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The famous Davies-GKSL secular Markovian master equation is tremendously successful in ap-
proximating the evolution of open quantum systems in terms of just a few parameters. However,
the fully-secular Davies-GKSL equation fails to accurately describe time scales short enough, i.e.,
comparable to the inverse of differences of frequencies present in the system of interest. A comple-
mentary approach that works well for short times but is not suitable after this short interval is known
as the quasi-secular master equation. Still, both approaches fail to have any faithful dynamics in
the intermediate time interval. Simultaneously, descriptions of dynamics that apply to the afore-
mentioned “grey zone” often are computationally much more complex than master equations or are
mathematically not well-structured. The filtered approximation (FA) to the refined weak coupling
limit has the simplistic spirit of the Davies-GKSL equation and allows capturing the dynamics in
the intermediate time regime. At the same time, our non-Markovian equation yields completely
positive dynamics. We exemplify the performance of the FA equation in the cases of the spin-boson
system and qutrit-boson system in which two distant time scales appear.

I. Introduction

The exact dynamics of systems with a small number
of degree of freedom can be tackled exactly, whereas
in a case in which the dimension of a system becomes
large, the exact dynamics become computationally not
tractable. Hence, it is inevitable to rely on a statis-
tical approach to derive the evolution of a single main
unit and consider the remaining part of the whole sys-
tem as a noisy environment. In analogy with classical
systems showing dissipation, the standard terminology
refers to these types of systems as open quantum sys-
tems [1, 2]. However, in addition, a plethora of novel
phenomena arise, viz., dephasing, decoherence, and re-
vival of coherence among them all.

Open quantum systems are ubiquitous in physics, and
the simplest description of their dynamics is by means of
Markovian master equation called Davies-GKLS one [3–
5]. Recently however, open systems showing a behavior
far from the Markovian dynamics are becoming a bloom-
ing topical area [6]. In particular, when the environment
is a solid state system, relaxation and decoherence can be
mediated by other bosonic fields, e.g., phonons [7, 8] or
magnons [9, 10], whose behavior is typically not Marko-
vian. In particular, the interaction with the acoustic
phonons has been experimentally shown to be the mech-
anism responsible for the damping Rabi-oscillations and
Rabi-frequency renormalization in InGaAs/GaAs quan-
tum dots [11, 12]. Another intense field of research where
the use of the correct master equation is still a matter of
controversy is the modeling of the coherent excitation
energy transfer in chemical compounds, such as chro-
mophores in light-harvesting complexes [13–15].

As noted in [16] at various stages of evolution, the
character of evolution can change from Markovian to
non-Markovian and vice-versa. A system was proposed,
where at the initial and final stages the Markovian de-

scription works (albeit with different master equations),
while in the intermediate times, one needs a different de-
scription. The one working in the initial stage, proposed
in [1], is now called quasi-secular (do not confuse with
partial secular of [17]), while the other one is the Davies
equation, i.e. the full-secular. (See Box 1 for present-
ing this phenomenon in a more general scenario.) To
describe dynamics in the whole time, one can use the
so-called Bloch-Redfield equation [18, 19], perhaps the
earliest master equation. The latter better accounts for
finite coupling with bath (e.g. offering a better steady
state). However, it may not preserve positivity.

The first attempt to provide a completely positive al-
ternative was done in [16]. This equation was later in-
dependently discovered and developed in Refs. [20, 21],
under the name of refined weak coupling limit (this ter-
minology was also used in the context of coarse-grained
master equation in [22, 23]). The equation was derived
using a cumulant expansion, therefore for convenience,
we so will term it shortly cumulant equation. In prin-
ciple, it is valid for all times scales and therefore inter-
polates between the two Markovian evolutions mentioned
above, as we show later herein. In a later period, an effort
was undertaken to modify the Bloch-Redfield in order to
make the dynamics complete positive [24–27] (see also
Refs. [28, 29] in this context).

There is a problem with the above equations is that
they require full knowledge of spectral density, and in-
volve integration over all frequencies. While this is doable
for small systems, it will become clearly less and less fea-
sible for larger systems. This is in manifest contrast with
the powerful easiness of Davies equation that requires the
knowledge of merely few physical parameters.

In this paper, we provide an approximated version of
the cumulant equation, which retains complete positivity
as well as non-Markovianity, but also exhibits the sim-
plicity of the Davies equation. The coefficients appearing
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in the proposed evolution equation are not integrals any-
more, and they depend only on the Bohr spectrum of
the system. As a starting point, we consider the physical
Hamiltonian of the system weakly coupled with a reser-
voir, for which the effects, such as the Lamb-shift, have
already accounted within a proper effective theory [30–
32], as required for the validity of equations in the long-
time limit.

We illustrate our equation with a three-level system,
the simplest system where the effect of intermediate time
considered in [16] can be seen. We show that cumulant
equation interpolates between two Markovian evolutions
– quasi-secular and full secular – reproducing one of them
for short times and the other one for long times. We also

show that filtered approximation evolution does the job,
being a very good approximation of the cumulant one.
Importantly, FA equation is computationally much less
expensive than the original cumulant equation. We also
show that the dynamics predicted by the cumulant equa-
tion and FA equation have a non-Markovian character.

We then prove for general open systems that our dy-
namical equation interpolates between quasi-secular and
full-secular equations. We do a sanity check comparing
both the cumulant equation and FA equation with the
exact dynamics given by the hierarchical equations of
motion (HEOM) theory and the Redfield equation in the
case of qubit.

Box 1 - Intermediate Time Dynamics

The relevant time scales governing the dynamics of an open quantum system are related to the inverse of the
system’s Bohr frequencies of the transition induced by the system-bath interaction. The time-energy uncertainty
relation written as t ≥ 1

∆ω tells how long the system should interact with the bath in order that the dynamics
is able to ‘resolve’ all the transition frequencies of the system. To easier visualize the concept, let us imagine a
system that has a coarse-grained level structure as depicted in the left picture. We denote as ∆ω1 the largest
transition frequencies between two consecutive ‘quasi-bands’ (subgroups of energy levels). A deeper look, namely
letting the system and bath interact longer, enables us to resolve firstly the Bohr frequencies of the order of
∆ω2 < ∆ω1 between a sublevel of ‘quasi-bands,’ and afterward also the third quasiband ∆ω3 < ∆ω2 < ∆ω1.
We stop our pictorial description after three steps, but in principle, it will last till all the transitions frequency
are probed. This translates into the time evolution plot of a generic element of the system reduced density
matrix ρmn as depicted in the middle graphic. At the beginning, for short times, t < 1

∆ω1
, we observe the

‘initial stage’ of evolution, as the shortest characteristic time scale of the system, i.e., 1
∆ω1

, sets the resolution
for the dynamical equations. When t ≳ 1

∆ω1
we are in the regime where the dynamics is correctly described

by a Davies-type quasi-secular generator L∆ω1 that includes jump operator proportional to frequencies of the
order of ∆ω1. After a while this description will not be valid anymore and we are in the first “grey zone” of
the evolution in time. At this moment no valid Davies-like master equation can be derived. At later times,
t ≳ 1

∆ω2
a less quasi-secular (or more secular) generator can be written, namely L∆ω1,∆ω2 . After this period

we encounter the second “grey zone”, and eventually for t ≳ 1
∆ω2

the dynamics will be described by the (fully-)
secular Davies-GKSL generator Lfs ≡ L∆ω1,∆ω2,∆ω3 .
In the right graphic, we show the situation when only one frequency difference can be assumed ∆ωmax (we are
in the presence of a quasicontinuum structure, ωmax is the frequency difference between the ground state and
the highest excited level) and the only valid Davies-generator is the secular one in the t → ∞ limit.

II. Time scales in open system dynamics

An intriguing question we address for systems weakly
interacting with a single thermal bath is the follow-
ing: is it possible to derive a simple dissipative equation

that catches some non-Markovian features while retain-
ing during the entire evolution the complete positivity?
The answer might be exceptionally important for systems
with a complex energetic structure.

The energetic configuration (i.e., the transition fre-
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quencies) of a generic system relates to the different
time scales identifiable in its dynamical evolution, see
e.g. [17, 33]. If we can group frequency differences into
two groups that are well separated from each other (the
same analysis applies to more groups) marked by ∆Ω and
∆ω, for time

1
∆Ω ≪ t ≪ 1

∆ω
, (1)

the quasi-secular master equation holds [1]. Briefly
speaking, a quasi-secular master equation consists of a
dissipator derived with respect to a modified Hamilto-
nian. In the modified Hamiltonian, the almost degen-
erated energy levels, i.e., separated by energy difference
∆ω, are replaced with (perfectly) degenerated levels of
averaged energy. Next, the standard derivation proce-
dure of the Markovian master equation takes place [1, 2].
In the final step, which is performed in the Schrödinger
frame, the modified Hamiltonian is (by hand) replaced
with the original, non-degenerated one. Furthermore, for
times

t ≫ 1
∆ω

, (2)

the (fully-) secular equation holds [17, 34]. For more
groups, we have more time scales, and series of equations,
which starts with “most quasi-secular” (or “least secu-
lar”) and becomes more and more ”secular” (till fully-
secular equation), see for an illustrative description the
Box 1.

The question we want want to address in the paper is:
is there a simple, accurate, and well-structured evolution
equation that describes the whole range of time, hence
covering also times t ≃ 1

∆ω ?
This question is important as in a generic system, there

is no division between the well-separated groups of fre-
quency differences at all, so there is even no chance to
implement quasi-secular equations. The mentioned issue
becomes especially significant for complex systems.

A. Notes on the dynamics at intermediate times

As noted in [35] the most widespread microscopically
derived master equation, the GKSL-Davies equation [3]
fails to describe time regimes where differences of Bohr
frequencies are too small in comparison to the inverse of
time relaxation of the system. In Ref. [16] this problem
was considered in depth. Here, an oscillator with small
anharmonicity is considered, so that there are two energy
scales: the basic one is given by the frequency of the
oscillator, and a much smaller one is introduced via an
anharmonicity coefficient χ.

Then for short times, the environment does not have
enough time (due to time-energy uncertainty) to distin-
guish the levels separated by small energy differences,
so that the secular approximation is only done with re-
spect to the basic frequency. This results in the master

equation marked as type I in Ref. [16], where there is a
cross-talking between those near degenerated Bohr fre-
quencies. Such a master equation is supposed to work
well for times evolution satisfying

t ≪ 1
χ

. (3)

In Ref. [1] a procedure of forming such an equation for
a general quantum system was outlined. A similar but
much simpler situation – the three-level system – has
been considered [36], where experimental realization was
proposed to show that for short times the equation of
type I is the correct description. This type of equation
has been later considered in the literature under the name
of quasi-secular such as in [37] and [38].

For times long enough, i.e.

t ≫ 1
χ

, (4)

the nearby transitions are recognized by the environment,
and the full secular approximation is legitimate, and then
the master equation marked as type III in Ref. [16] works,
which is the standard Davies-GKSL master equation.

Alas, there is a “grey zone”. Namely, when the times
are comparable to 1/χ, in which none of the equations
(neither quasi-secular, nor fully-secular) works well.

One way to cover the grey zone is to use Bloch-Redfield
equation [18, 19]. Its time independent version is of
comparable simplicity as Davies-GKLS equation, albeit
less accurate than a more complicated time dependent
version. Yet, as mentioned Redfield equation does not
preserve positivity of the density matrix in general. In
Ref. [16] an completely positive evolution, aka ”the re-
fined weak coupling limit” [20], that in particular covers
the grey zone was proposed. This methodology was fur-
ther developed in Refs. [20, 21, 24, 39, 40]. However, the
refined weak coupling approach is much more involved
then Davies-GKSL equations (the complexity is compa-
rable to time-dependent Bloch-Redfield equation).

There were other attempts to have completely positive
evolution, that covers the ”grey zone”. In Ref. [24], the
authors derive a CPTP master equation which might
work in principle in any chosen, particular time scale.
However, it depends on an additional phenomenological
parameter, the coarse-graining time. In Ref. [24] the
fixed coarse-graining time is optimized with respect to
the entire evolution, however it is expected that time-
dependent coarse-graining procedure can reproduce the
exact evolution even better1.

Thus, if we are interested in the system evolution over a
given time scale, we have to set the parameters suitably,
i.e. we shall not be able to describe evolution through

1This is not evident from [24], still short-times behavior of dash-
dotted black line in Fig. 5 therein suggests such a possibility.
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the whole time having fixed parameters of equation. The
reason behind it is intuitive: since two extreme cases
(quasi- and fully-secular dynamics) are Markovian with
generators having completely different structures, there
cannot be a Markovian generator that could produce a
dynamics recovering the extreme generators as proper
limiting cases. This might only happen if the genera-
tor is changed adiabatically, which requires much longer
times scales than the inverse of any difference of Bohr
frequencies in the system.

Essentially, the whole art still consists in making phys-
ically motivated approximations, while keeping complete
positivity and trace preservation (CPTP property) of the
evolution, in hope for obtaining simple equations that
nevertheless work pretty well (for all times scales).

III. Refined weak coupling: the cumulant equation

In this Section, we recall the refined weak coupling
limit here referred to as ”the cumulant equation”. In
this treatment of the dynamics of an open quantum sys-
tem weakly interacting with its environment, the Marko-
vianity of the time evolution of the open system is not
presumed. Therefore, in general, the time evolution of
the reduced density operator is described with a time-
dependent generator rather than with a quantum dynam-
ical semigroup.

We consider a system interacting with a bath, with the
following total Hamiltonian:

HS+R = HS + HR + λHI , (5)

HI =
∑

i

Ai ⊗ Bi, (6)

where HS is the physical (measurable) Hamiltonian of
the system, i.e., the one including any Lamb shift, and
without loss of generality, we assume that average of Bi

over bath state vanishes. The system Hamiltonian HS is
chosen such that in the interaction picture the system will
undergo only a dissipative dynamics [30]. To derive the
cumulant equation we follow the approach in Ref. [16],
which we summarize in the following. The reduced dy-
namics of the system in the interaction picture is defined
as the partial trace over the reservoir degrees of freedom

ρS(t) = Λ(t)ρS = TrR
[
U(t, t0)ρS(t0) ⊗ ρRU†(t, t0)

]
(7)

where U(t, t0) = T exp
{

−iλ
∫ t

t0
dt′H̃I(t′)

}
is the time-

ordered unitary propagator of the whole system.
A formal expansion of the reduced dynamics can be

written as Λ(t) ≡ exp
{∑∞

n=1 λnK̃(n)(t)
}

, then assuming
that the bosonic bath is approximately Gaussian (such
that it is enough to consider up to the second-order
correlation function), it is possible to consider terms
up to the second order in λ, arriving at the expression
Λ(t) = exp

{
λ2K̃(2)(t)

}
, while the first term K(1)(t) re-

sults to be null due to the centralization of the bath op-
erators.

Finally, one can write the time evolution in the in-
teraction picture of the reduced density operator ρ̃S(t)
associated with the open system, that is given by the
equation:

Box 2 - The FA equation

We introduce a novel approximation technique
when deriving the cumulant equation in the weak-
coupling limit. The resulting filtered approxima-
tion (FA) is suitable for a variety of scenarios and
works for almost all time regimes. The evolution
will be guided by eK̃(2,⋆)(t) in contrast to the GKLS
dynamics given by eLt.
The FA equation has an advantage of being par-
ticularly simple, while being an impressively good
(for all examined cases) approximation of the cumu-
lant equation. Within this formalism, we preserve
the complete positivity maintaining the physical in-
sight of Bloch-Redfield equations, and we take trace
of non-Markovianity where the Markovian-master
equations, either quasi- or fully-secular, fail.

ρ̃S(t) = eK̃(2)(t)ρ̃S(0), (8)

where the superoperator K̃(2)(t) reads

K̃(2)(t)ρ̃ = 1
ℏ2

∫ t

0
ds

∫ t

0
du ei(ω′s−ωw) 〈B̃j(s)B̃i(u)

〉
ρ̃B

×
(

Ãi(s)ρÃ†
j(u) − 1

2{Ã†
j(u)Ãi(s), ρ̃}

)
.

(9)

The above superoperator takes into account dynamics
guided by a time-dependent Hamiltonian HS+R(t) =∑

i Ai(t) ⊗ Bi. The time dependence can also be present
at the level of HS(t). Both cases can describe enthralling
physical situations. The former case can be used to
model all those situations where there is the possibility
to tune in time the system-bath coupling, making it pos-
sible to recover the adiabatic limit (of a slowly varying
coupling) or the Floquet picture of an interaction peri-
odically switched on and off; the latter covers systems
perturbed by an external field, such as atoms shined by
laser light or in a magnetic field varying in time.
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In this paper, we consider a total Hamiltonian HS+R
time independent, then when moving into the frequency
domain, the superoperator K̃(2) is given by

K̃(2)(t)ρ̃S = 1
ℏ2

∑
i,j

∑
ω,ω′

γij(ω, ω′, t)

×
(

Ai(ω)ρ̃SA†
j(ω′) − 1

2

{
A†

j(ω′)Ai(ω), ρ̃S

})
. (10)

In the above formula (that is in GKSL form) the time-
dependent relaxation coefficients γij(ω, ω′, t) are ele-
ments of a positive semi-definite matrix, and are given
by:

γij(ω, ω′, t) =
∫ t

0
ds

∫ t

0
dw ei(ω′s−ωw) 〈B̃j(s)B̃i(w)

〉
ρ̃B

,

(11)

where ⟨AB⟩σ ≡ tr {ABσ} and are the bath operators in
the interaction picture B̃j(s). The above formula can be
integrated into the following form

γij(ω, ω′, t) =ei ω′−ω
2 t

∫ ∞

−∞
dΩ

[
t sinc

(
ω′ − Ω

2 t

)]
×
[
t sinc

(
ω − Ω

2 t

)]
Rji(Ω), (12)

where Rji(ω) is the autocorrelation function of the bath
given by Rji(ω) = ⟨Bj(ω)Bi⟩ρ̃B

, and B(ω) denotes the
Fourier transform of B(t) .

Finally, the jump operators Ai(ω), A†
i (ω) are defined

in the usual way:

Ai(ω) =
∑

ϵ′−ϵ=ℏω

Π(ϵ)AiΠ(ϵ′). (13)

Here, the sum runs over Bohr frequencies of the renor-
malized Hamiltonian HS , and the operators Π(ϵ) are then
projections onto the eigenspace relative to the eigenen-
ergy ϵ of the Hamiltonian HS of the open system. This
requirement is because the above evolution results from
the central limit like theorem – so that only cumulant up
to the second-order is kept – which requires eliminating
all the systematic effects of noise (see [16, 30]). We then
have an evolution that is consistent with thermodynam-
ics - i.e., leads to a stationary state which is the Gibbs
state of the observed Hamiltonian, unlike in the approach
that is widespread in the literature, where the stationary
state is the Gibbs state of the bare Hamiltonian [2, 20].

From now on, we assimilate a system of units for which
all physical constants are set to 1.

Remark 1. Our notation differs slightly from the one
used in reference [20]. This discrepancy can be most eas-
ily observed in equation (10). Namely, the positions of
ω and ω′ in the Kossakowski matrix γ are interchanged.
We choose the arrangement of indices for which complete
positivity of K̃(2)(t) is almost evident.

IV. Approximations of the cumulant equation

In this Section, we present the main results of the pa-
per. Nonetheless, before showing how non-Markovian ap-
proximation arrives from the cumulant equation we first
discuss the long-times regime (and its subtleties) in which
the cumulant equation reproduces Markovian evolution.
Next, we present a method to cope with the complexity
problems emerging in the original cumulant equation by
means of an approximation procedure. These will allow
to have a ready-to-use dynamical equation à la Davies
that in addition allows to capture the non-Markovian
evolution of the system in the intermediate time regime,
for an illustrative description see Box 2.

A. The Markovian approximation

The (fully-secular) Davies-GKSL master equation can
be readily obtained from the cumulant equation [20], by
performing a specific limit on its superoperator. The
integrated form of Davies-GKSL master equation follows
then from the following replacement in Eq. (8).

K̃(2)(t) −→ tL̃fs = t

(
lim

τ→+∞

1
τ

K̃(2)(τ)
)

t≈∞
≈ K̃(2)(t),

(14)

where the limit in r.h.s. can be easily computed us-
ing standard methods, and L̃fs is the interaction picture
time-independent generator of a semigroup of the Davies
equation (see Sec. C 1). This generator is also labeled as
fully-secular to distinguish it from the ones valid in other
time regimes. The above procedure results in the Marko-
vian master equation in secular approximation; therefore,
all interesting memory effects are neglected. This situa-
tion motivates us to derive another kind of approxima-
tion that interpolates between non-Markovian dynamics
and the Markovian case in a way that does not neglect
memory effects, i.e, the filtered approximation (FA) of
the cumulant equation.

Remark 2. In rigorous mathematical terms tL̃fs is
not a long-time limit of the cumulant superoperator
K̃(2)(t) [30]. However, for the renormalized (no Lamb
shift term) cumulant equation, studied here, for some
large t0 we have

∀t>t0

∥∥∥K̃(2)(t) − tL̃fs
∥∥∥

1
< C. (15)

where C is an absolute contant. Thus, the cumulant
equation reproduces the dynamics of the (renormalized)
Davies-GKSL equation in the long-time limit [41] (cf.
Ref. [20]). Therefore, the approximation in Eq. (14) can
be understood effectively in the sense of resulting dynam-
ics. Still, the long-time limit of the cumulant superoper-
ator K̃(2)(t) is given by a more involved expression [30].
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B. Filtered approximation (FA)

Here we provide the main result of the paper - the
”filtered approximation” (FA). The resulting equation is
much simplified but the dynamics is still non-Markovian,
in a sense that the dynamical map of the FA equation
does not constitute a quantum dynamical semigroup.

In simple words, in the secular approximation the
“sinc” functions in the integrands of the elements of the
Kossakowski matrix in the generator are replaced with
Dirac’s deltas. In our approximation method, that starts
at the level of cumulant equation dynamical map, only
one “sinc” function (out of two, in a product appearing
in integrands) is replaced. In this way we retain non-
Markovianity, but severely simplify the structure. Next,
we recover the CPTP structure by square root tech-
niques [27, 42]. The mathematical details of the deriva-
tion are described in Section B 1 of the Appendix.

γij(ω, ω′, t) ≈ γ⋆
ij(ω, ω′, t)

= 2πtei ω′−ω
2 tsinc

(
ω′ − ω

2 t

)∑
k

R
1
2
jk(ω′)R

1
2
ki(ω), (16)

where R
1
2
ij(ω) ≡ (R 1

2 (ω))ij . Furthermore, γ⋆
ij(ω, ω′, t) is

a positive semi-definite matrix, which guarantees CPTP
dynamics, and it is a generalization of Markovian relax-
ation rates γij(ω) = 2πRij(ω) known from the Davies
equation. In particular, the terms diagonal in ω′ ω′s re-
produce the Markovian rate: γ⋆

ij(ω, ω, t) = 2πtRij(ω).
We can now write the FA approximation of the cumu-

lant equation as follows:

ρ̃⋆
S(t) = eK̃(2,⋆)(t)ρ̃S(0), (17)

where the generator K̃(2,⋆)(t) is obtained from Eq. (10)
by inserting the above approximated time-dependent re-
laxation coefficient γ⋆

ij(ω, ω′, t), in place of γij(ω, ω′, t).
The remarkable property of this approximation is the

simplicity of the final formulas. Here, the coupling to the
reservoir is described with a finite (and small) number of
parameters; however, the dynamics is CPTP and non-
Markovian in the above sense. Therefore, this approxi-
mation is of perfect use in situations in which no good
microscopic and theoretical model of the bath spectral
density is known. In these cases, R can be constructed
with phenomenological values (measured in an experi-
ment) and used to describe the system’s dynamics in
short and intermediate times that might be beyond the
reach of spectroscopy. We note here that the technique
of splitting the spectral density by means of the square
root was considered, see e.g. [27, 43].

Remark 3. In Appendix B 2 we derive yet another type
of approximation of the cumulant equation. The II-type
approximation is not less complex in computation than
the cumulant equation itself, however (alike FA approx-
imation) it has a property of being ”cutoff-stable” (see
Appendix B 2 for more details).

V. The Spin-Boson model dynamics

In this Section, we substantiate our results on the pop-
ular testbed of the transverse spin-boson model [44–47],
that despite its simplicity does not have an exact analyt-
ical solution (at T > 0) for all the time regimes. We first,
briefly describe the model. Subsequently, we compare the
dynamics obtain with the cumulant equation and its reg-
ularizations with the ones obtained with Davies-GKSL
equation, Bloch-Redfield equation and exact numerics.
Finally, we present the evidence for non-Markovianity of
the FA aproximation dynamics.

A. The system

The spin-boson model concerns a two-level system lin-
early coupled to a bath of harmonic oscillators. The
Hamiltonians of the model take the form:

HS = ω0

2 σz, HB =
∑

k

ωka†
kak, (18)

HI = σx ⊗
∑

k

gk

(
ak + a†

k

)
, (19)

where ω0 is the transition frequency between ground and
excited state, denoted |g⟩, |e⟩ respectively. In the follow-
ing basis:

|g⟩ =
(

0
1

)
, |e⟩ =

(
1
0

)
, (20)

we obtain the exact form of the system’s jump operators

A(∓ω0) = σ± = (σx ± iσy)
2 . (21)

Furthermore, B =
∑

k gk

(
ak + a†

k

)
are the reservoir’s

operators, with a†
k, ak being the usual creation and anni-

hilation operators respectively. Then, in the continuum
limit, for a heat bath in a Gibbs state, we obtain the
following [20, 39]

R(Ω) = J(Ω) (N (T, Ω) + 1) , (22)

where N(T, Ω) = [exp{Ω/(T )} − 1]−1 is the Bose-
Einstein distribution at temperature T . We transform
to the neutral system of units, by setting ω0 as a ref-
erence frequency, so that N(T, Ω) = N(Teff , Ω

ω0
), with

Teff = T/ω0. The real temperature would read in this
case T = ℏω0

kB
Teff , and J(Ω) is the spectral density.

B. Cumulant vs Redfield, Davies and exact
numerics

Using the content of subsection V A above, we obtain
a specific form for the action of the superoperator of the



7

cumulant equation (cf. Ref. [20], see Remark 1) (10):

K̃(2)(t)ρ̃S =
∑

µ,ν=±
Γµν(t)

(
σµρ̃Sσ†

ν − 1
2
{

σ†
νσµ, ρ̃S

})
,

(23)

where we follow the notation from reference [20], by de-
noting Γµν(t) ≡ γ(−µω0, −νω0, t) (see equation (12)).

The cumulant equation for the spin-boson model has
been studied before in the literature [21]. However, a
comparison of the cumulant equation dynamics, and its
(also non-Markovian) alternatives with an exact solution
is required, to assess and compare their accuracy. In this
section, we use a testbed of the spin-boson model to pro-
vide such a comparison. We follow the choice of param-
eters proposed in Ref. [21], as we want to compare our
results with the results therein. This choice goes beyond
the weak coupling regime, in which the second order dy-
namical equation are most accurate. Still, (anticipating
a bit) similar qualitative conclusions hold for any other
reasonable set of parameters (see Fig. 1). Yet weaker
coupling diminishes discrepancy between solutions due
to different dynamical equations, and therefore obscures
the presentation.

In Fig. 1 (bottom plot) we observe that the solution to
the dynamics due to the cumulant equation has higher
fidelity with the numerically exact solution, obtained
with the hierarchical equations of motion (HEOM), than
any other considered equation, i.e., Bloch-Redfield equa-
tions [17], Davies-GKSL Markovian master equation and
the FA equation. In the middle and top plot of Fig. 1
we observe that the cumulant equation predictions for
the evolution of populations and coherence follow closely
the exact solution due to HEOM. For long times popu-
lations predicted by the cumulant equation matches the
predictions obtained with Davies-GKSL equation, hence
does not match the HEOM dynamics (top plot in Fig. 1).
The discrepancy for longer times is due to a mismatch
between bare and renormalized (effective) Hamiltonians.
Here, the dynamics for all methods is computed w.r.t.
to the bare Hamiltonian. To recover an agreement be-
tween HEOM and the cumulant equation at later times
the renormalized Hamiltonian should be used for cumu-
lant equation instead [30, 31], however this way accuracy
at shorter times can be diminished [32]. The renormal-
ization methodology is also applicable for other equations
presented in the simulation herein, see Remark 4 at the
end of this subsection. Finally, the beyond-weak coupling
regime makes the discrepancy non-negligible, and visible
in the plot.

The plots in Fig. 1 let us also compare the dynam-
ics provided by the FA equation with the solutions due
to the cumulant equation, numerically exact method of
HEOM, and other equations. In the top plot of Fig. 1,
we observe that the evolution of populations predicted
by the FA equation matches almost perfectly the evolu-
tion obtained with Davies-GKSL for all times, therefore
discrepancy with the cumulant equation at shorter times

Cumulant

FA

BR

HEOM

MME

0 5 10
t(ω0

-1)0.25

0.375

0.5
ρee

Cumulant

FA

BR

HEOM

MME

0 5 10
t(ω0

-1)0

0.25

0.5
|ρeg|

Cumulant

FA

BR

MME

0 5 10
t(ω0

-1)0.994

0.997

1
(ρ,ρHEOM)

FIG. 1. The plots show a comparison of the original cumu-
lant equation for the spin-boson model with the Hierarchichal
Equations of motion (HEOM) which is a method to obtain
numerically exact solutions and the Bloch-Redfield equation
which is the most popular equation for non-markovian dyn-
maics. In (a) we report the evolution of the excited state pop-
ulation, in (b) the absolute value of the coherence between the
ground state and the excited one. The parameters chosen for
this simulation are T = 1, ωc = 5, α = 0.05, ω0 = 1 and abso-
lute and relative tolerance for numerical integration ϵ = 10−14

for all of the methods above. In (c) we report the fidelity cal-
culated between the density matrix obtained considering the
Bloch-Redfield equation and the cumulant equation with re-
spect to the solution of the HEOM considered as target state.
The HEOM simulation a maximum hierarchy of seven ADOS.
We can observe all Non-Markovian approaches are close to the
numerically exact dynamics, a fact that is reflected in their
really high value of fidelity. The cumulant equation shows
a better accuracy than the Bloch-Redfield equation. In the
plots the cumulant equation corresponds to the red solid line,
the FA equation corresponds to the dash-dotted pink line,
the Bloch-Redfield equation (BR) corresponds to the dashed
blue curve, while the orange curve with markers denote the
Markovian master equation (MME).
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must be reported. Interestingly, the middle plot in Fig. 1
shows that the FA equation predicts the evolution of co-
herence that well matches the evolution obtained with
the cumulant equation and HEOM. Finally, we report
that the FA equation exhibits quite high fidelity with
the exact solution (bottom plot in Fig. 1). The dynam-
ics provided by the FA equation has better fidelity with
exact solution that Davies-GKSL equation (especially at
short times), and similar fidelity to Bloch-Redfield equa-
tion, however a bit worse fidelity than cumulant equation
itself. The details of the simulation and an elaborated
description of methods are available in the Appendix.

Remark 4. While the dynamics due to the HEOM, pre-
sented here, converges to the Gibbs state w.r.t. an effec-
tive, the so-called mean-force Hamiltonian [31, 48], the
dynamics due to other equation does not. Using renor-
malization technique proposed in Ref. [30] and the mean-
force Hamiltonian corrections in Refs. [31, 48] it is possi-
ble to modify Davies-GKSL, FA and the cumulant equa-
tion so that they converge to mean-force Gibbs state as
HEOM does (formally up to the second order). However,
increase in fidelity for long times would result in loss of
accuracy at shorter times scales [32]. There is a hope
that more sophisticated approach to renormalization can
work for all time scales.

C. Application of the approximated dynamics

Here, we address a comparison of the different tech-
niques that we have so far discussed. In particular,
we report the evolution of the population of its ex-
cited state ρSee and of the modulus of the coherence
ρSeg between its excited and the ground state, hav-
ing as initial state (ρS(0))ij = 1/2. The FA equations
are readily obtain by replacing Γ(t) in equation (23) by
Γ⋆

µν(t) ≡ γ⋆(−µω0, −νω0, t) (see Eq. (17)).
In Fig. 2, we compare in greater detail the dynamics

obtained with the FA equation with the dynamics given
by the cumulant equation and the dynamics given by
the secular Davies-GKSL equation on the test ground of
the spin-boson model. In particular, we observe that the
evolution of the population predicted by the FA equa-
tion (almost exactly, up to small oscillations) matches
the evolution predicted by the Davies-GKSL equation,
whereas the cumulant equation forecasts slower decay of
the excited state population. Regarding the evolution of
the (modulus of) coherence, we observe a good agreement
between the predictions of the FA equation and the cu-
mulant equation. The values of the modulus of coherence
given by the FA equation and the cumulant equation os-
cillate around the decay curve predicted by the secular
Davies-GKSL equation.

The deviation of the evolution predicted by the FA
equation from the evolution predicted by the Davies-
GKSL equation (Markovian master equation in secular
approximation) is a good sign that our approaches can

be used to model an experimental situation where the
standard quantum optics master equation is no longer
valid [49]. At the same time, we refer [50] for an exten-
sive treatment of the non-positivity of the Bloch-Redfield
equation for the spin-boson model.

This promising result allows us to surmise that the
FA equation we have introduced can be applied to tackle
the experimental situation showing Fano coherences and
coherent transport of excitation in light-harvesting sys-
tems [36, 51].

D. A note on the spectral density

In this place, we discuss our choice of the profile of the
spectral density used to plot the dynamics obtained with
the Davies-GKSL equation, the Bloch-Redfield equation,
the cumulant equation, its FA approximation and exact
numerics of HEOM. Following Ref. [20], we choose an
Ohmic spectral density with exponential cutoff profile,
i.e, J(Ω) = αΩ × e− |Ω|

ωc , with cutoff frequency ωc. The
presence of cutoff removes divergences from Eq. (12), and
consequently from Kossakowski matrix of cumulant su-
peroperator. It allows to perform numerical integration
and obtain the results plotted in Fig. 2 a) and b). The
magnitude of the coupling constant (for the sake of Fig. 1,
Fig. 2 and Fig. 3) is α = 0.05, and ωc = 5ω0. Our choice
of parameters allows to compare our findings with the
results in Ref. [20], and falls within a reasonable range
of values [28]. Despite the fact, that formally the above
choice of the magnitude of the coupling constant goes
beyond the weak coupling regime, we observe in the bot-
tom plot of Fig. 1, high fidelity of the cumulant equation
and FA equation dynamics (w.r.t. HEOM), what con-
firms the above statement. We remark that, different
choices of the spectral density and cutoff profile account
for different rates at which the system approaches the
equilibrium. In particular, it is evident, from the plots
in Fig. 2 that the cumulant equation with ωc = 5ω0 os-
cillates around the Markovian evolution, whereas higher
cutoff frequency might result in completely different be-
havior.

E. Evidence of non-Markovianity

A natural to see if the dynamics is non-Markovian [52]
is to study the evolution of the trace distance between
two states, namely 1

2 ||ρ−σ|| = 1
2 Tr

{√
(ρ − σ)†(ρ − σ)

}
.

A Markovian evolution, tending monotonically to the
thermal equilibrium, will force two states to become less
and less distinguishable as time passes. In Fig. 3 we re-
port the evolution of the trace distance between two ini-
tially orthogonal states σii = 1

2 , σeg = − 1
2 i and ρ = σ∗

for the spin-boson model developed in Section V A.
An increase in distinguishability (see Fig. 3) between

the two orthogonal states evolving under the same dy-
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FIG. 2. Spin-Boson model – Interaction picture evolution of the coherence (left), and population of the excited state (right) of
the reduced density matrix of the system ρS . The initial state of the system is ρSij(0) = 1

2 . The reservoir is a heat bath at
temperature Teff = 1 in units of ω0. The short-dash-dotted orange curve is the evolution computed via secular Davies master
equation, the solid red curve is the evolution obtained with the cumulant equation in Eq. (8), and the dashed pink curve refers
to the FA equation in Eq. (17). In the b) plot populations due to FA equation and MME coincide. The system-bath coupling
constant and the cutoff frequency are α = 0.05, ω = 5ω0, respectively (see also Ref. [20]).

FIG. 3. The plot of trace distance between the reduced den-
sity matrices obtained with initial states σii = 1

2 , σeg = − 1
2 i,

ρ = σ∗ and different dynamical equations. Dynamics given by
the FA equation is given by a short-dash-dotten pink curve,
by the cumulant equation by a solid red curve, by the fully-
secular Markovian master equation (MME) by a short-dash-
dotted orange curve, and the dynamics obtained with HEOM
is given by pink markers. The non-monotonic behaviors of
curves, obtained with the cumulant equation, FA equation
and HEOM, indicate the non-Markovianity of dynamics. The
inset highlights the non-monotonic behavior of the trace dis-
tance curve corresponding to HEOM. Here, the temperature is
Teff = 5, the system-bath coupling is α = 0.05, and ωc = 5ω0.
The cumulant equation shows a better accuracy than the
Bloch-Redfield equation. In the plots the cumulant equation
corresponds to the red solid line, the FA equation corresponds
to the dot-dashed pink line, the BR equation corresponds to
the dashed blue line, while the grey hombuses and orange
triangles denote the Bloch-Redfield equation with the partial
secular approximation and the GKLS equation respectively

namical map is indeed a signature of how the cumu-
lant equation, our FA equation and HEOM exhibit non-

Markovian dynamics and the backflow of information
from the environment to the system [52–54] (see also
Fig. 2 in Ref. [20]). The non-monotonic behavior of
trace distance evolution provided by HEOM is less ev-
ident than for the cumulant equation or for FA equation.
This surprising feature of the cumulant and FA equation
requires and deserves a further investigation that is be-
yond the scope of this manuscript.

Here, we need to report that we were able to show
the non-monotonicty of the trace distance solely in a
regime of relatively strong coupling, i.e., α = 0.05 and
strong driving (Teff = 5). While in Ref. [20] the non-
Markovianity for the cumulant equation was shown at
low temperatures (α = 0.05, Teff = 0), the FA equa-
tion only becomes non-Markovian at higher temperatures
(even for Teff = 1 we didn’t observe the effect). Fur-
thermore, in the regime in which the cumulant and the
FA equations are most accurate, i.e., in the weak cou-
pling regime, we were unable to provide evidence for non-
Markovianity of dynamics via non-monotonicity of the
trace distance. This brings us to question pure existence
of non-Markovianity (indicated by non-monotonicity of
the trace distance) in the weak coupling regime.

VI. Convergence to quasi- and fully-secular master
equations.

The necessity to employ a fully- or quasi-secular master
equation can be traced back to the problem of choosing
a proper time interval when the dynamics of the system
should be studied. To clarify the following discussion, we
consider a complex system whose transition frequencies
can be grouped into two or more well-separated groups.
Obviously, the simplest case presenting this configuration
is a three-level system (also known as a qutrit) – see
Section VI A for the details.
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In principle the cumulant equation properly approx-
imates the dynamics in all time regimes [16, 30]. In
particular, the cumulant equation reproduces quasi- and
fully-secular master equations for short and long time
scales, respectively. Similarly, generator of the FA equa-
tion K̃(2,⋆)(t) developed in in Section IV B, reproduces
the generators of the quasi- and fully-secular master
equations in short and long times regimes, respectively.
Namely, we have

K̃(2,⋆)(t) t→∞
≈ tL̃fs, (24)

K̃(2,⋆)(t)
1

∆Ω ≪t≪ 1
∆ω≈ tL̃qs, (25)

where ∆ω and ∆Ω are as in Sec. II (see also Box 1).
The above long-time limit is understood effectively at
the level of dynamics, as in the case of the cumulant
equation. The remnant (bounded) terms in dissipators
reflect the non-Markovian characteristics of dynamical
equations, yet as time increases the diagonal (Markovian)
parts of the superoperatros dominate and the influence
of the bounded terms becomes less and less important

for the dynamics [41].

From Eq. (16) it is almost evident that the FA equation
reproduces the fully-secular master equation in the long-
time limit. The basic idea of the proof that ⋆-regularized
cumulant equation, i.e., FA equation quasi-secular mas-
ter equation (in adequate time regime) is to gather the
transition frequencies in (at least two) well-separated
groups. Next, a series of approximations can be justi-
fied. A more thorough explanation and detailed proofs
of the above properties are provided in Appendix C. Be-
low we provide a sketch of the proof in the special case
of V-type three level system.

Consider such a system with transition frequencies
{ωi}i=1,2 = ± {ω0 ± ∆/2}, in the 1

ω0
≤ t ≤ 1

∆ time
regime (ω0, ∆ > 0). The sketch of our proof start with
writing approximate form of the superoperator K̂(2)(t)
(which refers to cumulant equation or FA equation) in the
Schrödinger picture (see Eq. (C30), and also Ref. [30]).
For conciseness of presentation we skip the extra indices
of jump operators.

K̂(2)(t)ρS = −it [HS , ρS ] +
∑
ω,ω′

(
1 + it

2 (ω − ω′)
)

γ̂(ω, ω′, t)
(

A(ω)ρSA†(ω′) − 1
2
{

A†(ω′)A(ω), ρS

})
+ · · · (26)

In the next step we group Bohr frequencies (in the case of V-system the grouping is trivial), and perform the following
approximation to the elements of Kossakowski matrix(

1 + 1
2[it(ω − ω′)]

)
γ̂(ω, ω′, t) ≈

(
1 + it

2 (Sgn(ω)ω0 − Sgn(ω′)ω0)
)

γ̂(Sgn(ω)ω0, Sgn(ω′)ω0, t) ≡ Γ±±. (27)

The above approximation is justified in the 1
ω0

≤ t ≤ 1
∆ time regime, provided that spectral density of the reservoir

does not vary too much with each group. At this point, we also skip the residual terms

(26) ≈ −it [HS , ρS ] +
∑

±1,±2

∑
±3,±4

Γ±1±2

(
A(±1ω0 ±3 ∆)ρSA†(±2ω0 ±4 ∆) − 1

2
{

A†(±2ω0 ±4 ∆)A(±1ω0 ±3 ∆), ρS

})
(28)

The second summation allows to introduce ”quasi-secular” jump operators Aqs(ω0) = A(ω1) + A(ω2).

(28) = −it [HS , ρS ] +
∑

±1,±2

Γ±1±2

(
Aqs(±1ω0)ρSAqs†(±2ω0) − 1

2

{
Aqs†(±2ω0)Aqs(±1ω0), ρS

})
(29)

Subsequently, we perform the secular approximation, that eliminates terms with opposite signs.

(29) = −it [HS , ρS ] +
∑

ω=±ω0

Γ±±

(
Aqs(ω)ρSAqs†(ω) − 1

2

{
Aqs†(ω)Aqs(ω), ρS

})
. (30)

The final step is to show that

Γ±± = γ̂(±ω0, ±ω0, t) ≈ tγ(±ω0), (31)

where γ(ω) is the Kossakowski matrix of the fully-secular Davies-GKSL equation. The above is readily obtained
(with ”=”) for FA approximation of the cumulant equation (see Eq. (16)). However, in the case of the cumulant
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equation (that should a priori correctly describe all times regimes), the proof requires a deeper insight. The above
considerations yield

K̂(2)(t)ρS ≈ −it [HS , ρS ] + t
∑

ω=±ω0

γ(ω)
(

Aqs(ω)ρSAqs†(ω) − 1
2

{
Aqs†(ω)Aqs(ω), ρS

})
. (32)

For a more detailed and general version of the proof see Appendix C.

A. Application of approximations to the
qutrit-boson model

In this Section, we chose yet another model to test our
approach. As we announced in the introduction, the cu-
mulant equation and FA equation are able to properly
describe the dynamics in all time regimes. The simplest
example of a system in which more than one time scale
appears is a three level V-type (or Λ) system. For this
kind of system, quasi- and fully-secular master equations,
that a priori describe different and disjoint time scales,
yield distinct prediction [36, 51]. Here, we show that cu-
mulant equation and FA equation indeed interpolate be-
tween the predictions of quasi- and fully-secular master
equations in the “grey zone” (intermediate time regime),
whereas in short and long time scales they reproduce the
evolution given by quasi- and fully-secular equations, re-
spectively. Even more importantly, we show that at each
time the cumulant equation and the FA equation are
closer in the trace distance to the exact solution than
any secular MME.

The qutrit-boson model concerns a three-level system
linearly coupled to a bath of harmonic oscillators. The
Hamiltonians of the model take the form:

HS = (ω0 + ∆ω

2 ) |ω2⟩ ⟨ω2| + (ω0 − ∆ω

2 ) |ω1⟩ ⟨ω1| , (33)

HB =
∑

k

ωka†
kak, (34)

HI = (|g⟩ ⟨ω2| + |g⟩ ⟨ω1| + h.c.) ⊗
∑

k

gk

(
ak + a†

k

)
,

(35)

where ω0 is the arithmetic average of transition frequen-
cies between ground and excited states, namely ω1 =
ω0 − ∆ω

2 and ω2 = ω0 + ∆ω
2 . The continuous limit is

conducted in standard way to give J(Ω) = αΩ × e− |Ω|
ωc .

For this configuration the fully-secular master equa-
tion for the time evolution (in the Schrödinger picture)
of ρfs(t) depends on the jumps operator relative to all
the four possible transition frequency in the system and
it has the form:

ρ̇fs
S (t) = −i [HS , ρ]

+
∑

ω=±ω1, ±ω2

γ(ω)
(

A(ω)ρA†(ω) − 1
2{A†(ω)A(ω), ρ}

)
.

(36)

where the jump operators for the fully-secular master

equation are A(ω1) = A†(−ω1) = |g⟩⟨ω1| and A(ω2) =
A†(−ω2) = |g⟩⟨ω2|. In contrast, the quasi-secular master
equation takes into account the situation in which the two
excited levels can be considered degenerate. Therefore,
the frequency ∆ω defining the short time scale enters at
the level of the coherent evolution, while the dissipative
part depends only on the average frequency ω0. Thus, the
evolution of the reduced density matrix of the system in
the quasi-secular approach ρqs(t)

ρ̇qs
S (t) = −i [HS , ρ] +

∑
ω=±ω0

γ(ω)
(

Aqs(ω)ρAqs†(ω)

−1
2{Aqs†(ω)Aqs(ω), ρ}

)
,

(37)

and the quasi-secular jump operators are Aqs(ω0) =
Aqs†(−ω0) = |g⟩⟨ω1| + |g⟩⟨ω2|) and it is clear that
Aqs(ω) ̸= A(ω) are jump operators of degenerated lev-
els (see Section C of Appendix).

It is easy to notice that having a unique jump opera-
tor guiding the absorption from the ground state to both
the excited states and one for emission, induces a cou-
pling evolution of the population of these two levels and
the consequent generation of coherence between them.
This coherence cannot be observed only by looking at
the fully-secular master equation in which evolution of
coherence is decoupled from the evolution of populations.
Instead, fully-secular MME is much better at later times
for which quasi-secular MME fails by construction. Suf-
ficiently long lasting interaction between an open system
and reservoir allows to resolve arbitrarily closely placed
energy levels. After that quasi-secular description can no
longer hold.

In Fig. 4 we compare the evolution of the population
ρω2ω2 of highest energy level and the coherence ρω2ω1

between the two excited levels given by quasi- and fully-
secular master equations, the cumulant equation, and de-
rived here FA equation. The initial state of the open sys-
tem is the ground state. As expected, the fully-secular
master equation, due to its structure in which coherences
and population evolve in a decoupled way, does not pre-
dict creation of coherence in the transient period (see
Fig. 4 b)). On the contrary, the cumulant equation, the
FA equation, and the quasi-secular master equation, cap-
ture the short-time behavior and process of establishing
coherence. The possibility to catch the short-time be-
havior by the quasi-secular master equation was noticed
in Ref. [36]. Therein the fully-secular master equation
was compared to the quasi-secular master equation for
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FIG. 4. Qutrit-Boson model – interaction picture evolution
of the a) population ρω2ω2 of the excited state b) modulus of
coherence |ρω2ω1 | between the two excited levels. The inset in
a) highlights the long-times behavior of the curves. The ini-
tial state of the system is the ground state. The dashed pink
curve represents the evolution given by the FA equation, the
short-dash-dotted orange curve represents the evolution pro-
vided by the fully-secular Markovian master equation, and the
long-dash-dotted black line represents the evolution given by
the quasi-secular Markovian master equation. The cumulant
equation given by solid red curve is indistinguishable from the
curve for the FA equitation in the given resolution. The reser-
voir is a heat bath at effective temperature Teff = 1 in units of
ω0. The spectral density oh the reservoir is Ohmic with expo-
nential cutoff, i.e., J(ω) = αω exp

{
−
∣∣ ω

ωc

∣∣}, where ωc = 10ω0.
The choice of the square of coupling constant α ≈ 1.76×10−5

and the splitting parameter ∆ω = ω0/100, correspond to the
following ratio between the rate γ of spontaneous processes
and the splitting ∆ω between excited states: γ/∆ω = 0.01,
which can be classified as a weak coupling. See also Fig. 6.

a particular physical system, that is easy to be experi-
mentally studied. As a consequence of the weak coupling
the predictions for the evolution of populations due to
different dynamical equation differ only marginally re-
garding numerical values (see Fig. 4 a)). However, we
observe (see inset in Fig. 4 a)) that for the long times the
quasi-secular MME gives different, inaccurate prediction
for the magnitude of population than other equations, as
expected. This is because of degenerate Bohr spectrum
used to construct the quasi-secular generator as discussed
above.

In order to check the validity of the investigated herein

Cumulant

FA

FS MME

QS MME

BR

0 5000 10000 15000 20000 25000
t (ω0

-1)0.000
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||ρ(t)-ρHEOM(t)||1

FIG. 5. The trace distance comparison between dynamics
obtained with various dynamical equation and numerically ex-
act method of HEOM. The parameters and initial conditions
of the simulation are the same as in Fig. 4. The dash-dotted
pink curve corresponds to the FA equation, the red solid curve
corresponds to the cumulant equation, the short-dash-dotted
orange line corresponds to the fully secular master equation,
The dashed blue line corresponds to the BR equation and
finally the long-dash-dotted black curve corresponds to the
quasi secular master equation.

equations in Fig. 5 we compare them with the numeri-
cally exact method of HEOM. More precisely, we plot
curves of evolution of the trace distance between HEOM
and quasi-secular MME, fully-secular MME, the cumu-
lant equation, and the FA equation. Low numerical val-
ues of the trace distance in the plot in Fig. 5 indicate
good proximity of each considered dynamical equation
to the exact solution. Furthermore, it is evident that
for short times quasi-secular equation performs better
that the fully-secular one, whereas for longer times the
table turns and the fully-secular equation outperforms
the quasi-secular one. As expected the cumulant equa-
tion and the FA equation outperform both quasi- and
fully-secular MME’s, and Bloch-Redfield equation for all
times, with cumulant equation being slightly closer to
the exact solution that the FA equation. The long times
difference between all considered equations and HEOM
has the same explanation as in the case of the spin-boson
model, see Remark 4.

As it was discussed in Section VI, the FA equation
as well as the cumulant equation, should interpolate be-
tween dynamics provided by the quasi- and fully-secular
master equation. For short times they should reproduce
the dynamics provided by the quasi-secular MME, and
for longer times their proximity to the solution provided
by the fully-secular MME shall be observed. In Fig. 6
we provide a detailed comparison between dynamics pro-
vided by the FA equation and the cumulant equation,
quasi-secular MME, and fully-secular MME. We plot the
time evolution of i) trace distance between different so-
lutions for entire evolution (Fig. 6a) and for short times
(Fig. 6b); ii) absolute value of difference in exited state
population, with inset that focuses on short times; iii)



13

a)
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FIG. 6. Qutrit-Boson model – alternative (w.r.t. Fig. 4) comparison between dynamics predicted by the fully-secular
Markovian master equation, quasi-secular Markovian master equation and FA equation. The parameters and initial conditions
of the simulation are the same as in Fig. 4. Plots depicts difference between the FA equation and other equations regarding a)
trace distance between solutions, b) also trace distance, but shorter times, c) absolute value of difference in populations of the
highest energy level, and d) modulus of difference in coherence between excited states. The short-dash-dotted orange curves
correspond to the fully-secular MME, the long-dash-dotted black curves correspond to the quasi-secular MME, and the solid
red curves correspond to the cumulant equation.

modulus of difference of coherence with inset showing
long times behavior. First, we observe that (as expected)
for short-times at each plot the solution due to the quasi-
secular MME differs less from the dynamics due to the FA
equation than than the solution due to the fully-secular
MME. Consistently with the prediction, at later times
the solution due to the fully-secular MME is closer to the
dynamics predicted by FA than the quasi-secular MME.
This behavior exemplifies how the FA equation interpo-
lates between quasi- and fully-secular dynamics. Sec-
ondly, the solution obtained with the cumulant equation
is always (except inset in Fig. 6 c)) much closer to the
solution obtained with FA than solutions by quasi- and
fully-secular master equations. Therefore, by the triangle
inequality for the trace distance argument, we conclude
that the cumulant equation also has the interpolation
property. Yet we emphasize that at each point of evo-
lution solutions due to the FA and cumulant equations
are closer to the exact dynamics than solutions due to
considered master equations (see Fig. 5). Therefore, the
interpolation property of the FA and the cumulant equa-
tions is just a consequence of them being pretty accurate
in full time span.

VII. Conclusions

We have provided a new tool to study the dynamics
of open systems by proposing a filtered approximation
(FA) of the cumulant equation. Our approach reverber-
ates into a “ready-to-use” approach similar to the Davies-
GKSL one that allows to compute the dynamical evolu-
tion of an open quantum system just by the knowledge
of several discrete points of the spectral density sampled
at the transition frequency of the system.

The obtained evolution, i.e., FA equation, inherits the
property of cumulant equation, that, unlike any com-
pletely positive master equation with time-independent
generator, it covers the full range of times. In par-
ticular, it interpolates between quasi- and fully-secular
Markovian master equations. The dynamical equation
(FA equation) we have derived is as easy to use as the
Davies master equation but allows us to witness the
non-Markovian dynamics in the intermediate time scale.
Therefore, as we have exemplified, the FA equation com-
bines low computational complexity with high accuracy
at all times scales, at least in the weak coupling regime.

For larger systems, where we would need to further
reduce the computational complexity of simulations, FA
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equation can be simplified by applying partial secular
approximation. This was originally proposed for Bloch-
Redfield master equation in [17]. However, it can be
applied in the same way to cumulant equation as well
as to FA equation.

The FA equation while being perfect tool to study sin-
gle bath for not too strong coupling, regarding two or
more baths it may not be a good tool to obtain steady
state. Indeed, as we showed, for long times it can be ap-
proximated to a good extent by Davies equation, while
it is known, that for two baths and two coupled systems
between the baths, for small coupling, the quasi-secular
master equation works much better [55, 56]. However, we
believe that FA will still work pretty well in the transient
regime.

There are plenty of possible developments that can be
carried out with our toolkit. One can, for instance, ad-
dress how the dissipation of a compound system influ-
ences the emergence of collective phenomena, e.g., syn-
chronization and dissipative phase transitions, or how
quantum correlations are built-in time. It can also pave
the way for new techniques for quantum noise spec-
troscopy, with the dissipating system used as a probe
to study the environmental degree of freedom.

Moreover, it is an interesting question of how to ex-
tend our result to time-dependent Hamiltonians, for the
problem of interest in control theory, to potentially ad-
dress the role of non-Markovian feedback and in ther-
modynamic protocols like work extraction. The time-

dependent scenario would also be important for the de-
scription of noise in a quantum computer - the evolution
there is clearly non-Markovian, and can also be consid-
ered to be a weak coupling because otherwise, we would
not be able to keep quantum information in the quantum
computer at all [57].

Our approach can also be employed to address many
tantalizing research areas at the boundary between quan-
tum physics, chemistry, and biology. The coherent trans-
ports of excitation in a noisy environment suggest un-
avoidable open quantum system descriptions that take
into account all the times scales, and possible manipu-
lation of such effects of paramount importance for life
sciences can lead to the emerging of new technologies,
like quantum-enhanced photovoltaic cells.
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[56] J. O. González, L. A. Correa, G. Nocerino, J. P. Palao,
D. Alonso, and G. Adesso, Open Systems & Information
Dynamics 24, 1740010 (2017).

[57] R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki,
Physical Review A 65 (2002).

[58] Y. Tanimura, The Journal of Chemical Physics 153,
020901 (2020), https://doi.org/10.1063/5.0011599.

[59] N. Lambert, T. Raheja, S. Cross, P. Menczel, S. Ahmed,
A. Pitchford, D. Burgarth, and F. Nori, Phys. Rev. Res.
5, 013181 (2023).

[60] C. Meier and D. J. Tannor, The Jour-
nal of Chemical Physics 111, 3365 (1999),
eprint: https://pubs.aip.org/aip/jcp/article-

pdf/111/8/3365/10804029/3365 1 online.pdf.
[61] J. Ma, Z. Sun, X. Wang, and F. Nori, Phys. Rev. A 85,

062323 (2012).
[62] Y. Tanimura and R. Kubo, Journal of the Physical Soci-

ety of Japan 58, 101 (1989).
[63] J. R. Johansson, P. D. Nation, and F. Nori

10.1016/j.cpc.2012.11.019 (2012), arXiv:1211.6518.

https://doi.org/10.1063/1.4907370
https://doi.org/10.1063/1.4907370
https://arxiv.org/abs/2112.11962
https://doi.org/10.48550/ARXIV.2204.00643
https://doi.org/10.48550/ARXIV.2204.00643
https://doi.org/10.48550/ARXIV.2204.00643
https://arxiv.org/abs/2305.08941
https://doi.org/10.48550/ARXIV.1710.09939
https://doi.org/10.1209/0295-5075/107/20004
https://doi.org/10.1209/0295-5075/107/20004
http://dx.doi.org/10.1103/PhysRevA.97.013421
http://dx.doi.org/10.1038/s41534-020-00299-6
https://arxiv.org/abs/ArXiv:1906.08279
https://doi.org/10.1103/PhysRevA.103.062226
http://dx.doi.org/10.1088/1367-2630/12/11/113032
https://doi.org/10.1007/978-3-642-23354-8
https://doi.org/10.1103/PhysRevE.63.066115
https://doi.org/10.1103/PhysRevB.97.035432
https://doi.org/10.1103/PhysRevB.97.035432
https://doi.org/10.1063/1.463831
https://doi.org/10.1063/1.463831
http://dx.doi.org/10.1103/PhysRevA.51.1015
https://doi.org/10.1088/0034-4885/61/2/002
https://doi.org/10.1007/978-3-662-04209-0
https://doi.org/10.1142/s0217751x22430217
https://doi.org/10.1038/s41567-019-0605-6
https://doi.org/10.1103/physrevresearch.3.013295
https://doi.org/10.1103/physrevresearch.3.013295
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevA.83.052128
https://doi.org/10.1103/PhysRevA.83.052128
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1142/s1230161217400108
https://doi.org/10.1142/s1230161217400108
http://dx.doi.org/10.1103/PhysRevA.65.062101
https://doi.org/10.1063/5.0011599
https://doi.org/10.1063/5.0011599
https://arxiv.org/abs/https://doi.org/10.1063/5.0011599
https://doi.org/10.1103/PhysRevResearch.5.013181
https://doi.org/10.1103/PhysRevResearch.5.013181
https://doi.org/10.1063/1.479669
https://doi.org/10.1063/1.479669
https://doi.org/10.1103/PhysRevA.85.062323
https://doi.org/10.1103/PhysRevA.85.062323
https://doi.org/10.1143/jpsj.58.101
https://doi.org/10.1143/jpsj.58.101
https://doi.org/10.1016/j.cpc.2012.11.019
https://arxiv.org/abs/arXiv:1211.6518


16

Appendix

A. Divergences

In this Section, we discuss a problem of divergences appearing in the cumulant equation approach, although it was
not present in Davies’s weak coupling approach. Let the spin-boson model with transition frequency ω0 (see the main
text), serve as our testing ground. We choose the reservoir to be a heat bath at temperature T = 0, and spectral
density J(Ω) = αΩ. From this choice, we obtain R(Ω) = αΩ, and:

γ(ω, ω′, t) = αei ω′−ω
2 t

∫ ∞

0
dΩ Ω

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
. (A1)

The integral in the equation above is divergent. This fact constitutes a major problem regarding the description of
the system’s evolution. The simplest candidate for a countermeasure to this issue is to choose the cutoff profile and
cutoff frequency. Let us choose then, two different cutoff profiles (1) a “sharp” cutoff, and (2) a exponential one [20],
both with cutoff frequency ω0 ≪ ωc < +∞.

γ(ω, ω′, t) ”sharp”−→ γ(1)(ω, ω′, t) = αei ω′−ω
2 t

∫ ωc

0
dΩ Ω

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
t≫ 1

ω0≈ δω,ω′δω,ω02πtαω0,

(A2)

γ(ω, ω′, t) ”exp”−→ γ(2)(ω, ω′, t) = αei ω′−ω
2 t

∫ +∞

0
dΩ Ωe− Ω

ωc

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
t≫ 1

ω0≈ δω,ω′δω,ω02πtαω0e− ω0
ωc , (A3)

As we obser in equations (A2), (A3) above, the elements of the Kossakowski matrix, and hence the dynamics, depend
on the choosen cutoff function, and thence spectral density profile.

B. Approximations of cumulant equation

In this Section, we derive the main result of our paper, i.e., the filtered approximation (FA) equation. The FA
equation is constructed by replacing the Kossakowski matrix of the cumulant equation γij(ω, ω′, t) with its positive
semi-definite approximation γ⋆

ij(ω, ω′, t). In parallel, we also develop another kind of approximation to the cumulant
equation, i.e., ⋆⋆-approximation, not mentioned in the main text. We base our motivation on an observation that
in the weak coupling limit, the famous Davies-GKSL equation (usually) provides a good approximation to the true
dynamics, independently of the cutoff profile of the spectral density function. This situation motivates us to develop an
approximation procedure for the cumulant equation, yielding dynamical equations that depend on a smaller number of
parameters of the system yet preserving the non-Markovianity and CPTP properties of the cumulant equation. In this
way, we derive the FA equation, which is almost as simple as the Davies-GKSL equation, and also ⋆⋆-approximation,
in which only the ”spontaneous processes part” of the Kossakowski matrix is subjected to modifications.

1. Filtered approximation (FA)

In order to derive our FA equation we start with the formulas for time-dependent relaxation coefficients γij(ω, ω′, t)
in the cumulant equation,

γij(ω, ω′, t) =
∫ t

0
ds

∫ t

0
dw ei(ω′s−ωw) 〈B̃j(s)B̃i(w)

〉
ρ̃B

, (B1)
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which can be written in terms of Fourier transform of interaction picture reservoir’s operators:

Bi (Ω) = 1
2π

∫ ∞

−∞
du eiΩuB̃i(u), (B2)

then using the formula above and the fact that
〈
B̃j(s)B̃i(w)

〉
ρ̃B

=
〈
B̃j(s − w)Bi

〉
ρ̃B

(for example for a thermal
reservoir), we integrate over time variables, in order to obtain alternative formula for γij(ω, ω′, t).

γij(ω, ω′, t) = ei ω′−ω
2 t

∫ ∞

−∞
dΩ

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
Rji(Ω), (B3)

where sinc(x) ≡ sin(x)
x , and Rji(Ω) = ⟨Bj(Ω)Bi⟩ρ̃B

.
The next crucial ingredient in our approximation are two models of Dirac delta function of width 1

τ .

δ(1)
τ (x) = sin τx

πx
, δ(2)

τ (x) = sin2 τx

πx2τ
. (B4)

These models converge to Dirac delta distribution for t → +∞, provided the rest of the integrand behaves “well” (is
bounded and does not oscillate too fast) or the range of integration is finite. Here, we assume that the (sharp) cutoff
frequency max{|ω|, |ω′|} ≤ ωc ≪ Λ, for which J(Λ) ≈ 0 exists but can be very large (ωc refers to cutoff profile as in
Section II A). At this point, we are ready to perform a series of approximations:

γij(ω, ω′, t) = ei ω′−ω
2 t

∫ ∞

−∞
dΩ

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
Rji(Ω) (B5)

(I)= ei ω′−ω
2 t

∑
k

∫ ∞

−∞
dΩ

[
t sinc

(
ω′ − Ω

2 t

)
R

1
2
jk(Ω)

] [
t sinc

(
ω − Ω

2 t

)
R

1
2
ki(Ω)

]
(B6)

(II)= ei ω′−ω
2 t

∑
k

lim
Λ→+∞

∫ Λ

−Λ
dΩ

[
t sinc

(
ω′ − Ω

2 t

)
R

1
2
jk(Ω)

] [
t sinc

(
ω − Ω

2 t

)
R

1
2
ki(Ω)

]
(B7)

= ei ω′−ω
2 t

∑
k

lim
Λ→+∞

∫ Λ

−Λ
dΩ

[
2πδ

(1)
t
2

(ω′ − Ω)R
1
2
jk(Ω)

] [
2πδ

(1)
t
2

(ω − Ω)R
1
2
ki(Ω)

]
(B8)

(III)
≈ ei ω′−ω

2 t
∑

k

lim
Λ→+∞

∫ Λ

−Λ
dΩ

[
2πδ

(1)
t
2

(ω′ − Ω)R
1
2
jk(ω′)

] [
2πδ

(1)
t
2

(ω − Ω)R
1
2
ki(ω)

]
(B9)

(IV )
≈ ei ω′−ω

2 t
∑

k

lim
Λ→+∞

∫ Λ

−Λ
dΩ

[
t sinc

(
ω′ − Ω

2 t

)
R

1
2
jk(ω′)

] [
2πδ(Ω − ω)R

1
2
ki(ω)

]
(B10)

= 2πtei ω′−ω
2 tsinc

(
ω′ − ω

2 t

)∑
k

R
1
2
jk(ω′)R

1
2
ki(ω), (B11)

where R
1
2
ij(Ω) ≡

(
R

1
2 (Ω)

)
ij

. In the first step (I) we decomposed positive semi-definite matrix R(Ω) into it’s square
roots, in step (II) we introduced cutoff frequency and limiting procedure, in the third step (III) we used models of
delta function (see equation (B4)) to approximate each square bracket separately, then in (IV ) step we substitute
one of models of delta function with the proper Dirac delta (it is not important which model is approximated). The
last approximation works the better the smoother is spectral density function and the longer is the time t. The above
calculations are consistent with ω = ω′ case, that can be otherwise calculated using the second delta function model
δ

(2)
τ (x). Finally we obtain:

γij(ω, ω′, t) ≈ γ⋆
ij(ω, ω′, t) = 2πtei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

R
1
2
jk(ω′)R

1
2
ki(ω), (B12)

here ⋆ denotes the derived FA approximation. It can be shown that γ⋆
ij(ω, ω′, t) is a positive semi-definite matrix, what

assures completely positive and trace preserving dynamics (CPTP). Unfortunately, in general case γ⋆
ij(ω, ω′, t) lacks

one of the properties (indices swapping) that exact γij(ω, ω′, t) exhibits, i.e. γij(ω′, ω, t) = ei(ω−ω′)tγij(ω, ω′, t).
However, in particular for the (still extremely important) case of reservoir being electromagnetic field we have[
R

1
2 (ω′), R

1
2 (ω)

]
= 0, and the lost symmetry is recovered. We conclude this part with the following remark.
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Remark 5. The approximation derived in this Section can be especially useful in situations in which nothing more
than R(ω) (for Bohr’s frequencies) and the level structure of the open system is known. In fact, only the knowledge
of (at most) (dim R)(dim R − 1) real numbers is required. These quantities, which can be easily determined in an
experiment, can then be used to determine the system’s behavior for intermediate and shorter times (that might be
out of reach of spectroscopy). This can be contrasted with methods in which we know R(Ω) in the whole range, and
we perform numerical integration.

2. ⋆⋆-type approximation

In this Section we develop a different variant of the evolution, i.e, ⋆⋆-approximation, that requires the knowledge
of the full spectral density in a same way as the cumulant equation. This description is obtained via a more delicate
treatment in which only the vacuum component of the superoperator (”spontaneous processes”) is subjected to
modifications. Our motivation is an observation that FA equation, alike Davies-GKSL equation, is ”cutoff-stable”.
Namely, the FA dynamics does not diverge with growing cutoff parameter. Therefore, in ⋆⋆-approximation we remove
the divergences by modifying solely the ”vacuum component” of the integrals in the Kossakowski matrix.

Definition 1 (Of a decent reservoir). We call a reservoir a decent one iff in the stationary state

Rji(Ω) = Jji(Ω) (N (T (Ω), Ω) + 1) , (B13)
∀i,j lim

Ω→+∞
ΩJji(Ω)N (T (Ω), Ω) = 0, (B14)

where, and T (Ω) ≥ 0 is a generalized (local) temperature such that T (−Ω) = T (Ω), Jji(Ω) is a spectral density such
that −Jij(−Ω) = Jji(Ω), and (in dimensionless units ℏ = c = kB = 1):

N (T (Ω), Ω) = 1
e

Ω
T (Ω) − 1

. (B15)

The condition in equation (B14), is sufficient for convergence of integral within the dissipator associated with
stimulated processes. Furthermore, at this point, we want to make the following remarks.

Remark 6. Importantly, Rij(Ω) = 1
2π γij(Ω) ∈ MI×J

C is positive semi-definite matrix. Therefore, Jij(Ω) ∈ MI×J
C is

a (hermitian) positive semi-definite matrix for Ω ≥ 0, and negative semi-definite matrix for Ω < 0.

Remark 7. One must be careful when using the above Definition in “even cases” , for example: J(Ω) ∼ Ω2. In this
case we should modify initial choice to J(Ω) = sgn(Ω)Ω2 whenever possible.

We come with the following Corollary of Definition 1.

Corollary 1. For a decent reservoir in a stationary state and Ω ≥ 0, we have the following relations:

Rji(Ω) = e
Ω

T (Ω) Rij(−Ω), (B16)
Rji(−Ω) = Jij(Ω)N(T (Ω), Ω). (B17)

Proof. The proof is straightforward from Definition (1).

From the Definition (1), and equation (B3) combined, we obtain the following form of time-dependent relaxation
coefficients γij(ω, ω′, t) of the cumulant equation.

γij(ω, ω′, t) = ei ω′−ω
2 t

∫ ∞

0
dΩ N (T (Ω), Ω)

([
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
Jji(Ω)

+
[
t sinc

(
ω′ + Ω

2 t

)][
t sinc

(
ω + Ω

2 t

)]
Jij(Ω)

)
+ ei ω′−ω

2 t

∫ ∞

0
dΩ Jji(Ω)

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
(B18)

The first integral, in the equation above, is convergent due to the mentioned condition within the Definition (1). The
second integral (which diverges in the absence of cutoff profile) will be subjected to a modification. Similarly, as in
Section (B 1) we choose max{|ω|, |ω′|} ≪ Λ < +∞.



19

∫ ∞

0
dΩ Jji(Ω)

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
(B19)

(I)= lim
Λ→+∞

∫ Λ

0
dΩ Jji(Ω)

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
(B20)

(II)=
∑

k

lim
Λ→+∞

∫ Λ

0
dΩ

[
t sinc

(
ω′ − Ω

2 t

)
J

1
2

jk(Ω)
] [

t sinc
(

ω − Ω
2 t

)
J

1
2

ki(Ω)
]

(B21)

(III)
≈

∑
k

lim
Λ→+∞

∫ Λ

0
dΩ

t sinc
(

ω′ − Ω
2 t

) (sgn(ω′)J(ω′))
1
2
jk

sgn(ω′)

[t sinc
(

ω − Ω
2 t

)
(sgn(ω)J(ω))

1
2
ki

sgn(ω)

]
(B22)

=
∑

k

(sgn(ω′)J(ω′))
1
2
jk

sgn(ω′)
(sgn(ω)J(ω))

1
2
ki

sgn(ω) lim
Λ→+∞

∫ Λ

0
dΩ

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
(B23)

= 2π
∑

k

(sgn(ω′)J(ω′))
1
2
jk

sgn(ω′)
(sgn(ω)J(ω))

1
2
ki

sgn(ω) lim
Λ→+∞

∫ Λ

0
dΩ δ

(1)
t
2

(ω′ − Ω)
[
t sinc

(
ω − Ω

2 t

)]
(B24)

(IV )
≈ 2π

∑
k

(sgn(ω′)J(ω′))
1
2
jk

sgn(ω′)
(sgn(ω)J(ω))

1
2
ki

sgn(ω) lim
Λ→+∞

∫ Λ

0
dΩ δ(ω′ − Ω)

[
t sinc

(
ω − Ω

2 t

)]
(B25)

= 2πtH(ω′)sinc
(

ω − ω′

2 t

)∑
k

(sgn(ω′)J(ω′))
1
2
jk

sgn(ω′)
(sgn(ω)J(ω))

1
2
ki

sgn(ω) (B26)

(V )
≈ 2πtH(ω)H(ω′)sinc

(
ω − ω′

2 t

)∑
k

(sgn(ω′)J(ω′))
1
2
jk

sgn(ω′)
(sgn(ω)J(ω))

1
2
ki

sgn(ω) (B27)

= 2πtH(ω)H(ω′)sinc
(

ω − ω′

2 t

)∑
k

J
1
2

jk(ω′)J
1
2

ki(ω), (B28)

where J
1
2

ij(ω) ≡
(

J
1
2 (ω)

)
ij

, and H(ω) is a Heaviside step function. In the first step (I) we introduce the limiting
procedure, in the second step (II) we decompose positive semi-definite matrix J(Ω) into its square roots. In the third
step (III), similarly as in Section (B 1), we employ the filtering property of models of delta function separately in each
square bracket, sign function is added so that square root is well defined (see remark (6)). It is worth noting, that
there is no need to employ the sign function if one anticipates and considers that only ω, ω′ > 0 case is non-zero from
the very beginning. In the next step (IV ) we interchange model of delta function with Dirac delta distribution. In the
fifth step (V ) we multiply the expression with additional Heaviside step function to retain positive semi-definiteness
of final approximation, this is consistent with long times approximation due to presence of sinc

(
ω−ω′

2 t
)

function. In
the last step we simplify the expression, utilizing Heaviside functions. Finally:

γij(ω, ω′, t) ≈ γ⋆⋆
ij (ω, ω′, t) = ei ω′−ω

2 t

∫ ∞

0
dΩ N (T (Ω), Ω)

([
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
Jji(Ω)

+
[
t sinc

(
ω′ + Ω

2 t

)][
t sinc

(
ω + Ω

2 t

)]
Jij(Ω)

)
+ 2πtH(ω)H(ω′)ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

J
1
2

jk(ω′)J
1
2

ki(ω). (B29)

An interesting property of ⋆⋆-approximation described above is the fact that not only γ⋆⋆
ij (ω, ω′, t) is a positive

semi-definite matrix but it also exhibits all properties (indices swapping) of exact γij(ω, ω′, t) matrix.
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FIG. 7. Qutrit-Boson model – Interaction picture evolution of the coherence ρSω2ω1 between the two excited levels (top),
and population ρSω2ω2 of the second excited ω2 (bottom) of the reduced density matrix of the system ρS . The initial state
of the system is ρS(0) = |g⟩⟨g|. The reservoir is a heat bath at temperature Teff = 1 in units of ω0. The solid red curve
is the evolution computed via the fully-secular master equation; the green dash-dotted curve is the evolution according to
the quasi-secular master equation. The dashed blue line is the evolution computed with the FA equation (17), and the grey
short-dashed curve is the evolution given by the ⋆⋆-approximation to the cumulant equation. The shaded grey zone indicates
the region of intermediate times. The splitting parameter is ∆ω = 2πω0 × 10−2, and α = 0.05.

For any two level system, for example the considered spin-boson model, γ⋆⋆
ij (ω, ω′, t) simplifies 2 to:

γ⋆⋆
ij (ω, ω′, t) = ei ω′−ω

2 t

∫ ∞

0
dΩ N (T (Ω), Ω)

([
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
Jji(Ω)

+
[
t sinc

(
ω′ + Ω

2 t

)][
t sinc

(
ω + Ω

2 t

)]
Jij(Ω)

)
+ 2πtH(ω)H(ω′)Jji(ω). (B30)

In Fig. 7, we observe that in the case of the qutrit-boson system, the dynamics provided by ⋆⋆-approximation
is close to the dynamics given by the FA equation3. Indeed, ⋆⋆-approximation interpolates between the quasi- and
fully-secular Markovian master equations in the same way as the FA equation. As the spectral density function
J(Ω) = αΩ has no explicit cutoff, the ⋆⋆-approximation can be considered to be ”cutoff stable” approximation to the
refined weak coupling limit. However, at low temperatures, the evolution given by the ⋆⋆-approximation is expected
to be Markovian since, at these conditions, solely the Markovian ”vacuum” component persists.

We conclude this Section with the following remark.
Remark 8. The derived approximations are “cutoff stable”, i.e., the equations we propose are sensitive to the spectral
density (and cutoff) profile but integrals in the Kossakowski matrix do not diverge if one considers the limit ωc →
+∞. This modification was only possible by considering that the cutoff frequency exists but might be arbitrary large.
Therefore, we are not allowed to think there is no cutoff at all. This kind of reasoning is consistent with Davies’s
weak coupling approach as finite lifetime of (two point) reservoir’s correlations functions yields frequency cutoff for
its spectral density.
Remark 9. At (global) temperature T = 0, both in FA equation and in ⋆⋆-approximation only the spontaneous
emission persists. Therefore, in the case of a two-level system at these conditions, the dynamics of FA equation and
⋆⋆-approximation are equivalent to dynamics described by the (renormalized) Davies-GKSL equation.

3. Completely positive and trace preserving dynamics (CPTP) of the approximations of the cumulant
equation

The CPTP property follows from its GKSL structure and positive semi-definiteness of the γij(ω, ω′, t). The latter
property was shown in detail in [30]. In this Section we prove the positive semi-definiteness of γ⋆

ij(ω, ω′, t) and
γ⋆⋆

ij (ω, ω′, t) matrices. The proofs are based on the observation that Rij(ω) = 1
2pi] γij(ω), where γij(ω) is known to be

positive semi-definite matrix [2, 40].

2One can also “full-secular” approximation to the “vacuum” part by eliminating terms for which ω′ ̸= ω.
3Parameters employed in Fig. 7 are beyond the weak-coupling regime, obtained curves might significantly differ from the exact solution.
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a. Positive semi-definiteness of γ⋆
ij(ω, ω′, t) matrix

Let us notice that
(

γ⋆
ij(ω, ω′, t)

)
is a Hadamard product (we denote with ”◦”), of two matrices (multiplied with

scalar).

γ⋆
ij(ω, ω′, t) = 2πtei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

R
1
2
jk(ω′)R

1
2
ki(ω) (B31)

= 2πt

((
ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

))
◦
(∑

k

R
1
2
jk(ω′)R

1
2
ki(ω)

))
(ω,i),(ω′,j)

, (B32)

where indices i and j are dummy for the matrix
(

ei ω′−ω
2 tsinc

(
ω′−ω

2 t
))

.

It is straighforward to see that matrix
(∑

k R
1
2
jk(ω′)R

1
2
ki(ω)

)
is positive semi-definite

∀g

∑
ω,ω′

∑
ij

g∗
i (ω)gj(ω′)

∑
k

R
1
2
jk(ω′)R

1
2
ki(ω) =

∑
k

∑
ω′,j

gj(ω′)R
1
2
jk(ω′)

∑
ω,i

g∗
i (ω)R

1
2
ki(ω)

 (B33)

=
∑

k

∑
ω′,j

gj(ω′)R
1
2
jk(ω′)

∑
ω,i

gi(ω)R
1
2
ik(ω)

∗

=
∑

k

∣∣∣∣∣∣
∑
ω,i

gi(ω)R
1
2
ik(ω)

∣∣∣∣∣∣
2

≥ 0 (B34)

To show that the matrix
(

ei ω′−ω
2 tsinc

(
ω′−ω

2 t
))

is positive semi-definite we observe that

sinc(at) = F
(
F−1 (sinc(at))

)
= 1√

2π

∫ +∞

−∞
ds eias

√
π
2 (sgn(t − s) + sgn(t − s))

2t
, (B35)

where F and F−1 are Fourier transform and inverse Fourier transform respectively (t ≥ 0), and sgn is the sign
function.

Therefore,

∀g

∑
ω,ω′

∑
ij

g∗
i (ω)gj(ω′)ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)
(B36)

=
∑
ω,ω′

∑
ij

g∗
i (ω)gj(ω′)ei ω′−ω

2 t 1√
2π

∫ +∞

−∞
ds ei ω′−ω

2 s

√
π
2 (sgn(t − s) + sgn(t − s))

2t
(B37)

= 1
2

∫ +∞

−∞
ds
∑
ω,ω′

∑
ij

g∗
i (ω)gj(ω′)ei ω′

2 (t−s)e−i ω
2 (t−s) (sgn(t − s) + sgn(t − s))

2t
(B38)

= 1
2

∫ +∞

−∞
ds

∑
ω,i

g∗
i (ω)e−i ω

2 (t−s)

√
(sgn(t − s) + sgn(t − s))

2t

∑
ω′,j

gj(ω′)ei ω′
2 (t−s)

√
(sgn(t − s) + sgn(t − s))

2t


(B39)

= 1
2

∫ +∞

−∞
ds

∑
ω,i

gi(ω)ei ω
2 (t−s)

√
(sgn(t − s) + sgn(t − s))

2t

∗∑
ω′,j

gj(ω′)ei ω′
2 (t−s)

√
(sgn(t − s) + sgn(t − s))

2t


(B40)

= 1
2

∫ +∞

−∞
ds

∣∣∣∣∣∣
∑
ω,i

gi(ω)ei ω
2 (t−s)

√
(sgn(t − s) + sgn(t − s))

2t

∣∣∣∣∣∣
2

≥ 0. (B41)

Hence, matrix
(

ei ω′−ω
2 tsinc

(
ω′−ω

2 t
))

is positive semi-definite.

Because, both matrices
(

ei ω′−ω
2 tsinc

(
ω′−ω

2 t
))

and
(∑

k R
1
2
jk(ω′)R

1
2
ki(ω)

)
are positive semi-definite, the Hadamard

product of these is also positive semi-definite. Now, because γ⋆
ij(ω, ω′, t) in question is proportional to the aforemen-

tioned Hadamard product, it is positive semi-definite matrix.
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b. Positive semi-definiteness of γ⋆⋆
ij (ω, ω′, t) matrix

To prove positive semi-definiteness of γ⋆⋆
ij (ω, ω′, t) matrix let us firstly notice that

Rij(−Ω) = Jij(−Ω) (N (T (−Ω), −Ω) + 1) = Jij(−Ω)
(

1
e− Ω

T (−Ω) − 1
+ 1
)

(B42)

= Jij(−Ω) e− Ω
T (−Ω)

e− Ω
T (−Ω) − 1

= Jji(Ω) 1
e

Ω
T (Ω) − 1

= Jji(Ω)N (T (Ω), Ω) . (B43)

We now decompose γ⋆⋆
ij (ω, ω′, t) in equation (B29) into three components.

γ⋆⋆
ij (ω, ω′, t) = ei ω′−ω

2 t

∫ ∞

0
dΩ N (T (Ω), Ω)

([
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
Jji(Ω)

+
[
t sinc

(
ω′ + Ω

2 t

)][
t sinc

(
ω + Ω

2 t

)]
Jij(Ω)

)
+ 2πtH(ω)H(ω′)ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

J
1
2

jk(ω′)J
1
2

ki(ω) (B44)

= ei ω′−ω
2 t

∫ ∞

0
dΩ Jji(Ω)N (T (Ω), Ω)

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
+ ei ω′−ω

2 t

∫ ∞

0
dΩ Jij(Ω)N (T (Ω), Ω)

[
t sinc

(
ω′ + Ω

2 t

)][
t sinc

(
ω + Ω

2 t

)]
+ 2πtH(ω)H(ω′)ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

J
1
2

jk(ω′)J
1
2

ki(ω) (B45)

= ei ω′−ω
2 t

∫ ∞

0
dΩ Rij(−Ω)

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
+ ei ω′−ω

2 t

∫ ∞

0
dΩ Rji(−Ω)

[
t sinc

(
ω′ + Ω

2 t

)][
t sinc

(
ω + Ω

2 t

)]
+ 2πtH(ω)H(ω′)ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

J
1
2

jk(ω′)J
1
2

ki(ω). (B46)

Therefore, matrix
(

γ⋆⋆
ij (ω, ω′, t)

)
is a sum of three matrices. We now show that each of the term in equation (B46)

above is an element of a positive semi-definite matrix.
We start with the first component of equation (B46), that corresponds to matrix being the first component of(

γ⋆⋆
ij (ω, ω′, t)

)
matrix.

∀g

∑
ω,ω′

∑
ij

g∗
i (ω)gj(ω′)ei ω′−ω

2 t

∫ ∞

0
dΩ Rij(−Ω)

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
(B47)

=
∑
ω,ω′

∑
ij

g∗
i (ω)gj(ω′)e−i ω

2 tei ω′
2 t

∫ ∞

0
dΩ

∑
k

R
1
2
ik(−Ω)R

1
2
kj(−Ω)

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
(B48)

=
∑

k

∫ ∞

0
dΩ

∑
ω′,j

gj(ω′)ei ω′
2 tR

1
2
kj(−Ω)

[
t sinc

(
ω′ − Ω

2 t

)]∑
ω,i

g∗
i (ω)e−i ω

2 tR
1
2
ik(−Ω)

[
t sinc

(
ω − Ω

2 t

)]
(B49)

=
∑

k

∫ ∞

0
dΩ

∑
ω′,j

gj(ω′)ei ω′
2 tR

1
2
kj(−Ω)

[
t sinc

(
ω′ − Ω

2 t

)]∑
ω,i

gi(ω)ei ω
2 tR

1
2
ki(−Ω)

[
t sinc

(
ω − Ω

2 t

)]∗

(B50)

=
∑

k

∫ ∞

0
dΩ

∣∣∣∣∣∣
∑
ω,i

gi(ω)ei ω
2 tR

1
2
ki(−Ω)

[
t sinc

(
ω − Ω

2 t

)]∣∣∣∣∣∣
2

≥ 0. (B51)
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The same method can be used to show the positive semi-definiteness of the second term.

∀g

∑
ω,ω′

∑
ij

g∗
i (ω)gj(ω′)ei ω′−ω

2 t

∫ ∞

0
dΩ Rji(−Ω)

[
t sinc

(
ω′ + Ω

2 t

)][
t sinc

(
ω + Ω

2 t

)]
(B52)

=
∑
ω,ω′

∑
ij

g∗
i (ω)gj(ω′)e−i ω

2 tei ω′
2 t

∫ ∞

0
dΩ

∑
k

R
1
2
jk(−Ω)R

1
2
ki(−Ω)

[
t sinc

(
ω′ + Ω

2 t

)][
t sinc

(
ω + Ω

2 t

)]
(B53)

=
∑

k

∫ ∞

0
dΩ

∑
ω′,j

gj(ω′)ei ω′
2 tR

1
2
jk(−Ω)

[
t sinc

(
ω′ + Ω

2 t

)]∑
ω,i

g∗
i (ω)e−i ω

2 tR
1
2
ki(−Ω)

[
t sinc

(
ω + Ω

2 t

)]
(B54)

=
∑

k

∫ ∞

0
dΩ

∑
ω′,j

gj(ω′)ei ω′
2 tR

1
2
jk(−Ω)

[
t sinc

(
ω′ + Ω

2 t

)]∑
ω,i

gi(ω)ei ω
2 tR

1
2
ik(−Ω)

[
t sinc

(
ω + Ω

2 t

)]∗

(B55)

=
∑

k

∫ ∞

0
dΩ

∣∣∣∣∣∣
∑
ω,i

gi(ω)ei ω
2 tR

1
2
ik(−Ω)

[
t sinc

(
ω + Ω

2 t

)]∣∣∣∣∣∣
2

≥ 0. (B56)

The positive semi-definiteness comes from formula (B35).

∀g

∑
ω,ω′

∑
ij

g∗
i (ω)gj(ω′)2πtH(ω)H(ω′)ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

J
1
2

jk(ω′)J
1
2

ki(ω) (B57)

=
∑
ω,ω′

∑
ij

g∗
i (ω)gj(ω′)2πtH(ω)H(ω′)ei ω′−ω

2 t 1√
2π

∫ +∞

−∞
ds ei ω′−ω

2 s

√
π
2 (sgn(t − s) + sgn(t − s))

2t

∑
k

J
1
2

jk(ω′)J
1
2

ki(ω)

(B58)

= π

2
∑

k

∫ +∞

−∞
ds

∑
ω′,j

gj(ω′)H(ω′)ei ω′
2 (t+s)

√
sgn(t − s) + sgn(t − s)J

1
2

jk(ω′)

 (B59)

×

∑
ω,i

g∗
i (ω)H(ω)e−i ω

2 (t+s)
√

sgn(t − s) + sgn(t − s)J
1
2

ki(ω)

 (B60)

= π

2
∑

k

∫ +∞

−∞
ds

∑
ω′,j

gj(ω′)H(ω′)ei ω′
2 (t+s)

√
sgn(t − s) + sgn(t − s)J

1
2

jk(ω′)

 (B61)

×

∑
ω,i

gi(ω)H(ω)ei ω
2 (t+s)

√
sgn(t − s) + sgn(t − s)J

1
2

ik(ω)

 (B62)

= π

2
∑

k

∫ +∞

−∞
ds

∣∣∣∣∣∣
∑
ω,i

gi(ω)H(ω)ei ω
2 (t+s)

√
sgn(t − s) + sgn(t − s)J

1
2

ik(ω)

∣∣∣∣∣∣
2

≥ 0. (B63)

Therefore, because
(

γ⋆⋆
ij (ω, ω′, t)

)
is a sum of three positive semi-definite matrices, it is positive semi-definite itself.

C. Interpolation between the quasi- and fully-secular master equations

1. Reproducing the fully-secular master equation

The convergence to the fully-secular master equation can be performed directly from the cumulant equation (10),
the most easily with γij(ω, ω′, t) in the form (B3). It is enough to notice that for ω′ ̸= ω, and ∀ω,ω′ max{|ω|, |ω′|} ≪
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ωc < +∞:

γij(ω, ω′, t)
t

= 1
t
ei ω′−ω

2 t

∫ ∞

−∞
dΩ

[
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
Rji(Ω) (C1)

= 2π

t
ei ω′−ω

2 t

∫ +∞

−+∞
dΩ δ

(1)
t
2

(ω′ − Ω)
[
t sinc

(
ω − Ω

2 t

)]
Rji(Ω) (C2)

t→∞
≈ 2π

t
ei ω′−ω

2 t

∫ +∞

−+∞
dΩ δ t

2
(ω′ − Ω)

[
t sinc

(
ω − Ω

2 t

)]
Rji(Ω) (C3)

= 2πei ω′−ω
2 tsinc

(
ω − ω′

2 t

)
Rji(ω′) t→∞

≈ 2πδω,ω′Rji(ω′). (C4)

Where we have used the model of delta function δ
(1)
τ , see equation (B4). The result above holds true also in ω = ω′

case. To check this it is enough to consider to use δ
(2)
τ from equation (B4) in the calculations.

Therefore, from the definition in equation (10) we obtain the following.

K̃(2)(t)ρ̃S =
∑
i,j

∑
ω,ω′

γij(ω, ω′, t)
(

Ai(ω)ρ̃SA†
j(ω′) − 1

2

{
A†

j(ω′)Ai(ω), ρ̃S

})
(C5)

t→∞
≈

∑
i,j

∑
ω,ω′

2πtδω,ω′Rji(ω′)
(

Ai(ω)ρ̃SA†
j(ω′) − 1

2

{
A†

j(ω′)Ai(ω), ρ̃S

})
(C6)

=
∑
i,j

∑
ω

2πtRji(ω)
(

Ai(ω)ρ̃SA†
j(ω) − 1

2

{
A†

j(ω)Ai(ω), ρ̃S

})
(C7)

= t
∑
i,j

∑
ω

γij(ω)
(

Ai(ω)ρ̃SA†
j(ω) − 1

2

{
A†

j(ω)Ai(ω), ρ̃S

})
= tL̃fsρ̃S (C8)

where γij(ω) = 2πRji(ω), is the Markovian relaxation rate. The L̃fs is the time-independent generator of the fully-
secular master equation’s dynamical map. Finally, we obtain:

eK̃(2)(t) t→∞
≈ etL̃fs

, (C9)

where it is evident that L̃fs is a generator of a semigroup [1], and the r.h.s. of the above is the fully-secular master
equation’s dynamical map.

A similar asymptotic result holds true for K̃(2,⋆)(t), i.e, the FA equation.

γ⋆
ij(ω, ω′, t)

t
= 2πei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

R
1
2
jk(ω′)R

1
2
ki(ω) (C10)

t→+∞
≈ 2πδω,ω′

∑
k

R
1
2
jk(ω′)R

1
2
ki(ω) = 2πδω,ω′Rji(ω). (C11)

In the approximation above we used properties of sinc function. Therefore, we have:

K̃(2,⋆)(t)ρ̃S =
∑
i,j

∑
ω,ω′

γ⋆
ij(ω, ω′, t)

(
Ai(ω)ρ̃SA†

j(ω′) − 1
2

{
A†

j(ω′)Ai(ω), ρ̃S

})
(C12)

t→+∞
≈

∑
i,j

∑
ω,ω′

2πtδω,ω′Rji(ω)
(

Ai(ω)ρ̃SA†
j(ω′) − 1

2

{
A†

j(ω′)Ai(ω), ρ̃S

})
(C13)

= t
∑
i,j

∑
ω

2πRji(ω)
(

Ai(ω)ρ̃SA†
j(ω) − 1

2

{
A†

j(ω)Ai(ω), ρ̃S

})
(C14)

= t
∑
i,j

∑
ω

γij(ω)
(

Ai(ω)ρ̃SA†
j(ω) − 1

2

{
A†

j(ω)Ai(ω), ρ̃S

})
= tL̃fsρ̃S . (C15)
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In the full analogy, with the cases considered above, for K̃(2,⋆⋆)(t), i.e, the ⋆⋆-approximation of the cumulant equation
we have:

γ⋆⋆
ij (ω, ω′, t)

t
= ei ω′−ω

2 t 1
t

∫ +∞

0
dΩ N (T (Ω), Ω)

([
t sinc

(
ω′ − Ω

2 t

)][
t sinc

(
ω − Ω

2 t

)]
Jji(Ω)

+
[
t sinc

(
ω′ + Ω

2 t

)][
t sinc

(
ω + Ω

2 t

)]
Jij(Ω)

)
+ 2πH(ω)H(ω′)ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

J
1
2

jk(ω′)J
1
2

ki(ω) (C16)

= ei ω′−ω
2 t2π

∫ +∞

0
dΩ N (T (Ω), Ω)

(
δ

(1)
t
2

(ω′ − Ω)sinc
(

ω − Ω
2 t

)
Jji(Ω)

+δ
(1)
t
2

(ω′ + Ω)sinc
(

ω + Ω
2 t

)
Jij(Ω)

)
+ 2πH(ω)H(ω′)ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

J
1
2

jk(ω′)J
1
2

ki(ω) (C17)

t→+∞
≈ 2πei ω′−ω

2 t

∫ +∞

0
dΩ N (T (Ω), Ω)

(
δ(ω′ − Ω)sinc

(
ω − Ω

2 t

)
Jji(Ω)

+δ(ω′ + Ω)sinc
(

ω + Ω
2 t

)
Jij(Ω)

)
+ 2πH(ω)H(ω′)ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

J
1
2

jk(ω′)J
1
2

ki(ω) (C18)

= 2πei ω′−ω
2 t

(
N (T (ω′), ω′) H(ω′)sinc

(
ω − ω′

2 t

)
Jji(ω′) + N (T (−ω′), −ω′) H(−ω′)sinc

(
ω − ω′

2 t

)
Jij(−ω′)

)
+ 2πH(ω)H(ω′)ei ω′−ω

2 tsinc
(

ω′ − ω

2 t

)∑
k

J
1
2

jk(ω′)J
1
2

ki(ω) (C19)

t→+∞
≈ 2πδω,ω′ (N (T (ω′), ω′) H(ω′)Jji(ω′) + H(ω′)Jji(ω′) + N (T (−ω′), −ω′) H(−ω′)Jij(−ω′)) (C20)

= 2πδω,ω′ ((N (T (ω′), ω′) + 1) H(ω′)Jji(ω′) + N (T (−ω′), −ω′) H(−ω′)Jij(−ω′)) (C21)
= 2πδω,ω′Rji(ω′), (C22)

where we employed both models of delta function from equation (B4), and properties of sinc function. The last
equality is due to the Definition 1 of the decent reservoir. Finally, we compute:

K̃(2,⋆⋆)(t)ρ̃S =
∑
i,j

∑
ω,ω′

γ⋆⋆
ij (ω, ω′, t)

(
Ai(ω)ρ̃SA†

j(ω′) − 1
2

{
A†

j(ω′)Ai(ω), ρ̃S

})
(C23)

t→+∞
≈

∑
i,j

∑
ω,ω′

2πtδω,ω′Rji(ω)
(

Ai(ω)ρ̃SA†
j(ω′) − 1

2

{
A†

j(ω′)Ai(ω), ρ̃S

})
(C24)

= t
∑
i,j

∑
ω

2πRji(ω)
(

Ai(ω)ρ̃SA†
j(ω) − 1

2

{
A†

j(ω)Ai(ω), ρ̃S

})
(C25)

= t
∑
i,j

∑
ω

γij(ω)
(

Ai(ω)ρ̃SA†
j(ω) − 1

2

{
A†

j(ω)Ai(ω), ρ̃S

})
= tL̃fsρ̃S . (C26)

Remark 10. The above long-time limits holds solely in the sense approximation. In fact, the long-time limit of the
cumulant superoperator (and and its approximations) contains (bounded) non-diagonal elements [30]. Fortunately, in
the effective sense of dynamics the above relations hold, as all types of dynamical maps converge to the same final
state [41].

2. Reproducing the quasi-secular master equation

If the systems consist of more than two energy levels, we can arrange these levels into groups of level, what also
induced a grouping of Bohr’s frequencies. The grouping procedure is always arbitrary, but if we can arrange them
into groups well-separated from each other, with respect to the energy separations within the group (see Fig. 8), the
quasi-secular master equation can be applied. Furthermore, to apply this approach, the spectral density can not vary
too much within any group. We can denote now the energies of levels with ωβ

α, where α corresponds to the index
of a group, and β indicates the level within the group (for the diagrammatic representation see Fig. 8). When the
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FIG. 8. Diagrammatic representation of non-secular truncation.

grouping is already done, we can introduce the following quantities.

∆Ω = min
α,ν

|ω̄α − ω̄ν |, (C27)

∆ω = max
α,β,µ

∣∣ωβ
α − ωµ

α

∣∣, (C28)

that define the “short times scale” , i.e, 1
∆Ω ≪ t ≪ 1

∆ω . Indeed, we say that the system has “well” separated energy
levels iff ∆ω ≪ ∆Ω. Furthermore, it is important to notice that then there is no Bohr’s frequency ω∅, such that
∆ω ≤ ω∅ ≤ ∆Ω (as a consequence of the well-separated levels assumption).

In order to derive the quasi-secular master equation we employ “quasi-secular jump operators” .

Aqs
i (ω̄α) =

Bα∑
β=1

∑
ϵ′−ϵ=ωβ

α

Π(ϵ)AiΠ(ϵ′), (C29)

for which it evident that A(ω) ̸= Aqs(ω), unless group has only one member (see equation (13) for comparison).
Convergence to the quasi-secular master equation is a little more involved than in the case of the fully-secular

master equation. We show the convergence property for FA equation and ⋆⋆-approximation of the cumulant equation.
In the case of the cumulant equation the proof of convergence to quasi-secular master equation is (mutatis mutandis)
the same as in the case of ⋆⋆-approximation. A clustering procedure of frequencies was also used in [38] to derive
a universal GKSL equation. We start by transforming the time-dependent generator K̃(2)(t) into the Schrödinger
picture. This must be done with the aid of the Baker–Campbell–Hausdorff formula, since K̃(2)(t) does not commute
with the physical Hamiltonian HS [30].

K(2)(t)ρS = −it [HS , ρS ] +
∑
i,j

∑
ω,ω′

γij(ω, ω′, t)
(

Ai(ω)ρSA†
j(ω′) − 1

2

{
A†

j(ω′)Ai(ω), ρS

})

+ 1
2
∑
i,j

∑
ω,ω′

[it(ω − ω′)]γij(ω, ω′, t)
(

Ai(ω)ρSA†
j(ω′) − 1

2

{
A†

j(ω′)Ai(ω), ρS

})
+ · · · (C30)

= −it [HS , ρS ] +
∑
i,j

∑
ω,ω′

(
1 + 1

2[it(ω − ω′)]
)

γij(ω, ω′, t)
(

Ai(ω)ρSA†
j(ω′) − 1

2

{
A†

j(ω′)Ai(ω), ρS

})
+ · · · .

(C31)
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Where the third term in equation (C30) is equal to − it
2
[
[HS , ·] , K̃(2)(t)

]
ρS , and the form in equation (C31) is

obtained with “higher” order commutators. The first order not shown explicitly in the equation above contains the
terms proportional to O((ω − ω′)2).

Remark 11. The reason to perform the derivation of a quasi-secular Markovian equation in the Schödinger picture
is the lack of ambiguity in choosing the interaction picture and also the no need for adding an ad hoc splitting
Hamiltonian.

We can now write the equation (C30) in “groups” notation that is incorporated in this Section (see Fig. 8):

K(2)(t)ρS = −it [HS , ρS ]

+
∑
i,j

∑
α,ν

Bα∑
β=1

Mν∑
µ=1

(
1 + [it(ωβ

α − ωµ
ν )]
)

γij(ωβ
α, ωµ

ν , t)
(

Ai(ωβ
α)ρSA†

j(ωµ
ν ) − 1

2

{
A†

j(ωµ
ν )Ai(ωβ

α), ρS

})
+ · · · . (C32)

The first step makes use of the assumption that within any group the spectral density does not vary too much.
Then, the next step is to perform the “the secular approximation” , that eliminates fast rotating terms.

K(2)(t)ρS = −it [HS , ρS ]

+
∑
i,j

∑
α,ν

Bα∑
β=1

Mν∑
µ=1

(
1 + [it(ωβ

α − ωµ
ν )]
)

γij(ωβ
α, ωµ

ν , t)
(

Ai(ωβ
α)ρSA†

j(ωµ
ν ) − 1

2

{
A†

j(ωµ
ν )Ai(ωβ

α), ρS

})
+ · · · (C33)

(I)
≈ −it [HS , ρS ] +

∑
i,j

∑
α,ν

Bα∑
β=1

Mν∑
µ=1

(1 + [it(ω̄α − ω̄ν)]) γij(ω̄α, ω̄ν , t)
(

Ai(ωβ
α)ρSA†

j(ωµ
ν ) − 1

2

{
A†

j(ωµ
ν )Ai(ωβ

α), ρS

})
+ · · ·

(C34)
= −it [HS , ρS ]

+
∑
i,j

∑
α,ν

(1 + [it(ω̄α − ω̄ν)]) γij(ω̄α, ω̄ν , t)

 Bα∑
β=1

Ai(ωβ
α)ρS

Mν∑
µ=1

A†
j(ωµ

ν ) − 1
2


Mν∑
µ=1

A†
j(ωµ

ν )
Bα∑
β=1

Ai(ωβ
α), ρS


+ · · ·

(C35)
(II)= −it [HS , ρS ] +

∑
i,j

∑
α,ν

(1 + [it(ω̄α − ω̄ν ]) γij(ω̄α, ω̄ν , t)
(

Aqs
i (ω̄α)ρSAqs

j
†(ω̄ν) − 1

2

{
Aqs

j
†(ω̄ν)Aqs

i (ω̄α), ρS

})
+ · · ·

(C36)
(III)
≈ −it [HS , ρS ] +

∑
i,j

∑
α

γij(ω̄α, ω̄α, t)
(

Aqs
i (ω̄α)ρSAqs

j
†(ω̄α) − 1

2

{
Aqs

j
†(ω̄α)Aqs

i (ω̄α), ρS

})
= (♣). (C37)

Here, in step (I) we made the “grouping” approximation, and in (II), we used the Definition in equation (C29). In
step (III), we performed approximation, usually referred to as “the secular approximation” however, in a range of
non-resonant (non-Bohr’s) frequencies. Steps (I) and (III) combined account for “the non-secular approximation”.
Before we obtain the “local” generator, we still have to perform the Markovian approximation.

γij(ω̄α, ω̄α, t) =
∫ t

0
ds

∫ t

0
dw eiω̄α(s−w) 〈B̃j(s − w)B̃i

〉
ρ̃B

=
∫ t

2

− t
2

ds

∫ t
2

− t
2

dw eiω̄α(s−w) 〈B̃j(s − w)B̃i

〉
ρ̃B

(C38)

(I)= 1
2

∫ t

−t

dv

∫ t

−t

du eiω̄αu
〈
B̃j(u)B̃i

〉
ρ̃B

= t

∫ t

−t

du eiω̄αu
〈
B̃j(u)B̃i

〉
ρ̃B

(C39)

(II)
≈ t

∫ +∞

−∞
du eiω̄αu

〈
B̃j(u)B̃i

〉
ρ̃B

= 2πt

〈(
1

2π

∫ +∞

−∞
du eiω̄αuB̃j(u)

)
B̃i

〉
ρ̃B

(C40)

(III)= 2πt
〈
Bj(ω̄α)B̃i

〉
ρ̃B

= 2πtRji(ω̄α) = tγij(ω̄α). (C41)

Where in (I) we performed change of variables, i.e., u = s − w, v = s + v, with D(s,w)
D(v,u) = 1

2 . Then the step (II)
accounts for the Markovian approximation. Finally in (III) we used the definition of Fourier transform of bath
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operators (see equation (B1)).

(♣) ≈ −it [HS , ρS ] + t
∑
i,j

∑
α

γij(ω̄α)
(

Aqs
i (ω̄α)ρSAqs

j
†(ω̄α) − 1

2

{
Aqs

j
†(ω̄α)Aqs

i (ω̄α), ρS

})
= tLqsρS (C42)

Let us firstly show how FA equation converges to the quasi-secular master equation. The first step, to achieve this
is to split the sum in equation (C42) into three parts.

K(2,⋆)(t)ρS = −it [HS , ρS ] +
∑
i,j

∑
ωβ

α,ωµ
ν ∈Bohr

γ⋆
ij(ωβ

α, ωµ
ν , t)

(
Ai(ωβ

α)ρSA†
j(ωµ

ν ) − 1
2

{
A†

j(ωµ
ν )Ai(ωβ

α), ρS

})
(C43)

= −it [HS , ρS ] +
∑
i,j

∑
|ωβ

α−ωµ
ν |≤∆ω

γ⋆
ij(ωβ

α, ωµ
ν , t)

(
Ai(ωβ

α)ρSA†
j(ωµ

ν ) − 1
2

{
A†

j(ωµ
ν )Ai(ωβ

α), ρS

})

+
∑
i,j

∑
∆ω<|ωβ

α−ωµ
ν |<∆Ω

γ⋆
ij(ωβ

α, ωµ
ν , t)

(
Ai(ωβ

α)ρSA†
j(ωµ

ν ) − 1
2

{
A†

j(ωµ
ν )Ai(ωβ

α), ρS

})

+
∑
i,j

∑
∆Ω≤|ωβ

α−ωµ
ν |

γ⋆
ij(ωβ

α, ωµ
ν , t)

(
Ai(ωβ

α)ρSA†
j(ωµ

ν ) − 1
2

{
A†

j(ωµ
ν )Ai(ωβ

α), ρS

})
= (♠). (C44)

Because the second summation runs over an empty set, as was mentioned before, it is equal to 0 exactly.
When considering the first summation for

∣∣ωβ
α − ωµ

ν

∣∣ < ∆ω and ∆ωt ≪ 1, we can approximate the phase factor and
the sinc function with 1.

γ⋆
ij(ωβ

α, ωµ
ν , t)

t
= 2πei

ω
µ
ν −ω

β
α

2 tsinc
(

ωµ
ν − ωβ

α

2 t

)∑
k

R
1
2
jk(ωµ

ν )R
1
2
ki(ω

β
α) ≈ 2πRji(ωµ

ν ). (C45)

For the third summation, and ∆Ω <
∣∣ωβ

α − ωµ
ν

∣∣ and 1 ≪ ∆Ωt we have:

γ⋆
ij(ωβ

α, ωµ
ν , t)

t
= 2πei

ω
µ
ν −ω

β
α

2 tsinc
(

ωµ
ν − ωβ

α

2 t

)∑
k

R
1
2
jk(ωµ

ν )R
1
2
ki(ω

β
α) ≈ 0. (C46)

Where the last approximation is with comparison to the r.h.s. of equation (C45). Therefore:

(♠) ≈ −it [HS , ρS ] +
∑
i,j

∑
|ωβ

α−ωµ
ν |<∆ω

γ⋆
ij(ωβ

α, ωµ
ν , t)

(
Ai(ωβ

α)ρSA†
j(ωµ

ν ) − 1
2

{
A†

j(ωµ
ν )Ai(ωβ

α), ρS

})
(C47)

≈ −it [HS , ρS ] +
∑
i,j

∑
|ωβ

α−ωµ
ν |<∆ω

2πtRji(ωµ
ν )
(

Ai(ωβ
α)ρSA†

j(ωµ
ν ) − 1

2

{
A†

j(ωµ
ν )Ai(ωβ

α), ρS

})
(C48)

= −it [HS , ρS ] +
∑
i,j

∑
α,ν,βµ: |ωβ

α−ωµ
ν |<∆ω

2πtRji(ωµ
ν )
(

Ai(ωβ
α)ρSA†

j(ωµ
ν ) − 1

2

{
A†

j(ωµ
ν )Ai(ωβ

α), ρS

})
(C49)

(I)= −it [HS , ρS ] +
∑
i,j

∑
α,βµ

2πtRji(ωµ
α)
(

Ai(ωβ
α)ρSA†

j(ωµ
α) − 1

2

{
A†

j(ωµ
α)Ai(ωβ

α), ρS

})
(C50)

(II)
≈ −it [HS , ρS ] +

∑
i,j

∑
α,βµ

2πtRji(ω̄α)
(

Ai(ωβ
α)ρSA†

j(ωµ
α) − 1

2

{
A†

j(ωµ
α)Ai(ωβ

α), ρS

})
(C51)

= −it [HS , ρS ] +
∑
i,j

∑
α

2πtRji(ω̄α)

∑
β

Ai(ωβ
α)ρS

∑
µ

A†
j(ωµ

α) − 1
2

∑
µ

A†
j(ωµ

α)
∑

β

Ai(ωβ
α), ρS


 (C52)

= −it [HS , ρS ] + t
∑
i,j

∑
α

γij(ω̄α)
(

Aqs
i (ω̄α)ρSAqs

j
†(ω̄α) − 1

2

{
Aqs

j
†(ω̄α)Aqs

i (ω̄α), ρS

})
= tLqsρS , (C53)
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where again step (I) is because the “grouping” approximation, i.e, small frequency differences occur only within a
group. The second step (II) is due to an assumption that the spectral density does not vary too much within the
group. Finally, upon transforming to the interaction picture, we obtain:

eK̃(2,⋆)(t)
1

∆Ω ≪t≪ 1
∆ω≈ etL̃qs

. (C54)

In this way, we have shown that FA equation approximates the quasi-secular master equation within short-times scale,
i.e., 1

∆Ω ≪ t ≪ 1
∆ω .

The proof for the convergence of ⋆⋆-type approximation of the cumulant equation to the quasi-secular master
equation is similar to the ⋆ case. The only difference appears, at the step of equations (C45,C46).

For
∣∣ωβ

α − ωµ
ν

∣∣ < ∆ω and ∆ωt ≪ 1, we have:

γ⋆⋆
ij (ωβ

α, ωµ
ν , t)

t
= ei

ω
µ
ν −ω

β
α

2 t 1
t

∫ ∞

0
dΩ N (T (Ω), Ω)

([
t sinc

(
ωµ

ν − Ω
2 t

)][
t sinc

(
ωβ

α − Ω
2 t

)]
Jji(Ω)

+
[
t sinc

(
ωµ

ν + Ω
2 t

)][
t sinc

(
ωβ

α + Ω
2 t

)]
Jij(Ω)

)
(C55)

+ 2πH(ωβ
α)H(ωµ

ν )ei
ω

µ
ν −ω

β
α

2 tsinc
(

ωµ
ν − ωβ

α

2 t

)∑
k

J
1
2

jk(ωµ
ν )J

1
2

ki(ω
β
α) (C56)

≈ 1
t

∫ ∞

0
dΩ N (T (Ω), Ω)

([
t sinc

(
ωµ

ν − Ω
2 t

)]2
Jji(Ω) +

[
t sinc

(
ωµ

ν + Ω
2 t

)]2
Jij(Ω)

)
(C57)

+ 2πH(ωβ
α)H(ωµ

ν )Jji(ωµ
ν ) (C58)

= 2π

∫ +∞

0
dΩ N (T (Ω), Ω)

(
δ

(2)
t
2

(ωµ
ν − Ω)Jji(Ω) + δ

(2)
t
2

(ωµ
ν + Ω)Jij(Ω)

)
(C59)

+ 2πH(ωβ
α)H(ωµ

ν )Jji(ωµ
ν ) (C60)

≈ 2π

∫ +∞

0
dΩ N (T (Ω), Ω) (δ(ωµ

ν − Ω)Jji(Ω) + δ(ωµ
ν + Ω)Jij(Ω)) (C61)

+ 2πH(ωµ
ν )Jji(ωµ

ν ) (C62)
= 2π (N (T (ωµ

ν ), ωµ
ν ) H(ωµ

ν )Jji(ωµ
ν ) + N (T (ωµ

ν ), ωµ
ν ) H(−ωµ

ν )Jij(Ω)) + 2πH(ωµ
ν )Jji(ωµ

ν ) (C63)
= 2π ((N (T (ωµ

ν ), ωµ
ν ) + 1) H(ωµ

ν )Jji(ωµ
ν ) + N (T (ωµ

ν ), ωµ
ν ) H(−ωµ

ν )Jij(Ω)) (C64)
= 2πRji(ωµ

ν ), (C65)

Here, we notice that the quality of approximation is determined how well models approximate exact Dirac delta
function, given particular spectral density. Subsequently for ∆Ω <

∣∣ωβ
α − ωµ

ν

∣∣ and 1 ≪ ∆Ωt ( (what implies
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α − ωµ

ν

∣∣t ≫ 1))
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α, ωµ
ν , t)
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= ei
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β
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2 t 1
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dΩ N (T (Ω), Ω)

([
t sinc

(
ωµ
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(
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Jji(Ω)

+
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2 t
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α + Ω
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Jij(Ω)

)
+ 2πH(ωβ
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β
α

2 tsinc
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ωµ
ν − ωβ

α

2 t

)∑
k
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1
2

jk(ωµ
ν )J

1
2

ki(ω
β
α) (C66)

= 2π

∫ +∞
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dΩ N (T (Ω), Ω)
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(
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2

)
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(1)
t
2

(ωµ
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(
ωβ
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2

)
Jij(Ω)

)
+ 2πH(ωβ

α)H(ωµ
ν )ei

ω
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β
α

2 tsinc
(

ωµ
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α

2 t

)∑
k

J
1
2

jk(ωµ
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1
2
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α) (C67)

≈ 2π

∫ +∞

0
dΩ N (T (Ω), Ω)

(
δ(ωµ

ν − Ω)sinc
(

ωβ
α − Ω

2 t

)
Jji(Ω) + δ(ωµ

ν + Ω)sinc
(

ωβ
α + Ω

2 t

)
Jij(Ω)

)
+ 2πH(ωβ

α)H(ωµ
ν )ei
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(
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α
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jk(ωµ
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1
2
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α) (C68)

= 2πRji(ωµ
ν )sinc

(
ωβ

α − ωµ
ν

2 t

)
+ 2πH(ωβ

α)H(ωµ
ν )ei

ω
µ
ν −ω

β
α

2 tsinc
(

ωµ
ν − ωβ

α

2 t

)∑
k

J
1
2

jk(ωµ
ν )J

1
2

ki(ω
β
α) ≈ 0 (C69)

Where the last approximation is due to properties of sinc function (in the
∣∣ωβ

α − ωµ
ν

∣∣t ≫ 1 regime) and comparison to
the r.h.s. of equation (C55). The other steps of the proof are the same as in the case of FA equation. Therefore, we
have

eK̃(2,⋆⋆)(t)
1

∆Ω ≪t≪ 1
∆ω≈ etL̃qs

. (C70)

Analogous proofs, both in quasi- and fully-secular case, hold in the case of the (”original”) cumulant equation, that
should a priori correctly describe all time scales. We have

eK̃(2(t) t→∞
≈ etL̃fs

, (C71)

eK̃(2(t)
1

∆Ω ≪t≪ 1
∆ω≈ etL̃qs

. (C72)

Remark 12. The transformation to interaction picture (with respect to the physical Hamiltonian HS) for Lqs is
non-trivial. The difficulty comes from the fact that [HS , Lqs] ̸= 0.

3. Comparison with exact numerics

We test the dynamics of the cumulant equation for the spin-boson model with the Hierarchical Equations of Motion
(HEOM) [58] and with the Bloch-Redfield equation. HEOM is a powerful non-perturbative approach and provided
that the algorithm converges, the HEOM is thought to provide a numerically exact solution. The starting point of
HEOM is a system interacting linearly with a bosonic environment, such that the Hamiltonian of the full system is
given by:

H = HS(t) +
∑

k

ωka†
kak + Q

∑
k

gk(a†
k + ak) (C73)

the two main assumptions of the method are that at t = 0 the system is in a product state, namely ρ(t = 0) =
ρS(t = 0) ⊗ ρB . and that the environment is an initially thermal equilibrium state

ρB = e−β
∑

k
ωka†

k
ak

Z
(C74)

Furthermore the HEOM method typically uses a Drude-Lorentz spectral density as opposed to the exponential
cutoff that we have been using in this paper, without lack of generality any spectral density can be written in terms of
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a set of the Drude spectral densities in the under-damped regime by fitting to the one we want to simulate, or fitting
the correlation functions directly as described in [59, 60]. In this paper we fit the correlation function to construct
the bosonic bath. Without lack of generality correlation function of the environment for a bosonic gaussian bath can
be written as:

C(τ) =
∫ ∞

0
dω

J(ω)
π

(
coth

(
βω

2 cos(ωτ) − i sin(ωτ)
))

(C75)

for our choice of spectral density J(Ω) = αΩ × e− |Ω|
ωc it results in

C(τ) = 1
π

αβ−2Γ(2)
[
ζ

(
2,

1 + βωc − iωcτ

βωc

)
+ ζ

(
2,

1 + iωcτ

βωc

)]
(C76)

where ζ is the Rienmann zeta function while Γ is the gamma special function. When dealing with HEOM the
correlation function is conveniently expressed as a sum of exponential functions, the reader interested in how this
mapping can find a description in [59, 61] and references therein :

C(t) = CR(t) + CI(t) (C77)

CR =
NR∑
k=1

cR
k e−γR

k t (C78)

CI =
NI∑

k=1
cI

ke−γI
kt (C79)

After expressing the correlation function in this convenient form, the HEOM dynamics can be obtained by solving
the following set of differential equations [58, 59], once we have fitted Eq. (C77) to (C76).

ρ̇n(t) = −i[HS , ρn(t)]−
∑

j=R,I

Nj∑
k=1

njkγj
kρn(t)−i

NR∑
k=1

cR
k nRk{Q, ρ(t)nRk−1}+

NI∑
k=1

cI
knIk{Q, ρ(t)nIk−1}−i

∑
j=R,I

Nj∑
k=1

[Q, ρnjk+1]

(C80)
where n = (nR1, nR2, . . . , nRNR

, nI1, nI2, . . . , nINI
) is a multi-index label of integers for the different auxiliary

density matrices (ADOs), njkϵ{0, Nc}, where Nc is where we truncate our hierarchy. While n = (0, 0, . . . , 0) denotes
the system density matrix. An important remark is that ADOs are not physical density operators in the standard
sense, they correspond to terms collected for different exponents of the correlation functions that appear from the the
application of the chain rule, during the derivation of Eq. (C80) the interested reader may consult [58, 62] for the full
derivation.

The comparison between the different approaches is done in the interaction picture. For the simulations, we have
chosen α = 0.05, T = 1, ω = 1, and ωc = 5, we consider seven auxiliary density matrices (ADOs), as hinted in [31]
the dynamics of the spin boson model only for the cumulant equation shows a shift on the diagonal with respect to
Bloch-Redfield dynamics

We also include the standard Bloch-Redfield equation in our simulation, in the Schrodinger picture it an be written
as in Ref. [17]

dρ(t)
dt

= − i [Hs, ρ(t)] + D(ρ(t)) (C81)

D(ρ(t)) =
sec∑

ω,ω′

∑
α,β

γα,β(ω, ω′)
(

Aβ(ω)ρ(t)A†
α − {A†

α(ω′)Aβ(ω), ρ(t)}
2

)
, (C82)

where we have neglected the contribution from the Lamb-shift Hamiltonian term [30]. Whereas, the upper bound
of the second summation sec indicates summation over secular terms satisfying |ω − ω′| ≪ τdecay. The γ(ω, ω′)
coefficients are given by:

γα,β(ω, ω′) = Γα,β(ω) + Γ∗
β,α(ω′) (C83)
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where

Γα,β(ω) =
∫ ∞

0
dt′eiωt′

Tr
[
Bα(t′)Bβ(0)ρB

]
(C84)

Both the Bloch-Redfield and HEOM equations are simulated using Qutip [59, 63], The dynamics derived via the
cumulant equation ends up being similar to both the Bloch-Redfield equation and the HEOM, as it is shown in Fig. 1
when describing coherences, and departs from the Bloch-Redfield description in terms of populations as hinted in [31].

From figure 1 (a) and (b) we can only see qualitatevely that the evolution from the Bloch-Redfield and the cumulant
equation are closer to the the numerically exact solution than the standard GKLS equation. However we would like
to see this quantitately and for that we need to introduce a distance between states. We will use quantum fidelity
which is defined as

F(ρ, σ) =
(

Tr

[√√
ρσ

√
ρ

])2
(C85)

Which is one when the states are the same, we compute the fidelity of the cumulant and Bloch-Redfield equation
with respect to HEOM, the results are shown in 1 (c). The Markovian GKLS was left out because its fidelity is too
low compared to its Non-Markovian counterparts, making their differences hard to visualize. On the plot we see that
the secular version of Bloch-Redfield and Cumulant are comparable, however the cumulant does slightly better at
really short times and long times.

The Bloch-Redfield equation compared with the cumulant agrees better with the HEOM when the secular approx-
imation is not performed. Anyway, it is known that at certain times it can restitute a non-positive density matrix,
as shown in [1, 50] even for this simple case. To sum up, the cumulant equation is always completely-positive, en-
suring physically meaningful solutions at every time, it shows the non-Markovian behavior of the dynamics in good
agreement with the HEOM method, and eventually, it has the plug-and-play easiness of the Davies equation.
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