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SCHRÖDINGER OPERATORS WITH δ-POTENTIALS SUPPORTED ON
UNBOUNDED LIPSCHITZ HYPERSURFACES

JUSSI BEHRNDT, VLADIMIR LOTOREICHIK, AND PETER SCHLOSSER

Dedicated to the memory of our friend and colleague Sergey Naboko

ABSTRACT. In this note we consider the self-adjoint Schrödinger oper-
ator Aα in L

2(Rd), d ≥ 2, with a δ-potential supported on a Lipschitz
hypersurface Σ ⊆ R

d of strength α ∈ L
p(Σ) + L

∞(Σ). We show the
uniqueness of the ground state and, under some additional conditions
on the coefficient α and the hypersurface Σ, we determine the essential
spectrum of Aα. In the special case that Σ is a hyperplane we obtain a
Birman-Schwinger principle with a relativistic Schrödinger operator as
Birman-Schwinger operator. As an application we prove an optimization
result for the bottom of the spectrum of Aα.

1. Introduction

In this paper we are interested in spectral properties of a class of self-adjoint
operators Aα with singular δ-potentials in the Hilbert space L2(Rd), d ≥ 2, which
correspond to the formal differential expression

(1.1) −∆− α δ(x− Σ),

where Σ ⊂ R
d is the graph of a Lipschitz function ξ : Rd−1 → R and α : Σ → R

is the strength of the δ-potential; cf. [8, 13], the monograph [22] and the refer-
ences therein. Note that the unbounded Lipschitz surface Σ splits R

d into two
unbounded disjoint parts and that the special choice ξ = 0 corresponds to the sit-
uation where Σ is the hyperplane in R

d. Assuming α ∈ Lp(Σ) + L∞(Σ) for some
1 < p < ∞ in d = 2 and for d − 1 ≤ p < ∞ in d ≥ 3 dimensions we define Aα

as the semibounded self-adjoint operator in L2(Rd) associated with the densely
defined, symmetric, semibounded, and closed form

aα[u, v] := (∇u,∇v)L2(Rd;Cd) −
∫

Σ

α τDu τDv dx,

dom aα := H1(Rd),

(1.2)

where τD : H1(Rd) → H1/2(Σ) is the Dirichlet trace operator. Let us denote the
bottom of the spectrum of Aα by

(1.3) λ1(α) := inf σ(Aα).
1

http://arxiv.org/abs/2105.05579v2


2 J. BEHRNDT, V. LOTOREICHIK, AND P. SCHLOSSER

The first issue we discuss in this paper is the essential spectrum of the self-
adjoint operator Aα. In the present situation one always has the inclusion [0,∞) ⊂
σess(Aα) and in Theorem 2.3 we prove that if Σ is a local deformation of the hyper-
plane R

d−1 × {0} and α is close to a constant α0 outside of sets of finite measure,
then

σess(Aα) =

{
[−α2

0

4 ,∞), if α0 ≥ 0,

[0,∞), if α0 ≤ 0;

see also [39] for related results. Next we investigate the uniqueness of the ground
state of Aα, which is a typical property for Schrödinger operators −∆ + V with
regular potentials. More precisely, if λ1(α) in (1.3) is a discrete eigenvalue then
it will be shown in Section 2.3 that λ1(α) is simple and the corresponding eigen-
function can be chosen strictly positive on R

d \ Σ; this observation is based on a
standard argument using Harnack’s inequality.

In Section 3 we focus on the special case that Σ is the hyperplane and we ob-
tain a Birman-Schwinger principle, where the Birman-Schwinger operator is a
relativistic Schrödinger operator in L2(Rd−1). The operators appearing in this
context can also be viewed as (extensions of) the γ-field and Weyl function cor-
responding to a certain quasi boundary triple; cf. [9, Section 8] for more details.
Under the additional assumption that α is close to a constant outside of sets of
finite measure we then provide a more detailed analysis of the spectrum of the
Birman-Schwinger operator and link these spectral properties to those of Aα. As
an interesting application we prove an optimization result for the bottom of the
spectrum of Aα which is formulated in terms of the so-called symmetric decreasing

rearrangement: Consider again a real-valued α ∈ L∞(Rd−1) + Lp(Rd−1) for some
1 < p < ∞ in d = 2 and for d− 1 ≤ p < ∞ in d ≥ 3 dimensions, and assume that
α is close to a constant α0 ∈ R outside of sets of finite measure. Furthermore, let
α1 := α − α0 and (α1)+ = max{α1, 0}, and let (α1)

∗
+ be the symmetric decreasing

rearrangement of (α1)+ defined in (3.23). Then we have the inequality

(1.4) λ1(α0 + (α1)
∗
+) ≤ λ1(α0 + α1).

Our proof of (1.4) relies on the fact that the symmetric decreasing rearrangement
decreases the kinetic energy term corresponding to the relativistic Schrödinger
operator. This property of the kinetic energy can be viewed as an analogue of
the Pólya-Szegő inequality. We note that a different argument for (1.4) based on
Steiner symmetrization was communicated to us; cf. Remark 3.11 for more de-
tails. We wish to mention that eigenvalue optimization is a trademark topic in
spectral theory; see the monographs [30, 31] and the references therein. In partic-
ular, optimization of eigenvalues induced by δ-potentials supported on hypersur-
faces is a topic of growing interest [19, 20, 23, 36]. There are also closely related
works on eigenvalue optimization for δ-potentials supported on sets of higher
co-dimension [7, 21], for the Robin Laplacian [3, 12, 14, 16, 25, 26, 28, 33, 34], for
δ′-interactions [37] and for Dirac operators with surface interactions [2, 4].
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2. The Schrödinger operator with δ-potential supported on a
Lipschitz graph

In this section let d ≥ 2 and

(2.1) Σ :=
{
(x, ξ(x))

∣∣ x ∈ R
d−1

}
⊂ R

d

be the graph of a Lipschitz function ξ : Rd−1 → R. Furthermore, let

(2.2) α ∈ Lp(Σ) + L∞(Σ)

be a real-valued function with 1 < p < ∞ in d = 2 and d − 1 ≤ p < ∞ in
d ≥ 3 dimensions. In this setting we will define the self-adjoint operator Aα

associated to the form (1.2) and study its essential spectrum. In particular, under
some additional flatness assumptions on the support Σ and some decay at infinity
of the coefficient α we explicitly compute σess(Aα). Furthermore, we verify that
the ground state λ1(α) (if it is a discrete eigenvalue) is simple.

2.1. The form aα and the operator Aα. In this subsection we will prove that the
form (1.2), which models a δ-potential of strength α supported on Σ, is well de-
fined and gives rise to a self-adjoint operator Aα in L2(Rd); cf. [13, 24] and [10,
Proposition 3.8]. In the following the Dirichlet trace operator τD in (1.2) is viewed
for 1

2 < s < 3
2 as a bounded operator

(2.3) τD : Hs(Rd) → Hs− 1
2 (Σ);

cf. [38, Proof of Theorem 3.38].

Proposition 2.1. The form aα in (1.2) is densely defined, symmetric, semibounded, and

closed in L2(Rd).

Proof. It is clear, that dom aα = H1(Rd) is dense in L2(Rd). Furthermore, we split
aα into

a0[u, v] := (∇u,∇v)L2(Rd;Cd), with dom a0 := H1(Rd),

a1[u, v] := −
∫

Σ

α τDu τDv dx, with dom a1 := H1(Rd).

Observe that a0 is densely defined, nonnegative, and closed in L2(Rd). Further-
more, since α is real-valued it is clear that a1 is symmetric. The estimate (A.3)
shows that for every ε > 0 there exists some cε ≥ 0, such that

∣∣a1[u, u]
∣∣ ≤ ε2‖τDu‖2

H
1
2 (Σ)

+ c2ε‖τDu‖2L2(Σ), u ∈ H1(Rd).
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Using the boundedness (2.3) of the trace operator, the absolute value of a1[u, u]
can further be estimated by

∣∣a1[u, u]
∣∣ ≤ ε2d21‖u‖2H1(Rd) + c2εd

2
s‖u‖2Hs(Rd), u ∈ H1(Rd),

where d1 and ds are the operator norms (2.3) with s = 1 and some fixed s ∈ (12 , 1),
respectively. Since s < 1, we can use [29, Theorem 3.30] to find a constant c̃ε ≥ 0

with
∣∣a1[u, u]

∣∣ ≤ ε2(d21 + 1)‖u‖2H1(Rd) + c̃2ε‖u‖2L2(Rd), u ∈ H1(Rd).

That is, the form a1 is a0-bounded with form bound 0. The semiboundedness and
closedness of aα = a0 + a1 now follow from [32, Chapter VI, Theorem 1.33]. �

Proposition 2.1 combined with the First Representation Theorem [32, Chap-
ter VI, Theorem 2.1] implies that there is a unique self-adjoint operator Aα in
L2(Rd) representing the form aα in the sense that domAα ⊂ dom aα and

(2.4) (Aαf, g)L2(Rd) = aα[f, g], f ∈ domAα, g ∈ dom aα.

2.2. Essential spectrum of Aα. In this subsection we investigate the essential
spectrum of Aα. The following preparatory lemma shows that in the present sit-
uation the essential spectrum of Aα always covers the nonnegative real axis.

Lemma 2.2. For any α of the form (2.2) we have

(2.5) [0,∞) ⊆ σess(Aα).

Proof. In a similar way as in the proof of [17, Theorem 6.5] one constructs for
λ ∈ (0,∞) an orthonormal sequence (Ψn)n ∈ C

∞
0 (Rd) with support in R

d \ Σ and

‖(−∆− λ)Ψn‖L2(Rd)
n→∞−→ 0.

From suppΨn ⊆ R
d \ Σ we have τDΨn = 0 and hence it follows from (1.2) that

AαΨn = −∆Ψn. This implies

‖(Aα − λ)Ψn‖L2(Rd)
n→∞−→ 0,

so that (Ψn)n is a singular sequence and we conclude λ ∈ σess(Aα). This proves
that (0,∞) ⊆ σess(Aα) and since the essential spectrum is closed we obtain (2.5).

�

For a subclass of hypersurfaces Σ, which are local deformations of a hyper-
plane, and interaction strengths α having a certain decay at infinity, we are able
to determine the essential spectrum explicitly.

Theorem 2.3. If the function ξ : Rd−1 → R in (2.1) is compactly supported and if for

some α0 ∈ R

(2.6) { x ∈ Σ | |α(x) − α0| > ε } has finite measure for every ε > 0,

then the essential spectrum of the corresponding Schrödinger operator Aα is given by

(2.7) σess(Aα) =

{
[−α2

0

4 ,∞), if α0 ≥ 0,

[0,∞), if α0 ≤ 0.
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Proof. Step 1. First, we consider the hyperplane Σ = R
d−1 × {0} ∼= R

d−1 and the
constant potential α(x) = α0. We introduce two auxiliary closed forms

d[φ, ψ] := (∇φ,∇ψ)L2(Rd−1;Cd−1), with dom d := H1(Rd−1),

tα0 [f, g] := (f ′, g′)L2(R) − α0f(0)g(0), with dom tα0
:= H1(R),

with the corresponding self-adjoint operators −∆ and Tα0 in the Hilbert spaces
L2(Rd−1) and L2(R), respectively. The spectra of these operators are explicitly
given by

σ(−∆) = [0,∞) and σ(Tα0) =

{
{−α2

0

4 } ∪ [0,∞), if α0 ≥ 0,

[0,∞), if α0 ≤ 0,

where the proof of the latter one can be found in [1, Theorem 3.1.4]. The Schrödinger
operator Ãα0 with δ-potential supported on a hyperplane of constant strength α0

can be decomposed as

Ãα0 = (−∆)⊗ IR + IRd−1 ⊗ Tα0

with respect to L2(Rd) = L2(Rd−1)⊗ L2(R); here IR and IRd−1 denote the identity
operators in L2(R) and L2(Rd−1), respectively. Hence, it follows from [42, Eq.
(4.44)] that

(2.8) σ(Ãα0) =

{
[−α2

0

4 ,∞), if α0 ≥ 0,

[0,∞), if α0 ≤ 0.

Step 2. Let Aα0 be the Schrödinger operator with δ-potential of constant strength
α0 supported on the hypersurface Σ. Since the Lipschitz mapping ξ is compactly
supported, the surface Σ is a local deformation of the hyperplane R

d−1 × {0} in
the sense that Σ \ B = (Rd−1 × {0}) \ B for a ball B ⊂ R

d of sufficiently large
radius. Hence it follows from (2.8) using [6, Theorem 4.7] that

(2.9) σess(Aα0) = σess(Ãα0) =

{
[−α2

0

4 ,∞), if α0 ≥ 0,

[0,∞), if α0 ≤ 0.

Step 3. With α0 from the decay property (2.6) we define α1 := α−α0, such that
{ x ∈ Σ | |α1(x)| > ε } has finite measure for every ε > 0. The self-adjoint oper-
ators Aα0 and Aα are both semibounded since they correspond to semibounded
forms. Hence, we can fix λ < inf(σ(Aα0 ) ∪ σ(Aα)) and consider the resolvent
difference

(2.10) W := (Aα0 − λ)−1 − (Aα − λ)−1.

Our aim is to show that W is a compact operator in L2(Rd). For this let f, g ∈
L2(Rd) and set

(2.11) u := (Aα0 − λ)−1f and v := (Aα − λ)−1g.
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Using (2.11) and the definition of the operator W in (2.10) we obtain

(Wf, g)L2(Rd) =
(
(Aα0 − λ)−1f, g

)
L2(Rd)

−
(
(Aα − λ)−1f, g

)
L2(Rd)

= (u, g)L2(Rd) − (f, v)L2(Rd)

=
(
u, (Aα − λ)v

)
L2(Rd)

−
(
(Aα0 − λ)u, v

)
L2(Rd)

= (u,Aαv)L2(Rd) − (Aα0u, v)L2(Rd).

(2.12)

We can express the above inner products via the corresponding forms (2.4) and
conclude that (Wf, g)L2(Rd) reduces to the surface integral

(Wf, g)L2(Rd) = −
∫

Σ

α1τDu τDv dx = (T1f,T2g)L2(Σ),

where T1,T2 : L2(Rd) → L2(Σ) are defined by

T1 := |α1|
1
2 τD(Aα0 − λ)−1 and T2 := − sgn(α1)|α1|

1
2 τD(Aα − λ)−1.

As (Aα0 −λ)−1 and (Aα−λ)−1 are bounded operators from L2(Rd) into H1(Rd), it
follows from (2.3) that τD(Aα0 −λ)−1 and τD(Aα −λ)−1 are bounded from L2(Rd)

into H
1
2 (Σ). Consequently, both T1 and T2 are compact as operators from L2(Rd)

into L2(Σ) by Proposition A.3. Thus the operator W = T
∗
2T1 is compact as well

and the stability of the essential spectrum under compact perturbations in resol-
vent sense combined with (2.9) yields the claim. �

2.3. Uniqueness of the ground state. In this subsection we assume that the bot-
tom of the spectrum λ1(α) in (1.3) is a discrete eigenvalue of Aα. The aim is to
prove in Theorem 2.7 that this eigenvalue is simple and the corresponding eigen-
function can be chosen strictly positive on R

d \ Σ.

Lemma 2.4. Let u ∈ H1(Rd) be a real-valued eigenfunction of Aα corresponding to

λ1(α). Then also |u| is an eigenfunction of Aα corresponding to λ1(α).

Proof. From the fact that |∇|u|| = |∇u|, cf. [35, Theorem 6.17], and τD|u| = |τDu|,
we obtain

aα[|u|]
‖|u|‖2

L2(Rd)

=
aα[u]

‖u‖2
L2(Rd)

= λ1(α).

Since λ1(α) is the bottom of the spectrum it can be represented by the min-max
principle [40, Theorem XIII.2] as

λ1(α) = inf
06=v∈H1(Rd)

aα[v]

‖v‖2
L2(Rd)

.

Since λ1(α) is assumed to be a discrete eigenvalue, it follows from [15, Chap-
ter 10.2, Theorem 1] that |u| is indeed an eigenfunction of Aα corresponding to
the eigenvalue λ1(α). �

Lemma 2.5. Let Ω ⊆ R
d be open and connected. Assume that u ∈ H1(Ω) and λ ∈ R

satisfy

(∇u,∇v)L2(Ω;Cd) = λ(u, v)L2(Ω), v ∈ H1
0 (Ω).

Then u ∈ C∞(Ω) and if u ≥ 0 and u(x0) = 0 for some x0 ∈ Ω, then u ≡ 0.
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Proof. The interior regularity u ∈ C∞(Ω) is well known; cf. [18, §6.3. Theorem 3].
Assume now u ≥ 0 and u(x0) = 0 for some x0 ∈ Ω. Since Ω is connected, for
every x ∈ Ω there exists a path γ connecting x and x0. Since Ω is also open, there
even exists some open and bounded U with γ ⊆ U ⊆ U ⊆ Ω. Then it follows from
Harnack’s inequality [27, Corollary 8.21], that

sup
y∈U

u(y) ≤ C inf
y∈U

u(y),

for some constant C > 0. Since u(x0) = 0, the right and hence also the left hand
side of this inequality vanishes. Therefore, u|U = 0 and in particular u(x) = 0.
Since x ∈ Ω was arbitrary, we conclude u ≡ 0. �

Lemma 2.6. Let u ∈ H1(Rd) be a real-valued eigenfunction of Aα corresponding to

λ1(α). Then u ∈ C∞(Rd \ Σ) is either strictly positive or strictly negative on R
d \ Σ.

Proof. From Lemma 2.5 we conclude u ∈ C∞(Rd \Σ). In order to show that u has
no zeros in R

d\Σ, we assume the converse, i.e. that u(x0) = 0 for some x0 ∈ R
d\Σ.

It is clear that Σ cuts the whole space R
d into the two domains

Ω+ :=
{
(x, xd) ∈ R

d−1 × R
∣∣ xd > ξ(x)

}
,

Ω− :=
{
(x, xd) ∈ R

d−1 × R
∣∣ xd < ξ(x)

}
.

We will assume without loss of generality that x0 ∈ Ω+. Since, by Lemma 2.4, |u|
is also an eigenfunction corresponding to λ1(α), we have

(∇|u|,∇v)L2(Ω+;Cd) = λ1(α)(|u|, v)L2(Ω+), v ∈ H1
0 (Ω+),

and Lemma 2.5 implies u|Ω+ ≡ 0. In particular, we have τDu = 0 and the eigen-
value equation for u reduces to

(∇u,∇v)L2(Ω−;Cd) = λ1(α)(u, v)L2(Ω−), v ∈ H1(Rd).

Since λ1(α) is a discrete eigenvalue, it is negative by Lemma 2.2, and consequently
choosing v = u, we conclude u|Ω− ≡ 0. But this is a contradiction to the fact that
u is a (nonzero) eigenfunction; hence u has no zeros in R

d \ Σ.

Since we already know that u ∈ C∞(Rd \ Σ) has no zeros in R
d \Σ, it has to be

either strictly positive or strictly negative on each of the domains Ω±. However,
a priori the signs of u may not coincide. If, e.g.

u|Ω+ > 0 and u|Ω− < 0,

then τDu = 0 and the eigenvalue equation for u reduces to

(∇u,∇v)L2(Rd;Cd) = λ1(α)(u, v)L2(Rd), v ∈ H1(Rd).

Choosing v = u we again conclude u ≡ 0 by the negativity of λ1(α); a contradic-
tion as u is a (nonzero) eigenfunction. �
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Theorem 2.7. If the bottom (1.3) of the spectrum of Aα is a discrete eigenvalue, then it

is simple and the corresponding eigenfunction can be chosen strictly positive on R
d \ Σ.

Proof. Note that there exists a real-valued basis of the eigenspace corresponding
to λ1(α) since for every eigenfunction the complex conjugate is also an eigen-
function. Now consider two orthogonal real-valued eigenfunctions u1 and u2.
According to Lemma 2.6 each eigenfunction is either strictly positive or strictly
negative on R

d \ Σ. But this is a contradiction to the orthogonality condition
∫

Rd

u1 u2 dx = 0.

Hence, the eigenspace is one-dimensional and thus λ1(α) is a simple eigenvalue.
�

3. The Birman-Schwinger principle and an optimization
result for δ-potentials on a hyperplane

In this section we assume that the support of the δ-potential is a hyperplane
and we shall therefore identify Σ = R

d−1 × {0} ∼= R
d−1. Moreover, as in (2.2),

everywhere in this section we consider a real-valued function α ∈ Lp(Rd−1) +

L∞(Rd−1) with 1 < p <∞ if d = 2 and d− 1 ≤ p <∞ if d ≥ 3. Later we shall also
assume that there exists some α0 ∈ R such that

(3.1)
{
x ∈ R

d−1
∣∣ |α(x) − α0| > ε

}
has finite measure for every ε > 0.

We first discuss the Birman-Schwinger principle for the operator Aα in this special
situation, by means of which the spectral problem can be reduced to the spectral
analysis of a relativistic Schrödinger operator in L2(Rd−1). As an application and
illustration we prove an optimization result for the bottom of the spectrum of Aα

in Theorem 3.7.

3.1. The Birman-Schwinger principle for δ-potentials supported on a hyper-
plane. For every λ < 0 we consider the form

dα,λ[φ, ψ] := 2
(
(−∆− λ)

1
4φ, (−∆− λ)

1
4ψ

)
L2(Rd−1)

−
∫

Rd−1

αφψ dx,

dom dα,λ := H
1
2 (Rd−1).

(3.2)

It follows from Lemma A.1, that for every ε > 0 there exists a cε > 0 such that

(3.3)
∥∥|α| 12φ

∥∥2

L2(Rd−1)
≤ ε2‖φ‖2

H
1
2 (Rd−1)

+ c2ε‖φ‖2L2(Rd−1), φ ∈ H
1
2 (Rd−1).

Using this inequality it follows (see the proof of Proposition 2.1) that dα,λ is a
densely defined, symmetric, semibounded and closed form in L2(Rd−1). We de-
note the corresponding self-adjoint operator in L2(Rd−1) by Dα,λ. It turns out in
Proposition 3.2 below that the eigenvalue 0 of this relativistic Schrödinger operator

is linked to the eigenvalue λ of the Schrödinger operator Aα.
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We first formulate and prove a preparatory lemma; here we shall denote the ex-
tension of the L2(Rd−1) scalar product onto the dual pair H− 1

2 (Rd−1)×H 1
2 (Rd−1)

by 〈 · , · 〉
H− 1

2 (Rd−1)×H
1
2 (Rd−1)

.

Lemma 3.1. For every λ < 0 there exists a unique bounded linear operator γ(λ) :

H− 1
2 (Rd−1) → H1(Rd) such that the identity

(3.4)
(
∇γ(λ)φ,∇v

)
L2(Rd;Cd)

− λ
(
γ(λ)φ, v

)
L2(Rd)

= 〈φ, τDv〉
H− 1

2 (Rd−1)×H
1
2 (Rd−1)

holds for all φ ∈ H− 1
2 (Rd−1) and v ∈ H1(Rd). Moreover, the trace of γ(λ) is given by

(3.5) τDγ(λ) =
1

2
(−∆− λ)−

1
2 ,

and acts as a bounded linear operator from H− 1
2 (Rd−1) to H

1
2 (Rd−1).

Proof. Let Fd and Fd−1 be the unitary Fourier transforms in L2(Rd) and L2(Rd−1),
respectively, and consider Schwartz functions φ ∈ S(Rd−1). We first define the
operator γ(λ) in Fourier space as

(3.6) (Fdγ(λ)φ)(k̃) :=
(Fd−1φ)(k)√
2π(|k̃|2 − λ)

, k̃ = (k, kd) ∈ R
d−1 × R.

As λ < 0 and Fd−1φ ∈ S(Rd−1), this is a well defined function in L2(Rd). The fact,
that γ(λ) is bounded from H− 1

2 (Rd−1) to H1(Rd) follows from the estimate

‖γ(λ)φ‖2H1(Rd) =
1

2π

∫

Rd

(1 + |k̃|2) |(Fd−1φ)(k)|2
(|k̃|2 − λ)2

dk̃

=
1

2π

∫

Rd−1

∫

R

1 + |k|2 + k2d
(|k|2 + k2d − λ)2

dkd|(Fd−1φ)(k)|2dk

=
1

4

∫

Rd−1

2|k|2 + 1− λ

(|k|2 − λ)
3
2

|(Fd−1φ)(k)|2dk

≤ c(λ)

4
‖φ‖2

H− 1
2 (Rd−1)

,

where c(λ) denotes the maximum of the function k 7→ (2|k|2+1−λ)(|k|2+1)1/2

(|k|2−λ)3/2
. Since

S(Rd−1) is dense in H− 1
2 (Rd−1) the operator γ(λ) can be extended by continuity

onto H− 1
2 (Rd−1).

In order to prove the identity (3.4) for Schwartz functions φ ∈ S(Rd−1) and
v ∈ S(Rd), we use the Fourier representation

(3.7) (Fd∇v)(k̃) = ik̃(Fdv)(k̃), k̃ ∈ R
d,

of the gradient. For x ∈ R
d−1 the trace can be written as

(τDv)(x) = (F−1
d Fdv)(x, 0) =

1

(2π)
d
2

∫

Rd

ei〈k̃,(x,0)〉(Fdv)(k̃)dk̃

=
1

(2π)
d
2

∫

Rd−1

ei〈k,x〉
∫

R

(Fdv)(k, kd)dkddk

=
1√
2π

F
−1
d−1

[∫

R

(Fdv)( · , kd)dkd
]
(x)

(3.8)
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and hence

(3.9) (Fd−1τDv)(k) =
1√
2π

∫

R

(Fdv)(k, kd)dkd, k ∈ R
d−1.

The definition (3.6) of γ(λ), together with (3.7) and (3.9) leads to

(
∇γ(λ)φ,∇v

)
L2(Rd;Cd)

− λ
(
γ(λ)φ, v

)
L2(Rd)

=

∫

Rd

(|k̃|2 − λ) (Fdγ(λ)φ)(k̃) (Fdv)(k̃) dk̃

=
1√
2π

∫

Rd

(Fd−1φ)(k) (Fdv)(k, kd) dkddk

=

∫

Rd−1

(Fd−1φ)(k) (Fd−1τDv)(k) dk

= (φ, τDv)L2(Rd−1)

= 〈φ, τDv〉
H− 1

2 (Rd−1)×H
1
2 (Rd−1)

,

and hence (3.4) holds for φ ∈ S(Rd−1) and v ∈ S(Rd). By density and continuity
this identity extends to all φ ∈ H− 1

2 (Rd−1) and v ∈ H1(Rd). Also note, that the
identity (3.4) uniquely defines the operator γ(λ).

For the proof of (3.5) note first that the identity (3.9) and its derivation (3.8)
remain valid for v ∈ H1(Rd) ∩ C(Rd) with Fdv ∈ L1(Rd). In particular, for
φ ∈ S(Rd−1) it is not difficult to see that Fdγ(λ)φ ∈ L1(Rd) by its definition (3.6)
and hence also that γ(λ)φ = F

−1
d Fdγ(λ)φ is continuous as the inverse Fourier

transform of an L1-function. This means that from (3.9) we get

(Fd−1τDγ(λ)φ)(k) =
1√
2π

∫

R

(Fdγ(λ)φ)(k, kd)dkd

=
(Fd−1φ)(k)

2π

∫

R

dkd

|k̃|2 − λ
=

(Fd−1φ)(k)

2(|k|2 − λ)
1
2

,

which is exactly equation (3.5) in Fourier space. Again, by continuity this identity
also holds for every φ ∈ H− 1

2 (Rd−1). �

With this lemma we now find a connection between the eigenvalue 0 of the
relativistic Schrödinger operator Dα,λ and the eigenvalue λ of the Schrödinger
operator Aα.

Proposition 3.2. For every λ < 0 the restriction of the Dirichlet trace operator

(3.10) τD : ker(Aα − λ) → kerDα,λ

is bijective and, in particular, dimker(Aα − λ) = dimkerDα,λ.

Proof. In order to see that the restriction of τD onto ker(Aα −λ) maps into kerDα,λ

consider some u ∈ ker(Aα − λ). By (1.2) we have u ∈ H1(Rd) and

(3.11) (∇u,∇v)L2(Rd;Cd) − λ(u, v)L2(Rd) =
(
sgn(α)|α| 12 τDu, |α|

1
2 τDv

)
L2(Rd−1)
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for all v ∈ H1(Rd). Since τDu ∈ H
1
2 (Rd−1), we get |α| 12 τDu ∈ L2(Rd−1) from (3.3)

and hence there exist ψn ∈ H
1
2 (Rd−1) such that

(3.12) sgn(α)|α| 12 τDu = lim
n→∞

ψn in L2(Rd−1).

Again, by (3.3), we have |α| 12ψn ∈ L2(Rd−1) and inserting these into (3.4) leads to

(
∇γ(λ)|α| 12ψn,∇v

)
L2(Rd;Cd)

− λ
(
γ(λ)|α| 12ψn, v

)
L2(Rd)

=
(
ψn, |α|

1
2 τDv

)
L2(Rd−1)

for all v ∈ H1(Rd). Combining this with (3.11) and (3.12) implies the convergence

γ(λ)|α| 12ψn ⇀ u weakly in H1(Rd).

Applying the bounded operator (−∆ − λ)
1
4 τD : H1(Rd) → L2(Rd−1) and using

(3.5) gives

1

2
(−∆− λ)−

1
4 |α| 12ψn = (−∆− λ)

1
4 τDγ(λ)|α|

1
2ψn ⇀ (−∆− λ)

1
4 τDu

weakly in L2(Rd−1). Hence, for every ψ ∈ H
1
2 (Rd−1) we get

dα,λ[τDu, ψ] = lim
n→∞

(
(−∆− λ)−

1
4 |α| 12ψn, (−∆− λ)

1
4ψ

)
L2(Rd−1)

−
∫

Rd−1

α τDuψ dx

= lim
n→∞

(
ψn, |α|

1
2ψ

)
L2(Rd−1)

−
∫

Rd−1

α τDuψ dx = 0,

where (3.12) was used in the last step. Thus, we conclude τDu ∈ kerDα,λ.

Next we show that (3.10) is injective. In fact, assume that τDu = 0 for some
u ∈ ker(Aα − λ). Then (1.2) leads to

(∇u,∇v)L2(Rd;Cd) = λ(u, v)L2(Rd−1), v ∈ H1(Rd).

Since λ < 0 we can choose v = u and conclude u = 0.

For the surjectivity of (3.10) let φ ∈ kerDα,λ. By (3.2) we have φ ∈ H
1
2 (Rd−1)

and

(3.13) 2
(
(−∆− λ)

1
4φ, (−∆− λ)

1
4ψ

)
L2(Rd−1)

=

∫

Rd−1

αφψ dx, ψ ∈ H
1
2 (Rd−1).

Now define uφ := 2γ(λ)(−∆− λ)
1
2φ. Then τDuφ = φ by (3.5) and using (3.4) with

φ replaced by 2(−∆− λ)
1
2φ, gives for any v ∈ H1(Rd)

(
∇uφ,∇v

)
L2(Rd;Cd)

− λ
(
uφ, v

)
L2(Rd)

= 2〈(−∆− λ)
1
2φ, τDv〉

H− 1
2 (Rd−1)×H

1
2 (Rd−1)

=

∫

Rd−1

αφ τDv dx

=

∫

Rd−1

α τDuφ τDv dx,

where in the second step we used (3.13) with ψ = τDv. Summing up, for φ ∈
kerDα,λ we found uφ ∈ ker(Aα − λ) such that τDuφ = φ, that is, the mapping
(3.10) is surjective. �
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Next we analyse how the bottom of the spectrum σ(Dα,λ) behaves as a function
of λ < 0.

Lemma 3.3. For λ < 0 the mapping

(3.14) λ 7→ µα(λ) := inf σ(Dα,λ) = inf
06=φ∈H1/2(Rd−1)

dα,λ[φ]

‖φ‖2
L2(Rd−1)

is nonincreasing, continuous and admits the limit

(3.15) lim
λ→−∞

µα(λ) = ∞.

Proof. With the help of the Fourier transform in L2(Rd−1) we see that the form
dα,λ admits the representation
(3.16)

dα,λ[φ] = 2

∫

Rd−1

(|k|2 − λ)
1
2 |(Fd−1φ)(k)|2dk −

∫

Rd−1

α |φ|2 dx, φ ∈ H
1
2 (Rd−1),

which shows that dα,λ[φ] is nonincreasing in λ. Hence the same is true for µα in
(3.14).

For the continuity of µα consider λ1 ≤ λ2 < 0. Then for every φ ∈ H
1
2 (Rd−1)

we can estimate the difference

dα,λ1 [φ]− dα,λ2 [φ] = 2

∫

Rd−1

(
(|k|2 − λ1)

1
2 − (|k|2 − λ2)

1
2

)
|(Fd−1φ)(k)|2dk

≤ 2
(√

−λ1 −
√

−λ2
)
‖φ‖2L2(Rd−1),

and via (3.14) we also conclude

µα(λ1)− µα(λ2) ≤ 2
(√

−λ1 −
√

−λ2
)
,

which proves the continuity of λ 7→ µα(λ).

It remains to verify (3.15). For this we use the estimate

∣∣∣
∫

Rd−1

α |φ|2dx
∣∣∣ ≤ ‖φ‖2

H
1
2 (Rd−1)

+ c21‖φ‖2L2(Rd−1), φ ∈ H
1
2 (Rd−1),

from (3.3). Plugging this in (3.16) gives

dα,λ[φ] ≥
∫

Rd−1

(
2(|k|2 − λ)

1
2 − (1 + |k|2) 1

2

)
|(Fd−1φ)(k)|2dk − c21‖φ‖2L2(Rd−1)

≥ (c(λ) − c21)‖φ‖2L2(Rd−1),

where c(λ) ∈ R is the minimum of k 7→ 2(|k|2 − λ)
1
2 − (1 + |k|2) 1

2 . From (3.14) we
then conclude

µα(λ) ≥ c(λ) − c21
λ→−∞−→ ∞. �

Next, we compute the essential spectrum of Dα,λ under the additional assump-
tion that α satisfies the decay condition (3.1).
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Proposition 3.4. Assume that α satisfies (3.1) with some α0 ∈ R. Then for every λ < 0

the essential spectrum of Dα,λ is given by

(3.17) σess(Dα,λ) =
[
2
√
−λ− α0,∞

)
.

Furthermore, the mapping λ 7→ µα(λ) from (3.14) is strictly decreasing on (−∞, 0).

Proof. It is clear that for the special case of a constantα(x) = α0 ∈ R the relativistic
Schrödinger operator is given by Dα0,λ = 2(−∆ − λ)

1
2 − α0 with domDα0,λ =

H1(Rd−1). Hence we have

(3.18) σ(Dα0,λ) = σess(Dα0,λ) =
[
2
√
−λ− α0,∞

)
.

For nonconstant α we define α1(x) := α(x)− α0. Then {x ∈ R
d−1 | |α1(x)| > ε}

has finite measure for every ε > 0 by the decay property (3.1). To prove (3.17) we
proceed in the same way as in Step 3 of the proof of Theorem 3.4 and check that
for some µ < inf(σ(Dα0,λ) ∪ σ(Dα,λ)) the resolvent difference

W := (Dα0,λ − µ)−1 − (Dα,λ − µ)−1

is a compact operator in L2(Rd−1). For this let φ, ψ ∈ L2(Rd−1) and set

φµ := (Dα0,λ − µ)−1φ and ψµ := (Dα,λ − µ)−1ψ.

In the same way as in (2.12) one verifies

(Wφ, ψ)L2(Rd−1) =
(
φµ,Dα,λψµ

)
L2(Rd−1)

−
(
Dα0,λφµ, ψµ

)
L2(Rd−1)

= −
∫

Rd−1

α1 φµψµdx

= (T1φ,T2ψ)L2(Rd−1),

where

T1 := |α1|
1
2 (Dα0,λ − µ)−1 and T2 := − sgn(α1)|α1|

1
2 (Dα,λ − µ)−1.

As (Dα0,λ − µ)−1 and (Dα,λ − µ)−1 are bounded operators from L2(Rd−1) into
H

1
2 (Rd−1) it follows from Proposition A.3 that both T1 and T2 are compact op-

erators in L2(Rd−1). Thus the resolvent difference W = T
∗
2T1 is compact as well,

which implies σess(Dα0,λ) = σess(Dα,λ) and (3.17) follows from (3.18).

For the proof of the strict monotonicity of λ 7→ µα(λ), let λ1 < λ2 < 0. Then

(3.19) µα(λj) ≤ 2
√
−λj − α0, j = 1, 2,

by (3.17). If µα(λ1) = 2
√
−λ1 − α0 we conclude from µα(λ2) ≤ 2

√
−λ2 − α0 that

µα(λ2) < µα(λ1). If µα(λ1) < 2
√
−λ1 − α0 we know from (3.17) that µα(λ1) is

a discrete eigenvalue of Dα,λ1 and hence there is a corresponding eigenfunction
φ ∈ domDα,λ1 ⊂ H

1
2 (Rd−1). Since, in particular, φ 6= 0 we conclude from (3.16)

that λ 7→ dα,λ[φ] is strictly decreasing, and hence

µα(λ1) =
dα,λ1 [φ]

‖φ‖2
L2(Rd−1)

>
dα,λ2 [φ]

‖φ‖2
L2(Rd−1)

≥ µα(λ2). �
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Lemma 3.5. Assume that α satisfies (3.1) with some α0 ∈ R. For the lowest spectral

point λ1(α) of Aα in (1.3) and the lowest spectral point µα(λ) of Dα,λ in (3.14) the

following are equivalent:

(i) λ1(α) ∈ σd(Aα)

(ii) µα admits a zero strictly below

{
−α2

0

4 , if α0 ≥ 0

0, if α0 ≤ 0.

In this situation the zero of µα coincides with λ1(α).

Proof. For an easier notation we write λ1 := λ1(α). For the implication (i) ⇒ (ii)

let λ1 ∈ σd(Aα) and note that due to the explicit form of the essential spectrum
(2.7) we have

(3.20) λ1 <

{
−α2

0

4 , if α0 ≥ 0,

0, if α0 ≤ 0.

It follows from Proposition 3.2 that zero is an eigenvalue of Dα,λ1 . Assume now
µα(λ1) 6= 0.

• The case µα(λ1) = inf σ(Dα,λ1 ) > 0 is a contradiction to the fact that zero
is an eigenvalue of Dα,λ1 .

• If µα(λ1) < 0, then µα(λ̃) = 0 for some λ̃ < λ1 by Lemma 3.3. Also note,
that

inf σess(Dα,λ̃) = 2
√

−λ̃− α0 ≥ 2
√
−λ1 − α0 > 0

by Proposition 3.4 and the estimate (3.20). But then the bottom of the
spectrum

0 = µα(λ̃) = inf σ(Dα,λ̃)

is a point in the discrete spectrum and hence an eigenvalue of Dα,λ̃. Con-
sequently, Proposition 3.2 implies that λ̃ < λ1 is an eigenvalue of Aα; a
contradiction as λ1 is the smallest spectral point of Aα.

Hence our assumption is wrong and we conclude µα(λ1) = 0. Due to the strict
monotonicity in Proposition 3.4, this is also the only zero of µα.

For the implication (ii) ⇒ (i) assume that µα admits a zero

(3.21) λ̃ <

{
−α2

0

4 , if α0 ≥ 0,

0, if α0 ≤ 0,

that is, 0 = µα(λ̃) = inf σ(Dα,λ̃). Since 2
√

−λ̃−α0 > 0 by (3.21) we conclude from
(3.17) that zero belongs to the discrete spectrum of Dα,λ̃, and hence Proposition 3.2
implies that λ̃ is an eigenvalue of Aα. Hence, also the bottom of the spectrum

λ1 = inf σ(Aα) ≤ λ̃ <

{
−α2

0

4 , if α0 ≥ 0,

0, if α0 ≤ 0,

belongs to the discrete spectrum of Aα by (2.7). �
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3.2. Optimization of λ1(α) and the symmetric decreasing rearrangement. In
this subsection we prove an optimization result for the bottom of the spectrum
of Aα, which will be formulated in terms of the so-called symmetric decreas-
ing rearrangement of the positive part of the function α1(x) := α(x) − α0, with
α0 ∈ R from (3.1). We first briefly recall the definition and some basic proper-
ties of the symmetric decreasing rearrangement and formulate our main result in
Theorem 3.7 below. Further details on symmetric decreasing rearrangements can
be found in the monographs [5, 35].

Let A ⊆ R
d−1, d ≥ 2, be a measurable set of finite volume. Then its symmetric

rearrangement A∗ is defined as the open ball centered at the origin and having
the same volume. Let u : Rd−1 → R be a nonnegative measurable function, that
vanishes at infinity in the sense that

(3.22)
{
x ∈ R

d−1
∣∣ u(x) > t

}
has finite measure for every t > 0.

We define the symmetric decreasing rearrangement u∗ of u by symmetrizing its level
sets as

(3.23) u∗(x) :=

∫ ∞

0

χ{u>t}∗(x) dt.

Here χA : Rd−1 → R denotes the characteristic function. The rearrangement u∗

has a number of straightforward properties, which will be needed below in the
proofs of Theorem 3.7 and Lemma 3.9; cf. [35, Section 3.3 (iv) and Theorem 3.4].

Lemma 3.6. Let u, v : Rd−1 → R be nonnegative measurable functions satisfying (3.22).
Then the following holds:

(i) u∗ is nonnegative;

(ii) u∗ is radially symmetric and nonincreasing;

(iii) u and u∗ are equi-measurable, i.e.,

∣∣ { x ∈ R
d−1

∣∣ u(x) > t
} ∣∣ =

∣∣ { x ∈ R
d−1

∣∣ u∗(x) > t
} ∣∣, t > 0;

(iv) (u∗)2 = (u2)∗.

(v) ‖u‖Lp(Rd−1) = ‖u∗‖Lp(Rd−1), p ≥ 1 (Conservation of Lp-norm);

(vi)
∫
Rd−1 u v dx ≤

∫
Rd−1 u

∗v∗dx (Hardy-Littlewood inequality).

Next we formulate our optimization result for the bottom of the spectrum of
Aα.

Theorem 3.7. Assume that α satisfies (3.1) with some α0 ∈ R and let α1(x) := α(x) −
α0. Then we have the inequality

λ1(α0 + (α1)
∗
+) ≤ λ1(α0 + α1),

where (α1)
∗
+ is the symmetric decreasing rearrangement of the positive part (α1)+ :=

max{α1, 0} defined in (3.23).
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Corollary 3.8. Let ω ⊂ R
d−1 be a set of finite measure and ω∗ ⊂ R

d−1 be a ball with

the same volume as ω, and let χω and χω∗ be the characteristic functions of ω and ω∗,

respectively. Then for β ≥ 0 we have the inequality

λ1(βχω∗) ≤ λ1(βχω).

The proof of Theorem 3.7 relies on the Birman-Schwinger principle for the op-
erator Aα, by means of which the problem is reduced to an eigenvalue inequality
for the relativistic Schrödinger operator in L2(Rd−1). The latter is proven with
the help of the fact that the symmetric decreasing rearrangement decreases the
kinetic energy term corresponding to the relativistic Schrödinger operator; cf.
Lemma 3.9. This property of the kinetic energy can be viewed as an analogue
of the Pólya-Szegő inequality.

Lemma 3.9. For every λ < 0 and nonnegative φ ∈ H
1
2 (Rd−1) the rearrangements

(α1)
∗
+, φ

∗ in (3.23) and the form (3.2) satisfy

(3.24) dα0+(α1)∗+,λ[φ
∗] ≤ dα0+α1,λ[φ].

Proof. First, in view of Lemma 3.6 (iv), (v) and (vi) we have

(3.25)
∫

Rd−1

(α0+α1)φ
2
dx ≤

∫

Rd−1

(α0+(α1)+)φ
2
dx ≤

∫

Rd−1

(α0+(α1)
∗
+)(φ

∗)2dx.

Moreover, it is proven in [35, Section 7.11 (5), Section 7.17 (2) and the remark
afterwards] that

(3.26)
∥∥(−∆− λ)

1
4φ∗

∥∥2

L2(Rd−1)
≤

∥∥(−∆− λ)
1
4φ

∥∥
L2(Rd−1)

.

Combining (3.25) and (3.26) then proves the stated inequality (3.24). �

Proof of Theorem 3.7. Observe that by Theorem 2.3 and Lemma 3.6 (v) the essential
spectra of the Schrödinger operators Aα0+α1 and Aα0+(α1)∗+

are given by

σess(Aα0+α1) = σess(Aα0+(α1)∗+
) =

{
[−α2

0

4 ,∞), if α0 ≥ 0,

[0,∞), if α0 ≤ 0.

We assume that α1 is such that

λ1 := λ1(α0 + α1) <

{
−α2

0

4 , if α0 ≥ 0,

0, if α0 ≤ 0,

as otherwise the statement of the theorem is clear. Then λ1 ∈ σd(Aα0+α1) and
by Theorem 2.7 there exists a nonnegative eigenfunction u1 ∈ ker(Aα0+α1 − λ1).
By Proposition 3.2, we then have φ1 := τDu1 ∈ kerDα0+α1,λ1 for the trace of
the eigenfunction, and also φ1 ≥ 0 follows from u1 ≥ 0. Lemma 3.6 (v) and
Lemma 3.9 give the estimate

0 =
dα0+α1,λ1 [φ1]

‖φ1‖2L2(Rd−1)

≥
dα0+(α1)∗+,λ1

[φ∗1]

‖φ∗1‖2L2(Rd−1)

≥ µα0+(α1)∗+
(λ1).
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Since µα0+(α1)∗+
is nonincreasing by Lemma 3.3 it admits a zero

λ̃1 ≤ λ1 <

{
−α2

0

4 , if α0 ≥ 0,

0, if α0 ≤ 0.

Hence λ̃1 ∈ σd(Aα0+(α1)∗+
) and we have λ1(α0 + (α1)

∗
+) ≤ λ̃1 ≤ λ1, which proves

the theorem. �

Remark 3.10. We mention that the above results remain valid for Robin Laplacians on

the upper half-space Rd
+. More precisely, if Bα denotes the self-adjoint operator in L2(Rd

+)

associated with the densely defined, symmetric, semibounded, and closed form

bα[u, v] := (∇u,∇v)L2(Rd
+,Cd) −

∫

Rd−1

α τDu τDv dx,

dom bα := H1(Rd
+),

and we replace λ1(α) = inf σ(Aα) by the bottom of the spectrum λ1(α) := inf σ(Bα),

then Theorem 3.7 and Corollary 3.8 hold.

Remark 3.11. Theorem 3.7 can be proved differently using Steiner symmetrization; the

following elegant argument was communicated to us recently. Consider a nonnegative

function u : Rd → R such that R
d−1 ∋ x′ 7→ u(x′, xd) is vanishing at infinity for

all xd ∈ R. Following the lines of [5, Chapter 6] we recall that the (d − 1, d)-Steiner

symmetrization u♯ of the function u is defined as

u♯(x′, xd) := (u∗(·, xd))(x′, xd),

where the symmetric decreasing rearrangement in the right hand side is taken for each

xd ∈ R with respect to first d − 1 variables. Let the nonnegative function u1 ∈ H1(Rd)

be the normalized ground state of the operator Aα0+α1 . It is not difficult to check that

u1 is vanishing at infinity slice-wise in the above sense; cf. [5, §6.8]. According to [5,
Theorem 6.8] we have

(3.27) ‖u♯1‖L2(Rd) = ‖u1‖L2(Rd) = 1.

In view of [5, Theorem 6.19] we get u♯1 ∈ H1(Rd) and

(3.28) ‖∇u♯1‖L2(Rd;Cd) ≤ ‖∇u1‖L2(Rd;Cd).

Lemma 3.6 (iv), (v) and (vi) yield

(3.29)
∫

Rd−1

(α0 + (α1)
∗
+)|τDu♯1|2dx ≥

∫

Rd−1

(α0 + α1)|τDu1|2dx.

Finally, combining (3.27), (3.28), and (3.29) we obtain by the min-max principle that

λ1(α0 + (α1)
∗
+) ≤ aα0+(α1)∗+

[u♯1] = ‖∇u♯1‖2L2(Rd;Cd) −
∫

Rd−1

(α0 + (α1)
∗
+)|τDu♯1|2dx

≤ aα0+α1 [u1] = λ1(α0 + α1).
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Appendix A.

In this appendix let again Σ be a Lipschitz hypersurface as in (2.1) and assume
that α ∈ Lp(Σ) + L∞(Σ) for some 1 < p < ∞ in d = 2 and for d − 1 ≤ p < ∞
in d ≥ 3 dimensions, as in (2.2). In this setting we consider the multiplication
operator

(A.1) Mα : H
1
2 (Σ) → L2(Σ) with Mαφ := |α| 12φ, φ ∈ H

1
2 (Σ),

which plays a crucial role in the well definedness of the form aα in Proposition 2.1
and in the derivation of the essential spectrum in Theorem 2.3. If, in addition,
(2.6) holds, then it turns out that the operator Mα is compact; for the convenience
of the reader we will provide a complete proof below. The preparatory estimate
in Lemma A.1 is also used to conclude the semiboundedness of the form aα in
Proposition 2.1.

We also want to mention that we consider Sobolev and Lebesgue spaces on the
surface Σ in the sense that for every s > 0 and q ∈ [1,∞]

φ ∈ Hs(Σ) if and only if φ ◦ Ξ ∈ Hs(Rd−1) and ‖φ‖Hs(Σ) := ‖φ ◦ Ξ‖Hs(Rd−1),

φ ∈ Lq(Σ) if and only if φ ◦ Ξ ∈ Lq(Rd−1) and ‖φ‖Lq(Σ) := ‖φ ◦ Ξ‖Lq(Rd−1),

(A.2)

where Ξ(x) := (x, ξ(x)) is a bijective map from R
d−1 onto Σ.

Lemma A.1. For every ε > 0 there exists some cε ≥ 0, depending on α, such that

(A.3) ‖Mαφ‖2L2(Σ) ≤ ε2‖φ‖2
H

1
2 (Σ)

+ c2ε‖φ‖2L2(Σ), φ ∈ H
1
2 (Σ).

Proof. We decompose α ∈ Lp(Σ) + L∞(Σ) into

α = β + γ, β ∈ Lp(Σ), γ ∈ L∞(Σ).

Fix ε > 0. Then the integrability condition β ∈ Lp(Σ) ensures the existence of
some Cε ≥ 0 such that β = β1 + β2, where

β1(x) :=

{
0, |β(x)| ≤ Cε,

β(x), |β(x)| > Cε,
and β2(x) :=

{
β(x), |β(x)| ≤ Cε,

0, |β(x)| > Cε,

and

(A.4) ‖β1‖Lp(Σ) ≤ ε2.

We now split α = β1 + (β2 + γ) into a bounded part β2 + γ and an unbounded re-
mainder β1 and estimate both parts separately. For β1 we use Hölder’s inequality
and the estimate (A.4) to get

(A.5)
∥∥|β1|

1
2φ

∥∥2

L2(Σ)
≤ ‖β1‖Lp(Σ)‖φ‖2

L
2p

p−1 (Σ)
≤ ε2‖φ‖2

L
2p

p−1 (Σ)
≤ ε2c2E‖φ‖2

H
1
2 (Σ)

,
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where in the last inequality we additionally used the Sobolev embedding on the
surface ‖ · ‖

L
2p

p−1 (Σ)
≤ cE‖ · ‖

H
1
2 (Σ)

, which follows from the classical Sobolev em-

bedding theorem [11, Theorem 8.12.6] on R
d−1 and the definition of the Sobolev

and Lebesgue norms in (A.2).

On the other hand, β2 + γ can simply be estimated by

(A.6)
∥∥|β2 + γ| 12φ

∥∥2

L2(Σ)
≤

(
Cε + ‖γ‖L∞(Σ)

)
‖φ‖2L2(Σ).

Now the estimate (A.3) follows from (A.5) and (A.6). �

The next lemma treats the transition from weakH
1
2 -convergence on Σ to strong

L2-convergence on subsets of finite measure of Σ; this observation is preparatory
for the compactness result in Proposition A.3.

Lemma A.2. For every φ0, (φn)n ∈ H
1
2 (Σ), the convergence

(A.7) φn ⇀ φ0 weakly in H
1
2 (Σ),

implies for any Borel set A ⊆ Σ with finite measure, the convergence

(A.8) φn → φ0 strongly in L2(A).

Proof. In Step 1 we consider the hyperplane case Σ = R
d−1 × {0} ∼= R

d−1. For
every t > 0, we define the mollifier

(A.9) ϕt(x) :=
1

(4πt)
d−1
2

e−
|x|2

4t , x ∈ R
d−1.

Then by the weak convergence (A.7), we conclude the pointwise convergence of
the convolution

lim
n→∞

(ϕt ∗ φn)(x) = lim
n→∞

〈
ϕt(x− · ), φn

〉
H− 1

2 (Rd−1)×H
1
2 (Rd−1)

=
〈
ϕt(x− · ), φ0

〉
H− 1

2 (Rd−1)×H
1
2 (Rd−1)

= (ϕt ∗ φ0)(x).
(A.10)

Since the weakly convergent sequence (φn)n is bounded, i.e. ‖φn‖
H

1
2 (Rd−1)

≤ M

for some M ≥ 0, we also conclude the uniform boundedness of the convolution

(A.11) |(ϕt ∗ φn)(x)| ≤ ‖ϕt‖L2(Rd−1)‖φn‖L2(Rd−1) ≤M‖ϕt‖L2(Rd−1),

for every x ∈ R
d−1, n ∈ N. Since A is a set of finite measure, (A.10) & (A.11) are

sufficient to apply the dominated convergence theorem, which leads to the norm
convergence

(A.12) lim
n→∞

‖ϕt ∗ (φn − φ0)‖L2(A) = 0.

For the Fourier transform of the mollifier (A.9) we have

(Fϕt)(k) =
1

(2π)
d−1
2

∫

Rd−1

e−ikxϕt(x)dx =
1

(8π2t)
d−1
2

∫

Rd−1

e−ikxe−
|x|2

4t dx

=
1

(8π2t)
d−1
2

e−t|k|2
∫

Rd−1

e−
(x+2itk)2

4t dx =
1

(2π)
d−1
2

e−t|k|2 , k ∈ R
d−1,
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and we use the estimate
∣∣1− (2π)

d−1
2 (Fϕt)(k)

∣∣ = 1− e−t|k|2 ≤ c(t|k|2) 1
4 ≤ ct

1
4 (1 + |k|2) 1

4 , k ∈ R
d−1,

where c := supy>0(1 − e−y)y−
1
4 . Since the Fourier transform of the convolution

can be written as the product F(ϕt ∗ φn) = (2π)
d−1
2 (Fϕt)(Fφn), we can estimate

the L2-norm

‖φn − ϕt ∗ φn‖L2(Rd−1) =
∥∥(1− (2π)

d−1
2 Fϕt

)
Fφn

∥∥
L2(Rd−1)

≤ ct
1
4

∥∥(1 + | · |2) 1
4Fφn

∥∥
L2(Rd−1)

= ct
1
4 ‖φn‖

H
1
2 (Rd−1)

.

(A.13)

The inequality (A.13) of course also holds with φn replaced by φ0, which leads to
the estimate

‖φn − φ0‖L2(A) ≤ ct
1
4M + ‖ϕt ∗ (φn − φ0)‖L2(A) + ct

1
4 ‖φ0‖

H
1
2 (Rd−1)

,

for every n ∈ N and t > 0. The first and third term can be made arbitrary small
by the choice of t > 0 and the second term converges by (A.12). This proves the
statement of the lemma for Σ ∼= R

d−1 × {0}.

In Step 2 we consider the general case of a Lipschitz graph Σ. By the definition
of the boundary spaces (A.2), it follows immediately from the weak convergence
(A.7), that also

φn ◦ Ξ⇀ φ0 ◦ Ξ weakly in H
1
2 (Rd−1).

Since A has finite measure, the preimage Ξ−1(A) = {x ∈ R
d−1 |Ξ(x) ∈ A} has

finite measure as well, and we conclude from the first step

φn ◦ Ξ → φ0 ◦ Ξ strongly in L2(Ξ−1(A)).

By the definition of the boundary spaces (A.2) this implies (A.8). �

Next we prove the compactness of the multiplication operator Mα under the
decay property (A.14) of the function α. Note that, although stated for α, this
decay property only affects the L∞-part of α. Any function in Lp(Rd−1) satisfies
(A.14) automatically.

Proposition A.3. Assume that the function α satisfies

(A.14) { x ∈ Σ | |α(x)| > ε } has finite measure for every ε > 0.

Then the multiplication operator Mα in (A.1) is compact.

Proof. From Lemma A.1 we conclude that Mα in (A.1) is an everywhere defined
and bounded operator. In order to prove that Mα is compact, we verify that for
any sequence φn ⇀ φ0 weakly in H

1
2 (Σ), the sequence Mαφn →Mαφ0 converges

strongly in L2(Σ). As in the proof of Lemma A.1, let ε > 0 and decompose the
potential into

α = β1 + β2 + γ.
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Next, we define the set

(A.15) Aε :=
{
x ∈ Σ

∣∣ |β2(x)| > ε2
}
∪
{
x ∈ Σ

∣∣ |γ(x)| > ε2
}
.

The integrability condition β2 ∈ Lp(Σ) implies that the set {|β2| > ε2} has finite
measure. Furthermore, since {|γ| > ε2} ⊆ {|β| > ε2

2 } ∪ {|α| > ε2

2 } it follows
from the integrability condition β ∈ Lp(Σ) and the decay property (A.14) that
{|γ| > ε2} also has finite measure. Then Lemma A.2 shows

lim
n→∞

‖φn − φ0‖L2(Aε) = 0.

This convergence in particular gives an index Nε ∈ N, such that

(A.16) ‖φn − φ0‖2L2(Aε)
≤ ε2

Cε + ‖γ‖L∞(Σ)
, n ≥ Nε,

with Cε the cut-off from (A.4). Then the equations (A.5) & (A.16), as well as the
fact that |β2 + γ| ≤ Cε + ‖γ‖L∞(Σ) on Σ and |β2 + γ| ≤ 2ε2 on Σ \ Aε, we can
estimate

∥∥|α| 12 (φn − φ0)
∥∥2

L2(Σ)
≤

∥∥|β1|
1
2 (φn − φ0)

∥∥2

L2(Σ)
+
∥∥|β2 + γ| 12 (φn − φ0)

∥∥2

L2(Aε)

+
∥∥|β2 + γ| 12 (φn − φ0)

∥∥2

L2(Σ\Aε)

≤ ε2c2E‖φn − φ0‖2
H

1
2 (Σ)

+ ε2 + 2ε2‖φn − φ0‖2L2(Σ\Aε)

≤ ε2
(
(c2E + 2)‖φn − φ0‖2

H
1
2 (Σ)

+ 1
)
, n ≥ Nε.

Since ‖φn − φ0‖
H

1
2 (Σ)

on the right hand side is bounded as a consequence of the

weak H
1
2 -convergence, this inequality implies the norm convergence

lim
n→∞

∥∥|α| 12 (φn − φ0)
∥∥2

L2(Σ)
= 0,

and hence the compactness of the operator Mα. �
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[3] P. R. S. Antunes, P. Freitas, D. Krejčiřík, Bounds and extremal domains for Robin eigenvalues with

negative boundary parameter, Adv. Calc. Var. 10 (2017), 357–380.

[4] N. Arrizabalaga, A. Mas, L. Vega, An isoperimetric-type inequality for electrostatic shell interac-

tions for Dirac operators, Commun. Math. Phys. 344 (2016), 483–505.

[5] I. A. Baernstein, Symmetrization in analysis, Cambridge University Press, Cambridge, 2019.
With David Drasin and Richard S. Laugesen, With a foreword by Walter Hayman.

[6] J. Behrndt, P. Exner, and V. Lotoreichik, Schrödinger operators with δ- and δ′-interactions on
Lipschitz surfaces and chromatic numbers of associated partitions, Rev. Math. Phys. 26 (2014),
1450015, 43 pp.



22 J. BEHRNDT, V. LOTOREICHIK, AND P. SCHLOSSER

[7] J. Behrndt, R. L. Frank, C. Kühn, V. Lotoreichik, J. Rohleder, Spectral theory for Schrödinger

operators with δ-interactions supported on curves in R3, Ann. Henri Poincaré 18 (2017), 1305–
1347.

[8] J. Behrndt, M. Langer, V. Lotoreichik, Schrödinger operators with δ and δ′-potentials supported on

hypersurfaces, Ann. Henri Poincaré 14 (2013), 385–423.

[9] J. Behrndt, M. Langer, V. Lotoreichik, J. Rohleder, Spectral enclosures for non-self-adjoint exten-

sions of symmetric operators, J. Funct. Anal. 275 (2018), 1808–1888.

[10] J. Behrndt, P. Schlosser, Quasi boundary triples, self-adjoint extensions, and Robin Laplacians on

the half-space, Operator Theory Advances Applications 275 (2019), 49–66.

[11] P. M. Bhattacharyya, Distributions. Generalized Functions with Applications in Sobolev Spaces, De
Gruyter, Berlin (2012).

[12] M. H. Bossel, Membranes élastiquement liées: Extension du théoréme de Rayleigh-Faber-Krahn et de

l’inégalité de Cheeger, C. R. Acad. Sci. Paris Sér. Math. 302 (1986), 47–50.

[13] J. F. Brasche, P. Exner, Y. A. Kuperin, P. Šeba, Schrödinger operators with singular interactions, J.
Math. Anal. Appl. 184 (1994), 112–139.

[14] D. Bucur, V. Ferone, C. Nitsch, C. Trombetti, A sharp estimate for the first Robin-Laplacian eigen-

value with negative boundary parameter, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser.,
Rend. Lincei, Mat. Appl. 30 (2019), 665–676.

[15] M. S. Birman, M. Z. Solomjak, Spectral Theory of Self-adjoint Operators in Hilbert Space, Kluwer,
Dordrecht (1987).

[16] D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension, Math. Ann. 335
(2006), 767–785.

[17] D. E. Edmunds, W. D. Evans, Spectral Theory and Differential Operators, Oxford University
Press (2018).

[18] L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence (2010).

[19] P. Exner, An isoperimetric problem for leaky loops and related mean-chord inequalities, J. Math.
Phys. 46 (2005), 062105.

[20] P. Exner, E. M. Harrell, M. Loss, Inequalities for means of chords, with application to isoperimetric

problems, Lett. Math. Phys. 75 (2006), 225–233.

[21] P. Exner, S. Kondej, Spectral optimization for strongly singular Schrödinger operators with a star-

shaped interaction, Lett. Math. Phys. 110 (2020), 735–751.
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[25] P. Freitas, D. Krejčiřík, The first Robin eigenvalue with negative boundary parameter, Adv. Math.
280 (2015), 322–339.

[26] P. Freitas, R. S. Laugesen, From Steklov to Neumann and beyond, via Robin: the Szegő way, Can.
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