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We describe two families of statistical tests to detect partial correlation in vectorial timeseries. The tests measure 
whether an observed timeseries Y can be predicted from a second series X, even after accounting for a third series 
Z which may correlate with X. They do not make any assumptions on the nature of these timeseries, such as 
stationarity or linearity, but they do require that multiple statistically independent recordings of the 3 series are 
available.   Intuitively, the tests work by asking if the series Y recorded on one experiment can be better predicted 
from X recorded on the same experiment than on a different experiment, after accounting for the prediction from 
Z recorded on both experiments.

N many fields of science, observations consist of 
timeseries. These timeseries are often 

autocorrelated, meaning that observations from a 
single timeseries at different times are not 
statistically independent. Such autocorrelations 
mean that standard statistical tests, which make an 
assumption of independent, identically distributed 
observations, cannot be applied 1–5. Common 
approaches to this problem include filtering to 
remove autocorrelations3; corrections to standard 
tests such as the t-test for Pearson correlation6–8; and 
synthesis of surrogate data9.  However all these 
approaches make assumptions such as stationarity 
or linearity the timeseries in question, which are 
often untrue or impossible to show in practice.  

This problem is greatly ameliorated if one has 
access to multiple repetitions of the experiment. For 
example, consider an experiment yielding two 
timeseries 𝑿 and 𝒀 which we consider as vectors of 
length 𝑇.  The timeseries are statistically 
independent if ℙሺ𝑿, 𝒀) = ℙሺ𝑿)ℙሺ𝒀): in other words, 
if there is no correlation between the entire history 
of 𝑿 and the entire history of 𝒀. Given only a single 
observation of the vectors 𝑿 and 𝒀, we cannot test 
for violation of independence without making 
further assumptions: methods such as standard 
tests for Pearson correlation, which assume 
independence of timepoints, give erroneously 
significant “nonsense correlations”5, and 
corrections to these make further assumptions such 
as stationarity. However, if the experiment is 

repeated 𝑁 times, and we assume that the histories 𝑿௜ and 𝒀௜ (𝑖 = 1 … 𝑁) observed on each repeat are 
independent vectors, we can employ a “session 
permutation” method to test for independence 10, 
without any further assumptions. This method 
essentially asks whether the relationship between 𝑿௜ and 𝒀௜ is larger than that between 𝑿௜ and 𝒀௝ for 𝑖 ≠ 𝑗, using a permutation test that randomizes 
across experiments. The test can be based on any 
measure of similarity between timeseries, including 
but not limited to Pearson correlation. 

Here, we describe two families of tests for partial 
correlation between repeatedly observed 
timeseries. We assume that each of 𝑁 experiments 
yielded 3 vectorial timeseries 𝑿, 𝒀 and 𝒁. We ask 
whether a correlation between 𝑿 and 𝒀 exists 
beyond a common effect of 𝒁. We do not assume 
that time series are stationary or linear, in fact 𝑿, 𝒀 and 𝒁 can be arbitrary vectors rather than 
timeseries. 

The problem 
We assume 𝑁 statistically independent 
experiments, each of which gives an observation of 
three vectorial timeseries: 𝑿௜, 𝒀௜ and 𝒁௜, for 𝑖 =1 … 𝑁, considered as matrices of sizes 𝑇 × 𝑝௜, 𝑇 × 𝑞௜ 
and 𝑇 × 𝑟௜, respectively. Write 𝓧 for the collection 
of all 𝑿௜ and 𝒁௜. We would like to test the null 
hypothesis that 𝒀௜ = 𝒁௜𝑾௜ + 𝑬௜ 
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where the 𝑬௜ are timeseries independent of each 
other and of 𝓧, and 𝑾௜ is an unknown 
deterministic 𝑝௜ × 𝑟௜ matrix. This null hypothesis 
models the idea that 𝒀 may be linearly predicted 
from 𝒁 but there is no further effect of 𝑿 on 𝒀 once 
the effect of 𝒁 is considered, even though 𝑿 and 𝒁 
may themselves be correlated.   

Test 1: An approximate test using 
orthogonal projections 
For a 𝑇 × 𝑛 matrix 𝑨, let ℳ be the function that 
maps 𝑨 to the 𝑇 × 𝑇 matrix performing the 
orthogonal projection onto the columns of 𝑨. 
Specifically, one can take ℳሺ𝑨) = 𝑼𝑼், where 𝑼𝚺𝑽் is the compact singular value decomposition 
of 𝑨 (Ref. 11, p. 82). 

Let 𝑷௜ = 𝑰 െ ℳሺ𝒁௜), so 𝑷௜ is the 𝑇 × 𝑇 projection 
matrix orthogonal to all columns of 𝒁௜. Note that if 
the null hypothesis is true, 𝑷௜𝒀௜ = 𝑷௜𝑬௜. Let 𝜌ሺ𝑿;  𝒀)  be a measure of the predictability of a 
vector timeseries 𝒀 from a second timeseries 𝑿, for 
example the Pearson coefficient of multiple linear 
regression. For a statistical test, you might first 
think to ask if 𝜌ሺ𝑿௜; 𝑷௜𝒀௜) is bigger than 𝜌൫𝑿௝; 𝑷௜𝒀௜൯  
for 𝑖 ≠ 𝑗, i.e. if the relationship of 𝑬 and 𝑿 is 
strongest when they come from the same 
experiment. But 𝜌ሺ𝑿௜; 𝑷௜𝒀௜) = 𝜌ሺ𝑿௜; 𝑷௜𝑬௜) is not 
identically distributed to 𝜌൫𝑿௝; 𝑷௜𝒀௜൯ = 𝜌൫𝑿௝; 𝑷௜𝑬௜൯ 
for 𝑗 ≠ 𝑖: even though 𝑬௜ is independent of both 𝑿𝒊 
and 𝑿௝, 𝑿௜ and 𝑷௜ can be dependent under the null 
hypothesis but 𝑿௝ and 𝑷௜ cannot. 

Instead, let 𝑷௜,௝ = 𝑰 െ ℳ൫ሾ𝒁௜ 𝒁௝ሿ൯ where ሾ𝒁௜ 𝒁௝ሿ is a 
horizontal concatenation; thus 𝑷௜,௝ is the 𝑇 ×𝑇 projection matrix orthogonal to the columns of 
both 𝒁௜ and 𝒁௝. Note that 𝑷௝,௜ = 𝑷௜,௝, because the 
orthogonal projection onto a given subspace is a 
unique matrix (Ref. 11, p. 82). We will 
compare 𝜌൫𝑿௜; 𝑷௜,௝𝒀௜൯ to 𝜌൫𝑿௝; 𝑷௜,௝𝒀௜൯, Specifically, 
define 

𝐺௜ = 1𝑁 ෍  𝜌൫𝑿௜; 𝑷௜,௝𝒀௜൯ െ 𝜌൫𝑿௝; 𝑷௜,௝𝒀௜൯ே
௝ୀଵ  

Since  𝑷௜,௝𝒀௜ = 𝑷௜,௝𝑬௜, it follows that 𝐺௜ =ଵே ∑ 𝜌൫𝑿௜;  𝑷௜,௝𝑬௜൯ െ 𝜌൫𝑿௝; 𝑷௜,௝𝑬௜൯ே௝ୀଵ . Under the null 
hypothesis, the 𝑬௜ are independent, and thus the 𝐺௜ 

are conditionally independent given 𝓧, although 
they need not be identically distributed.   

Under the null, the expectation of ∑ 𝐺௜ே௜ୀଵ  
conditional on 𝓧 is zero. To see this, first use the fact 
that 𝑷௝,௜ = 𝑷௜,௝ to rewrite ∑ 𝐺௜ே௜ୀଵ  as follows: 

෍ 𝐺௜ே
௜ୀଵ = 1𝑁 ෍ 𝜌൫𝑿௜;  𝑷௜,௝𝑬௜൯ െ 𝜌൫𝑿௝; 𝑷௜,௝𝑬௜൯ே

௜,௝ୀଵ  
= 1𝑁 ෍ 𝜌൫𝑿௜;  𝑷௜,௝𝑬௜൯ െ 𝜌൫𝑿௜;  𝑷௜,௝𝑬௝൯ே

௜,௝ୀଵ  

Next, because 𝑬௜ and 𝑬௝ are identically distributed 
and independent of everything else,  𝔼ሾ∑ 𝐺௜ே௜ୀଵ |𝓧ሿ= 1𝑁 ෍ 𝔼ൣ𝜌൫𝑿௜;  𝑷௜,௝𝑬௜൯ െ 𝜌൫𝑿௜; 𝑷௜,௝𝑬௝൯ห𝓧൧ே

௜,௝ୀଵ = 0 
Therefore, under the null, the statistics 𝐺௜ are 
statistically independent conditional on 𝓧, with 
expectations that sum to zero. They are marginally 

 
Figure 1: detecting a genuine correlation. In this simulation 𝑿௜ and 𝒀௜ are both equal to a sum of two step functions, plus 
independent additive noise. One step function is constant 
across experiments.  𝒁௜ equals the constant step function, and 
after removing it from 𝒀௜, the residual 𝑷௜,௝𝒀௜ is reliably more 
correlated to 𝑿௜ than to 𝑿௝, and statistical significance is 
detected. 
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exchangeable by independence of experiments, and 
are thus marginally identically distributed. 
Nevertheless, they are not necessarily either 
conditionally or marginally Gaussian. To test the 
null hypothesis in such circumstances, a t-test that 
the mean of 𝐺௜ is zero seems to be a reasonable 
approximate approach, provided the distributions 
of the 𝐺௜ are close to symmetric 12,13; this can be 
checked by usual methods such as histograms or 
QQ plots. 

An illustration of Test 1 
We illustrate this test with a simple example (Figs. 
1, 2) in which 𝑿 and 𝒀 are nearly identical, and are 
given by a sum of two step functions, plus 
independent additive noise. The first step function 𝑺଴ is the same for each observation 𝑖, being 0 for the 
first half of the timeseries and 1 for the second half. 
The second step function 𝑺୧ is a short pulse which 
occurs at a different time for different experiments 𝑖, but always the same time for 𝑿 and 𝒀. For each 𝑖 
we simulate 𝑿௜ = 𝑺଴ + 𝑺௜ + 𝝐௜ሺ𝑿) and 𝒀௜ = 𝑺଴ + 𝑺௜ +

𝝐௜ሺ𝒀), where 𝝐௜ሺ𝑿) and 𝝐௜ሺ𝒀) are both iid sequences of 
normal random variables with mean of zero and 
standard deviation of 0.05. We consider two cases: 
that 𝒁𝒊 = 𝑺𝟎 for all 𝑖, or that 𝒁𝒊 = 𝑺𝒊. 
If 𝒁௜ = 𝑺଴, there is a partial correlation of 𝑿௜ and 𝒀௜ 
given 𝒁௜, because the time of the pulse varies 
between experiments, but 𝒁௜ is always the same. 
Thus, 𝜌൫𝑿௜; 𝑷௜,௝𝒀௜൯ is reliably larger than 𝜌൫𝑿௝; 𝑷௜,௝𝒀௜൯, and the test finds statistical 
significance (Figure 1).  

However, if 𝒁௜ = 𝑺௜, there is not a partial correlation 
of 𝑿௜ and 𝒀௜ given 𝒁௜, since the correlation between 𝑿௜ and 𝒀௜ can be explained by a common 
dependence on 𝒁௜. Thus, 𝜌൫𝑿௜; 𝑷௜,௝𝒀௜൯ and 𝜌൫𝑿௝; 𝑷௜,௝𝒀௜൯ are comparable, and the test finds no 
statistical significance (Figure 2).  

To demonstrate that it is essential to use 𝑷௜,௝𝒀௜ 
rather than simply 𝑷௜𝒀௜, we repeat the simulation 
with 𝒁௜ = 𝑺௜, but comparing 𝜌ሺ𝑿௜; 𝑷௜𝒀௜) with 𝜌൫𝑿௝; 𝑷௜𝒀௜൯. This invalid test erroneously finds a 
significant partial correlation where none exists 
(Figure 3). 

Test 2: An exact test using projection and 
permutation 
A random permutation approach may be used for a 
test that provably controls the type 1 error rate. Let ℎ be a function that permutes the order of a 
sequence. For example, if 𝑎 = ሺ7,8,9), we might 
have ℎሺ𝑎) = ሺ8,9,7). We will use the notation ℎሺ𝑎)௜ 
to refer to the 𝑖th element of ℎሺ𝑎), so that ℎሺ𝑎)ଵ = 8 
in the example. 

Let 𝓨 be the sequence of all 𝒀௜. Similarly, let 𝓔 =ሺ𝑬ଵ, ⋯ , 𝑬௡)  be the sequence of all 𝑬௜, and recall that 𝓧 is the sequence of all pairs ሺ𝑿௜, 𝒁௜). Let 𝑷 = 𝑰 െℳሺሾ𝒁ଵ 𝒁ଶ ⋯ 𝒁௡ሿ) where ሾ𝒁ଵ 𝒁ଶ ⋯ 𝒁௡ሿ is a block 
matrix, meaning that 𝑷 is the 𝑇 × 𝑇 projection 
matrix orthogonal to the columns of all the 𝒁௜. We 
define the statistic 

𝑇ሺ𝓧, 𝓨) = 1𝑛 ෍ 𝜌ሺ𝑷𝑿௜, 𝑷𝒀௜)௡
௜ୀଵ  

Under the null hypothesis, 𝒀௜ = 𝒁௜𝑾௜ + 𝑬௜, so 𝑷𝒀௜ = 𝑷𝑬௜ and 

Figure 2: correlations due to common effects of 𝒁 are not 
detected. 𝑿௜ and 𝒀௜ are as in Fig. 1, but now 𝒁௜ is the step 
function that varies between experiments. Because both 𝒁ଵ 
and 𝒁ଶ are projected out, the similarity of 𝑷ଵ,ଶ𝒀ଵ to 𝑿ଵ is the 
same as to 𝑿ଶ, so no correlation is detected. 
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𝑇ሺ𝓧, 𝓨) = 𝑇ሺ𝓧, 𝓔) = 1𝑛 ෍ 𝜌ሺ𝑷𝑿௜, 𝑷𝑬௜)௡
௜ୀଵ  

To test the null we may compare the above statistic 
with an ensemble consisting of values of the form 

𝑇൫𝓧, ℎሺ𝓨)൯ = 1𝑛 ෍ 𝜌ሺ𝑷𝑿௜, 𝑷𝒀௛ሺ௜))௡
௜ୀଵ  

in which each 𝑿𝒊 is compared to a 𝒀 from a session 
chosen randomly without replacement. Because 𝑷 
is orthogonal to all the 𝑍௜, under the null 

𝑇൫𝓧, ℎሺ𝓨)൯ = 𝑇൫𝓧, ℎሺ𝓔)൯ = 1𝑛 ෍ 𝜌ሺ𝑷𝑿௜, 𝑷𝑬௛ሺ௜))௡
௜ୀଵ  

Also under the null, all 𝑬௜ are independent of each 
other and of 𝓧. Thus, the distribution of the pair ൫𝓧, ℎሺ𝓔)൯ is the same for all permutations ℎ, 
including the identity permutation.   

We can therefore obtain a valid permutation test by 
comparing 𝑇ሺ𝓧, 𝓨) to a null ensemble  𝑇൫𝓧, ℎሺ𝓨)൯ 
with randomly chosen permutations ℎ.  The proof 
of this follows the standard proof for the validity of 
permutation tests14,15. Let 𝒪ሺ𝓔) be the orbit of 𝓔 
under the set of all permutations of the 𝑛 
experiments.  Then the probability ℙሾ𝓔|𝓧, 𝒪ሺ𝓔)ሿ is 
equal for each member of 𝒪ሺ𝓔). Thus if we let ℎଵ … ℎ௠ be independent random permutations, 
then the 𝑚 + 1 random variables 𝑇ሺ𝓧, 𝓨) =𝑇ሺ𝓧, 𝓔) and 𝑇൫𝓧, ℎ௟ሺ𝓨)൯ = 𝑇൫𝓧, ℎ௟ሺ𝓔)൯, 𝑙 = 1 … 𝑚, 
are independent and identically distributed on ሺ𝓧, 𝒪ሺ𝓔)). If we let 𝑅 be the rank of 𝑇ሺ𝓧, 𝓨) within 
these numbers, breaking any ties randomly, then 𝑅 
is a random integer uniformly distributed between 
1 and 𝑚 + 1, and  𝑝 = 𝑅𝑚 + 1 

is an exact p-value, obeying ℙሺ𝑝 ൑ 𝛼) = 𝛼 for any 𝛼 
in the set of attainable p-values, i.e. ሼ1/ሺ𝑚 + 1),2/ሺ𝑚 + 1), … , 1ሽ. 

An illustration of Test 2 
In Fig. 4 we illustrate Test 2 (the permutation test 
just now described) by applying it to the same 
example data as shown in Figs. 1 and 2. The results 
are similar to those obtained with Test 1, with Test 
2 detecting the correlation that cannot be explained 
by 𝒁, and appropriately failing to detect the 
correlation that is explained by 𝒁. 

Figure 4: The permutation test (Test 2) detects a 
correlation that cannot be explained by 𝒁, but not a 
correlation that can be explained by 𝒁. In panels A and B 
respectively, the test was applied to the same data as in Figs. 
1 and 2. We used 𝑚 െ 1 = 999 random shuffles. 

 
Figure 3: both 𝒁𝒊 and 𝒁𝒋 must be projected out to avoid 
erroneous correlations. All data are as in Fig. 2 but only 𝒁𝒊 
is projected from 𝒀௜. Because 𝒁௝ is not projected from 𝒀௜, the 
residual 𝑷௜𝒀௜ is more similar to 𝑿௝ than 𝑿௜, leading to an 
erroneously significant negative partial correlation. 
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Discussion 
We have described two families of statistical tests 
for partial correlation between vectorial timeseries. 
The timeseries are not assumed stationary or linear, 
and in fact the tests apply to any data consisting of 
vectors depending on an index 𝑡.  The tests require 
multiple observations of these timeseries. 
Intuitively, the tests measure how much better one 
can predict 𝒀௜ from 𝑿௜ measured in the same 
experiment, compared to predicting 𝒀௜ from 𝑿௝ 
measured in a different experiment. To remove a 
possible common effect of the confounding variable 𝒁, the first test projects out both 𝒁௜ and 𝒁௝ from the 
T-dimensional vector 𝒀௜.  The second test projects 
out the all the matrices 𝒁ଵ … 𝒁௡; this potentially 
reduces the power of the test but allows a proof that 
the p-value is valid even for small numbers of 
experiments. 

The tests depend on a user-supplied measure 𝜌ሺ𝑿, 𝒀) of the degree of association between two 
vectorial timeseries. They make no assumptions 
about this measure, so anything can be used. When 
dealing with 1-dimensional timeseries (as in the 
examples presented here), Pearson correlation is a 
natural choice. In higher dimensions one could for 
example use the fraction of variance explained by 
multiple linear regression or ridge regression. If 𝒀 is 
high dimensional, it may be advisable to use 
regularization or methods such as reduced rank 
regression or canonical correlation analysis. Using 
cross-validation to assess performance might 
improve statistical power, but this is not required 
for a valid test.  

The tests may find use in multiple scientific fields 
where time-dependent experiments are performed 
repeatedly. An example in neuroscience would be if 
one makes multivariate recordings from the brains 
of subjects performing a behavioral task, and would 
like to test if some behavioral variables correlate 
with brain activity even after the effect of other 
behavioral variables are controlled for. Unlike the 
“pseudosession method” 10, the current tests require 
multiple repeats of an experiment. The matrices 𝑾௜ 
can differ between experiments, and so it is possible 
for these experiments to be made from different 
subjects, or even contain vectors of different 

dimensions (e.g. recordings of different numbers of 
neurons). However to apply the test, all timeseries 
must have the same number of time points, which 
can be achieved by truncating them to have the 
same length if necessary. Furthermore, unlike the 
“pseudosession method” this method can be used 
when the predictor variables 𝑿 and 𝒁 are not 
randomly generated, but produced by the subject 
themselves according to an unknown distribution.  
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