever ℎ𝑛 → 0, 𝑛ℎ𝑑𝑛 →∞ and x̃ is a continuity point
of 𝑓 (·). Under some additional assumptions on 𝑓 (·) and ℎ𝑛, he obtained an asymptotic normality re-
sult, too. The above Akaike–Parzen–Rosenblatt kernel estimators have been extensively studied in the
literature, see, e.g., Silverman (1986), Nadaraya (1989), Härdle (1990), Scott (1992), Wand and Jones
(1995), Eggermont and LaRiccia (2001), Devroye and Lugosi (2001), Bouzebda and Nemouchi (2023),
Bouzebda and Taachouche (2023) and the references therein. To perform the test of the hypothesis H0,
we consider the statistic

𝑉𝑛 :=
∫
R𝑑

���� 𝑓𝑛 (x̃) − 𝑝∏
𝑙=1

𝑓𝑛,𝑙 (x𝑙)
���� 𝑑x̃. (2.1)

Remark 2.1. Careful bookkeeping throughout the proofs in the paper could give an adapted set of
conditions on possibly different bandwidths. We do not pursue this here to avoid an unnecessary
increase in the technicality of the presentation. If one wants to use the vector bandwidths (see, in
particular, Chapter 12 of Devroye and Lugosi (2001)), with obvious changes in notation, our results
and their proofs remain true when ℎ𝑛 is replaced by a vector bandwidth h𝑛 = (ℎ (1)𝑛 , . . . , ℎ

(𝑑)
𝑛 ), where

min1≤𝑖≤𝑑 ℎ
(𝑖)
𝑛 > 0. In this situation we set ℎ𝑑𝑛 =

∏𝑑
𝑖=1 ℎ

(𝑖)
𝑛 , and for any vector v = (𝑣1, . . . , 𝑣𝑑) we re-

place v/ℎ𝑛 by (𝑣1/ℎ (1)𝑛 , . . . , 𝑣𝑑/ℎ (𝑑)𝑛 ).

3. Main results

Before presenting our results, we introduce some notation and the underlying assumptions. For 𝑠 ≥ 1,
let B𝑠 = {u ∈ R𝑠 : ∥u∥ ≤ 1}, where ∥ · ∥ is some norm on R𝑠 . Consider the following condition upon
the kernels 𝐾𝑙 (·), 𝑙 = 1, . . . , 𝑝, that will be used below.

(A1) For each 𝑙 = 1, . . . , 𝑝, 𝐾𝑙 (·) is a bounded Lebesgue density function having support contained
in the closed ball of radius 1/2 centered at zero of R𝑑𝑙 .
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Let 𝑍1 and 𝑍2 be independent standard normal random variables. In the sequel, the 𝐿2-norm of a kernel
𝐾 (·) is denoted by ∥𝐾 ∥2. For each 𝑙 = 1, . . . , 𝑝, define the function

𝜌𝑙 (t𝑙) =

∫
R𝑑𝑙

𝐾𝑙 (u𝑙)𝐾𝑙 (u𝑙 + t𝑙) 𝑑u𝑙

∥𝐾𝑙 ∥2
2

, t𝑙 ∈ R𝑑𝑙 .

Denote K̃ =
∏𝑝

𝑙=1 ∥𝐾𝑙 ∥2
2 and, for each t̃ = (t⊤1 , . . . , t

⊤
𝑝)⊤, 𝜌(t̃) =∏𝑝

𝑙=1 𝜌𝑙 (t𝑙). Further, for B̃ = B𝑑1 × · · ·×
B𝑑𝑝

, set

𝜎2 := K̃
∫
B̃

Cov
(����√︃1 − 𝜌2 (t̃)𝑍1 + 𝜌(t̃)𝑍2

����, |𝑍2 |
)
𝑑 t̃.

Below, we write 𝑍 D
= N(𝜇, 𝜎2) whenever the random variable 𝑍 follows a normal law with expectation

𝜇 and variance 𝜎2. Let
D→ denote the convergence in distribution. The main result to be proved here

may now be stated precisely as follows.

Theorem 3.1. Assume that (A1) holds and let ℎ𝑛 > 0 be such that, as 𝑛→∞, ℎ𝑛 → 0 and 𝑛ℎ3𝑑
𝑛 →∞.

Then, under H0, as 𝑛→∞, we have
√
𝑛
(
𝑉𝑛 − E𝑉𝑛

) D→N(0, 𝜎2).

Remark 3.1. Note that the choice ℎ𝑛 = 𝜆𝑛−𝜗 , 𝜆 > 0, 0 < 𝜗 < 1/(3𝑑), fulfills the theorem’s conditions,
see Section 5 for more discussions. The variance 𝜎2 has an interesting alternate representation. Making
use of the formulas for the absolute moments of a bivariate normal random variable of Nabeya (1951),
we have

𝜎2 = K̃
∫
B̃
𝜑
(
𝜌(t̃)

)
𝑑 t̃, where 𝜑(𝜌) = 2

𝜋

(
𝜌 arcsin 𝜌 +

√︃
1 − 𝜌2 − 1

)
, for 𝜌 ∈ [−1,1] .

Remark 3.2. It is noteworthy that Theorem 3.1 imposes any assumptions on the Lebesgue density. The
bandwidth condition 𝑛ℎ3𝑑

𝑛 →∞ is mainly due to the evaluation of the variance in Lemma B.6. It allows
us also to provide some asymptotic approximations in Lemma B.7 and to approximate the centering
term in Lemma B.12. This condition is considered in nonparametric regression testing proposed by
Lee, Song and Whang (2013) to establish the asymptotic normality of the one-sided 𝐿𝑞-test statistic in
testing functional inequalities, 1 ≤ 𝑞 <∞.

Let us discuss how the process works so that our test can be carried out. Let, for each 𝑙 = 1, . . . , 𝑝, C𝑙
be a bounded Borel set such that P(X𝑙 ∈ C𝑙) > 1 − 𝜀 for some 𝜀 small enough and set, for a Borel set
𝐴 ∈ R𝑑 ,

𝑉𝑛 (𝐴) :=
∫
𝐴

���� 𝑓𝑛 (x̃) − 𝑝∏
𝑙=1

𝑓𝑛,𝑙 (x𝑙)
���� 𝑑x̃, and 𝑉 (𝐴) :=

∫
𝐴

���� 𝑓 (x̃) − 𝑝∏
𝑙=1

𝑓𝑙 (x𝑙)
���� 𝑑x̃.

We denote C̃ = C1 × · · · × C𝑝 . Making use of the arguments developed in Lemma B.2 in Berrahou,
Bouzebda and Douge (2024), and Tchebychev’s inequality, it follows that

√
𝑛
[
𝑉𝑛 −𝑉𝑛 (C̃) − E

(
𝑉𝑛 −𝑉𝑛 (C̃)

) ] P→ 0,
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where
P→ stands for the convergence in probability. Therefore, an application of Theorem 3.1 gives

√
𝑛
(
𝑉𝑛 (C̃) − E𝑉𝑛 (C̃)

) D→N(0, 𝜎2) as 𝑛→∞.

The centering term
√
𝑛E𝑉𝑛 (C̃) depends on an unknown distribution. To circumvent this problem, we

estimate
√
𝑛E𝑉𝑛 (C̃) by

𝑎𝑛 (C̃) := E|𝑍1 |
∫
C̃

√︃
L̂𝑛 (x̃) 𝑑x̃, (3.1)

where

L̂𝑛 (x̃) :=
𝑝∏
𝑙=1

�̂�𝑛,𝑙 (x𝑙) −
𝑝∑︁
𝑙=1

�̂�𝑛,𝑙 (x𝑙)
∏
𝑗≠𝑙

𝑔𝑛, 𝑗 (x 𝑗 ) + (𝑝 − 1)
𝑝∏
𝑙=1

𝑔𝑛,𝑙 (x𝑙),

where, for each 𝑙 = 1, . . . , 𝑝,

�̂�𝑛,𝑙 (x𝑙) :=
1

𝑛ℎ
2𝑑𝑙
𝑛

𝑛∑︁
𝑖=1

𝐾2
𝑙

(
x𝑙 −X𝑙𝑖
ℎ𝑛

)
, and 𝑔𝑛,𝑙 (x𝑙) :=

1

𝑛(𝑛 − 1)ℎ2𝑑𝑙
𝑛

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝐾𝑙

(
x𝑙 −X𝑙𝑖
ℎ𝑛

)
𝐾𝑙

(
x𝑙 −X𝑙𝑗
ℎ𝑛

)
.

Note that E|𝑍1 | =
√︁

2/𝜋 ≈ 0.7978. Our suggested test statistic is

𝑇𝑛 (C̃) :=
√
𝑛𝑉𝑛 (C̃) − 𝑎𝑛 (C̃)

𝜎
.

Let 𝑧1−𝛼 be the upper 𝛼 quantile of the standard normal distribution. In this paper, we propose the fol-
lowing test: Reject H0 if and only if 𝑇𝑛 (C̃) > 𝑧1−𝛼 . Now, for each 𝑙 = 1, . . . , 𝑝, for each 𝛿 > 0, let C 𝛿

𝑙

be the 𝛿-neighborhood of C𝑙 , i.e., C 𝛿
𝑙
= {x𝑙 + u𝑙 : x𝑙 ∈ C𝑙 , ∥u𝑙 ∥ ≤ 𝛿}. We need the following additional

notation. Set, for each 𝑎 ∈ {0,1},

Γ𝑛,𝑎 (x̃) := 𝑓𝑛 (x̃) − 𝑎
𝑝∑︁
𝑙=1

𝑓𝑛,𝑙 (x𝑙)
∏
𝑗≠𝑙

E 𝑓𝑛, 𝑗 (x 𝑗 ) + (𝑝𝑎 − 1)
𝑝∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙)

and

Γ𝜂,𝑎 (x̃) := 𝑓𝜂 (x̃) − 𝑎
𝑝∑︁
𝑙=1

𝑓𝜂,𝑙 (x𝑙)
∏
𝑗≠𝑙

E 𝑓𝑛, 𝑗 (x 𝑗 ) + (𝑝𝑎 − 1)
𝑝∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙),

where

𝑓𝜂 (x̃) =
1
𝑛ℎ𝑑𝑛

𝜂∑︁
𝑖=1

𝑝∏
𝑙=1

𝐾𝑙

(
x𝑙 − X𝑙

𝑖

ℎ𝑛

)
and 𝑓𝜂,𝑙 (x𝑙) =

1

𝑛ℎ
𝑑𝑙
𝑛

𝜂∑︁
𝑖=1

𝐾𝑙

(
x𝑙 − X𝑙

𝑖

ℎ𝑛

)
,

and 𝜂 is a Poisson random variable with mean 𝑛, independent of X̃, X̃1, X̃2, . . .. Set, for a Borel set
𝐴 ∈ R𝑑 and for each 𝑎 ∈ {0,1},

𝑈𝑛,𝑎 (𝐴) :=
∫
𝐴

|Γ𝑛,𝑎 (x̃) | 𝑑x̃ and 𝑈𝜂,𝑎 (𝐴) :=
∫
𝐴

|Γ𝜂,𝑎 (x̃) | 𝑑x̃.

The following theorem shows that the test has an asymptotically valid size.
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Theorem 3.2. Assume that (A1) holds and, for each 𝑙 = 1, . . . , 𝑝, there exists 𝛿 > 0 such that 𝑓𝑙 (·) is
bounded on C 𝛿

𝑙
. Let ℎ𝑛 > 0 be such that, as 𝑛→∞, ℎ𝑛 → 0 and 𝑛ℎ3𝑑

𝑛 →∞. Then, under H0, we have
lim𝑛→∞ P{𝑇𝑛 (C̃) > 𝑧1−𝛼} = 𝛼.

The last result of this section shows the consistency of the test against the alternative at nominal level
𝛼.

Theorem 3.3. Assume that for each 𝑙 = 1, . . . , 𝑝, 𝐾𝑙 (·) is a density function. Let ℎ𝑛 > 0 be such that,
as 𝑛→∞, ℎ𝑛 → 0 and 𝑛ℎ3𝑑

𝑛 →∞. If H1 is true, then, for any bounded subset �̃� = 𝐷1 × · · · ×𝐷 𝑝 ⊂ R𝑑
such that 𝑉 (�̃�) > 0, we have lim𝑛→∞ P{𝑇𝑛 (�̃�) > 𝑧1−𝛼} = 1.

Remark 3.3. Our results can be generalized by considering the following weighted family

𝑉
(1)
𝑛 :=

∫
R𝑑

���� 𝑓𝑛 (x̃) − 𝑝∏
𝑙=1

𝑓𝑛,𝑙 (x𝑙)
����𝑤(x̃) 𝑑x̃,

where 𝑤 : R𝑑 → [0,∞) is a nonnegative weight function, or, for 1 ≤ 𝑞 <∞,

𝑉
(𝑞)
𝑛 :=

∫
R𝑑

���� 𝑓𝑛 (x̃) − 𝑝∏
𝑙=1

𝑓𝑛,𝑙 (x𝑙)
����𝑞𝑤(x̃) 𝑑x̃. (3.2)

Let us recall a popular family of 𝜙-divergences

𝐷𝜙 (P,Q) :=
∫
R𝑑
𝜙

(
𝑑P

𝑑Q

)
𝑑Q if P≪ Q,

where 𝜙 : [0,∞) → (−∞,∞] is a convex function. P≪ Q denotes that P is absolutely continuous with
respect to Q. Well-known distance/divergence measures obtained by appropriately choosing 𝜙 include
total variation distance (𝜙(𝑡) = |𝑡 − 1|). Let us define P𝜆 as the set of all probability measures, P,
that are absolutely continuous with respect to some 𝜎-finite measure, 𝜆 on R𝑑 . For P,Q ∈ P𝜆, let∏𝑝

𝑙=1 𝑓𝑙 =
𝑑P
𝑑𝜆

and 𝑓 =
𝑑Q
𝑑𝜆

be the Radon-Nikodym derivatives of P and Q with respect to 𝜆, respectively.
In the interesting paper Sriperumbudur et al. (2012), it is mentioned that 𝜙-divergences and integral
probability metrics are fundamentally different and intersect only at the total variation distance. In the
last situation, we have

𝐷𝑇𝑉 (P,Q) :=
∫
R𝑑

���� 𝑑P𝑑Q − 1
���� 𝑑Q =

∫
R𝑑

�����∏𝑝

𝑙=1 𝑓𝑙

𝑓
− 1

����� 𝑑Q.
Let Q𝑛 denote the empirical measure based on {X̃𝑖 : 𝑖 ≥ 1}. One can estimate 𝐷𝜙 (P,Q) by

𝐷𝑇𝑉
𝑛 (P,Q) :=

∫
R𝑑

�����∏𝑝

𝑙=1 𝑓𝑛,𝑙,𝑖

𝑓𝑛,𝑖
− 1

����� 𝑑Q𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

����� ∏𝑝

𝑙=1 𝑓𝑛,𝑙,𝑖
(
X𝑙
𝑖

)
𝑓𝑛,𝑖

(
X1
𝑖
, . . . ,X

𝑝

𝑖

) − 1

����� ,
where

𝑓𝑛,𝑖 (x̃) =
1

(𝑛 − 1)ℎ𝑑𝑛

𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑝∏
𝑙=1

𝐾𝑙

(
x𝑙 −X𝑙𝑗
ℎ𝑛

)
, 𝑓𝑛,𝑙,𝑖 (x𝑙) =

1

(𝑛 − 1)ℎ𝑑𝑙𝑛

𝑛∑︁
𝑗=1
𝑗≠𝑖

𝐾𝑙

(
x𝑙 −X𝑙𝑗
ℎ𝑛

)
.
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Moon (2016), Chapter 4, investigated the statistic

𝐷𝑛,𝜙 (P,Q) :=
∫
R𝑑
𝜙

(∏𝑝

𝑙=1 𝑓𝑛,𝑙,𝑖

𝑓𝑛,𝑖

)
𝑑Q𝑛.

If the densities are bounded and continuously differentiable up to order 𝑠, and 𝜙(·) is continuously
differentiable with bounded derivatives. Under some additional assumptions on the kernels, (Moon,
2016, Chapter 4) provided the bias of 𝐷𝑛,𝜙 (P,Q) is of the order 𝑂

(
ℎ𝑠𝑛 + 1/(𝑛ℎ𝑑𝑛)

)
and the variance

of order 𝑂 (1/𝑛). Making use of the Efron-Stein inequality, he also proved the asymptotic normality
for 𝐷𝑛,𝜙 (P,Q). The investigation of the case 𝜙(𝑡)=|𝑡 − 1|, can not treated by the same techniques and
needs more intricate developments.

Remark 3.4. Regarding the difference between this work and of Giné, Mason and Zaitsev (2003),
the first to be resolved is that our statistic is not an integral of a sum of centered independent vari-
ables. The initial task was to establish the asymptotic equivalence, in probability, of our truncated
statistic

√
𝑛(𝑉𝑛 (�̄�) − E𝑉𝑛 (�̄�)) and

√
𝑛(𝑈𝑛,0 (�̄�) − E𝑈𝑛,0 (�̄�)), where �̄� = 𝐶1 × · · · ×𝐶𝑝 and, for each

𝑙 = 1, . . . , 𝑝, 𝐶𝑙 is a bounded Borel set in R𝑑𝑙 satisfying (B.3) and (B.4) of Lemma B.1 with 𝑔(·) = 𝑓𝑙 (·)
and K = K𝑙 := {𝐾𝑙 , 𝐾

2
𝑙
, 𝐾3

𝑙
}. This equivalence has been established through Lemmas B.3 to B.7, in

Berrahou, Bouzebda and Douge (2024), so that certain techniques from Giné, Mason and Zaitsev
(2003) are extended, in a nontrivial way, to the multivariate case to obtain the asymptotic normality of√
𝑛(𝑈𝑛,0 (�̄�) − E𝑈𝑛,0 (�̄�)). Finally, we mention that the delicate approximation of E𝑉𝑛 (�̃�) by 𝑎𝑛 (�̃�),

defined in (3.1), is not discussed in Giné, Mason and Zaitsev (2003).

Remark 3.5. Recall, in the classical kernel estimation, that the standardizing factor is
(
𝑛ℎ𝑑𝑛

)1/2 with
ℎ𝑛 → 0, indicating a lower rate of convergence. This is the cost incurred when drawing conclusions
regarding the local quantities. The use of the 𝐿1-norm avoids such a lower rate of convergence.

Remark 3.6. In this remark, we will point out some differences between the 𝐿1 and 𝐿2 norms. We first
recall the following example from Section 6.5 in Devroye and Lugosi (2001). Let 𝑓 (·) be the uniform
density on [0,1]. Let 𝜖 be a small positive number, and assume that both density estimates ignore the
data: 𝑓𝜖 (·) denotes our catastrophic candidate, that is 1 − 𝜖 on [0,1] and 𝜖3 on

[
1,1 + 1/𝜖2] . Now,

𝑔𝜖 = 1 on
[
−𝜖2,1 − 𝜖2] . Verify that

∫
|𝑔𝜖 − 𝑓 | 𝑑𝑥 = 2𝜖2 < 2𝜖 =

∫
| 𝑓𝜖 − 𝑓 | 𝑑𝑥, so that the choices are

not even close. However,
∫
( 𝑓𝜖 − 𝑓 )2 𝑑𝑥 = 𝜖2 + 𝜖4 < 2𝜖2 =

∫
(𝑔𝜖 − 𝑓 )2 𝑑𝑥, so that minimizing the 𝐿2-

norm, even with 𝑓 (·) given, picks the wrong density from the set { 𝑓𝜖 , 𝑔𝜖 }. Hence, it can be concluded
that criteria relying on the 𝐿2-norm are unsuitable for universal properties in density estimation. In
Section 2.3.2.1 of Scott (1992), for pointwise estimation of 𝑓 (·) by 𝑓 (·), it has been noted that one ap-
peal of the 𝐿1-norm

∫
| 𝑓 − 𝑓 |𝑑𝑥 is that it pays more attention to the tails of a density than the 𝐿2-norm,

which de-emphasizes the relatively small density values thereby squaring. By the fact that the density
function has inverse length as its unit, 𝐿1 is a dimensionless quantity after integration. The 𝐿2-norm,
on the other hand, retains the units of inverse length after integration of the squared density error.
We highlight the fact that 0 ≤

∫
| 𝑓 − 𝑔 |𝑑𝑥 ≤ 2 while 0 ≤

∫
( 𝑓 − 𝑔)2𝑑𝑥 ≤ ∞, where 𝑓 (·) and 𝑔(·) are

density functions; see Problem 7 in Scott (1992). Some asymptotic results for 𝐿1 estimates by Hall and
Wand (1988) and Scott and Wand (1991) support the notion that the practical differences between 𝐿1
and 𝐿2 criteria are reasonably small except in extreme situations. A classical approach for assessing
independence involves the 𝐿2-norm between the joint density function with the product of the marginal
density functions; for instance, see Rosenblatt (1975), Rosenblatt and Wahlen (1992) and Ahmad and
Li (1997), that is defined in (3.2) for 𝑝 = 2 and 𝑞 = 2. It is important to mention that Rosenblatt’s test
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is not distribution-free. According to Rosenblatt, it has been observed that 𝐿2-tests relying on den-
sity estimates generally exhibit lower statistical power compared to tests based on sample distribution
functions, Hoeffding (1948) and Blum, Kiefer and Rosenblatt (1961). This finding raises important
concerns for many applications, refer to Feuerverger (1993). The Blum, Kiefer and Rosenblatt (1961)
independence test is consistent when the appropriate assumptions are satisfied. However, two chal-
lenges arise when utilizing this statistic in a test. Estimating quantiles of the null distribution poses
challenges. Furthermore, it is crucial to note that the accuracy of the empirical distribution function
estimations deteriorates significantly as the dimensionality of the spaces R𝑑1 and R𝑑2 grows. This lim-
itation restricts the effectiveness of the statistic in a multivariate context; for instance, see Gretton and
Györfi (2010) for more details and discussions. In Remark 4.2, we provide some additional comments
on important advantages of the 𝐿1-norm. It is seen that the 𝐿1 test demonstrates superior performance
compared to the 𝐿2 test in Section 6.

Remark 3.7. To the best of our knowledge, there exists a limited number of nonparametric methods
for assessing independence that exhibit a nearly linear computational complexity. For further details,
we refer to Deb, Ghosal and Sen (2020), Auddy, Deb and Nandy (2024), Gorsky and Ma (2022) and
Berrett (2022). The Gorsky and Ma’s approach possesses several benefits, with the most prominent
being its multivariate nature. Additionally, the computational cost of this approach is generally char-
acterized by a time complexity of 𝑂 (𝑛 log𝑛) in relation to the sample size 𝑛. Moreover, it is worth
noting that the test threshold remains exact at any sample size, rather than being limited to an asymp-
totic approximation. In most situations, the existing nonparametric independence tests typically require
computation that scales at least quadratically with the sample size; for instance, we may refer to Pfis-
ter et al. (2018). In the last reference, it has been observed that the computational complexity of their
approach can be reduced by employing linear time approximation techniques (large-scale approxi-
mations), as elucidated by the work of Zhang et al. (2018) in the context of pairwise HSIC. Berrett,
Kontoyiannis and Samworth (2021) proposed statistical test based on a 𝑈-statistic in general setting
where the computational complexity is 𝑂 (𝑛2). In Deb and Sen (2023), the time taken to compute op-
timal transport-based multivariate ranks is 𝑂 (𝑛3) in the worst case. The computational cost with that
of permutation 𝑘-nearest-neighbour methods Berrett and Samworth (2019), which run in 𝑂 (𝐵𝑘𝑛 log𝑛)
time, where in permutation tests any test statistic must be calculated 𝐵 times. In Jin and Matteson
(2018), the proposed statistics have the time complexity 𝑂 (𝑛2), by considering the dimension is a con-
stant. In our setting, the computational complexity is 𝑂 (𝑚𝑛𝑑𝑛), where 𝑚𝑛 is the number of points
used in the integral approximation, that may be reduced using the idea in Devroye, Györfi and Lugosi
(2002). Identifying certain transformations that can effectively mitigate the computational complexity
associated with our test would be interesting. However, obtaining such transformations necessitates a
distinct methodology from that employed in the existing literature, and we defer this issue for further
investigation.

4. Local alternatives
We determine the power of the test in (2.1) against some sequences of local alternatives. Consider the
following sequences of local alternatives converging to the null hypothesis at the rate 𝑛−1/2ℎ

−𝑑/4
𝑛 ,

𝐻𝛿,𝑛 : 𝑓 (x̃) =
𝑝∏
𝑙=1

𝑓𝑙 (x𝑙) + 𝑛−1/2ℎ
−𝑑/4
𝑛 𝛿(x̃),

where 𝛿(·) is an integrable real function and its integral is zero. The next result gives the asymptotic
distribution under the local alternatives 𝐻𝛿,𝑛.
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Theorem 4.1. Suppose that (A1) holds and that ℎ𝑛 → 0 and 𝑛ℎ3𝑑
𝑛 →∞, as 𝑛→∞. Then, under 𝐻𝛿,𝑛,

we have

lim
𝑛→∞

P
{
𝑇𝑛 (C̃) > 𝑧1−𝛼

}
= 1 −Φ(𝑧1−𝛼 − 𝜂(𝛿)),

where Φ(·) denotes the cdf of the standard normal distribution and

𝜂(𝛿) = 1
√

2𝜋𝜎

∫
C̃
𝛿1 (x̃)𝑑x̃ and 𝛿1 (x̃) = (𝛿(x̃))2

{
K̃

𝑝∏
𝑙=1

𝑓𝑙 (x𝑙)
}−1/2

.

Remark 4.1. Following Auddy, Deb and Nandy (2024), let us consider the joint density of X̃ defined
by

𝑓𝑟 (x̃) = (1 − 𝑟)
𝑝∏
𝑙=1

𝑓𝑙 (x𝑙) + 𝑟𝑔(x̃), (4.1)

where 𝑔(·) is a density function with marginals 𝑓𝑙 (·), 𝑙 = 1, . . . , 𝑝, and 𝑟 ∈ [0,1]. For a sequence {𝑟𝑛}
with 𝑟𝑛 ∈ [0,1] for all 𝑛 ≥ 1, consider the family of joint density 𝑓𝑟𝑛 (·) and the following testing problem
: 𝐻0 : 𝑟𝑛 = 0 versus 𝐻1,𝑛 : 𝑟𝑛 > 0. Following the same steps in the proof of Theorem 4.1, as 𝑟𝑛 → 0,
we obtain the limit of the power function

lim
𝑛→∞

P
{
𝑇𝑛 (C̃) > 𝑧1−𝛼

}
=


𝛼, if 𝑛ℎ

𝑑/2
𝑛 𝑟2

𝑛 → 0,
1 −Φ(𝑧1−𝛼 − 𝑐 𝜂(𝑔)), if 𝑛ℎ

𝑑/2
𝑛 𝑟2

𝑛 → 𝑐,

1, if 𝑛ℎ
𝑑/2
𝑛 𝑟2

𝑛 →∞,

where

𝜂(𝑔) = 1
√

2𝜋𝜎

∫
C̃
𝑔1 (x̃)𝑑x̃ and 𝑔1 (x̃) =

(
𝑔(x̃) −

𝑝∏
𝑙=1

𝑓𝑙 (x𝑙)
)2 {

K̃
𝑝∏
𝑙=1

𝑓𝑙 (x𝑙)
}−1/2

.

Auddy, Deb and Nandy (2024) obtained a similar result in the bivariate case; for instance, see Corol-
lary 3.1. In their result, the limiting behavior of the power depends on whether 𝑛1/4𝑟2

𝑛 converges
to 0, ∞ or some number in (0,∞) while, for 𝐿1-test and 𝐿2-test, studied by Rosenblatt (1975), the
power depends on the limit of 𝑛ℎ𝑑/2

𝑛 𝑟2
𝑛 (𝑑 = 2 for 𝐿2-test). Since ℎ𝑛 is chosen to satisfy 𝑛ℎ𝑑𝑛 → ∞,

then 𝑛−1/2ℎ
−𝑑/4
𝑛 = 𝑜(𝑛−1/4), and we conclude that the Chatterjee’s test, studied in Auddy, Deb and

Nandy (2024), is powerless along the local alternative (4.1) compared with the 𝐿1-test. Shi, Drton
and Han (2022b) showed that Hoeffding’s test, Blum-Kiefer-Rosenblatt’s test and Bergsma-Dassios-
Yanagimoto’s test are more powerful, with the optimal rate of order 𝑂 (𝑛−1/2), than 𝐿1-test, 𝐿2-test
and Chatterjee’s test for the local alternative (4.1), but presenting some difficulties in estimating quan-
tiles of the null distribution in high dimensional setting. The main question is now to find other local
alternatives for which the 𝐿1-test is more powerful than the others.

Remark 4.2. This paper develops a general framework for testing the independence among continuous
random vectors based on 𝐿1-norm. Our test achieves the following desirable properties:

− Full distribution-freeness. Numerous statistical tests utilize asymptotic distribution-freeness for
computationally efficient distributional approximations that result in pointwise asymptotic con-
trol over their size. We note that some existing tests of multivariate independence are not
distribution-free, which has both computational and theoretical repercussions.
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− Transformation invariance. It is well known that 𝐿1-distance is invariant under any smooth mono-
tone transformation; for instance, see Devroye and Lugosi (2001). In multivariate statistics, this
kind of invariance is highly interesting.

− Computational efficiency. Modern applications require evaluating a dependence measure and the
accompanying test to be as computationally efficient as possible, irrespective of their statistical
characteristics. Therefore, the effectiveness of the numerical experiments must come first, we
may refer to Heller, Heller and Gorfine (2013). Furthermore, distribution-free procedures can
alleviate the computational cost of statistical problems.

− Consistency under absolute continuity. The unique condition for the consistency of our tests is
that the underlying distributions are absolutely continuous, without the need for any moment re-
quirements. This makes possible the nonparametric inference under heavy-tailed data-generating
distributions such as stable laws Yang (2012) and Pareto distributions Rizzo (2009), and it distin-
guishes our tests from commonly used techniques like traditional distance covariance and energy
statistic, for more discussion, refer to Deb and Sen (2023).

5. Bandwidth selection

There are basically no restrictions on the choice of the kernels 𝐾𝑙 (·), 𝑙 = 1, . . . , 𝑝, in our setup, apart
from satisfying conditions (A1). In Devroye and Lugosi (2001), it is noticed that for large sample
sizes, the shape of the optimal kernel is unique. For example, for R, classical 𝐿2 theory Watson and
Leadbetter (1963) shows that for 𝐿2 errors, among all positive kernels, the Epsnečnikov (1969) kernel,
𝐾 (𝑥) = max(3/4(1 − 𝑥2),0) is best possible. For R𝑑 , Deheuvels (1977) showed the 𝐿2 optimality of
max((1−∥x∥2)𝑑 ,1), x ∈ R𝑑 . For the 𝐿1-norm, there is evidence that the Epsnečnikov kernel is also best
among all positive kernels; refer to Devroye and Lugosi (2001), Chapters 16 and 17. The selection of
the bandwidth, however, is more problematic. Although any choice of bandwidth ℎ𝑛 satisfying ℎ𝑛 → 0
and 𝑛ℎ3𝑑

𝑛 →∞ will deliver the asymptotic distribution in Theorem 3.1, in practice we need some guid-
ance on how to select ℎ𝑛. Notice that the quadratic criteria such as the ASE, the ISE, or the MISE are
applicable when estimating the density as an element of the 𝐿2-space, and ℎ𝑛 can be selected using
the cross-validation or plug-in approach; for instance, see Sain, Baggerly and Scott (1994), Duong and
Hazelton (2005). Hall and Wand (1988) demonstrated that the under-smoothing approach yields con-
fidence intervals with greater coverage accuracy than bias-reduced density estimators. Hall and Wand
(1988) suggested to use ℎ𝑛 = 𝑐1.05�̂�𝑛−1/5, where 0 < 𝑐 < 1 and �̂� is the sample standard deviation. The
difficulty of selecting a bandwidth suited to point and interval estimates was examined in Chan, Lee and
Peng (2010). They recommended selecting the local bandwidth with the highest optimal rate and then
developing bias reduction estimators for both pointwise and interval estimation. Matteson and Tsay
(2017) evaluated spacing bandwidth with low sensitivity to estimate independent components using
a nonparametric probability integral transformation and distance covariance. In nonparametric testing,
Lee, Song and Whang (2013) proposed a one-sided 𝐿𝑞 approach in testing nonparametric functional in-
equalities. To evaluate the performance of their test, they used ℎ𝑛 = 𝑐�̂�𝑛−1/5, where 0.75 ≤ 𝑐 ≤ 2.5. For
testing a parametric model for conditional mean function against a nonparametric alternative, Horowitz
and Spokoiny (2001) proposed an adaptive-rate-optimal rule. Gao and Gijbels (2008) proposed, utiliz-
ing the Edgeworth expansion of the asymptotic distribution of the test, to select the bandwidth such
that the power function of the test is maximized while the size function is controlled. Hall and Wand
(1988) looked at the asymptotic expansion of E

{∫
| 𝑓𝑛,ℎ − 𝑓 | 𝑑𝑥

}
and minimized the main asymptotic

terms to obtain a recipe for ℎ as a function of 𝑛, 𝑓 (·) and the kernel function 𝐾 (·). They then estimate
the unknown quantity involving 𝑓 (·) from the data and propose this as a plug-in bandwidth estimate.
However, all other plug-in methods we are aware of are not universal bandwidths. While the plug-in
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procedure displays an analytical solution, which depends on unknown quantities that need to be esti-
mated, the double kernel is performed empirically. Notice also that one may use the maximum likeli-
hood cross-validation method to determine the smoothing parameter; however, this procedure performs
very poorly, as indicated in Devroye (1997). The double kernel method uses a pair of kernels, 𝐾 (·) and
𝐿 (·), and picks 𝐻 = arg minℎ

∫ �� 𝑓𝑛,ℎ − 𝑔𝑛,ℎ�� 𝑑𝑥, where 𝑓𝑛,ℎ (·) and 𝑔𝑛,ℎ (·) are the kernel estimates with
kernels 𝐾 (·) and 𝐿 (·), respectively. Assume that 𝑑 = 1. If the characteristic functions of 𝐾 (·) and 𝐿 (·)
do not coincide on an open interval about the origin, then the choice 𝐻 is consistent, refer to Devroye
(1989). The ideal bandwidth selection for nonparametric testing differs from that for nonparametric
estimation because we must balance the test’s size and power rather than the estimator’s bias and vari-
ance. There are no methods for calculating the appropriate bandwidth for our test, and it is difficult
to formulate a theory that provides the solution. The choice of bandwidth determines the sensitivity
with which specific types of dependence can be identified and, thus, affects the practical performance
of the test. Idealistically, we should select a bandwidth ℎ that provides the best power for a given sam-
ple size, but deriving this process is intricate enough to need a separate study. Thus, for the present
purposes, we provide the combinatorial procedure of Devroye and Lugosi (2001) that will be used. To
this end, for fixed 𝜖 > 0, define the Yatracos (1985) class A𝜖 = {{x̃ : 𝑓 (x̃) > 𝑔(x̃)} : 𝑓 , 𝑔 ∈ G𝜖 } , where
for every 𝜖 > 0, there exists a finite number 𝑁𝜖 of densities in F , a prespecified class of densities,
such that the 𝐿1 balls of radius 𝜖 centered at these densities cover F , that is, if these chosen densities
are G𝜖 =

{
𝑔1, . . . , 𝑔𝑁𝜖

}
, then F ⊆ ∪𝑁𝜖

𝑖=1𝐵𝑔𝑖 , 𝜖 . Let 𝑚 < 𝑛, and define A𝚯 as the Yatracos class of sub-
sets of R𝑑 (corresponding to the family of density estimates 𝑓𝑛,𝜃 , 𝜃 ∈ 𝚯 ⊂ R ) as the class of all sets
of the form 𝐴𝜃1 , 𝜃2 = {x̃ : 𝑓𝑛−𝑚,𝜃1 (x̃) > 𝑓𝑛−𝑚,𝜃2 (x̃)}, 𝜃1, 𝜃2 ∈ 𝚯. We select a parameter 𝜃𝑛 from 𝚯 by

minimizing the distance Δ𝜃 = sup𝐴∈A𝚯

���∫
𝐴
𝑓𝑛−𝑚,𝜃𝑑𝑥 − 𝜇𝑚 (𝐴)

��� , over all 𝜃 ∈ 𝚯, where 𝜇𝑚 (·) denotes

the empirical measure defined by the subsample X̃𝑛−𝑚+1, . . . , X̃𝑛. If the minimum does not exist, we
select 𝜃𝑛 in such a way that Δ𝜃𝑛 < inf𝜃∗∈𝚯Δ𝜃∗ +1/𝑛. Define 𝑓𝑛 (·) = 𝑓𝑛−𝑚,𝜃𝑛 (·). If

∫
𝑓𝑛−𝑚,𝜃 = 1 for all

𝜃 ∈ 𝚯, then for the minimum distance estimate 𝑓𝑛 (·) as defined above, from Theorem 10.1 of Devroye
and Lugosi (2001), we have∫

| 𝑓𝑛 − 𝑓 | 𝑑𝑥 ≤ 3 inf
𝜃∈𝚯

∫ �� 𝑓𝑛−𝑚,𝜃 − 𝑓
�� 𝑑𝑥 + 4Δ + 3

𝑛
, where Δ = sup

𝐴∈A𝚯

����∫
𝐴

𝑓 𝑑𝑥 − 𝜇𝑚 (𝐴)
���� . (5.1)

Note that if the estimates do not satisfy the condition
∫
𝑓𝑛−𝑚,𝜃𝑑𝑥 = 1, (5.1) remains valid, but with the

factors of “3” replaced by “5”. Felber, Kohler and Krzyzak (2015) proposed an adaptive method to es-
timate density based on data with small measurement errors inspired by the combinatorial method
described before. A simulation study in Felber, Kohler and Krzyzak (2015) shows that the pro-
posed estimator converges faster, in terms of the 𝐿1-norm than a standard kernel density estimator
(Akaike–Parzen–Rosenblatt) to the unknown density.

6. Monte Carlo experiments

In this section, we examine the empirical performance of the 𝐿1-based independence test compared
to alternative approaches. For this purpose, we assess 𝐿1-based test’s size and power for various non-
standard distributions. We assess the power and size of the 𝐿1 test in comparison to other pre-existing
tests enumerated below. The dHSIC test described by Pfister et al. (2018) and implemented in the R
package dHSIC [Pfister and Peters (2017)]. The test based on ranks of distances introduced in Heller,
Heller and Gorfine (2013) and implemented in the R package HHG [Heller, Heller and Gorfine (2013)].
The test based on the distance covariance discussed in Székely and Rizzo (2009) (will be called Dcov)
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and implemented in the R package energy [Rizzo and Székely (2016)]. The mutual information-
based test developed in Berrett and Samworth (2019) (will be called Mintav) and implemented in the R
package IndepTest [Berrett, Grose and Samworth (2018)]. Three measures based on the generalized
distance covariance, asymmetric measure 𝑅𝑛, symmetric measure 𝑆𝑛 based on distance covariance and
simplified complete measure 𝑄∗

𝑛 based on incomplete 𝑉-statistics and implemented in the R package
EDMeasure [Jin and Matteson (2018)]. Finally, the 𝐿2-test of independence proposed by Rosenblatt
(1975). Rosenblatt and Wahlen (1992) showed that if the second order partial derivatives of the density
function 𝑓 (·) are bounded and uniformly continuous on R2,

ℎ−1
𝑛

©«𝑛ℎ2
𝑛

∫
R2

[
𝑓𝑛 (x̃) −

2∏
𝑙=1

𝑓𝑛,𝑙 (𝑥𝑙)
]2

𝑑x̃ − 𝐴(𝑛)ª®¬ D→N(0,2𝜗2) as 𝑛→∞,

where, for 𝐾 (·) = 𝐾1 (·) = 𝐾2 (·) be a bounded kernel,

𝐴(𝑛) =
(∫
R
𝐾2 (𝑢1) 𝑑𝑢1

)2

− ℎ𝑛
∫
R
𝐾2 (𝑢1) 𝑑𝑢1

(∫
R

[
𝑓 2
1 (𝑥) + 𝑓

2
2 (𝑥)

]2
𝑑𝑥

)
,

and

𝜗2 =

∫
R
𝑓 2
1 (𝑥) 𝑑𝑥

∫
R
𝑓 2
2 (𝑥) 𝑑𝑥

∫
R2

(∫
R2
𝐾 (𝑡1)𝐾 (𝑡2)𝐾 (𝑡1 + 𝑠1)𝐾 (𝑡2 + 𝑠2) 𝑑𝑡1 𝑑𝑡2

)2

𝑑𝑠1 𝑑𝑠2.

To compare our test with the 𝐿2-test, we use the result above and approximate 𝐴(𝑛) and 𝜗2 by using
Lemma B.12. We present the results of a Monte Carlo experiment for evaluating the size and power of
each test in two-dimensional testing scenarios. We examine a collection of data-generating mechanisms
designed to illustrate various types of possible dependence:

(i) We consider first the six simulated examples of unusual bivariate distributions presented in the Sup-
plementary Material of Heller, Heller and Gorfine (2013) and labeled ’4 Clouds’, ’W’, ’Diamond’,
’Parabola’, ’2 Parabolas’, and ’Circle’. Following Heller, Heller and Gorfine (2013) and Fan et al.
(2017), for these examples, we simulated data under both dependence and independence structures.
The models coded as GEVmodel1 and GEVmodel2 were considered in Fan et al. (2017).

− The dependence model for GEVmodel1 is as follows: 𝑋1 =𝑊 + 𝑁1, 𝑋2 = 𝑋1 + 𝑇 + 𝑁2, where
𝑊 is Weibull distributed, 𝑇 is Fréchet distributed and 𝑁1, 𝑁2 are independent N(0,0.22).

− The dependence model for GEVmodel2 is as follows: 𝑋1 =𝑊 + 𝑁1 and 𝑋2 = 3𝑊 + 𝑁2.

These models have non-symmetric distributions with heavy tails.

− We include an example taken from Székely, Rizzo and Bakirov (2007) given by 𝑋2 = 𝑋1𝑁3,
with 𝑋1 and 𝑁3 being independent standard normal variables.

(ii) We consider the class of sinusoidally dependent data, proposed by Sejdinovic et al. (2013), for
which the density function is expressed, for ℓ ∈ N and (𝑥1, 𝑥2) ∈ [−𝜋, 𝜋]2, by 𝑓ℓ (𝑥1, 𝑥2) = 1

4𝜋2

(
1 +

sin(ℓ𝑥1) sin(ℓ𝑥2)
)
. This class of densities is particularly interesting and is considered by Sejdinovic

et al. (2013) as being challenging to detect dependence; intuitively, this is because as ℓ increases, the
dependence becomes increasingly localized, while the marginal densities are uniform on [−𝜋, 𝜋] for
each ℓ. This example was further discussed in Berrett and Samworth (2019) and Böttcher, Keller-
Ressel and Schilling (2019).

(iii) For 𝜃 ∈ [0,1] and (𝑥1, 𝑥2) ∈ [−1,1]2, define the density function 𝑓𝜃 (𝑥1, 𝑥2) = 4−1 (1 + 𝜃 (1 −
21{

𝑥2
1+𝑥

2
2 ≤2/𝜋

}).
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(iv) Let 𝑋1 and 𝑍 be independent with 𝑋1 ∼𝑈 [−1,1], the uniform law on [−1,1], and 𝑍 ∼ N(0,1),
and for a parameter 𝜌 ∈ [0,∞), let 𝑋2 = |𝑋1 |𝜌𝑍 .

(v) Let 𝑋1 and 𝑍 be independent with 𝑋1 ∼ N(0,1) and 𝑍 ∼ N(0,1), and for a parameter 𝜌 ∈ [0,1).
Let 𝑋2 be defined by 𝑋2 = 𝜌𝑋1 +

√︁
1 − 𝜌2𝑍 .

In implementing our test, the computing program codes are in R. The joint density estimate and its
marginals are computed, without loss of generality, by using the univariate uniform kernel function,
i.e., 𝐾𝑙 (𝑢) = 1{ |𝑢 | ≤1/2} , 𝑙 = 1, . . . , 𝑝, and the combinatorial procedure described above for choosing the
bandwidth vector h𝑛 discussed in Remark 2.1. This last method was applied only to find bandwidth
vector h𝑛 which allows us to estimate the joint density and then we use each component of h𝑛 to
give an estimate of their marginals and the function L̂𝑛 (·). The support set C̃ is estimated from the
sample, specifically the common support set of all functions used in our test statistic, in this case, is
estimated by the set

∏𝑑
𝑖=1

[
min1≤ 𝑗≤𝑛 (𝑋𝑖, 𝑗 ) − ℎ (𝑖)𝑛 /2,max1≤ 𝑗≤𝑛 (𝑋𝑖, 𝑗 ) + ℎ (𝑖)𝑛 /2

]
. The multidimensional

integration is based on the SUbregion-Adaptive Vegas Algorithm developed in Hahn (2005) (called
suave) and implemented in the R package cubature. We chose the bandwidth ℎ for the 𝐿2 test
through the cross-validation process, employing the Gaussian kernel. We test the null hypothesis H0
with a significance level of 𝛼 = 0.05. We run 1,000 replications with the adaptive permutation size
𝐵 = 200 for all empirical measures that require a permutation procedure, i.e., dHSIC, HHG, Mintav,
𝑅𝑛, 𝑆𝑛, 𝑄∗

𝑛 and Dcov.

Table 1 represents size and power comparisons between 𝐿1 and all testing procedures described
above with sample size 𝑛 = 50. In Setting (i), all the cited tests have levels close to the nominal level
of 0.05 for independent simulated data. For examples with dependent data, the 𝐿1 test shows the same
or better power compared to 𝐿2, dHSIC, HHG and Mintav for ‘W’, ‘Parabola’, ‘2 Parabolas’ and ‘Cir-
cle’. We see also that for ‘4 Clouds’ where dHSIC, 𝑅𝑛, 𝑆𝑛, 𝑄∗

𝑛, Dcov perform poorly, 𝐿1, 𝐿2, HHG
and Mintav have good power. 𝑅𝑛, 𝑆𝑛 and Dcov present good performance only for ‘GEVmodel2’,
‘Parabola’, ‘W’ and Székely, Rizzo and Bakirov (2007)’s setting. While 𝑄∗

𝑛 presents good performance
only for ‘W’, ‘2 Parabola’, ‘GEVmodel2’ and Székely, Rizzo and Bakirov (2007)’s setting.

For the last three examples, we also compare our proposed test with all previously cited dependence
measures, the Mintav test was proposed in Berrett and Samworth (2019), where it was shown that it
outperforms many other tests for sinusoidal dependence (Setting (ii)) and underperforms in Setting (iv)
when 𝜌 increases. Figure 1 shows that, for 𝑛 = 200, the 𝐿1 test has solid performances for Settings
(ii), (iii) and (iv). In Setting (ii), we note that the 𝐿1 test keeps a better power than Mintav, even if
ℓ increases, while the other tests have almost no power when ℓ ≥ 2. In Setting (iii), 𝐿1 and Mintav
provide good power when 𝜃 increases. The 𝐿1 test outperforms the other tests. In Setting (iv), 𝐿1,
HHG and dHSIC have similar power when 𝜌 increases and performs better than Mintav. In the last
Setting (v), the 𝑅𝑛 and 𝑆𝑛 tests outperform the other tests. These measures share similar properties and
asymptotic distributions with distance covariance quickly detecting the dependence in the Gaussian
setting. We highlight that our test necessitates the selection of bandwidth based on a priori information
derived from the sample. Numerous tests of independence use a permutation or bootstrap strategy to
determine the critical values, while other tests choose a posteriori the parameter with the greatest power.
The aforementioned procedures render the decision uncertain, which is inconvenient for real-world
data analysis applications. In conclusion, due to the wide variety of potential forms of dependence,
there is no universally most powerful test. However, if the specific nature of the dependence is known
beforehand, it may be feasible to create a tailored test that yields high power.
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Table 1. Size and power of 𝐿1, 𝐿2, dHSIC, HHG, Mintav, 𝑅𝑛, 𝑆𝑛, 𝑄∗
𝑛 and Dcov for some unusual relations with

𝑛 = 50. Results based on 1,000 replications.

Distribution Indep 𝐿1 𝐿2 dHSIC HHG Mintav 𝑅𝑛 𝑆𝑛 𝑄∗
𝑛 Dcov

IndNorm Yes 0.023 0.012 0.033 0.043 0.039 0.045 0.049 0.045 0.043

4 Clouds Yes 0.055 0.059 0.056 0.057 0.042 0.052 0.055 0.041 0.047
4 Clouds No 1 1 0.092 1 1 0.095 0.096 0.138 0.086

W Yes 0.058 0.044 0.057 0.051 0.048 0.057 0.054 0.057 0.05
W No 1 1 0.989 0.999 1 0.933 0.93 0.863 0.915

Parabola Yes 0.041 0.028 0.053 0.05 0.04 0.052 0.065 0.058 0.051
Parabola No 0.972 0.895 0.988 0.998 1 0.958 0.966 0.381 0.938

2 Parabolas Yes 0.032 0.025 0.051 0.046 0.032 0.055 0.053 0.055 0.05
2 Parabolas No 0.996 1 1 1 1 0.312 0.301 0.858 0.274

Circle Yes 0.055 0.058 0.053 0.056 0.046 0.047 0.051 0.051 0.041
Circle No 1 0.994 0.897 0.985 0.993 0.094 0.088 0.265 0.076

𝑋2 = 𝑋1𝑍 Yes 0.025 0.022 0.051 0.056 0.033 0.046 0.048 0.06 0.037
𝑋2 = 𝑋1𝑍 No 0.892 0.843 0.95 0.992 0.987 0.665 0.664 0.669 0.633

Diamond Yes 0.033 0.017 0.044 0.054 0.03 0.035 0.035 0.046 0.034
Diamond No 0.473 0.248 0.51 0.643 0.095 0.038 0.037 0.141 0.031

GEVmodel1 Yes 0.038 0.028 0.053 0.059 0.036 0.052 0.053 0.053 0.047
GEVmodel1 No 0.851 0.786 0.863 0.937 0.916 0.355 0.356 0.731 0.337

GEVmodel2 Yes 0.023 0.014 0.053 0.052 0.035 0.052 0.04 0.051 0.042
GEVmodel2 No 0.216 0.099 0.268 0.401 0.356 0.645 0.648 0.293 0.624

7. Concluding remarks

The notion of independence is of the highest significance in the domain of probability and statistics.
It sets probability apart from being only a part of measure theory and forms the foundation for sta-
tistical theory and the approach practitioners take to modelling. Statisticians often need to determine
the realism of assumptions of independence. This is vital for assessing whether certain theoretical as-
pects of procedures would hold and for evaluating the fit quality of a statistical model, one can refer
to Berrett, Kontoyiannis and Samworth (2021). Although many existing tests for independence focus
on two random vectors, they frequently do not have clear methods to evaluate mutual independence
among more than two random vectors with different dimensions. This paper presents a new method
to assess the independence of several random vectors, regardless of their dimensionality. Our method
uses the 𝐿1-distance between the joint density and the product of the marginal densities. Under the
null hypothesis, we use the Poissonization techniques to find, for the first time, the asymptotic normal
approximation of the corresponding statistic. We do this without making assumptions about the regu-
larity of the underlying Lebesgue density 𝑓 (·). Also, and this was a surprise, the limiting distribution
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(d) (v), 𝑛 = 100

Figure 1: Power curves for the different tests

of the statistics based on 𝐿1-distance does not depend on 𝑓 (·). We show that the tests have nontrivial
local power against a subset of local alternatives that converge to the null at the rate of 𝑛−1/2ℎ

−𝑑/4
𝑛 .

Lastly, simulations are used to study how the tests behave for a moderate sample size. One aspect that
remains unexplored in this article is the best selection of the smoothing parameters to maximize the
power of the proposed tests. The subject at hand holds significant importance and warrants dedicated
research effort. We defer this matter to a forthcoming investigation. Multiple avenues exist for devel-
oping our method further. When we look at modern machine learning algorithms, we may need to deal
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with kernel density estimation with complicated kernels that are not chosen by the user and may even
be irregular and asymmetric on Riemannian manifolds with Riemann integrable kernels. A challeng-
ing task is to consider this setting. It would be interesting to extend the present work to the problem
of testing conditional independence in an incomplete data setting that requires nontrivial mathematics
that goes well beyond the scope of the present paper. In the context of the serially dependent data, a
future research direction would be to investigate the problem of testing independence as such that was
examined in this work.

Appendix A: Proof of Theorems
In this section, we give the proof of all theoretical results in this work. The proof of Theorem 3.1 is
quite involved. For the sake of readability, the proof of Theorem 3.1 is presented with a sequence of
lemmas (given in Berrahou, Bouzebda and Douge (2024)) providing the necessary techniques at every
demonstration step. Lemma B.1 shows that Borel sets exist, allowing the use of the truncation proce-
dure and providing some technical results on convolutions which are crucial for the proof. To prove
the statements of this lemma, we suppose that the kernel functions have compact supports. Lemma B.2
is useful to investigate the behavior of the difference between the normalized and truncated statistic√
𝑛𝑉𝑛 (𝐴) and the normalized statistic

√
𝑛𝑉𝑛, for any Borel set 𝐴 of R𝑑 , and shows that this difference

is asymptotically negligible for large 𝑛 and large set 𝐴. Lemma B.3 and Lemma B.7 show that
√
𝑛𝑉𝑛 (�̄�)

is asymptotically equivalent to
√
𝑛
∫
�̄�
| 𝑓𝑛 (x̃) −

∏𝑝

𝑙=1 E 𝑓𝑛,𝑙 (x𝑙) |𝑑x̃. The problem in dealing with 𝑉𝑛 is its
Poissonization1 does not allow obtaining the independence of increments for disjoint sets, which are
required in establishing Lemma B.6 by using a type of Berry-Esseen approximations for sums of inde-
pendent random variables, due to Sweeting (1977), for easy reference, see Theorem C.1. Intermediate
results about the Poissonization step are given in five lemmas. In this respect, Lemma B.4 establishes
the asymptotic equivalence between the expectation of Poissonized and the non-Poissonized terms.
Lemma B.6 allows us to derive the result of Lemma B.7 and provides the limit variance of the Pois-
sonized version of

√
𝑛𝑉𝑛 (�̄�). Lemma B.10 gives the asymptotic distribution of the Poissonized and

normalized version of
∫
�̄�
| 𝑓𝑛 (x̃) −

∏𝑝

𝑙=1 E 𝑓𝑛,𝑙 (x𝑙) |𝑑x̃. This result follows from Lemma B.8 and Lemma
B.9 by applying Theorem 1 of Shergin (1990) to the sum of 𝑚−dependent random fields deduced by
partitioning the integral into integrals on small disjoint domains. Lemma B.11 is devoted to the dePois-
sonization step.

Proof of Theorem 3.1. Notice that, by Lemma B.1, for each 𝑙 = 1, . . . , 𝑝, there exists a sequence of
Borel sets {𝐶𝑙,𝑘}𝑘≥1 in R𝑑𝑙 such that, for each 𝑘 ≥ 1, 𝐶𝑙,𝑘 has finite Lebesgue measure and satisfies
(B.3) and (B.4) of Lemma B.1 with 𝑔(·) = 𝑓𝑙 (·) and K =K𝑙 , and

lim
𝑘→∞

∫
𝐶𝑐
𝑙,𝑘

𝑓𝑙 (u𝑙) 𝑑u𝑙 = 0, where 𝐶𝑐
𝑙,𝑘 is the complement set of 𝐶𝑙,𝑘 . (A.1)

Let �̄�𝑘 =𝐶1,𝑘 × · · · ×𝐶𝑝,𝑘 for 𝑘 ≥ 1. By Lemma B.11, for each 𝑘 ≥ 1, as 𝑛→∞, we have
√
𝑛
(
𝑉𝑛 (�̄�𝑘) − E𝑉𝑛 (�̄�𝑘)

)√︃
𝑛Var

(
𝑈𝜂,0 (�̄�𝑘)

) D→N(0,1),

1The interest of Poissonization relies on the nice properties of Poisson processes, namely the independence of their increments
and the behavior of their moments. These properties considerably simplify calculations, to be more precise, if 𝜂 is a Poisson
random variable independent of the i.i.d. sequence {𝑋𝑖 : 𝑖 ∈ N}, 𝑋0 = 0, and if 𝐴𝑘 , 𝑘 ∈ N, are disjoint measurable sets, then the
processes

∑𝜂

𝑖=0 1 (𝑋𝑖 ∈ 𝐴𝑘 ) 𝛿𝑋𝑖
, 𝑘 = 1, 2, . . ., are independent.
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and, by (B.36), we infer lim𝑛→∞ 𝑛Var
(
𝑈𝜂,0 (�̄�𝑘)

)
= 𝜎2 ∏𝑝

𝑙=1

∫
𝐶𝑙,𝑘

𝑓𝑙 (u𝑙) 𝑑u𝑙 . By Lemma B.2, for each
𝑘 ≥ 1, it readily follows that

lim sup
𝑛→∞

𝑛Var
(
𝑉𝑛 (�̄�𝑐

𝑘 )
)
≤ 64

∫
�̄�𝑐

𝑘

𝑓 (x̃) 𝑑x̃ ≤ 64
𝑝∑︁
𝑙=1

∫
�̄�𝑐
𝑙,𝑘

𝑓𝑙 (u𝑙) 𝑑u𝑙 .

Now, by (A.1) and Theorem 4.2 of Billingsley (1999), we deduce that, as 𝑛→∞,
√
𝑛(𝑉𝑛 − E𝑉𝑛)

D→
N(0, 𝜎2). We obtain the result of Theorem 3.1, as sought. ■

Proof of Theorem 3.2. Introduce 𝐿𝑛 (·) by setting

𝐿𝑛 (x̃) =
𝑝∏
𝑙=1

𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

)
−

𝑝∑︁
𝑙=1

𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

) ∏
𝑗≠𝑙

E𝐾 𝑗

(
x 𝑗 −X 𝑗

ℎ𝑛

)
+ (𝑝 − 1)

𝑝∏
𝑙=1

E𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

)
.

By the statement (C.1), we get, for some constant Υ1 > 0,����√𝑛E𝑈𝑛,1 (C̃) − E|𝑍 |
∫
C̃

√︁
L𝑛,1 (x̃) 𝑑x̃

���� ≤ Υ1√
𝑛ℎ3𝑑

𝑛

∫
C̃

E|𝐿𝑛 (x̃) |3

L𝑛,1 (x̃)
𝑑x̃, (A.2)

where L𝑛,1 (x̃) = 𝑛Var
(
Γ𝑛,1 (x̃)

)
. This last bound is, since, for each 𝑙 = 1, . . . , 𝑝, 𝐾𝑙 (·) is bounded,

𝜆(C̄) <∞ and ℎ−2𝑑
𝑛 Var

(
𝐿𝑛 (x̃)

)
= L𝑛,1 (x̃), less than or equals to 𝜐2√

𝑛ℎ𝑑𝑛
for some constant 𝜐2 > 0. Now,

since, for each 𝑙 = 1, . . . , 𝑝, 𝑓𝑙 (·) is bounded on C 𝛿
𝑙

for some 𝛿 > 0, thus, by arguing as in the proof of
Lemma B.3, we get

√
𝑛E

��𝑉𝑛 (C̃) −𝑈𝑛,1 (C̃)
�� =𝑂 ©«

1√︃
𝑛ℎ𝑑𝑛

ª®®¬ . (A.3)

Combining (A.2)-(A.3) and Lemma B.12, we obtain
√
𝑛
(
𝑉𝑛 (C̃) − 𝑎𝑛 (C̃)

) D→ N(0, 𝜎2) as 𝑛→ ∞.
Therefore, for 𝑛 large enough, we obtain readily

P

{√
𝑛

𝜎

(
𝑉𝑛 (C̃) − 𝑎𝑛 (C̃)

)
≤ 𝑧1−𝛼

}
→ 1 − 𝛼.

Thus, the 𝛼-level test rejects the null hypothesis if 𝑉𝑛 (C̃) > 𝑎𝑛 (C̃) + 𝜎√
𝑛
𝑧1−𝛼 . This proves that the test

has an asymptotic error probability equal to 𝛼. ■

Proof of Theorem 3.3. Making use of the triangular inequality, we readily obtain

|𝑉𝑛 (�̃�) −𝑉 (�̃�) | ≤
∫
�̃�

����� 𝑓𝑛 (x̃) − 𝑝∏
𝑙=1

𝑓𝑛,𝑙 (x𝑙) −
(
E 𝑓𝑛 (x̃) −

𝑝∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙)
)����� 𝑑x̃

+
∫
�̃�

����� 𝑓 (x̃) − 𝑝∏
𝑙=1

𝑓𝑙 (x𝑙) −
(
E 𝑓𝑛 (x̃) −

𝑝∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙)
)����� 𝑑x̃.
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We now observe that����� 𝑓𝑛 (x̃) − 𝑝∏
𝑙=1

𝑓𝑛,𝑙 (x𝑙) −
(
E 𝑓𝑛 (x̃) −

𝑝∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙)
)�����

≤ | 𝑓𝑛 (x̃) − E 𝑓𝑛 (x̃) | +
𝑝∑︁
𝑗=1

�� 𝑓𝑛, 𝑗 (x 𝑗 ) − E 𝑓𝑛, 𝑗 (x 𝑗 )
�� 𝑗−1∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙)
𝑝∏

𝑙= 𝑗+1

𝑓𝑛,𝑙 (x𝑙),

and ����� 𝑓 (x̃) − 𝑝∏
𝑙=1

𝑓𝑙 (x𝑙) −
(
E 𝑓𝑛 (x̃) −

𝑝∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙)
)�����

≤
�� 𝑓 (x̃) − E 𝑓𝑛 (x̃)�� + 𝑝∑︁

𝑗=1

�� 𝑓 𝑗 (x 𝑗 ) − E 𝑓𝑛, 𝑗 (x 𝑗 )
�� 𝑗−1∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙)
𝑝∏

𝑙= 𝑗+1

𝑓𝑙 (x𝑙).

Now, for each 𝑙 = 1, . . . , 𝑝, we have∫
R𝑑𝑙

𝑓𝑛,𝑙 (x𝑙) 𝑑x𝑙 = 1 and
∫
R𝑑𝑙
E 𝑓𝑛,𝑙 (x𝑙) 𝑑x𝑙 →

∫
R𝑑𝑙

𝑓𝑙 (x𝑙) 𝑑x𝑙 = 1.

Then, for 𝑛 large enough, there exists a constant 𝐶 > 0 such that

E|𝑉𝑛 (�̃�) −𝑉 (�̃�) | ≤
∫
�̃�

E
�� 𝑓𝑛 (x̃) − E 𝑓𝑛 (x̃)�� 𝑑x̃ +𝐶

𝑝∑︁
𝑗=1

∫
𝐷 𝑗

E
�� 𝑓𝑛, 𝑗 (x 𝑗 ) − E 𝑓𝑛, 𝑗 (x 𝑗 )

�� 𝑑x 𝑗

+
∫
R𝑑

�� 𝑓 (x̃) − E 𝑓𝑛 (x̃)�� 𝑑x̃ +𝐶
𝑝∑︁
𝑗=1

∫
R
𝑑𝑗

�� 𝑓 𝑗 (x 𝑗 ) − E 𝑓𝑛, 𝑗 (x 𝑗 )
�� 𝑑x 𝑗 .

Making use of the Cauchy-Schwartz and Young’s inequalities, we infer that∫
�̃�

E
�� 𝑓𝑛 (x̃) − E 𝑓𝑛 (x̃)�� 𝑑x̃ ≤

∫
�̃�

(
Var

(
𝑓𝑛 (x̃)

) )1/2
𝑑x̃ ≤

(
𝜇(�̃�)

)1/2√︃
𝑛ℎ𝑑𝑛

©«
∫
�̃�

{
𝑝∏
𝑙=1

𝐾𝑙

}2

∗ 𝑓 (x̃) 𝑑x̃ª®¬
1/2

= 𝑂

(
1√︃
𝑛ℎ𝑑𝑛

)
.

Likewise, for each 𝑗 = 1, . . . , 𝑝, we have
∫
𝐷 𝑗
E
�� 𝑓𝑛, 𝑗 (x 𝑗 ) − E 𝑓𝑛, 𝑗 (x 𝑗 )

�� 𝑑x 𝑗 = 𝑂

(
1√︃
𝑛ℎ

𝑑𝑗
𝑛

)
. On the other

hand, by Theorem 1 in Chapter 2 of Devroye and Györfi (1985), we readily infer∫
R𝑑

�� 𝑓 (x̃) − E 𝑓𝑛 (x̃)�� 𝑑x̃ → 0 and
∫
R
𝑑𝑗

�� 𝑓 𝑗 (x 𝑗 ) − E 𝑓𝑛, 𝑗 (x 𝑗 )
�� 𝑑x 𝑗 → 0, 𝑗 = 1, . . . , 𝑝.

Using the fact that 𝑛−1/2ℎ−𝑑/2 → 0, we conclude that 𝑉𝑛 (�̃�)
P→ 𝑉 (�̃�). To complete the proof of the

theorem, it suffices to show that P
(
𝑉𝑛 (�̃�) < 𝑛−1/2 (𝜎𝑧1−𝛼 + 𝑎𝑛 (�̃�)

) )
→ 0. Now, we can check easily
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that 𝑎𝑛 (�̃�) = 𝑂 (ℎ−𝑑/2), then for 𝑛 large enough, there exists some constant 𝜈 > 0 in such a way that
1√
𝑛

(
𝜎𝑧1−𝛼 + 𝑎𝑛 (�̃�)

)
−𝑉 (�̃�) < −𝜈. Therefore, we infer that

P

(
𝑉𝑛 (�̃�) <

1
√
𝑛

(
𝜎𝑧1−𝛼 + 𝑎𝑛 (�̃�)

) )
≤ P

(
𝑉𝑛 (�̃�) −𝑉 (�̃�) < −𝜈

)
≤ P

(��𝑉𝑛 (�̃�) −𝑉 (�̃�)�� > 𝜈) → 0.

Hence, we obtain the desired conclusion of Theorem 3.3. ■

Proof of Theorem 4.1. Notice that

𝑇𝑛 (C̃) =
√
𝑛𝜎−1𝑉𝑛 (C̃) − 𝜎−1𝑎𝑛 (C̃)

=
√
𝑛𝜎−1 (

𝑉𝑛 (C̃) − E𝑉𝑛 (C̃))
)
+
√
𝑛𝜎−1

(
E𝑉𝑛 (C̃) − 𝑛−1/2𝑎𝑛 (C̃)

)
. (A.4)

To establish that the first term on the right side of (A.4) converges to N(0,1) under 𝐻𝛿,𝑛, we follow
the proof of Theorem 3.1 with some slight differences. Note that in this proof, we have not assumed
independence. So for this reason we will use a type of Berry-Esseen bound for sums of independent
random variables due to Sweeting (1977), the theorem in Pinelis (1994) and Theorem 2 on page 63 of
Stein (1970). Consider the second term in (A.4). Under 𝐻𝛿,𝑛, since 𝑛ℎ3𝑑

𝑛 →∞, by using the arguments
of the proof of Lemma B.4, we get

lim
𝑛→∞

√
𝑛E𝑈𝑛,1 (C̃) −

∫
C̃
E|𝛾𝑛,1 (x̃)𝑍1 + 𝛿𝑛 (x̃) | 𝑑x̃ = 0,

where 𝛾𝑛,1 (x̃) =
√︁
L𝑛,1 (x̃) and 𝛿𝑛 (x̃) = ℎ−𝑑/4

𝑛

∫
R𝑑
𝛿(x̃ − uℎ𝑛)

{∏𝑝

𝑙=1 𝐾𝑙 (u𝑙)
}
𝑑u. Now we have

E|𝛾𝑛,1 (x̃)𝑍1 + 𝛿𝑛 (x̃) | − E|𝛾𝑛,1 (x̃)𝑍1 |

= 2𝛿𝑛 (x̃)Φ
(
𝛿𝑛 (x̃)
𝛾𝑛,1 (x̃)

)
+ 2𝛾𝑛,1 (x̃)𝜙

(
𝛿𝑛 (x̃)
𝛾𝑛,1 (x̃)

)
− 𝛿𝑛 (x̃) − 2𝛾𝑛,1 (x̃)𝜙(0),

where 𝜙(·) denotes the pdf of the standard normal distribution. By a Taylor expansion, we infer

E|𝛾𝑛,1 (x̃)𝑍1 + 𝛿𝑛 (x̃) | − E|𝛾𝑛,1 (x̃)𝑍1 | = 2𝛿𝑛 (x̃)
(
Φ(0) + 𝛿𝑛 (x̃)

𝛾𝑛,1 (x̃)
𝜙(0) +𝑂

(
𝛿𝑛 (x̃)
𝛾𝑛,1 (x̃)

)2
)
− 𝛿𝑛 (x̃)

+2𝛾𝑛,1 (x̃)
(

3∑︁
𝑘=0

1
𝑘!

(
𝛿𝑛 (x̃)
𝛾𝑛,1 (x̃)

) 𝑘
𝜙 (𝑘 ) (0) + 𝑜

{(
𝛿𝑛 (x̃)
𝛾𝑛,1 (x̃)

)3
})

− 2𝛾𝑛,1 (x̃)𝜙(0).

By Lemma B.1, Lemma B.4 and (B.15) we obtain, as 𝑛→∞,

lim
𝑛→∞

𝜎−1
(√
𝑛E𝑈𝑛,1 (C̃) −

∫
C̃
E|𝛾𝑛,1 (x̃)𝑍1 | 𝑑x̃

)
= 𝜂(𝛿),

this when combined with Lemma B.3 and Lemma B.12 implies that
√
𝑛𝜎−1

(
E𝑉𝑛 (C̃) − 𝑛−1/2𝑎𝑛 (C̃)

)
converges in probability to 𝜂(𝛿), as 𝑛→∞, which completes the proof of Theorem 4.1. ■
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Supplementary material

The supplementary material in Berrahou, Bouzebda and Douge (2024) contains the proofs of all tech-
nical lemmas.

Appendix B: Technical lemmas

The following lemma will be crucial for the proof of Theorem 3.1.

Lemma B.1. Let 𝑔(·) be a Lebesgue density function on R𝑠 , 𝑠 ≥ 1, and K be a finite class of bounded
real-valued functions 𝐾 (·) with compact support. Then, for each 𝐾 ∈ K, we have

|𝐾ℎ𝑛 ∗ 𝑔(z) − 𝐽 (𝐾)𝑔(z) | → 0 as ℎ𝑛 → 0 for almost all z ∈ R𝑠 , (B.1)

where

𝐽 (𝐾) =
∫
R𝑠
𝐾 (u) 𝑑u and 𝐾ℎ𝑛 ∗ 𝑔(z) := ℎ−𝑠𝑛

∫
R𝑠
𝐾

( z − v
ℎ𝑛

)
𝑔(v) 𝑑v.

Moreover, for all 0 < 𝜀 < 1, there exist 𝑀 , 𝜈 > 0 and a Borel set 𝐶 of finite Lebesgue measure such that

𝐶⊂ [−𝑀 + 𝜈, 𝑀 − 𝜈]𝑠 ,
∫
R𝑠\[−𝑀,𝑀 ]𝑠

𝑔(v) 𝑑v = 𝜇 > 0,
∫
𝐶

𝑔(v) 𝑑v > 1 − 𝜀, (B.2)

𝑔(·) is bounded, continuous and bounded away from 0 on 𝐶 (B.3)

and, for each 𝐾 ∈ K,

sup
𝑧∈𝐶

|𝐾ℎ𝑛 ∗ 𝑔(z) − 𝐽 (𝐾)𝑔(z) | → 0 as ℎ𝑛 → 0. (B.4)

Proof of Lemma B.1. The first statement is just a simple case of Theorem 3 in Chapter 2 of Devroye
(1987). The other statements can be proved in the same way as in Lemma 6.1 of Giné, Mason and
Zaitsev (2003). Since 𝑔(·) is Lebesgue integrable, the integral

∫
R𝑠∖[−𝑀,𝑀 ]𝑠 𝑔(v) 𝑑v is continuous in

𝑀 and converges to zero as 𝑀→∞. We may find 𝑀 > 0 and 𝜈 > 0 so that∫
R𝑠\[−𝑀,𝑀 ]𝑠

𝑔(v) 𝑑v =
𝜀

8
and

∫
R𝑠\[−𝑀+𝜈,𝑀−𝜈 ]𝑠

𝑔(v) 𝑑v =
𝜀

4
.

The existence of the desired set 𝐶 ⊂ [−𝑀 + 𝜈, 𝑀 − 𝜈]𝑠 can be inferred from Lusin’s theorem followed
by Egorov’s theorem, for instance, see Dudley (1989), Theorems 7.5.1 and 7.5.2. ■

The next lemma provides a truncation step and will play an instrumental role in the sequel.
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Lemma B.2. Assume that assumption (A1) holds. If ℎ𝑛 → 0 and 𝑛ℎ𝑑𝑛 → ∞, then, for all Borel set
𝐴 ∈ R𝑑 ,

lim sup
𝑛→∞

𝑛Var(𝑉𝑛 (𝐴)) ≤ 64
∫
𝐴

𝑓 (x̃) 𝑑x̃.

Proof of Lemma B.2. Let E0 be the expectation E and let, for each 𝑖 = 1, . . . , 𝑛, E𝑖 be the conditional
expectation given (X1

1, . . . ,X
1
𝑖
). Set, for each 𝑖 = 1, . . . , 𝑛,

Υ𝑖 := E𝑖𝑉𝑛 (𝐴) − E𝑖−1𝑉𝑛 (𝐴) and Φ𝑖 := E𝑖
(
𝑉𝑛 (𝐴) −𝑉𝑛,−𝑖 (𝐴)

)
,

where

𝑉𝑛,−𝑖 (𝐴) :=
∫
𝐴

����� 1
𝑛ℎ𝑑𝑛

𝑛∑︁
𝑘≠𝑖

𝑝∏
𝑙=1

𝐾𝑙

(
x𝑙 −X𝑙𝑘
ℎ𝑛

)
− 1
𝑛𝑝ℎ𝑑𝑛

𝑛∑︁
𝑘≠𝑖

𝐾1

(
x1 −X1

𝑘

ℎ𝑛

)
𝑝∏
𝑙=2

𝑛∑︁
𝑘=1

𝐾𝑙

(
x𝑙 −X𝑙𝑘
ℎ𝑛

)����� 𝑑x̃.

Clearly, we have

𝑛∑︁
𝑖=1

Υ𝑖 =𝑉𝑛 (𝐴) − E𝑉𝑛 (𝐴) and E𝑖−1Υ𝑖 = 0, 𝑖 = 1, . . . , 𝑛. (B.5)

Also observe that, for each 𝑖 = 1, . . . , 𝑛, Υ𝑖 = Φ𝑖 − E𝑖−1Φ𝑖 and

|Φ𝑖 | ≤ E𝑖
��𝑉𝑛 (𝐴) −𝑉𝑛,−𝑖 (𝐴)��

≤ 2
𝑛ℎ𝑑𝑛

∫
𝐴

𝐾1

(
x1 −X1

𝑖

ℎ𝑛

)
𝑝∏
𝑙=2

E𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

)
𝑑x̃

=: Ψ𝑖 . (B.6)

Hence, for each 𝑖 = 1, . . . , 𝑛,

|Υ𝑖 | ≤ |Φ𝑖 | + E𝑖−1 |Φ𝑖 | ≤ Ψ𝑖 + EΨ𝑖 := 𝜉𝑖 . (B.7)

For each 𝑖 = 1, . . . , 𝑛, let 𝜉𝑖 be independent copy of 𝜉𝑖 and let (𝜀𝑖) be an i.i.d. sequence of Rademacher
variables (P(𝜀𝑖 = 1) = P(𝜀𝑖 = −1) = 1/2), independent of the sequence (𝜉𝑖 , 𝜉𝑖). Using (B.5)-(B.7), the
convexity of 𝑦 = 𝑥2 and the fact that, for each 𝑖 = 1, . . . , 𝑛, 𝜉𝑖 is independent of (X1

1, . . . ,X
1
𝑖−1), it follows

from Theorem 3.1 in Berger (1991) that

E

(
𝑛∑︁
𝑖=1

Υ𝑖

)2

≤ E
(

𝑛∑︁
𝑖=1

𝜀𝑖 (𝜉𝑖 + 𝜉𝑖)
)2

≤ 4𝑛E(Ψ1 + 𝐸Ψ1)2 ≤ 16𝑛EΨ2
1 . (B.8)

Combining (B.5)-(B.6) with (B.8), we obtain

𝑛E [𝑉𝑛 (𝐴) − E𝑉𝑛 (𝐴)]2 ≤ 64
∫
𝐴

E 𝑓𝑛 (x̃) 𝑑x̃.
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By Theorem 1 in Chapter 2 of Devroye (1987), we infer that, as 𝑛→∞,∫
𝐴

��E 𝑓𝑛 (x̃) − 𝑓 (x̃)
�� 𝑑x̃ → 0,

which completes the proof of the lemma. ■

Choose, for each 𝑙 = 1, . . . , 𝑝, any bounded Borel set 𝐶𝑙 ⊂ R𝑑𝑙 satisfying (B.3) and (B.4) of Lemma
B.1 with 𝑔(·) = 𝑓𝑙 (·) and K =K𝑙 := {𝐾𝑙 , 𝐾

2
𝑙
, 𝐾3

𝑙
}. Clearly, for each 𝑙 = 1, . . . , 𝑝, for each 𝐾 ∈ K𝑙 , for all

large enough 𝑛 uniformly in z𝑙 ∈ 𝐶𝑙 and for some constant 𝐷0 > 0,

sup
z𝑙∈𝐶𝑙

∫
R𝑑𝑙

𝐾

(
z𝑙 − u𝑙

ℎ𝑛

)
𝑓𝑙 (𝑢𝑙) 𝑑u𝑙 ≤ 𝐷0ℎ

𝑑𝑙
𝑛 . (B.9)

Let us recall, for each 𝑎 ∈ {0,1},

Γ𝑛,𝑎 (x̃) := 𝑓𝑛 (x̃) − 𝑎
𝑝∑︁
𝑙=1

𝑓𝑛,𝑙 (x𝑙)
∏
𝑗≠𝑙

E 𝑓𝑛, 𝑗 (x 𝑗 ) + (𝑝𝑎 − 1)
𝑝∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙)

and set, for �̄� =𝐶1 × · · · ×𝐶𝑝 ,

𝑈𝑛,𝑎 (�̄�) :=
∫
�̄�

|Γ𝑛,𝑎 (x̃) | 𝑑x̃.

The next lemma shows that
√
𝑛
(
𝑉𝑛 (�̄�) − E𝑉𝑛 (�̄�)

)
is asymptotically equivalent in probability to√

𝑛
(
𝑈𝑛,1 (�̄�) − E𝑈𝑛,1 (�̄�)

)
.

Lemma B.3. Suppose that, for each 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies (B.3) and (B.4) of Lemma B.1 with 𝑔(·) =
𝑓𝑙 (·) and K(·) =K𝑙 (·). If ℎ𝑛 → 0 and 𝑛ℎ𝑑𝑛 →∞, then

lim
𝑛→∞

√
𝑛E

��𝑉𝑛 (�̄�) −𝑈𝑛,1 (�̄�)
�� = 0.

Proof of Lemma B.3. Notice that����� 𝑓𝑛 (x̃) − 𝑝∏
𝑙=1

𝑓𝑛,𝑙 (x𝑙)
�� − ��Γ𝑛,1 (x̃)�����

≤
∑︁

{𝐼⊊𝐼𝑝 , |𝐼𝑝\𝐼 | ≥2}

∏
𝑙∈𝐼
E 𝑓𝑛,𝑙 (x𝑙)

∏
𝑗∈𝐼𝑝\𝐼

�� 𝑓𝑛, 𝑗 (x 𝑗 ) − E 𝑓𝑛, 𝑗 (x 𝑗 )
��,

where 𝐼𝑝 = {1, . . . , 𝑝}, |𝐼 | denotes the cardinality of the set 𝐼 and the empty product is defined to be 1.
Clearly, we have

E
��𝑉𝑛 (�̄�) −𝑈𝑛,1 (�̄�)

�� ≤ ∑︁
{𝐼⊊𝐼𝑝 , |𝐼𝑝\𝐼 | ≥2}

∏
𝑙∈𝐼𝑝\𝐼

∫
𝐶𝑙

E
�� 𝑓𝑛,𝑙 (x𝑙) − E 𝑓𝑛,𝑙 (x𝑙)�� 𝑑x𝑙

≤
∑︁

{𝐼⊊𝐼𝑝 , |𝐼𝑝\𝐼 | ≥2}

∏
𝑙∈𝐼𝑝\𝐼

∫
𝐶𝑙

(
E[ 𝑓𝑛,𝑙 (x𝑙) − E 𝑓𝑛,𝑙 (x𝑙)]2)1/2

𝑑x𝑙 . (B.10)
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Now, observe that, for each 𝑙 = 1, . . . , 𝑝 and each x𝑙 ∈ 𝐶𝑙 ,

E
[
𝑓𝑛,𝑙 (x𝑙) − E 𝑓𝑛,𝑙 (x𝑙)

]2 ≤ 1

𝑛ℎ
2𝑑𝑙
𝑛

∫
R𝑑𝑙

𝐾2
𝑙

(
x𝑙 − u𝑙

ℎ𝑛

)
𝑓𝑙 (u𝑙) 𝑑u𝑙 .

Therefore, by (B.9), for each 𝑙 = 1, . . . , 𝑝, we have

sup
x𝑙∈𝐶𝑙

E
[
𝑓𝑛,𝑙 (x𝑙) − E 𝑓𝑛,𝑙 (x𝑙)

]2
=𝑂

(
1

𝑛ℎ
𝑑𝑙
𝑛

)
. (B.11)

Inequality (B.10) together with (B.11) give, for some constant 𝑀0 > 0,

√
𝑛E

��𝑉𝑛 (�̄�) −𝑈𝑛,1 (�̄�)
�� ≤ 𝑀0

∑︁
{𝐼⊊𝐼𝑝 , |𝐼𝑝\𝐼 | ≥2}

1

𝑛( |𝐼𝑝\𝐼 |−1)/2
∏

𝑙∈𝐼𝑝\𝐼
ℎ
𝑑𝑙/2
𝑛

≤ 𝑀0√︃
𝑛ℎ𝑑𝑛

∑︁
{𝐼⊊𝐼𝑝 , |𝐼𝑝\𝐼 | ≥2}

∏
𝑙∈𝐼

ℎ
𝑑𝑙/2
𝑛 .

This completes the proof of Lemma B.3. ■

The next step in the proof of the asymptotic normality theorem is what is known as Poissonization. Let
𝜂 be a Poisson random variable with mean 𝑛, independent of X̃, X̃1, X̃2, . . ., and set

𝑓𝜂 (x̃) =
1
𝑛ℎ𝑑𝑛

𝜂∑︁
𝑖=1

𝑝∏
𝑙=1

𝐾𝑙

(
x𝑙 − X𝑙

𝑖

ℎ𝑛

)
and 𝑓𝜂,𝑙 (x𝑙) =

1

𝑛ℎ
𝑑𝑙
𝑛

𝜂∑︁
𝑖=1

𝐾𝑙

(
x𝑙 − X𝑙

𝑖

ℎ𝑛

)
,

where the empty sum is defined to be zero. For each 𝑙 = 1, . . . , 𝑝, notice that

E 𝑓𝜂,𝑙 (x𝑙) = E 𝑓𝑛,𝑙 (x𝑙) = ℎ−𝑑𝑙𝑛

∫
R𝑑𝑙

𝐾𝑙

(
x𝑙 − u𝑙

ℎ𝑛

)
𝑓𝑙 (u𝑙) 𝑑u𝑙 (B.12)

and

𝑣𝑛,𝑙 (x𝑙) := 𝑛Var
(
𝑓𝜂,𝑙 (x𝑙)

)
= ℎ

−2𝑑𝑙
𝑛

∫
R𝑑𝑙

𝐾2
𝑙

(
x𝑙 − u𝑙

ℎ𝑛

)
𝑓𝑙 (u𝑙) 𝑑u𝑙 . (B.13)

Set, for each 𝑎 ∈ {0,1},

Γ𝜂,𝑎 (x̃) := 𝑓𝜂 (x̃) − 𝑎
𝑝∑︁
𝑙=1

𝑓𝜂,𝑙 (x𝑙)
∏
𝑗≠𝑙

E 𝑓𝑛, 𝑗 (x 𝑗 ) + (𝑝𝑎 − 1)
𝑝∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙).

Clearly, for each 𝑎 ∈ {0,1}, we have

𝑘𝑛,𝑎 (x̃) := 𝑛Var
(
Γ𝜂,𝑎 (x̃)

)
=

𝑝∏
𝑙=1

𝑣𝑛,𝑙 (x𝑙) − 𝑎
𝑝∑︁
𝑙=1

𝑣𝑛,𝑙 (x𝑙)
𝑝∏
𝑗≠𝑙

(
E 𝑓𝑛, 𝑗 (x 𝑗 )

)2 + 𝑝(𝑝 − 1)𝑎
𝑝∏
𝑙=1

(
E 𝑓𝑛,𝑙 (x𝑙)

)2 (B.14)
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and

L𝑛,𝑎 (x̃) := 𝑛Var
(
Γ𝑛,𝑎 (x̃)

)
=

𝑝∏
𝑙=1

𝑣𝑛,𝑙 (x𝑙) − 𝑎
𝑝∑︁
𝑙=1

𝑣𝑛,𝑙 (x𝑙)
𝑝∏
𝑗≠𝑙

(
E 𝑓𝑛, 𝑗 (x 𝑗 )

)2 + (𝑝𝑎 − 1)
𝑝∏
𝑙=1

(
E 𝑓𝑛,𝑙 (x𝑙)

)2
.

We now observe that�����ℎ𝑑𝑛 𝑘𝑛,𝑎 (x̃) − K̃
𝑝∏
𝑙=1

𝑓𝑙 (x𝑙)
�����

≤
∑︁
𝐼⊊𝐼𝑝

∏
𝑙∈𝐼

∥𝐾𝑙 ∥2
2 𝑓𝑙 (x𝑙)

∏
𝑗∈𝐼𝑝\𝐼

��ℎ𝑑 𝑗

𝑛 𝑣𝑛, 𝑗 (x 𝑗 ) − ∥𝐾 𝑗 ∥2
2 𝑓 𝑗 (x 𝑗 )

��
+𝑎ℎ𝑑𝑛


𝑝∑︁
𝑙=1

𝑣𝑛,𝑙 (x𝑙)
𝑝∏
𝑗≠𝑙

(
E 𝑓𝑛, 𝑗 (x 𝑗 )

)2 + 𝑝(𝑝 − 1)
𝑝∏
𝑙=1

(
E 𝑓𝑛,𝑙 (x𝑙)

)2
 .

Combining this last observation with (B.12)-(B.13) and the fact that, for 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies (B.3)
and (B.4) of Lemma B.1 with 𝑔(·) = 𝑓𝑙 (·) and K(·) =K𝑙 (·), we obtain

lim
𝑛→∞

sup
x̃∈�̄�

�����ℎ𝑑𝑛 𝑘𝑛,𝑎 (x̃) − K̃
𝑝∏
𝑙=1

𝑓𝑙 (x𝑙)
����� = 0. (B.15)

Thus, for all large enough 𝑛 uniformly in x̃ ∈ �̄� and for some constants 𝐷1 > 0 and 𝐷2 > 0, we have

𝐷1 ≤ ℎ𝑑𝑛 𝑘𝑛,𝑎 (x̃) ≤ 𝐷2. (B.16)

Therefore, by (B.9) and (B.16), we get

sup
x̃∈�̄�

���√︁L𝑛,𝑎 (x̃) −
√︁
𝑘𝑛,𝑎 (x̃)

��� ≤ |2𝑝𝑎 − 𝑝2𝑎 − 1| sup
x̃∈�̄�

𝑝∏
𝑙=1

(
E 𝑓𝑛,𝑙 (x𝑙)

)2

√︁
𝑘𝑛,𝑎 (x̃)

=𝑂

(√︃
ℎ𝑑𝑛

)
.

Set, for each 𝑎 ∈ {0,1},

𝑈𝜂,𝑎 (�̄�) :=
∫
�̄�

|Γ𝜂,𝑎 (x̃) | 𝑑x̃.

The next lemma shows that, for each 𝑎 ∈ {0,1},
√
𝑛E𝑈𝑛,𝑎 (�̄�) is asymptotically equivalent to√

𝑛E𝑈𝜂,𝑎 (�̄�).

Lemma B.4. Suppose that, for each 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies (B.3) and (B.4) of Lemma B.1 with 𝑔(·) =
𝑓𝑙 (·) and K(·) =K𝑙 (·). If ℎ𝑛 → 0 and

√
𝑛ℎ𝑑𝑛 →∞, as 𝑛→∞, then, for each 𝑎 ∈ {0,1},

lim
𝑛→∞

√
𝑛E𝑈𝜂,𝑎 (�̄�) − E|𝑍1 |

∫
�̄�

√︁
𝑘𝑛,𝑎 (x̃) 𝑑x̃ = 0, (B.17)
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and

lim
𝑛→∞

√
𝑛E𝑈𝑛,𝑎 (�̄�) − E|𝑍1 |

∫
�̄�

√︁
𝑘𝑛,𝑎 (x̃) 𝑑x̃ = 0. (B.18)

Proof of Lemma B.4. Let 𝜂1 denote a Poisson random variable with mean 1, independent of
X̃1, X̃2, . . ., and set

Y𝑎,𝑛 (x̃) =
1

ℎ𝑑𝑛
√︁
𝑘𝑛,𝑎 (x̃)


∑︁
𝑖≤𝜂1

{ 𝑝∏
𝑙=1

𝐾𝑙

(x𝑙 −X𝑙𝑖
ℎ𝑛

)
−𝑎

𝑝∑︁
𝑙=1

𝐾𝑙

(x𝑙 −X𝑙𝑖
ℎ𝑛

) ∏
𝑗≠𝑙

E𝐾 𝑗

(x 𝑗 −X 𝑗

ℎ𝑛

)}
+ (𝑝𝑎 − 1)

𝑝∏
𝑙=1

E𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

)]
.

Observe that Var[Y𝑎,𝑛 (x̃)] = 1. Using the statement (2.8) of Lemma 2.3 of Giné, Mason and Zaitsev
(2003) and 𝑐𝑟 -inequality, we get

E|Y𝑎,𝑛 (x̃) |3 ≤ 𝐷3

ℎ
− 3

2 𝑑
𝑛

𝑝∏
𝑙=1

E𝐾3
𝑙

(
x𝑙 −X𝑙
ℎ𝑛

)
(
ℎ𝑑𝑛 𝑘𝑛,𝑎 (x̃)

)3/2
,

where 𝐷3 > 0 is a constant. Using (B.9) with (B.16), we obtain, for all large enough 𝑛 and for some
constant 𝐷4 > 0,

sup
x̃∈�̄�
E|Y𝑎,𝑛 (x̃) |3 ≤ 𝐷4ℎ

− 𝑑
2

𝑛 . (B.19)

Let Y (1)
𝑎,𝑛 (x̃), . . . ,Y (𝑛)

𝑎,𝑛 (x̃) be independent copies of Y𝑎,𝑛 (x̃). Clearly, we have

𝑇𝜂,𝑎 (x̃) :=
√
𝑛Γ𝜂,𝑎 (x̃)√︁
𝑘𝑛,𝑎 (x̃)

D
=

1
√
𝑛

𝑛∑︁
𝑖=1

Y (𝑖)
𝑎,𝑛 (x̃),

where D
= stands for equality in distribution. Therefore, by (C.1) we have

sup
x̃∈�̄�

�����√𝑛E|Γ𝜂,𝑎 (x̃) |√︁
𝑘𝑛,𝑎 (x̃)

− E |𝑍1 |
����� ≤ 𝐷5√

𝑛
sup
x̃∈�̄�
E|Y𝑎,𝑛 (x̃) |3, (B.20)

where 𝐷5 is a universal positive constant. Now, by (B.16), in combination with (B.19) and (B.20), we
get ����� ∫�̄� {√

𝑛E|Γ𝜂,𝑎 (x̃) | − E|𝑍1 |
√︁
𝑘𝑛,𝑎 (x̃)

}
𝑑x̃

����� =𝑂
(

1
√
𝑛ℎ𝑑𝑛

)
.
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Similarly, we obtain, by the statement (C.1),����� ∫�̄� {√
𝑛E|Γ𝑛,𝑎 (x̃) | − E|𝑍1 |

√︁
L𝑛,𝑎 (x̃)

}
𝑑x̃

����� =𝑂
(

1
√
𝑛ℎ𝑑𝑛

)
,

which by (B.17) implies����� ∫�̄� {√
𝑛E|Γ𝑛,𝑎 (x̃) | − E|𝑍1 |

√︁
𝑘𝑛,𝑎 (x̃)

}
𝑑x̃

����� =𝑂
(

1
√
𝑛ℎ𝑑𝑛

+
√︃
ℎ𝑑𝑛

)
.

This completes the proof. ■

Lemma B.5. Whenever ℎ𝑛 → 0 and, for 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies (B.3) of Lemma B.1 with 𝑔(·) = 𝑓𝑙 (·),
we have

1�̄� (x̃ + ℎ𝑛 t̃) converges in measure to 1�̄� (x̃) = 1 on �̄� × B̃. (B.21)

Proof of Lemma B.5. Notice that∫
�̄�

∫
B̃
1�̄� (x̃ + ℎ𝑛 t̃) 𝑑 t̃ 𝑑x̃ =

1
ℎ𝑑𝑛

∫
�̄�

∫
�̄�

1B̃

(
x̃ − ỹ
ℎ𝑛

)
𝑑ỹ 𝑑x̃.

Now, by (B.1), applied to 𝐾 (t̃) = 1
𝜆(B̃)

1B̃ (t̃) and 𝑓 (x̃) = 1
𝜆(�̄�)

1�̄� (x̃), for almost every x̃, we have

1
ℎ𝑑𝑛

∫
R𝑑
1�̄� (ỹ)1B̃

(
x̃ − ỹ
ℎ𝑛

)
𝑑ỹ → 𝜆(B̃)1�̄� (x̃).

Thus, by the dominated convergence theorem, we infer that

1
ℎ𝑑𝑛

∫
�̄�

∫
�̄�

1B̃

(
x̃ − ỹ
ℎ𝑛

)
𝑑ỹ 𝑑x̃ → 𝜆(B̃) 𝜆(�̄�),

which, in other words, says

(𝜆 × 𝜆)
{
(x̃, t̃) ∈ �̄� × B̃ : 1 − 1�̄� (x̃ + ℎ𝑛 t̃) ≠ 0

}
= 𝜆(B̃) 𝜆(�̄�) −

∫
𝐶

∫
B̃
1�̄� (x̃ + ℎ𝑛 t̃) 𝑑 t̃ 𝑑x̃ → 0,

yielding to (B.21). Hence the proof of Lemma B.5 is complete. ■

Lemma B.6. Suppose that, for each 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies (B.3) and (B.4) of Lemma B.1 with 𝑔(·) =
𝑓𝑙 (·) and K(·) =K𝑙 (·). If ℎ𝑛 → 0 and 𝑛ℎ3𝑑

𝑛 →∞, as 𝑛→∞, then, for all 𝑎, 𝑏 ∈ {0,1}, we have

lim
𝑛→∞

𝑛Cov
(
𝑈𝜂,𝑎 (�̄�),𝑈𝜂,𝑏 (�̄�)

)
= 𝜎2

𝑝∏
𝑙=1

∫
𝐶𝑙

𝑓𝑙 (x𝑙) 𝑑x𝑙 .
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Proof of Lemma B.6. For any Borel subset 𝐴 of R2𝑑 , set

𝜎𝑛,𝑎,𝑏 (�̄�, 𝐴) :=
∫
�̄�

∫
�̄�

Cov
(
|𝑇𝜂,𝑎 (x̃) |, |𝑇𝜂,𝑏 (ỹ) |

)
1𝐴(x̃, ỹ)

√︁
𝑘𝑛,𝑎 (x̃)𝑘𝑛,𝑏 (ỹ) 𝑑x̃ 𝑑ỹ.

Notice that

𝑛Cov
(
𝑈𝜂,𝑎 (�̄�),𝑈𝜂,𝑏 (�̄�)

)
= 𝑛

∫
�̄�

∫
�̄�

Cov
(
|Γ𝜂,𝑎 (x̃) |, |Γ𝜂,𝑏 (ỹ) |

)
𝑑x̃ 𝑑ỹ

=

∫
�̄�

∫
�̄�

Cov
(
|𝑇𝜂,𝑎 (x̃) |, |𝑇𝜂,𝑏 (ỹ) |

)√︁
𝑘𝑛,𝑎 (x̃)𝑘𝑛,𝑏 (ỹ) 𝑑x̃ 𝑑ỹ

=
∑︁
𝐼⊂𝐼𝑝

𝜎𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼)),

where, for each 𝐼 ⊂ 𝐼𝑝 = {1, . . . , 𝑝},

𝐴𝑛 (𝐼) :=
⋂
𝑙∈𝐼

{
(x̃, ỹ) : ∥x𝑙 − y𝑙 ∥ ≤ ℎ𝑛

}⋂ ⋂
𝑗∈𝐼𝑝\𝐼

{
(x̃, ỹ) : ∥x 𝑗 − y 𝑗 ∥ > ℎ𝑛

}
.

Here, the empty intersection is defined to be R2𝑑 . We will show that, as 𝑛→∞,

𝜎𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) → 𝜎2
𝑝∏
𝑙=1

∫
𝐶𝑙

𝑓𝑙 (x𝑙) 𝑑x𝑙 (B.22)

and ∑︁
𝐼⊊𝐼𝑝

𝜎𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼)) → 0, (B.23)

which will complete the proof of the lemma. First, consider (B.22). By (B.15), in combination with the
fact that 𝜆(�̄�) <∞ and ∫

�̄�

∫
�̄�

1𝐴𝑛 (𝐼𝑝 ) (x̃, ỹ) 𝑑x̃ 𝑑ỹ ≤ 𝛽0ℎ
𝑑
𝑛𝜆(�̄�),

for some constant 𝛽0 > 0, we see that

𝜎𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) = �̄�𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) + 𝑜(1),

where

�̄�𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) = K̃
∫
�̄�

∫
�̄�

1𝐴𝑛 (𝐼𝑝 ) (x̃, ỹ)Cov
(
|𝑇𝜂,𝑎 (x̃) |, |𝑇𝜂,𝑏 (ỹ) |

)
×ℎ−𝑑𝑛

𝑝∏
𝑙=1

√︁
𝑓𝑙 (x𝑙) 𝑓𝑙 (y𝑙) 𝑑x̃ 𝑑ỹ.

Now, let (𝑍 (𝑎,𝑏)
𝑛,1 (x̃), 𝑍 (𝑎,𝑏)

𝑛,2 (ỹ)), x̃, ỹ ∈ R𝑑 , be a mean zero bivariate Gaussian process such that, for

each (x̃, ỹ) ∈ R2𝑑 , (𝑍 (𝑎,𝑏)
𝑛,1 (x̃), 𝑍 (𝑎,𝑏)

𝑛,2 (ỹ)) and (𝑇𝜂,𝑎 (x̃),𝑇𝜂,𝑏 (ỹ)) have the same covariance structure.
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In particular, we have(
𝑍
(𝑎,𝑏)
𝑛,1 (x̃), 𝑍 (𝑎,𝑏)

𝑛,2 (ỹ)
) D
=

(√︃
1 −

(
𝜌𝑛,𝑎,𝑏 (x̃, ỹ)

)2
𝑍1 + 𝜌𝑛,𝑎,𝑏 (x̃, ỹ)𝑍2, 𝑍2

)
,

where

𝜌𝑛,𝑎,𝑏 (x̃, ỹ) := E[𝑇𝜂,𝑎 (x̃)𝑇𝜂,𝑏 (ỹ)]

=

[
𝑝∏
𝑙=1

𝑤𝑛,𝑙 (x𝑙 ,y𝑙) + 𝑝(𝑝 − 1)𝑎𝑏
𝑝∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙)E 𝑓𝑛,𝑙 (y𝑙)

+(𝑎𝑏 − 𝑎 − 𝑏)
𝑝∑︁
𝑙=1

𝑤𝑛,𝑙 (x𝑙 ,y𝑙)
∏
𝑗≠𝑙

E 𝑓𝑛, 𝑗 (x 𝑗 )E 𝑓𝑛, 𝑗 (𝑦 𝑗 )


× 1√︁
𝑘𝑛,𝑎 (x̃)𝑘𝑛,𝑏 (ỹ)

, (B.24)

where, for each 𝑙 = 1, . . . , 𝑝,

𝑤𝑛,𝑙 (x𝑙 ,y𝑙) := ℎ−2𝑑𝑙
𝑛 E

[
𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

)
𝐾𝑙

(
y𝑙 −X𝑙
ℎ𝑛

)]
.

Set

𝜏𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) = K̃
∫
�̄�

∫
�̄�

1𝐴𝑛 (𝐼𝑝 ) (x̃, ỹ)Cov
(
|𝑍 (𝑎,𝑏)

𝑛,1 (x̃) |, |𝑍 (𝑎,𝑏)
𝑛,2 (ỹ) |

)
×ℎ−𝑑𝑛

𝑝∏
𝑙=1

√︁
𝑓𝑙 (x𝑙) 𝑓𝑙 (y𝑙) 𝑑x̃ 𝑑ỹ,

which by the change of variables ỹ = x̃ + ℎ𝑛 t̃ equals∫
�̄�

∫
B̃
𝑔𝑛,𝑎,𝑏 (x̃, t̃) 𝑑x̃ 𝑑 t̃,

where

𝑔𝑛,𝑎,𝑏 (x̃, t̃) := K̃1�̄� (x̃)1�̄� (x̃ + ℎ𝑛 t̃)Cov
(
|𝑍 (𝑎,𝑏)

𝑛,1 (x̃) |, |𝑍 (𝑎,𝑏)
𝑛,2 (x̃ + ℎ𝑛 t̃) |

)
×

𝑝∏
𝑙=1

√︁
𝑓𝑙 (x𝑙) 𝑓1 (x𝑙 + ℎ𝑛t𝑙).

We will show that, as 𝑛→∞,

𝜏𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) → 𝜎2
𝑝∏
𝑙=1

∫
𝐶𝑙

𝑓𝑙 (x𝑙) 𝑑x𝑙 (B.25)

and then, as 𝑛→∞, we have

𝜏𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) − �̄�𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) → 0, (B.26)
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which will complete the proof of (B.22). Now, consider (B.25). Applying (B.1) of Lemma B.1, with
𝑔(·) = 𝑓𝑙 (·) and 𝐾 (·) = 𝐾𝑙 (· + t𝑙)𝐾𝑙 (· + s𝑙), 𝑡𝑙 , 𝑠𝑙 ∈ R𝑑𝑙 , we get, for each (t𝑙 , s𝑙), as 𝑛→∞, for almost
every x𝑙 ∈ R𝑑𝑙 , hence for almost every x𝑙 ∈ 𝐶𝑙 ,

ℎ
−𝑑𝑙
𝑛 E

[
𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

+ t𝑙
)
𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

+ s𝑙
)]

→ 𝑓𝑙 (x𝑙)
∫
𝐾𝑙 (u𝑙 + t𝑙)𝐾𝑙 (u𝑙 + s𝑙) 𝑑u𝑙 . (B.27)

Moreover, we get with 𝑔(·) = 𝑓𝑙 (·) and 𝐾 (·) = 𝐾𝑙 (· + t𝑙), as 𝑛→∞, for almost every x𝑙 ∈ 𝐶𝑙 ,

ℎ
−𝑑𝑙
𝑛 E

[
𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

+ t𝑙
)]

→ 𝑓𝑙 (x𝑙). (B.28)

Now, by (B.12)-(B.14) in combination with (B.27) and (B.28), we get, for each t̃, as 𝑛→∞, for almost
every x̃ ∈ �̄�,

ℎ𝑑𝑛 𝑘𝑛,𝑎 (x̃ + ℎ𝑛 t̃) → K̃
𝑝∏
𝑙=1

𝑓𝑙 (x𝑙). (B.29)

Thus, by (B.24), (B.27) and (B.29), we have, for each t̃ and almost every x̃ ∈ �̄�, as 𝑛→∞,

𝜌𝑛,𝑎,𝑏 (x̃, x̃ + ℎ𝑛 t̃) →
𝑝∏
𝑙=1

𝜌𝑙 (t𝑙) = 𝜌(t̃),

thus we obtain

Cov
(
|𝑍 (𝑎,𝑏)

𝑛,1 (x̃) |, |𝑍 (𝑎,𝑏)
𝑛,2 (x̃ + ℎ𝑛 t̃) |

)
→ Cov

(����√︃1 − 𝜌2 (t̃)𝑍1 + 𝜌(t̃)𝑍2

���� , |𝑍2 |
)
.

Combining this with Lemma B.5 and the continuity of 𝑓𝑙 (·) on 𝐶𝑙 , 𝑙 = 1, . . . , 𝑝, we readily conclude
that 𝑔𝑛,𝑎,𝑏 (x̃, t̃) converges in measure on �̄� × B̃ to

K̃1�̄� (x̃)Cov

( ����√︃1 − 𝜌2 (t̃)𝑍1 + 𝜌(t̃)𝑍2

���� , |𝑍2 |
)

𝑝∏
𝑙=1

𝑓𝑙 (x𝑙).

Since, for each 𝑙 = 1, . . . , 𝑝, 𝑓𝑙 (·) is bounded on 𝐶𝑙 , the function 𝑔𝑛,𝑎,𝑏 (x̃, t̃) is for all 𝑛 ≥ 1 uni-
formly bounded on �̄� × B̃. Thus, we get by the Lebesgue bounded convergence theorem, as 𝑛→∞,
𝜏𝑎,𝑏,𝑛 (�̄�, 𝐴𝑛 (𝐼𝑝)) converges to

𝜎2
𝑝∏
𝑙=1

∫
𝐶𝑙

𝑓𝑙 (x𝑙)𝑑x𝑙 .

This completes the proof of (B.25). Now, we consider the relation (B.26). Set

𝐺𝑛 (x̃, t̃) := K̃1�̄� (x̃)1�̄� (x̃ + ℎ𝑛 t̃)
𝑝∏
𝑙=1

√︁
𝑓𝑙 (x𝑙) 𝑓𝑙 (x𝑙 + ℎ𝑛t𝑙).
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Notice that, since, for each 𝑙 = 1, . . . , 𝑝, 𝑓𝑙 (·) is bounded on 𝐶𝑙 ,∫
�̄�

∫
B̃
𝐺𝑛 (x̃, t̃) 𝑑x̃ 𝑑 t̃ ≤ 𝛽1, (B.30)

where 𝛽1 is a positive constant. We see that

|𝜏𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) − �̄�𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) |

≤
∫
�̄�

∫
B̃

��E|𝑍 (𝑎,𝑏)
𝑛,1 (x̃) |E|𝑍 (𝑎,𝑏)

𝑛,2 (x̃ + ℎ𝑛 t̃) | − E|𝑇𝜂,𝑎 (x̃) |E|𝑇𝜂,𝑏 (x̃ + ℎ𝑛 t̃) |
��𝐺𝑛 (x̃, t̃) 𝑑x̃ 𝑑 t̃

+
∫
�̄�

∫
B̃

��E|𝑍 (𝑎,𝑏)
𝑛,1 (x̃)𝑍 (𝑎,𝑏)

𝑛,2 (x̃ + ℎ𝑛 t̃) | − E|𝑇𝜂,𝑎 (x̃)𝑇𝜂,𝑏 (x̃ + ℎ𝑛 t̃) |
��𝐺𝑛 (x̃, t̃) 𝑑x̃ 𝑑 t̃

:= 𝜁𝑛,𝑎,𝑏 (1) + 𝜁𝑛,𝑎,𝑏 (2).

First, using (B.30) and again the statement (C.1) with (B.19), we obtain

𝜁𝑛,𝑎,𝑏 (1) =𝑂
©«

1√︃
𝑛ℎ𝑑𝑛

ª®®¬ .
Choose any 0 < 𝜀 < 1 and set

𝐸𝑛 (𝜀) =
{
(x̃, t̃) : 1 −

(
𝜌𝑛,𝑎,𝑏 (x̃, x̃ + ℎ𝑛 t̃)

)2 ≥ 𝜀
}
.

Now, we infer that

𝜁𝑛,𝑎,𝑏 (2) ≤
∫
�̄�

∫
B̄

��1 − E|𝑍 (𝑎,𝑏)
𝑛,1 (x̃)𝑍 (𝑎,𝑏)

𝑛,2 (x̃ + ℎ𝑛 t̃) |
��1𝐸𝑐

𝑛 (𝜀) (x̃, t̃)𝐺𝑛 (x̃, t̃) 𝑑x̃ 𝑑 t̃

+
∫
�̄�

∫
B̄

��1 − E|𝑇𝜂,𝑎 (x̃)𝑇𝜂,𝑏 (x̃ + ℎ𝑛 t̃) |
��1𝐸𝑐

𝑛 (𝜀) (x̃, t̃)𝐺𝑛 (x̃, t̃) 𝑑x̃ 𝑑 t̃

+
∫
�̄�

∫
B̄

��E|𝑍 (𝑎,𝑏)
𝑛,1 (x̃)𝑍 (𝑎,𝑏)

𝑛,2 (x̃ + ℎ𝑛 t̃) | − E|𝑇𝜂,𝑎 (x̃)𝑇𝜂,𝑏 (x̃ + ℎ𝑛 t̃) |
��

×1𝐸𝑛 (𝜀) (x̃, t̃)𝐺𝑛 (x̃, t̃) 𝑑x̃ 𝑑 t̃

:= 𝜁 (𝑎,𝑏)
𝑛,1 (2, 𝜀) + 𝜁 (𝑎,𝑏)

𝑛,2 (2, 𝜀) + 𝜁 (𝑎,𝑏)𝑛 (2, 𝜀)

:= 𝜁 (𝑎,𝑏)𝑛 (2, 𝜀) + 𝜁 (𝑎,𝑏)𝑛 (2, 𝜀).

To bound 𝜁𝑎,𝑏𝑛 (2, 𝜀), we use the elementary fact that if 𝑋 and𝑌 are mean-zero and variance-one random
variables with 𝜌 = E(𝑋𝑌 ), then 1 − E|𝑋𝑌 | ≤ 1 − |𝜌 | ≤ 1 − 𝜌2, in combination with (B.30), to get

𝜁
(𝑎,𝑏)
𝑛 (2, 𝜀) ≤ 2𝜀𝛽1.

Next, using the inequality (B.30) and the statement (C.2) along with the statement (B.19), we obtain

𝜁
(𝑎,𝑏)
𝑛 (2, 𝜀) =𝑂

©«
1√︃
𝑛ℎ𝑑𝑛

ª®®¬ .
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Thus, for any 0 < 𝜀 < 1, we have

lim sup
𝑛→∞

��𝜏𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝)) − �̄�𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼𝑝))�� ≤ 2𝜀𝛽1,

which yields the statement (B.26). This finishes the proof of (B.22). Now we turn to (B.23). Let us
show that, for each 𝐼 ⊊ 𝐼𝑝 , as 𝑛→∞,

𝜎𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼)) → 0. (B.31)

Set, for each 𝐼 ⊊ 𝐼𝑝 ,

𝜏𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼)) :=
∫
�̄�

∫
�̄�

Cov
(
|𝑍 (𝑎,𝑏)

𝑛,1 (x̃) |, |𝑍 (𝑎,𝑏)
𝑛,2 (ỹ) |

)
1𝐴𝑛 (𝐼 ) (x̃, ỹ)

×
√︁
𝑘𝑛,𝑎 (x̃)𝑘𝑛,𝑏 (ỹ) 𝑑x̃ ỹ.

We will show that, for each 𝐼 ⊊ 𝐼𝑝 , as 𝑛→∞,

𝜏𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼)) → 0 (B.32)

and then, as 𝑛→∞,

𝜏𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼)) − 𝜎𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼)) → 0, (B.33)

which completes the proof of (B.31). Notice that, for each 𝐼 ⊊ 𝐼𝑝 and each (x̃, ỹ) ∈ 𝐴𝑛 (𝐼),

𝜌𝑛,𝑎,𝑏 (x̃, ỹ) =
[
𝑝(𝑝 − 1)𝑎𝑏

𝑝∏
𝑙=1

E 𝑓𝑛,𝑙 (x𝑙)E 𝑓𝑛,𝑙 (y𝑙)

+ (𝑎𝑏 − 𝑎 − 𝑏)
∑︁
𝑙∈𝐼

𝑤𝑛,𝑙 (x𝑙 ,y𝑙) ×
∏
𝑗≠𝑙

E 𝑓𝑛, 𝑗 (x 𝑗 )E 𝑓𝑛, 𝑗 (𝑦 𝑗 )

/√︁

𝑘𝑛,𝑎 (x̃)𝑘𝑛,𝑏 (ỹ).

Therefore, by (B.9), (B.16) and the fact that, for each 𝑙 = 1, . . . , 𝑝, 𝐾𝑙 is bounded, we get, for each
𝐼 ⊊ 𝐼𝑝 , for all large enough 𝑛 uniformly in (x̃, ỹ) ∈ 𝐴𝑛 (𝐼) ∩ �̄� × �̄� and for some constant 𝛽2 > 0,

|𝜌𝑛,𝑎,𝑏 (x̃, ỹ) | ≤ 𝛽2

∏
𝑙∈𝐼𝑝\𝐼

ℎ
𝑑𝑙
𝑛 . (B.34)

Now, by using Nabeya (1951) formulas, we have

Cov
(
|𝑍 (𝑎,𝑏)

𝑛,1 (x̃) |, |𝑍 (𝑎,𝑏)
𝑛,2 (ỹ) |

)
= Cov

(��√︃1 − (𝜌𝑛,𝑎,𝑏 (x̃, ỹ))2𝑍1 + 𝜌𝑛,𝑎,𝑏 (x̃, ỹ)𝑍2
��, |𝑍2 |

)
:= 𝜑(𝜌𝑛,𝑎,𝑏 (x̃, ỹ)),

where

𝜑(𝜌) = 2
𝜋

(
𝜌 arcsin 𝜌 +

√︃
1 − 𝜌2 − 1

)
, 𝜌 ∈ [−1,1],
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which in turn, for each 𝜌 ∈ [−1,1], is less than or equal to (𝜋−2)𝜌2

𝜋
. Thus, for each 𝐼 ⊊ 𝐼𝑝 , for all large

enough 𝑛 uniformly in (x̃, ỹ) ∈ 𝐴𝑛 (𝐼) ∩ �̄� × �̄� and for some constant 𝛽3 > 0, by (B.34) we get

Cov
(
|𝑍 (𝑎,𝑏)

𝑛,1 (x̃, ỹ) |, |𝑍 (𝑎,𝑏)
𝑛,2 (x̃, ỹ) |

)
≤ 𝛽3

∏
𝑙∈𝐼𝑝\𝐼

ℎ
2𝑑𝑙
𝑛 .

By change of variables y𝑙 = x𝑙 + ℎ𝑛t𝑙 for each 𝑙 ∈ 𝐼, for some constant 𝛽4 > 0, we obtain∫
�̄�

∫
�̄�

1𝐴𝑛 (𝐼 ) (x̃, ỹ) 𝑑x̃ 𝑑ỹ ≤ 𝛽4

∏
𝑙∈𝐼

ℎ
𝑑𝑙
𝑛 .

Hence, by (B.16) we have∫
�̄�

∫
�̄�

1𝐴𝑛 (𝐼 ) (x̃, ỹ)
√︁
𝑘𝑛,𝑎 (x̃)𝑘𝑛,𝑏 (ỹ) 𝑑x̃ 𝑑ỹ ≤ 𝛽5

∏
𝑙∈𝐼𝑝\𝐼

ℎ
−𝑑𝑙
𝑛 (B.35)

for some 𝛽5 > 0. This completes the proof of (B.32). We next evaluate the difference in (B.33). We can
see that

|𝜏𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼)) − 𝜎𝑛,𝑎,𝑏 (�̄�, 𝐴𝑛 (𝐼)) |

≤
∫
�̄�

∫
�̄�

��E|𝑍 (𝑎,𝑏)
𝑛,1 (x̃) |E|𝑍 (𝑎,𝑏)

𝑛,2 (ỹ) | − E|𝑇𝜂,𝑎 (x̃) |E|𝑇𝜂,𝑏 (ỹ) |
��

×1𝐴𝑛 (𝐼 ) (x̃, ỹ)
√︁
𝑘𝑛,𝑎 (x̃)𝑘𝑛,𝑏 (ỹ) 𝑑x̃ 𝑑ỹ

+
∫
�̄�

∫
�̄�

��E|𝑍 (𝑎,𝑏)
𝑛,1 (x̃)𝑍 (𝑎,𝑏)

𝑛,2 (ỹ) | − E|𝑇𝜂,𝑎 (x̃)𝑇𝜂,𝑏 (ỹ) |
��

×1𝐴𝑛 (𝐼 ) (x̃, ỹ)
√︁
𝑘𝑛,𝑎 (x̃)𝑘𝑛,𝑏 (ỹ) 𝑑x̃ 𝑑ỹ

:= 𝜉𝑛,𝑎,𝑏 (1) + 𝜉𝑛,𝑎,𝑏 (2).

To bound 𝜉𝑛,𝑎,𝑏 (1), we use (B.35) and (C.1) in combination with (B.19), to get

𝜉𝑛,𝑎,𝑏 (1) =𝑂
©«

1√︃
𝑛ℎ3𝑑

𝑛

ª®®¬ .
Next, we use (B.35) and (C.2) with (B.19) and (B.34) to get

𝜉𝑛,𝑎,𝑏 (2) =𝑂
©«

1√︃
𝑛ℎ3𝑑

𝑛

ª®®¬ ,
which gives (B.33). This completes the proof of Lemma B.6. ■

In the proof of the next lemmas, we shall apply Lemma B.6 with 𝑎 = 𝑏 = 0. Note that in this situation,
whenever (x̃, ỹ) ∈ 𝐴𝑛 (𝐼) with 𝐼 ⊊ 𝐼𝑝 , the random variables |Γ𝜂,0 (x̃) | and |Γ𝜂,0 (ỹ) | are independent.



34

This follows from the fact that being functions of independent increments of a Poisson process. There-
fore, 𝜎𝑛,0,0 (�̄�, 𝐴𝑛 (𝐼)) = 0 for all 𝑛 and each 𝐼 ⊊ 𝐼𝑝 , which implies that

lim
𝑛→∞

𝑛Var
(
𝑈𝜂,0 (�̄�)

)
= 𝜎2

𝑝∏
𝑙=1

∫
𝐶𝑙

𝑓𝑙 (x𝑙) 𝑑x𝑙 (B.36)

can be obtained under the bandwidth condition 𝑛ℎ𝑑𝑛 →∞ instead of 𝑛ℎ3𝑑
𝑛 →∞ as 𝑛→∞.

Lemma B.7. Suppose that, for each 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies (B.2)-(B.3)-(B.4) of Lemma B.1 with
𝑔(·) = 𝑓𝑙 (·) and K(·) =K𝑙 (·). If ℎ𝑛 → 0 and 𝑛ℎ3𝑑

𝑛 →∞, then we have

√
𝑛
[
𝑈𝑛,1 (�̄�) −𝑈𝑛,0 (�̄�) − E

(
𝑈𝑛,1 (�̄�) −𝑈𝑛,0 (�̄�)

) ] P→ 0.

Proof of Lemma B.7. For each 𝑙 = 1, . . . , 𝑝, we can find a measurable partition 𝐶𝑙,1, . . . ,𝐶𝑙,𝑘𝑙 of 𝐶𝑙 so
that

0 <
∫
𝐶

ℎ/2
𝑙, 𝑗𝑙

𝑓𝑙 (u𝑙) 𝑑u𝑙 < 1/(2𝑝),

for each 𝑗𝑙 = 1, . . . , 𝑘𝑙 and all ℎ𝑛 > 0 small enough, where 𝐶ℎ/2
𝑙, 𝑗𝑙

is the ℎ/2-neighborhood of 𝐶𝑙, 𝑗𝑙 . We
will apply Lemma 2.1 of Giné, Mason and Zaitsev (2003) to the semigroup 𝐷 generated by the point
masses,

𝐷 =

{
0,

𝑛∑︁
𝑖=1

𝛿x̃𝑖 : 𝑛 ∈ N, x̃𝑖 ∈ R𝑑1 × · · · ×R𝑑𝑝

}
,

with the 𝜎-algebra D generated by the functions

𝑓𝑛,𝐵 𝑗1 ,..., 𝑗𝑝
(x̃1, . . . , x̃𝑛) =

𝑛∑︁
𝑖=1

1{
𝛿x̃𝑖 ∈𝐵 𝑗1 ,..., 𝑗𝑝

}𝛿x̃𝑖 , 𝑛 ∈ N,

where, for each ( 𝑗1, . . . , 𝑗𝑝) ∈ {1, . . . , 𝑘1} × · · · × {1, . . . , 𝑘 𝑝} =: 𝐽𝑘1 ,...,𝑘𝑝 ,

𝐵 𝑗1 ,..., 𝑗𝑝 =

{
𝛿x̃ : x̃ ∈ R𝑑1 × · · · ×R𝑑𝑙−1 ×𝐶ℎ/2

𝑙, 𝑗𝑙
×R𝑑𝑙+1 × · · · ×R𝑑𝑝 , for some 𝑙 = 1, . . . , 𝑝

}
.

It is easy to see that, for any measurable function 𝐺 : R𝑑1 × · · · × R𝑑𝑝 ↦→ R, the map 𝜇 ↦→
∫
𝐺 𝑑𝜇 is

D-measurable [just note that

𝑓 −1
𝑛,𝐵 𝑗1 ,..., 𝑗𝑝

{
𝜇 ∈ 𝐷,

∫
𝐺 𝑑𝜇 ≤ 𝑡

}
=

{
(x̃1, . . . , x̃𝑛) :

𝑛∑︁
𝑖=1

1{
𝛿x̃𝑖 ∈𝐵 𝑗1 ,..., 𝑗𝑝

}𝐺 (x̃𝑖) ≤ 𝑡
}

is measurable set of (R𝑑1 × · · · ×R𝑑𝑝 )𝑛 ]. The function 𝐻 = 𝐻𝑛, 𝑗1 ,..., 𝑗𝑝 has the form

𝐻𝑛, 𝑗1 ,..., 𝑗𝑝

(
𝑛∑︁
𝑖=1

1{
𝛿x̃𝑖 ∈𝐵 𝑗1 ,..., 𝑗𝑝

}𝛿x̃𝑖

)
=

{
�̄�𝑛, 𝑗1 ,..., 𝑗𝑝 ,1

( 𝑛∑︁
𝑖=1

1{
𝛿x̃𝑖 ∈𝐵 𝑗1 ,..., 𝑗𝑝

}𝛿x̃𝑖

)
− �̄�𝑛, 𝑗1 ,..., 𝑗𝑝 ,0

(
𝑛∑︁
𝑖=1

1{
𝛿x̃𝑖 ∈𝐵 𝑗1 ,..., 𝑗𝑝

}𝛿x̃𝑖

)
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−𝑛ℎ𝑑𝑛E
(
𝑈𝜂,1 (�̄� 𝑗1 ,..., 𝑗𝑝 ) −𝑈𝜂,0 (�̄� 𝑗1 ,..., 𝑗𝑝 )

)}2

,

where �̄� 𝑗1 ,..., 𝑗𝑝 =𝐶1, 𝑗1 × · · · ×𝐶𝑝, 𝑗𝑝 and, for each 𝑎 ∈ {0,1}, we can therefore write

�̄�𝑛, 𝑗1 ,..., 𝑗𝑝 ,a

(
𝑛∑︁
𝑖=1

1{
𝛿x̃𝑖 ∈𝐵 𝑗1 ,..., 𝑗𝑝

}𝛿x̃𝑖

)

=

∫
�̄� 𝑗1 ,..., 𝑗𝑝

������ 𝑛∑︁
𝑖=1


𝑝∏
𝑙=1

𝐾𝑙

(
x𝑙 − x𝑖,𝑙
ℎ𝑛

)
− 𝑎

𝑝∑︁
𝑙=1

𝐾𝑙

(
x𝑙 − x𝑖,𝑙
ℎ𝑛

) ∏
𝑗≠𝑖

E𝐾 𝑗

(
x 𝑗 −X 𝑗

ℎ𝑛

)
× 1{

𝛿x̃𝑖 ∈𝐵 𝑗1 ,..., 𝑗𝑝

} + 𝑛(𝑝𝑎 − 1)
𝑝∏
𝑙=1

E𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

)����� 𝑑x̃,

were we recall x̃𝑖 = (𝑥⊤
𝑖,1, . . . , 𝑥

⊤
𝑖, 𝑝

)⊤ ∈ R𝑑1 × · · · ×R𝑑𝑝 . Now, 𝐻𝑛, 𝑗1 ,..., 𝑗𝑝 when considered as a function
on (R𝑑1 × · · · ×R𝑑𝑝 )𝑛 can be shown to be Borel measurable, which in this setup is equivalent to be D-
measurable. We now get from Lemma 2.1 of Giné, Mason and Zaitsev (2003), for each ( 𝑗1, . . . , 𝑗𝑝) ∈
𝐽𝑘1 ,...,𝑘𝑝 ,

E𝐻𝑛, 𝑗1 ,..., 𝑗𝑝

(
𝑛∑︁
𝑖=1

1{
𝛿X̃𝑖

∈𝐵 𝑗1 ,..., 𝑗𝑝

}𝛿X̃𝑖

)
≤ 2E𝐻𝑛, 𝑗1 ,..., 𝑗𝑝

(
𝜂∑︁
𝑖=1

1{
𝛿X̃𝑖

∈𝐵 𝑗1 ,..., 𝑗𝑝

}𝛿x̃𝑖

)
,

with 𝜂 is a Poisson random variable with mean 𝑛, independent of X̃, X̃1, X̃2 . . . Therefore, by assump-
tion (A1), for each ( 𝑗1, . . . , 𝑗𝑝) ∈ 𝐽𝑘1 ,...,𝑘𝑝 , we have

𝑛E

[{
𝑈𝑛,1 (�̄� 𝑗1 ,..., 𝑗𝑝 ) −𝑈𝑛,0 (�̄� 𝑗1 ,..., 𝑗𝑝 ) − E

(
𝑈𝜂,1 (�̄� 𝑗1 ,..., 𝑗𝑝 ) −𝑈𝜂,0 (�̄� 𝑗1 ,..., 𝑗𝑝 )

)}2
]

≤ 2𝑛Var
(
𝑈𝜂,1 (�̄� 𝑗1 ,..., 𝑗𝑝 ) −𝑈𝜂,0 (�̄� 𝑗1 ,..., 𝑗𝑝 )

)
.

Using Lemma B.6 with �̄� = �̄� 𝑗1 ,..., 𝑗𝑝 , as 𝑛→∞, we get

𝑛Var
(
𝑈𝜂,1 (�̄� 𝑗1 ,..., 𝑗𝑝 ) −𝑈𝜂,0 (�̄� 𝑗1 ,..., 𝑗𝑝 )

)
→ 0

and thus, for each ( 𝑗1, . . . , 𝑗𝑝) ∈ 𝐽𝑘1 ,...,𝑘𝑝 ,

√
𝑛
[
𝑈𝑛,1 (�̄� 𝑗1 ,..., 𝑗𝑝 ) −𝑈𝑛,0 (�̄� 𝑗1 ,..., 𝑗𝑝 ) − E

(
𝑈𝜂,1 (�̄� 𝑗1 ,..., 𝑗𝑝 ) −𝑈𝜂,0 (�̄� 𝑗1 ,..., 𝑗𝑝 )

) ] P→ 0

which, when coupled with (B.17), (B.18) and, for each 𝑙 = 1, . . . , 𝑝, 𝐶𝑙,1, . . . ,𝐶𝑙,𝑘𝑙 being a partition of
𝐶𝑙 , completes the proof of Lemma B.7. ■

Suppose that, for each 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies Lemma B.1 with 𝑔(·) = 𝑓𝑙 (·) and K(·) =K𝑙 (·). For all
0 < 𝜀 < 1 and each 𝑙 = 1, . . . , 𝑝, let 𝑀𝑙 , 𝜈𝑙 and 𝜇𝑙 be the numbers from (B.2), namely

𝐶𝑙 ⊂ [−𝑀𝑙 + 𝜈𝑙 , 𝑀𝑙 − 𝜈𝑙]𝑑𝑙 , 0 < 𝜇𝑙 =
∫
R𝑑𝑙 \[−𝑀𝑙 ,𝑀𝑙 ]𝑑𝑙

𝑓𝑙 (u𝑙) 𝑑u𝑙 < 1
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and ∫
𝐶𝑙

𝑓𝑙 (u𝑙) 𝑑u𝑙 > 1 − 𝜀.

Assume that 𝑛 is large enough such that ℎ𝑛 ≤ min(𝜈1, . . . , 𝜈𝑝 , 𝑀1/2, . . . , 𝑀𝑝/2). Define, for 𝑙 =
1, . . . , 𝑝, 𝑚𝑛,𝑙 = ⌊𝑀𝑙/ℎ𝑛⌋, where ⌊𝑢⌋ denotes the integer part, i.e., ⌊𝑢⌋ ≤ 𝑢 < ⌊𝑢⌋ + 1, and ℎ𝑛,𝑙 =

𝑀𝑙/𝑚𝑛,𝑙 . For 𝑙 = 1, . . . , 𝑝, we have 𝑀𝑙/(2ℎ𝑛) ≤ 𝑚𝑛,𝑙 ≤ 𝑀𝑙/ℎ𝑛 and thus ℎ𝑛 ≤ ℎ𝑛,𝑙 ≤ 2ℎ𝑛. Next, con-
sider the regular grid given by

𝐴i = [𝑥1,𝑖1 , 𝑥1,𝑖1+1] × · · · × [𝑥1,𝑖𝑑1
, 𝑥1,𝑖𝑑1+1]

× · · · × [𝑥𝑝,𝑖𝑑−𝑑𝑝+1 , 𝑥𝑝,𝑖𝑑−𝑑𝑝+1+1] × · · · × [𝑥𝑝,𝑖𝑑 , 𝑥𝑝,𝑖𝑑+1],

where i = (𝑖1, . . . , 𝑖𝑑) ∈ Z𝑑 and, for all 𝑖 ∈ Z, 𝑥𝑙,𝑖 = 𝑖ℎ𝑛,𝑙 . Define

𝑅i = 𝐴i ∩M,

where M = [−𝑀1, 𝑀1]𝑑1 × · · · × [−𝑀𝑝 , 𝑀𝑝]𝑑𝑝 . With 𝑙𝑛 = {i : 𝑅i ≠ ∅}, we see that {𝑅i : i ∈ 𝑙𝑛 ⊂ Z𝑑}
constitutes a partition of M such that, for each i ∈ 𝑙𝑛,

𝜆(𝑅i) ≤ (2ℎ𝑛)𝑑 and |𝑙𝑛 | ≤ 2𝑑ℎ−𝑑𝑛

𝑝∏
𝑙=1

𝑀
𝑑𝑙
𝑙
. (B.37)

Set, for any i ∈ 𝑙𝑛,

Xi,𝑛 :=

∫
𝑅i∩�̄�

Δ𝑛 (x̃) 𝑑x̃√︃
𝑛Var

(
𝑈𝜂,0 (�̄�)

) ,
where

Δ𝑛 (x̃) :=
√
𝑛
[
|Γ𝜂,0 (x̃) | − E|Γ𝜂,0 (x̃) |

]
.

Lemma B.8. Whenever ℎ𝑛 → 0, 𝑛ℎ𝑑𝑛 →∞ and, for each 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies (B.2)-(B.3)-(B.4) of
Lemma B.1 with 𝑔(·) = 𝑓𝑙 (·) and K(·) =K𝑙 (·), there exists a constant 𝛾0 such that, uniformly in i and
for all 𝑛 sufficiently large,

E|Xi,𝑛 |3 ≤ 𝛾0ℎ
3𝑑/2
𝑛 . (B.38)

Proof of Lemma B.8. Observe that(
𝑛Var

(
𝑈𝜂,0 (�̄�)

) )3/2
E|Xi,𝑛 |3 ≤

∫
𝐼i,𝑛

E
��△𝑛 (x̃)△𝑛 (x̃1)△𝑛 (x̃2)

�� 𝑑x̃ 𝑑x̃1 𝑑x̃2,

where 𝐼i,𝑛 = (𝑅i ∩ �̄�)3. It is obvious to see that

E
��△𝑛 (x̃)△𝑛 (x̃1)△𝑛 (x̃2)

�� ≤ E [��△𝑛 (x̃)
�� + ��△𝑛 (x̃1)

�� + ��△𝑛 (x̃2)
��]3
,
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which by 𝑐𝑟 -inequality is, for some constant 𝛾1 > 0, less than or equal to

𝛾1𝑛
3/2

[
E
�� 𝑓𝜂 (x̃) − E 𝑓𝑛 (x̃)��3 + E�� 𝑓𝜂 (x̃1) − E 𝑓𝑛 (x̃1)

��3 + E�� 𝑓𝜂 (x̃2) − E 𝑓𝑛 (x̃2)
��3] .

By Lemma 2.3 of Giné, Mason and Zaitsev (2003), we have, for any x̃ ∈ �̄�,

𝑛3/2E
�� 𝑓𝜂 (x̃) − E 𝑓𝑛 (x̃)��3

≤
(

45
log 3

)3

max

{[
1
ℎ2𝑑
𝑛

𝑝∏
𝑙=1

E𝐾2
𝑙

(
x𝑙 −X𝑙
ℎ𝑛

)]3/2

,
1

√
𝑛ℎ3𝑑

𝑛

𝑝∏
𝑙=1

E𝐾3
𝑙

(
x𝑙 −X𝑙
ℎ𝑛

)}
,

which by (B.9) is, for 𝑛 large enough and uniformly in x̃ ∈ �̄�, is bounded by

𝛾2

[
1

ℎ
3𝑑/2
𝑛

+ 1
√
𝑛ℎ2𝑑

𝑛

]
,

where 𝛾2 is some positive constant. Thus, uniformly in x̃ ∈ �̄� and for 𝑛 large enough, we have

E
��△𝑛 (x̃)△𝑛 (x̃1)△𝑛 (x̃2)

�� ≤ 3𝛾1𝛾2

[
1

ℎ
3𝑑/2
𝑛

+ 1
√
𝑛ℎ2𝑑

𝑛

]
.

This implies that, for some constant 𝛾3 > 0, uniformly in i and for all large enough 𝑛,∫
𝐼i,𝑛

E
��△𝑛 (x̃)△𝑛 (x̃1)△𝑛 (x̃2)

�� 𝑑x̃ 𝑑x̃1 𝑑x̃2 ≤ 3(23𝑑)𝛾1𝛾2

[
ℎ

3𝑑/2
𝑛 + ℎ𝑑𝑛√

𝑛

]
≤ 𝛾3ℎ

3𝑑/2
𝑛 .

Now, (B.38) follows from (B.36). ■

Recall that 𝜂 is a Poisson random variable with mean 𝑛, independent of X̃, X̃1, X̃2 . . .. Define

𝑆𝑛 =
∑︁
i∈𝑙𝑛

Xi,𝑛,

U𝑛 =
1
√
𝑛

[
𝜂∑︁
𝑖=1

1{X̃𝑖∈M} − 𝑛P
(
X̃ ∈M

) ]
and

V𝑛 =
1
√
𝑛

[
𝜂∑︁
𝑖=1

1{X̃𝑖∉M} − 𝑛P
(
X̃ ∉M

) ]
.

It is obvious to see that the random vector (𝑆𝑛,U𝑛) and the random variable V𝑛 are independent.
Observe also that

Var(𝑆𝑛) = 1 and Var(U𝑛) =
𝑝∏
𝑙=1

(1 − u𝑙). (B.39)
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Lemma B.9. Whenever ℎ𝑛 → 0, 𝑛ℎ𝑑𝑛 →∞ and, for each 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies (B.3) and (B.4) of
Lemma B.1 with 𝑔(·) = 𝑓𝑙 (·) and K(·) =K𝑙 (·), there exists a constant 𝜏 such that, for all 𝑛 sufficiently
large,

|Cov(𝑆𝑛,U𝑛) | ≤
𝜏

√
𝑛ℎ𝑑𝑛

. (B.40)

Proof of Lemma B.9. Observe that(
𝑛Var

(
𝑈𝜂,0 (�̄�)

) )1/2
|Cov(𝑆𝑛,U𝑛) | =

����Cov
(√
𝑛

∫
�̄�

|Γ0,𝜂 (x̃) | 𝑑x̃,U𝑛

)���� .
In order to get (B.40), it is sufficient, by using (B.36), to prove that there exists a constant 𝜏1 such that,
for all 𝑛 sufficiently large, ����Cov

(√
𝑛

∫
�̄�

|Γ𝜂,0 (x̃) | 𝑑x̃,U𝑛

)���� ≤ 𝜏1√
𝑛ℎ𝑑𝑛

. (B.41)

Now, for any x̃ ∈ �̄�,

©«
√
𝑛Γ𝜂,0 (x̃)√︁
𝑘𝑛,0 (x̃)

,
U𝑛√︃
P
(
x̃ ∈M

) ª®®¬
D
=

1
√
𝑛

𝑛∑︁
𝑖=1

(
Y (𝑖)

0,𝑛 (x̃),U
(𝑖) ) ,

where
(
Y (𝑖)

0,𝑛 (x̃),U
(𝑖) )

1≤𝑖≤𝑛 are independent and
(
Y0,𝑛 (x̃),U

)
- identically distributed random vectors

with

Y0,𝑛 (x̃) =
1

ℎ𝑑𝑛
√︁
𝑘𝑛,0 (x̃)


∑︁
𝑗≤𝜂1

𝑝∏
𝑙=1

𝐾𝑙

(x𝑙 −X𝑙𝑗
ℎ𝑛

)
−

𝑝∏
𝑙=1

E𝐾𝑙

(
x𝑙 −X𝑙
ℎ𝑛

)
and

U =


∑︁
𝑗≤𝜂1

1{x̃𝑖∈M} − P
(
x̃ ∈M

)
/√︃
P
(
x̃ ∈M

)
.

Here, as above, 𝜂1 denotes a Poisson random variable with mean 1, independent of X̃1, X̃2 . . .. Notice
that EY0,𝑛 (x̃) = EU = 0, Var(Y0,𝑛 (x̃)) = Var(U) = 1 and

���Cov
(
Y0,𝑛 (x̃),U

) ��� =
�����������
E

[
𝑝∏
𝑙=1

𝐾𝑙

(x𝑙 −X𝑙
ℎ𝑛

)
1{x̃∈M}

]
ℎ𝑑𝑛

√︁
𝑘𝑛,0 (x̃)

√︃
P
(
x̃ ∈M

)
�����������

≤

𝑝∏
𝑙=1

E𝐾𝑙

(x𝑙 −X𝑙
ℎ𝑛

)
ℎ𝑑𝑛

√︁
𝑘𝑛,0 (x̃)

√︃
P
(
x̃ ∈M

) .
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Therefore, by (B.16) and (B.9), this last term is, for all large enough 𝑛 uniformly in x̃ ∈ �̄� for some

real number 𝜏2 > 0, less than or equal to 𝜏2

√︃
ℎ𝑑𝑛 , which, in turn, is less than or equal to 𝜀 for all large

enough 𝑛 and any 0 < 𝜀 < 1. This fact, in combination with (B.19), gives, by using (C.3) and Lemma
2.3 of Giné, Mason and Zaitsev (2003), that, for some constant 𝜏3 > 0, uniformly in x̃ ∈ �̄�,���Cov

(√
𝑛
�� 𝑓𝜂 (x̃) − E 𝑓𝑛 (x̃)��,U𝑛

) ���
=

�����������
Cov

©«

����� 𝑛∑︁
𝑖=1

Y (𝑖)
0,𝑛 (x̃)

�����
√
𝑛

,

𝑛∑︁
𝑖=1

U (𝑖)

√
𝑛

ª®®®®®®¬

�����������
√︃
𝑘𝑛,0 (x̃)P

(
X̃ ∈M

)

≤ 𝜏3√︃
𝑛ℎ𝑑𝑛

√︁
𝑘𝑛,0 (x̃),

which, when combined with (B.16) and 𝜆(�̄�) <∞, gives (B.41). This finishes the proof of Lemma B.9.
■

Lemma B.10. Suppose that, for each 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies (B.3) and (B.4) of Lemma B.1 with
𝑔(·) = 𝑓𝑙 (·) and K(·) =K𝑙 (·). If ℎ𝑛 → 0 and

√
𝑛ℎ𝑑𝑛 →∞, then

(𝑆𝑛,U𝑛)
D→

(
𝑍1,

𝑝∏
𝑙=1

√︁
(1 − u𝑙)𝑍2

)
(B.42)

as 𝑛→∞, where 𝑍1 and 𝑍2 are independent standard normal random variables.

Proof of Lemma B.10. We will show that, for any 𝜉1 and 𝜉2, as 𝑛→∞,

𝜉1𝑆𝑛 + 𝜉2U𝑛
D→ 𝜉1𝑍1 + 𝜉2

𝑝∏
𝑙=1

√︁
(1 − u𝑙)𝑍2.

For each i ∈ 𝑙𝑛, set

Ui,𝑛 :=
1
√
𝑛


𝜂∑︁
𝑗=1

1{X̃𝑖∈𝑅i} − 𝑛P
(
X̃ ∈ 𝑅i

)
and

Zi,𝑛 := 𝜉1Xi,𝑛 + 𝜉2Ui,𝑛.

By 𝑐𝑟 -inequality, for all 𝑟 ≥ 1, we have

E|Z𝑖,𝑛 |𝑟 ≤ 2𝑟−1
(
|𝜉1 |𝑟E|X𝑖,𝑛 |𝑟 + |𝜉2 |𝑟E|U𝑖,𝑛 |𝑟

)
. (B.43)
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Now, by Hölder inequality, for all 2 < 𝑟 < 3 and all i ∈ 𝑙𝑛,

E|Xi,𝑛 |𝑟 ≤
(
E|Xi,𝑛 |3

)𝑟/3
,

which by (B.37) and (B.38) implies that, for all 2 < 𝑟 < 3∑︁
i∈𝑙𝑛
E|Xi,𝑛 |𝑟 ≤ 2𝑑𝛾𝑟/3

0 ℎ
𝑑 (𝑟−2)/2
𝑛

𝑝∏
𝑙=1

𝑀
𝑑𝑙
𝑙

→ 0. (B.44)

Set now

𝑝i,𝑛 = P
(
X̃ ∈ 𝑅i

)
.

By Lemma 2.3 in Giné, Mason and Zaitsev (2003), we can find a constant 𝜁 > 0 such that∑︁
i∈𝑙𝑛
E|Ui,𝑛 |𝑟 ≤ 𝜁𝑛−𝑟/2

∑︁
i∈𝑙𝑛

(
(𝑛𝑝i,𝑛)𝑟/2 + 𝑛𝑝i,𝑛

)
≤ 𝜁 max

i∈𝑙𝑛

(
(𝑝i,𝑛) (𝑟−2)/2 + 𝑛(2−𝑟 )/2

)
→ 0. (B.45)

Combining (B.43)-(B.45), we obtain, for all 2 < 𝑟 < 3,

lim
𝑛→∞

∑︁
i∈𝑙𝑛
E|Zi,𝑛 |𝑟 = 0.

Moreover, note that {Zi,𝑛 : i ∈ 𝑙𝑛} is a triangular array of mean zero one-dependent random fields.
Consequently, by the statements (B.39) and (B.40), it follows that

Var ©«
∑︁
i∈𝑙𝑛

Zi,𝑛
ª®¬ = Var

(
𝜉1𝑆𝑛 + 𝜉2U𝑛

)
→ 𝜉2

1 + 𝜉
2
2

𝑝∏
𝑙=1

(1 − u𝑙) as𝑛→∞.

Thus, by Theorem 1 of Shergin (1990), we can infer that∑︁
i∈𝑙𝑛

Zi,𝑛
D→ 𝜉1𝑍1 + 𝜉2

𝑝∏
𝑙=1

√︁
(1 − u𝑙)𝑍2 as𝑛→∞.

Since ∑︁
i∈𝑙𝑛

Zi,𝑛 = 𝜉1𝑆𝑛 + 𝜉2U𝑛,

the statement (B.42) is proved by the Cramér-Wold device, for instance, see, Billingsley (1999). ■

Lemma B.11. Suppose that, for each 𝑙 = 1, . . . , 𝑝, 𝐶𝑙 satisfies (B.3) and (B.4) of Lemma B.1 with
𝑔(·) = 𝑓𝑙 (·) and K(·) =K𝑙 (·). If ℎ𝑛 → 0 and 𝑛ℎ3𝑑

𝑛 →∞, then
√
𝑛
(
𝑉𝑛 (�̄�) − E𝑉𝑛 (�̄�)

)√︃
𝑛Var

(
𝑈𝜂,0 (�̄�)

) D→ 𝑍 as 𝑛→∞, (B.46)
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where 𝑍 is a standard normal random variable.

Proof of Lemma B.11. Note that

𝑆𝑛 =

√
𝑛
(
𝑈𝜂,0 (�̄�) − E𝑈𝜂,0 (�̄�)

)√︃
𝑛Var

(
𝑈𝜂,0 (�̄�)

) .

Indeed, conditioned on 𝜂 = 𝑛, we have

𝑆𝑛 =

√
𝑛
(
𝑈𝑛,0 (�̄�) − E𝑈𝜂,0 (�̄�)

)√︃
𝑛Var

(
𝑈𝜂,0 (�̄�)

) .

By Lemma 2.4 of Giné, Mason and Zaitsev (2003) refer also to Beirlant and Mason (1995) and Lemma
B.10, we conclude that

√
𝑛
(
𝑈𝑛,0 (�̄�) − E𝑈𝜂,0 (�̄�)

)√︃
𝑛Var

(
𝑈𝜂,0 (�̄�)

) D→ 𝑍.

Therefore, by (B.36) and Lemma B.4, we have
√
𝑛
(
𝑈𝑛,0 (�̄�) − E𝑈𝑛,0 (�̄�)

)√︃
𝑛Var

(
𝑈𝜂,0 (�̄�)

) D→ 𝑍.

Assertion (B.46) now follows from Lemmas B.3 and B.7 in combination with (B.36). Hence the proof
is complete. ■

Lemma B.12. Assume that (A1) holds and, for each 𝑙 = 1, . . . , 𝑝, there exists 𝛿 > 0 such that 𝑓𝑙 (·) is
bounded on C 𝛿

𝑙
. If ℎ𝑛 → 0 and 𝑛ℎ3𝑑

𝑛 →∞, then we have

lim
𝑛→∞

E

∫
C̃

����√︃L̂𝑛 (x̃) −
√︁
L𝑛,1 (x̃)

���� 𝑑x̃ = 0. (B.47)

Proof of Lemma B.12. Notice that

L𝑛,1 (x̃) =
∑︁

{𝐼⊊𝐼𝑝 , |𝐼𝑝\𝐼 | ≥2}

∏
𝑙∈𝐼

(
E 𝑓𝑛,𝑙 (x𝑙)

)2
∏

𝑗∈𝐼𝑝\𝐼

[
𝑣𝑛, 𝑗 (x 𝑗 ) −

(
E 𝑓𝑛, 𝑗 (x 𝑗 )

)2]
and

L̂𝑛 (x̃) =
∑︁

{𝐼⊊𝐼𝑝 , |𝐼𝑝\𝐼 | ≥2}

∏
𝑙∈𝐼

𝑔𝑛,𝑙 (x𝑙)
∏

𝑗∈𝐼𝑝\𝐼

[
�̂�𝑛, 𝑗 (x 𝑗 ) − 𝑔𝑛, 𝑗 (x 𝑗 )

]
.

Set, for each 𝐼 ⊊ 𝐼𝑝 ,

𝚯𝑛,1,𝐼 (x̃) :=

������ ∏
𝑗∈𝐼𝑝\𝐼

[
𝑣𝑛, 𝑗 (x 𝑗 ) −

(
E 𝑓𝑛, 𝑗 (x 𝑗 )

)2] − ∏
𝑗∈𝐼𝑝\𝐼

[
�̂�𝑛, 𝑗 (x 𝑗 ) − 𝑔𝑛, 𝑗 (x 𝑗 )

] ������
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and

𝚯𝑛,2,𝐼 (x̃) :=

�����∏
𝑙∈𝐼

𝑔𝑛,𝑙 (x𝑙) −
∏
𝑙∈𝐼

(
E 𝑓𝑛,𝑙 (x𝑙)

)2

����� .
It is obvious to see that��L𝑛,1 (x̃) − L̂𝑛 (x̃)

�� ≤ ∑︁
{𝐼⊊𝐼𝑝 , |𝐼𝑝\𝐼 | ≥2}

∏
𝑙∈𝐼

𝑔𝑛,𝑙 (x𝑙)𝚯𝑛,1,𝐼 (x̃)

+
∑︁

{𝐼⊊𝐼𝑝 , |𝐼𝑝\𝐼 | ≥2}

∏
𝑗∈𝐼𝑝\𝐼

𝑣𝑛, 𝑗 (x 𝑗 )𝚯𝑛,2,𝐼 (x̃)

=: Ψ𝑛,1 (x̃) +Ψ𝑛,2 (x̃). (B.48)

For each 𝐼 ⊊ 𝐼𝑝 , observe that

E𝚯𝑛,1,𝐼 (x̃) ≤
∑︁

𝐴⊊𝐼𝑝\𝐼

∏
𝑙∈𝐴

𝑣𝑛,𝑙 (x𝑙)
∏

𝑗∈𝐼𝑝\(𝐼∪𝐴)

{
E|�̂�𝑛, 𝑗 (x 𝑗 ) − 𝑣𝑛, 𝑗 (x 𝑗 ) | + E

��𝑔𝑛, 𝑗 (x 𝑗 ) −
(
E 𝑓𝑛, 𝑗 (x 𝑗 )

)2��}
(B.49)

and

E𝚯𝑛,2,𝐼 (x̃) ≤
∑︁
𝐴⊊𝐼

∏
𝑙∈𝐴

(
E 𝑓𝑛,𝑙 (x𝑙)

)2
∏
𝑗∈𝐼\𝐴

E
���𝑔𝑛, 𝑗 (x 𝑗 ) −

(
E 𝑓𝑛,𝑙 (x 𝑗 )

)2
��� . (B.50)

Now, for each 𝑙 ∈ 𝐼𝑝 , we have

E
���̂�𝑛,𝑙 (x𝑙) − 𝑣𝑛,𝑙 (x𝑙)�� ≤ (

E
���̂�𝑛,𝑙 (x𝑙) − 𝑣𝑛,𝑙 (x𝑙)��2)1/2

≤ 1
√
𝑛ℎ

2𝑑𝑙
𝑛

(∫
R𝑑𝑙

𝐾4
𝑙

(
x𝑙 − u𝑙

ℎ𝑛

)
𝑓𝑙 (u𝑙) 𝑑u𝑙

)1/2

.

Since, for each 𝑙 ∈ 𝐼𝑝 , 𝐾𝑙 (·) is bounded on R𝑑𝑙 and 𝑓𝑙 (·) is bounded on Cℎ𝑛/2
𝑙

for 𝑛 large enough, we
obtain

sup
𝑥𝑙∈C𝑙

E
���̂�𝑛,𝑙 (x𝑙) − 𝑣𝑛,𝑙 (x𝑙)�� =𝑂 ©«

1√︃
𝑛ℎ

3𝑑𝑙
𝑛

ª®®¬ . (B.51)

Observe that

E

����𝑔𝑛,𝑙 (x𝑙) − (
E 𝑓𝑛,𝑙 (x𝑙)

)2
����

≤ 1

𝑛(𝑛 − 1)ℎ2𝑑𝑙
𝑛

E

������ 𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝐾𝑙

(
x𝑙 −X𝑙𝑖
ℎ𝑛

) [
𝐾𝑙

(
x𝑙 −X𝑙𝑗
ℎ𝑛

)
− E𝐾𝑙

(
x𝑙 −X𝑙𝑗
ℎ𝑛

)]

+ 1

𝑛(𝑛 − 1)ℎ2𝑑𝑙
𝑛

E

����� 𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

E𝐾𝑙

(
x𝑙 −X𝑙𝑗
ℎ𝑛

) [
𝐾𝑙

(
x𝑙 −X𝑙𝑖
ℎ𝑛

)
− E𝐾𝑙

(
x𝑙 −X𝑙𝑖
ℎ𝑛

)]������ .
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For each 𝑙 ∈ 𝐼𝑝 , since 𝐾𝑙 (·) is bounded on R𝑑𝑙 , it follows that, for some constant ℌ0 > 0, we have

E
���𝑔𝑛,𝑙 (x𝑙) − (

E 𝑓𝑛,𝑙 (x𝑙)
)2

��� ≤ ℌ0

𝑛ℎ
2𝑑𝑙
𝑛

E

����� 𝑛∑︁
𝑖=1

[
𝐾𝑙

(
x𝑙 −X𝑙𝑖
ℎ𝑛

)
− E𝐾𝑙

(
x𝑙 −X𝑙𝑖
ℎ𝑛

)]�����
≤ ℌ0

√
𝑛ℎ

2𝑑𝑙
𝑛

(∫
R𝑑𝑙

𝐾2
𝑙

(
x𝑙 − u𝑙

ℎ𝑛

)
𝑓𝑙 (u𝑙) 𝑑u𝑙

)1/2

.

Since, for each 𝑙 ∈ 𝐼𝑝 , 𝑓𝑙 (·) is bounded on Cℎ𝑛/2
𝑙

for 𝑛 large enough, we have

sup
x𝑙∈C𝑙

E
��𝑔𝑛,𝑙 (x𝑙) − (

E 𝑓𝑛,𝑙 (x𝑙)
)2�� =𝑂 ©«

1√︃
𝑛ℎ

3𝑑𝑙
𝑛

ª®®¬ . (B.52)

By the same arguments, we get

sup
x𝑙∈C𝑙

𝑣𝑛,𝑙 (x𝑙) ≤
ℌ1

ℎ
𝑑𝑙
𝑛

, sup
x𝑙∈C𝑙

E𝑔𝑛,𝑙 (x𝑙) ≤ ℌ1 and sup
x𝑙∈C𝑙

E 𝑓𝑛,𝑙 (x𝑙) ≤ ℌ2, (B.53)

for some positive constants ℌ1,ℌ2 and ℌ3. Therefore, by (B.49)-(B.53), we infer that

sup
x̃∈ C̃
EΨ𝑛,1 (x̃) =𝑂

©«
1√︃
𝑛ℎ3𝑑

𝑛

ª®®¬ . (B.54)

Similarly, by (B.50) in combination with (B.52) and (B.53), we obtain

sup
x̃∈ C̃
EΨ𝑛,2 (x̃) =𝑂

©«
1√︃
𝑛ℎ3𝑑

𝑛

ª®®¬ . (B.55)

By using (B.48), (B.54) and (B.55) in combination with the fact that C̃ is bounded, we get

E

∫
C̃

����√︁L𝑛,1 (x̃) −
√︃
L̂𝑛 (x̃)

���� 𝑑x̃ ≤
∫
C̄

√︃
E|L𝑛,1 (x̃) − L̂𝑛 (x̃) |𝑑x̃

= 𝑂
©«

1√︃
𝑛ℎ3𝑑

𝑛

ª®®¬ .
We so obtain (B.47), as sought. ■

Appendix C

For completeness, we recall the following fact (Fact 6.1 of Giné, Mason and Zaitsev (2003)), which
follows from Theorem 1 of Sweeting (1977) and is related to the classical Berry-Esseen theorem.
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Theorem C.1. Let (𝜔, 𝜁), (𝜔1, 𝜁1) , (𝜔2, 𝜁2) , . . . be a sequence of i.i.d. random vectors such that each
component has variance 1, mean 0, and finite absolute moments of the third order. Further, let

(
�̄�1, �̄�2

)
be bivariate normal with mean vector 0,Var

(
�̄�1

)
= Var

(
�̄�2

)
= 1, and Cov

(
�̄�1, �̄�2

)
= Cov(𝜔, 𝜁) = 𝜌.

Then there exist universal positive constants 𝐴1, 𝐴2 and 𝐴3 such that����E ����∑𝑛
𝑖=1 𝜁𝑖√
𝑛

���� − E|�̄�1 |
���� ≤ 𝐴1√

𝑛
E|𝜁 |3, (C.1)

and, whenever 𝜌2 < 1,����E ����∑𝑛
𝑖=1𝜔𝑖√
𝑛

·
∑𝑛

𝑖=1 𝜁𝑖√
𝑛

���� − E|�̄�1 �̄�2 |
���� ≤ 𝐴2(

1 − 𝜌2
)3/2

1
√
𝑛

(
E|𝜔 |3 + E|𝜁 |3

)
, (C.2)

and ����E [∑𝑛
𝑖=1𝜔𝑖√
𝑛

����∑𝑛
𝑖=1 𝜁𝑖√
𝑛

����] ���� ≤ 𝐴3(
1 − 𝜌2

)3/2

1
√
𝑛

(
E|𝜔 |3 + E|𝜁 |3

)
. (C.3)
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