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Abstract

Recently the leading order of the correlation energy of a Fermi gas in a coupled
mean–field and semiclassical scaling regime has been derived, under the assumption of
an interaction potential with a small norm and with compact support in Fourier space.
We generalize this result to large interaction potentials, requiring only |·|V̂ ∈ ℓ1(Z3). Our
proof is based on approximate, collective bosonization in three dimensions. Significant
improvements compared to recent work include stronger bounds on non–bosonizable
terms and more efficient control on the bosonization of the kinetic energy.
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1 Introduction

The interacting high–density Fermi gas models a variety of important physical systems,
in particular the behavior of electrons in alkali metals. The simplest approximation for
the computation of its physical properties is mean–field theory, i. e., Hartree–Fock theory.
Hartree–Fock theory only includes the minimal amount of quantum correlations unavoidable
due to the antisymmetry requirement on the wave function of fermionic many–body systems.
In the present paper we consider corrections to the Hartree–Fock energy due to non–trivial
quantum correlations (i. e., entanglement in the ground state).

According to [BP53], the dominant effect of correlations on the ground state energy
should be described by the random–phase approximation (RPA), which may also be formu-
lated as a partial resummation of the perturbation series [GB57] or as a theory of particle–
hole pairs behaving as bosonic quasiparticles [SBFB57]. The latter point of view was recently
used by [BNPSS21a, BNPSS20] (extending the second–order result of [HPR20]) to rigorously
prove the validity of the random–phase approximation for the ground state energy, assuming
the interaction potential to be small and its Fourier transform to have compact support. In
the present paper, that result is generalized to arbitrarily large interaction potentials without
restriction on the support. Our proof is a refinement of the method of [BNPSS21a, BNPSS20],
a crucial point of which is to delocalize particle–hole pairs over patches on the Fermi sur-
face, thus circumventing the Pauli principle and justifying the approximate bosonization of
particle–hole pairs. This approach leads to a bosonic quasifree effective theory, from which
the ground state energy can be computed.

The further predictions of this bosonic effective theory have been discussed in [Ben20]
and it has also been proven to be a good approximation for the time evolution of the
Fermi gas [BNPSS21a], refining the time–dependent Hartree–Fock approximation derived in
[BSS18, BPS14a, BPS14b, BJPSS16]. An alternative approach to the ground state energy,
avoiding delocalization and thus closer in spirit to [SBFB57] has been developed recently in
[CHN21]: still, also there an averaging over different particle–hole pairs is needed to justify
the bosonization. In another context, the low–density Fermi gas, bosonization ideas have
been applied by [FGHP21, Gia22a, Gia22b].

Let us turn to the mathematical description of our result. We consider a system of N
fermions on the torus T

3 := R
3/(2πZ3) interacting through a potential V . The system is

described on the Hilbert space L2
a(T

3N ), consisting of all ψ ∈ L2(T3N ) that are antisymmetric
under exchange of particles,

ψ(xσ(1), . . . , xσ(N)) = sgn(σ)ψ(x1, . . . , xN )

for all permutations σ ∈ SN . The Hamiltonian is the linear self–adjoint operator

HN :=

N∑

j=1

−~
2∆xj + λ

N∑

i<j

V (xi − xj) . (1.1)

The interaction potential V is assumed to have non–negative Fourier transform V̂ ≥ 0.
(For the interaction potential we use the convention that the Fourier transform is V (x) =∑

k∈Z3 V̂ (k)eik·x, unlike for the Fourier transform of wave functions which we normalize to
be unitary.) Because of the antisymmetry of the wave functions, the sum of the Laplacians is
typically of order N5/3, as may be seen most easily from the the non–interacting case V = 0,
where the ground state is a Slater determinant of N plane waves fk(x) = (2π)−3/2eik·x, the
momenta k ∈ Z

3 being located in a ball of radius proprtional to N1/3. To make both kinetic
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and potential energy scale extensively (i. e., proportionally to the number of particles N) we
set

~ := N−1/3 and λ := N−1 .

This is interpreted as a mean–field limit coupled to a semiclassical limit with effective Planck
constant ~ = N−1/3 → 0 as N → ∞; this scaling limit has been introduced by [NS81, Spo81]
to derive the Vlasov equation from many–body quantum mechanics.

We are interested in the ground state energy

EN := inf spec(HN ) = inf
{
〈ψ,HNψ〉 : ψ ∈ L2

a(T
3N ), ‖ψ‖ = 1

}
.

A first approximation for EN is the Hartree–Fock energy, defined by restricting the varia-
tional problem to Slater determinants, i. e.,

EHF
N := inf

{
〈ψ,HNψ〉 : ψ =

N∧

j=1

uj where {uj}Nj=1 is an orthonormal family in L2(T3)
}
.

As already mentioned, for the non–interacting case V = 0, the Hartree–Fock and the many–
body ground state energy are attained by the Fermi ball

ψF :=
∧

k∈BF

fk , (1.2)

with the plane waves fk(x) := (2π)−3/2eik·x, for x ∈ T
3 and k ∈ Z

3. Here, the Fermi ball
BF is a set of N different momenta p ∈ Z

3 with
∑

p|p|2 as small as possible. To simplify our
analysis we assume that the Fermi ball is completely filled and thus uniquely defined, i. e.,
that BF = {k ∈ Z

3 : |k| ≤ kF}. This can be achieved by considering a sequence kF → ∞
and fixing N := |BF| as a function of kF. We find the relation kF = κN1/3 between the two
parameters, with κ = κ0 +O(N−1/3) and κ0 := (3/4π)1/3.

Under the assumption of a complete Fermi ball and non–negative V̂ , it was proven in
[BNPSS21a, Theorem A.1] that the Hartree–Fock energy EHF

N is still attained by the Fermi
ball (1.2), even when V 6= 0. It follows that

EHF
N = 〈ψF,HNψF〉 =

∑

p∈BF

~
2p2 +

N

2
V̂ (0)− 1

2N

∑

k,k′∈BF

V̂ (k − k′) . (1.3)

In this paper we focus on the correlation energy, defined as the difference EN − EHF
N ,

due to many–body interactions among particles. The following theorem, our main result,
provides an explicit formula for the dominant order (order ~) of the correlation energy.

Theorem 1.1 (Main result: RPA correlation energy). Suppose V ∈ L1(T3) with V̂ ≥ 0 and

∑

k∈Z3

V̂ (k)|k| <∞ .

For kF > 0 let N := |BF| = |{k ∈ Z
3 : |k| ≤ kF}|. Then there exists α > 0 such that

EN = EHF
N + ERPA

N +O(N−1/3−α) for kF → ∞ (1.4)

where the RPA energy formula is

ERPA
N := ~κ0

∑

k∈Z3

|k|
(
1

π

∫ ∞

0
log

(
1 + 2πκ0V̂ (k)

(
1− λ arctan

(1
λ

)))
dλ− π

2
κ0V̂ (k)

)
.

(1.5)
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Remarks. (i) Unlike the result of [BNPSS21a], where ‖V ‖ℓ∞ was assumed to be small,
here we do not assume smallness of the interaction potential.

(ii) A further generalization is given in Appendix A: there, the upper bound of (1.4) is
shown to hold assuming only V̂ ≥ 0 and

∑
k∈Z3 |k|V̂ (k)2 < ∞. Thanks to only the

second power of the potential appearing, this almost covers the Coulomb potential.
While our paper was under review, a new upper bound for the correlation energy has
been established in [CHN22] for square integrable potentials; this includes potentials
with Coulomb singularity. In this case, an additional second order contribution to the
exchange energy, which is part of the error in our setting, becomes relevant.

In the next section we will introduce the correlation Hamiltonian which describes correc-
tions to Hartree–Fock theory. In Section 3 we give a heuristic introduction to the bosoniza-
tion method by which the correlation Hamiltonian can be approximately diagonalized. The
remaining sections are dedicated to the steps of the rigorous implementation of this strategy,
culminating in the proof of Theorem 1.1 in Section 9.

2 Correlation Hamiltonian

As the first step to the proof of Theorem 1.1, we apply a particle–hole transformation to
the Hamiltonian, by which we obtain the correlation Hamiltonian which describes only the
corrections to mean–field (Hartree–Fock) theory. This is an exact computation not involving
any approximation.

We use second quantization on the fermionic Fock space F =
⊕

n≥0 L
2(T3)⊗an. On F , we

use the well–known creation and annihilation operators satisfying canonical anticommutation
relations, namely for all momenta p, q ∈ Z

3 we have

{ap, a∗q} = δp,q , {ap, aq} = {a∗p, a∗q} = 0 . (2.1)

As a simple consequence of (2.1), we find the operator norms ‖a∗p‖op ≤ 1 and ‖ap‖op ≤ 1 for
all p ∈ Z

3. We define the vacuum vector Ω = (1, 0, 0, . . . ) ∈ F and the number–of–fermions
operator N =

∑
p∈Z3 a∗pap. We extend the Hamiltonian (1.1) to the full Fock space F setting

HN :=
∑

p∈Z3

~
2p2a∗pap +

1

2N

∑

k,p,q∈Z3

V̂ (k)a∗p+ka
∗
q−kaqap . (2.2)

The restriction of HN to the N–particle sector L2
a(T

3N ) ⊂ F coincides with (1.1).
To analyse the correlation energy EN −EHF

N , it is convenient to factor out the Fermi ball
(1.2) and focus on its excitations. This is achieved through a particle–hole transformation
RF : F → F defined by

R∗
Fa

∗
pRF :=

{
a∗p if p ∈ Bc

F

ap if p ∈ BF
and RFΩ :=

∧

p∈BF

fp = ψF . (2.3)

One has RF = R∗
F = R−1

F . With (2.3) we find

R∗
FNRF =

∑

p∈BF

apa
∗
p +

∑

p∈Bc
F

a∗pap = N −
∑

p∈BF

a∗pap +
∑

p∈Bc
F

a∗pap = N −Nh +Np

where we defined the number–of–holes operator Nh :=
∑

h∈BF
a∗hah and the number–of–

particles operator Np :=
∑

p∈Bc
F
a∗pap. This shows that the N–particle sector L2

a(T
3N ) ⊂ F

4



is the image under RF of the eigenspace of Nh − Np associated with the eigenvalue 0 (and
thus RF defines a unitary map from the eigenspace χ(Nh −Np = 0)F to L2

a(T
3N )).

We introduce the correlation Hamiltonian Hcorr by conjugating HN with RF and sub-
tracting the energy of the Fermi ball (which, as already noted in [BNPSS21a, Theorem A.1],
in our scaling limit and with V̂ ≥ 0 equals the Hartree–Fock ground state energy). With
(2.3) and the canonical anticommutation relations (2.1), a lengthy but straightforward com-
putation leads to the correlation Hamiltonian

Hcorr := R∗
FHNRF − EHF

N = H0 +QB + E1 + E2 + X (2.4)

with the main terms

H0 :=
∑

p∈Z3

e(p) a∗pap , with e(p) := |~2p2 − κ2| ,

QB :=
1

N

∑

k∈Z3

V̂ (k)

(
b∗(k)b(k) +

1

2
(b∗(k)b∗(−k) + b(−k)b(k))

) (2.5)

and the error terms

X := − 1

2N

∑

k∈Z3

V̂ (k)

( ∑

p∈Bc
F∩(BF+k)

a∗pap +
∑

h∈BF∩(Bc
F−k)

a∗hah

)
,

E1 :=
1

2N

∑

k∈Z3

V̂ (k)d∗(k)d(k) ,

E2 :=
1

2N

∑

k∈Z3

V̂ (k) [d∗(k)b(−k) + h.c.] .

(2.6)

Here we defined the delocalized particle–hole pair creation and annihilation operators

b∗(k) :=
∑

p∈Bc
F∩(BF+k)

a∗pa
∗
p−k, b(k) :=

∑

p∈Bc
F∩(BF+k)

ap−kap (2.7)

and the non–bosonizable operators

d∗(k) :=
∑

p∈Bc
F∩(B

c
F+k)

a∗pap−k −
∑

h∈BF∩(BF−k)

a∗hah+k , (2.8)

satisfying d∗(k) = d(−k) for all k ∈ Z
3.

To prove Theorem 1.1, we improve the bosonization method introduced in [BNPSS20]
for the upper bound and show that

inf
ψ∈F :||ψ||=1
(Np−Nh)ψ=0

〈ψ,Hcorrψ〉 = ERPA
N +O(N−1/3−α) .

3 Strategy of the Proof: Approximate Bosonization

The key idea is to derive, from the fermionic correlation Hamiltonian (2.4), a quadratic,
approximately1 bosonic, Hamiltonian which can be approximately diagonalized by a Bogoli-
ubov transformation to obtain the ground state energy.

1With approximate bosonization we refer to the fact that we construct operators that only up to an error
term satisfy canonical commutator relations; this is in contrast to certain one–dimensional fermionic systems
[ML65] and spin systems [CG12, CGS15, Ben17, NS19] which can be expressed through operators that satisfy
the canonical commutator relations exactly.

5



Figure 1: Decomposition of (a shell around) the Fermi surface into patches. The vectors ω̂α
(marked with dots) are the patch centers. The decomposition of the southern half sphere is
obtained through reflection by the origin. See [BNPSS20] for the details of the construction.

The starting point is the observation that the particle–hole pair operators behave ap-
proximately as bosonic creation and annihilation operators, i. e., they approximately satisfy
canonical commutator relations:

[b∗(k), b∗(l)] = 0 = [b(k), b(l)] , [b(k), b∗(l)] = const.× (δk,l + lower order) .

Thus QB can be understood as an approximately bosonic quadratic Hamiltonian. The terms
X, E1, and E2 do not have a bosonic interpretation and are going to be estimated as smaller
errors. It remains to bosonize the kinetic energy H0. Because this step requires us to linearize
the dispersion relation, we need to localize of the pair operators to patches Bα, i. e., to M
small regions covering a shell around the Fermi sphere in momentum space (see Fig. 1 for an
illustration of the patch decomposition we have in mind; eventually the number of patches
M will be chosen to tend to infinity as N → ∞):

b∗(k) ≃
M∑

α=1

nα(k)b
∗
α(k) , b∗α(k) :=

1

nα(k)

∑

p : p∈Bc
F∩Bα

p−k∈BF∩Bα

a∗pa
∗
p−k , (3.1)

with a normalization constant nα(k) so that the one–pair states b
∗
α(k)Ω have norm one. There

is a catch here: the sum over pairs in (3.1) is only non–empty if the relative momentum k
is pointing outward from the Fermi ball, so for about half of the possible values of α the
operators b∗α(k) vanish. To be sure that many particle–hole pairs contribute to the sum
defining b∗α(k), we introduce a cutoff by defining the index set

I+
k :=

{
α ∈ {1, 2, . . . ,M} : k · ω̂α ≥ N−δ

}

(with δ > 0 to be optimized at the end) and combine the retained b∗α(k)–operators into

c∗α(k) :=

{
b∗α(k) for α ∈ I+

k

b∗α(−k) for α ∈ I+
−k .

These operators again behave approximately bosonic in the sense that

[c∗α(k), c
∗
β(l)] = 0 = [cα(k), cβ(l)] , [cα(k), c

∗
β(l)] = δα,β

(
δk,l +O

( N
nα(k)2

))
. (3.2)

6



This provides important intuition on how to make the approximate bosonization rigorous:
because nα(k)

2 counts the number of particle–hole pairs of relative momentum k in patch
Bα, we need the size of the patches to be sufficiently big and we need to bound the number
of excitations counted by N in states close to the ground state.

By virtue of the localization to patches we can linearize the dispersion relation e(p) locally
in every patch, and thus find (the computation here shown for the case α ∈ I+

k )

[H0, c
∗
α(k)] =

1

nα(k)

∑

p : p∈Bc
F∩Bα

p−k∈BF∩Bα

(e(p)− e(p − k)) a∗pa
∗
p−k

=
1

nα(k)

∑

p : p∈Bc
F∩Bα

p−k∈BF∩Bα

~
2
(
2p · k − |k|2

)
a∗pa

∗
p−k

≃ 1

nα(k)

∑

p : p∈Bc
F∩Bα

p−k∈BF∩Bα

2~2 ωα · k a∗pa∗p−k

≃ [DB, c
∗
α(k)]

(3.3)

if we introduce the quadratic approximately bosonic operator

DB = 2κ~
∑

k∈Γnor

M∑

α=1

|k · ω̂α| c∗α(k)cα(k) .

While the substitution of H0 by DB has here been motivated only in commutators with
almost bosonic operators, a key step of our analysis is to justify this step also on general
states close to the ground state. This step is explained in (3.8) to (3.11).

Our further goal is to approximately (to order ~, the dominant contribution of the corre-
lation energy) diagonalize the bosonic quadratic Hamiltonian DB+QB by an approximately
bosonic Bogoliubov transformation T , allowing us to read off the correlation energy. Given
a state ψ ∈ F such that (Np − Nh)ψ = 0 (think of the ground state of Hcorr), and setting
ξ := T ∗ψ, we write

〈ψ,Hcorrψ〉 = 〈Tξ,HcorrTξ〉
= 〈Tξ, (DB +QB)Tξ〉+ 〈Tξ, (H0 − DB)Tξ〉+ 〈Tξ, (X + E1 + E2)Tξ〉 .

(3.4)

Through a suitable choice of the Bogoliubov kernel K(k) (a matrix indexed by the patch
labels), the approximate Bogoliubov transformation

T = exp

(
1

2

∑

k∈Γnor

∑

α,β∈I+
k ∪I+

−k

K(k)α,β c
∗
α(k)c

∗
β(k)− h.c.

)
(3.5)

diagonalizes approximately the quadratic Hamiltonian DB+QB. On states with few particles
(ie. with few excitations of the Fermi sea), we find as suggested by exact bosonic Bogoliubov
theory that

〈Tξ, (DB +QB)Tξ〉 ≃ ERPA
N + 〈ξ,Hexc

B ξ〉 , (3.6)

with the intended ERPA
N as in (1.5), and for the description of the possible bosonic excitation

one obtains an effective Hamiltonian of the form

Hexc
B =

∑

k∈Γnor

∑

α,β∈I+
k ∪I+

−k

2~κ|k|K(k)α,βc∗α(k)cβ(k) ≥ 0 . (3.7)
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To make these heuristics rigorous, apart from controlling the bosonic approximation
(arising from the neglect of the error term in (3.2)) in the bosonic Bogoliubov diagonalization,
we need to estimate the second and the third terms in (3.4). There are two obstacles. One
is to give a meaning to the heuristics H0 ≃ DB, which, a priori, holds only as in (3.3), at
the level of commutators with the approximately bosonic operators. The other is to control
the non–bosonizable term E1 and the term E2 which couples almost bosonic c–operators to
non–bosonizable d–operators. (The exchange term X instead can be controlled by more
elementary estimates.)

Both problems were solved in [BNPSS21a] under the assumption that the interaction
potential V is small and compactly supported in Fourier space. In the present work we
overcome these limitations and prove the validity of the random–phase approximation for
a much larger class of interaction potentials. The main achievements of the present paper,
compared to [BNPSS20, BNPSS21a], are the following:

• The combination H0 − DB is approximately invariant under conjugation with the ap-
proximately bosonic Bogoliubov transformation because its action can be expanded in
commutators:

〈Tξ, (H0 − DB)Tξ〉 ≃ 〈ξ, (H0 − DB)ξ〉 . (3.8)

In the proof of the upper bound for the correlation energy, the vector ξ coincides with
the vacuum, and the right–hand side is zero. For the lower bound this is not true, and
we are left with controlling the negative term −DB. In [BNPSS21a], this was achieved
by exploiting the positivity of Hexc

B in (3.6). More precisely, we proved that

〈ξ,Hexc
B ξ〉 ≥ 〈ξ,DBξ〉 − C‖V̂ ‖1〈ξ,H0ξ〉,

which, for small potential, is enough to control the r. h. s. of (3.8). In the present
paper, we need a more refined analysis. In order to compare Hexc

B with DB, we need
to diagonalize the matrix K(k)α,β appearing on the r. h. s. of (3.7) (because DB is
already expressed through a diagonal matrix). This can be achieved through a second
approximately bosonic Bogoliubov transformation having the form

Z = exp

(
∑

k∈Γnor

∑

α,β∈I+
k ∪I+

−k

L(k)α,β c
∗
α(k)cβ(k)

)
(3.9)

for an antisymmetric matrix L(k)α,β . If c
∗ and c were bosonic operators, we could write

Z = exp
(∑

k∈Γnor dΓ(L(k))
)
=
∏
k∈Γnor Γ(eL(k)) (where dΓ and Γ are the operators of

bosonic second quantization) and its action on (3.7) would be simply

Z∗Hexc
B Z =

∑

k∈Γnor

dΓ(e−L(k)K(k)eL(k)) ,

i. e., conjugation of K(k) by the one–boson unitary eL(k). This would allow us to
diagonalize the matrix K(k) by an appropriate choice of L(k). Even though c and c∗

are not exactly bosonic operators, this remains approximately true on states with few
excitations. After this diagonalization, it is simple to compare with DB and conclude
that (up to subleading error terms)

Z∗Hexc
B Z & DB . (3.10)

8



Since, similarly to (3.8), also Z leaves the difference H0 − DB almost invariant (the
fact that Z can be expressed in terms of almost bosonic operators by (3.3) implies
[Z,H0 − DB] ≃ 0), we obtain, with (3.10), the desired lower bound

〈TZξ, (DB +QB)TZξ〉+ 〈TZξ, (H0 − DB)TZξ〉
≃ ERPA

N + 〈Zξ,Hexc
B Zξ〉+ 〈ξ, (H0 − DB)ξ〉 & ERPA

N .
(3.11)

• In [BNPSS21a], we controlled the non–bosonizable error terms as, informally stated,
T ∗(E1+E2)T & −C‖V̂ ‖ℓ1H0, explaining the necessity of the interaction potential being
small to control this term by a positive H0. In the present paper instead we control E1
more precisely. In particular, we prove that on states ξ close to the ground state of the
correlation Hamiltonian, the following improved bound holds true (see Lemma 4.8):

〈Tξ, E1Tξ〉 ≪ C~ . (3.12)

This means that the contribution of the non–bosonizable term E1 to the energy is
subleading with respect to ERPA

N , which is of order ~. Concerning E2, by the Cauchy–
Schwarz inequality we get (see Corollary 4.9)

±E2 ≤ CNαE1 + C‖V̂ ‖1N−α
H0 .

The first term in the bound is controlled by the improved bound (3.12), while the
second term is controlled by positivity of 〈Tξ,H0Tξ〉 in (3.4), for N large enough
without any smallness assumption on V .

• Furthermore, to implement this strategy, we improve the a–priori bounds on the num-
ber and the energy of excitations: our Lemma 4.1 and Corollary 4.2 generalize estimates
of [BNPSS21a] to interaction potentials with V̂ ≥ 0 and | · |V̂ ∈ ℓ1(Z3). Moreover,
Lemma 4.3 now holds uniformly in k.

The rigorous implementation is the subject of all remaining sections.

4 A–Priori Estimates on Excitations of the Fermi Ball

The following lemma shows that vectors with total energy close to the ground state energy
contain also only a small amount of kinetic energy.

Lemma 4.1 (A–priori bound on kinetic energy). Assume
∑

k∈Z3 |V̂ (k)||k| <∞ and V̂ ≥ 0.
Then there exists a C > 0 such that we have

Hcorr = R∗
FHNRF − EHF

N ≥ H0 − C~ .

Hence, for every ψ ∈ L2
a(T

3N ) with ‖ψ‖ = 1 and 〈ψ,HNψ〉 ≤ EHF
N +C~ the excitation vector

ξ = R∗
Fψ ∈ F satisfies

〈ξ,H0ξ〉 ≤ C~ .

Remark. In the present paper we will apply Lemma 4.1 to the ground state ψgs, which by
the variational principle even satisfies 〈ψgs,HNψgs〉 ≤ EHF

N .
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Proof of Lemma 4.1. From V̂ ≥ 0 we get

0 ≤
∫

T3×T3

V (x− y)

(
N∑

j=1

δ(xj − x)−N

)(
N∑

i=1

δ(xi − y)−N

)
dxdy

= 2

N∑

i<j

V (xi − xj) +NV (0) −N2V̂ (0) .

Thus

HN ≥
N∑

j=1

−~
2∆xj +

N

2
V̂ (0) − V (0)

2
.

Switching to Fock space F and conjugating with RF, we conclude that

R∗
FHNRF ≥

∑

p∈Z3

~
2p2R∗

Fa
∗
papRF+

N

2
V̂ (0)− V (0)

2
= H0+

∑

p∈BF

~
2p2+

N

2
V̂ (0)− V (0)

2
. (4.1)

We compare the r. h. s. of (4.1) with the Hartree–Fock energy (1.3). We have

1

2N

∑

k,k′∈BF

V̂ (k − k′) =
V (0)

2
− 1

2N

∑

k∈BF

∑

k′∈Bc
F

V̂ (k − k′) .

Setting q = k − k′ and noting that |BF ∩ (Bc
F + q)| ≤ C|q|N2/3, we estimate

1

2N

∑

k∈BF

∑

k′∈Bc
F

V̂ (k − k′) =
1

2N

∑

k∈BF

∑

q∈Bc
F+k

V̂ (q)

=
1

2N

∑

q∈Z3

V̂ (q)
∑

k∈BF∩(Bc
F+q)

1 ≤ C~

∑

q∈Z3

V̂ (q)|q| .

By assumption on V , this implies

1

2N

∑

k,k′∈BF

V̂ (k − k′) ≥ V (0)

2
− C~ .

With (1.3) and (4.1) we conclude that R∗
FHNRF ≥ EHF

N +H0 − C~.

The a–priori bound from Lemma 4.1 for the kinetic energy H0 has several consequences.
First of all, it gives control on the number of excitations of the Slater determinant. Here, it
is useful to introduce gapped number–of–fermions operators which are easier to control than
N . For ε > 0, we define the gapped number operator

Nε :=
∑

p∈Z3: ||p|−kF|>N−ε

a∗pap (4.2)

measuring the number of excitations with momenta further than a distance N−ε from the
Fermi sphere. (The definition (4.2) differs slightly from the definition used in [BNPSS21a]
but that is merely a matter of convenience.)

Corollary 4.2 (A–priori bounds on particle number). There exists a constant C > 0 such
that, on χ(Np −Nh = 0)F , we have

N ≤ CN2/3
H0 and Nε ≤ CN1/3+ε

H0 for every ε > 0. (4.3)

10



Assume furthermore that
∑

k∈Z3 |V̂ (k)||k| < ∞ and V̂ ≥ 0. Then, for ψ ∈ L2
a(T

3N ) with
‖ψ‖ = 1 and 〈ψ,HNψ〉 ≤ EHF

N + C~, the excitation vector ξ = R∗
Fψ ∈ F satisfies

〈ξ,N ξ〉 ≤ CN1/3 and 〈ξ,Nεξ〉 ≤ CN ε for every ε > 0. (4.4)

Proof. To prove (4.3) for Nε, observe that ||p| − kF| > N−ε implies |~|p| − κ| > ~N−ε and
thus

|~2p2 − κ2| ≥ κ~N−ε .

Thus
H0 ≥

∑

p∈Z3:||p|−kF|>N−ε

|~2p2 − κ2|a∗pap ≥ κ~N−εNε .

The bound for N is proven in [BNPSS21a, Lemma 2.4]; (4.4) follows using Lemma 4.1.

Furthermore, the estimate for H0 from Lemma 4.1 allows us to bound the particle–hole
pair operators b(k) and b∗(k) introduced in (2.7).

Lemma 4.3 (Kinetic bound on particle–hole pairs). There exists a constant C > 0 such
that, for all k ∈ Z

3, ∑

p∈Bc
F∩(BF+k)

‖apap−kψ‖ ≤ CN1/2‖H1/2
0 ψ‖ (4.5)

and moreover ∑

p∈Bc
F∩(BF+k):

e(p)+e(p−k)≤CN−1/3−δ

‖apap−kψ‖ ≤ CN1/2−δ/2‖H1/2
0 ψ‖ . (4.6)

The bounds (4.5) and (4.6) have been established in [BNPSS21a, Appendix B] (and
previously in [HPR20, Lemma 4.7]) for fixed k (which was sufficient since there only k in
the compact support of V̂ was relevant). Here, we improve the proof given in [BNPSS21a]
to obtain uniformity in k. We use the following number theoretic result.

Proposition 4.4 (Lattice points in convex bodies, [Hux03]). Let K ⊂ R
2 be a smooth convex

body and let RK be its dilation by a factor R > 0, RK := {x ∈ R
2 | x/R ∈ K}. Consider

the number of points of Z2 belonging to RK,

NK(R) :=
∣∣{n ∈ Z

2 | n
R

∈ K}
∣∣ . (4.7)

Let
EK(R) := NK(R)−R2|K| . (4.8)

Then, for any γ > 131/208, there exists CK,γ > 0 independent of R such that

|EK(R)| ≤ CK,γR
γ . (4.9)

Remark. The constant CK,γ in the estimate (4.9) depends on the curvature of the boundary
of K. In particular, CK,γ is finite as long as the curvature is strictly positive. For us it is
sufficient that (4.9) holds for some γ < 1. A simple proof for 2/3 < γ < 1 is given in [Hor03,
Theorem 7.7.16] (the condition 0 ∈ K given there can always be achieved by a translation).
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Proof of Lemma 4.3. We first prove (4.5). Proceeding as in [HPR20, Lemma 4.7] by the
Cauchy–Schwarz inequality we get

∑

p∈Bc
F∩(BF+k)

||apap−kψ||

≤
(

∑

p∈Bc
F∩(BF+k)

1

e(p) + e(p − k)

)1/2( ∑

p∈Bc
F∩(BF+k)

(e(p) + e(p− k)) ||apap−kψ||2
)1/2

.

The second factor is bounded by the kinetic energy as claimed,

∑

p∈Bc
F∩(BF+k)

(e(p) + e(p − k)) ||apap−kψ||2

≤
∑

p∈Bc
F∩(BF+k)

e(p)||apψ||2 +
∑

p∈Bc
F∩(BF+k)

e(p − k)||ap−kψ||2 ≤ 〈ψ,H0ψ〉 .

Therefore it is enough to show

∑

p∈Bc
F∩(BF+k)

1

p2 − (p − k)2
≤ CN1/3 . (4.10)

If |k| > C0N
1/3 (for a C0 > 0 large enough), we have p2 − (p − k)2 > C1N

2/3 for all
p ∈ Bc

F∩(BF+k) (with a different constant C1 > 0) and (4.10) is clear. Thus we can assume
that from now on

|k| ≤ C0N
1/3 .

We need to further distinguish the cases p2 − (p− k)2 ≥ 4N1/3 and p2 − (p− k)2 < 4N1/3.

The case p2 − (p− k)2 ≥ 4N1/3. We apply the argument used in [FLLS13, Eq. (5.13)]. If
η ∈ (0, 3

2C0
) then for q ∈ Bη(p) we have

|q2 − (q − k)2| ≥
∣∣|p2 − (p− k)2| − |2(p − q) · k|

∣∣ ≥ 4N1/3 − 2ηC0N
1/3 ≥ N1/3 .

With

∇q
1

q2 − (q − k)2
=

2k

q2 − (q − k)2
1

q2 − (q − k)2

we conclude that

∣∣∣ 1

p2 − (p− k)2
− 1

p̃2 − (p̃− k)2

∣∣∣ ≤ η2C0 sup
q∈Bη(p)

1

q2 − (q − k)2

for all p̃ ∈ Bη(p). Hence, if η > 0 is small enough, we get

sup
q∈Bη(p)

1

q2 − (q − k)2
≤ 2

p2 − (p− k)2

and
1

p2 − (p− k)2
≤ 2 inf

q∈Bη(p)

1

q2 − (q − k)2
.
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Possibly choosing η > 0 still smaller, the balls Bη(p) are disjoint for different p, and we
obtain

∑

p∈Bc
F∩(BF+k)

χ(p2 − (p− k)2 ≥ 4N1/3)

p2 − (p− k)2
≤ C

∫

p∈Bc
F∩(BF+k)

1

p2 − (p− k)2
dp

≤ CN1/3

∫

|p|>1,|p−k′|<1

1

p2 − (p − k′)2
dp

where we defined k′ := k/kF. With

p2 − (p− k)2 = (p2 − 1) + (1− (p− k)2) ≥ 2
(
p2 − 1

)1/2(
1− (p − k)2

)1/2

we conclude that

∑

p∈Bc
F∩(BF+k)

χ(p2 − (p− k)2 ≥ 4N1/3)

p2 − (p− k)2
≤ CN1/3

∫
|p|>1,

|p−k′|<1

1

(p2 − 1)1/2(1− (p − k′)2)1/2
dp

≤ CN1/3

uniformly in k, as shown in [FLLS13, Lemma 3.4].

The case p2 − (p− k)2 < 4N1/3. We observe that p ∈ Bc
F and p− k ∈ BF together imply

the lower bound (recall that all momenta are elements of Z3)

1 ≤ p2 − (p− k)2 = 2p · k − k2 =: m ∈ N .

Since moreover p2 > k2F and (p− k)2 = p2 −m ≤ k2F, we find

k2F < p2 ≤ k2F +m .

We obtain
∑

p∈Bc
F∩(BF+k)

χ(p2 − (p− k)2 ≤ 4N1/3)

p2 − (p − k)2
≤

4N1/3∑

m=1

1

m
|Bm(k)| (4.11)

with
Bm(k) :=

{
p ∈ Z

3 : k2F < |p|2 ≤ k2F +m and 2p · k − |k|2 = m
}
.

Without loss of generality |k1| ≥ |k2| and |k1| ≥ |k3| (in particular, since k 6= 0, we have
k1 6= 0). Then, for p = (p1, p2, p3) ∈ Bm(k), the condition 2p · k − |k|2 = m is solved by

p1 =
m+ k2

2k1
− p2

k2
k1

− p3
k3
k1

. (4.12)

Thus |Bm(k)| is bounded by the number of points (p2, p3) ∈ Z
2 with

k2F ≤
(
m+ k2

2k1
− p2

k2
k1

− p3
k3
k1

)2

+ p22 + p23 ≤ k2F +m . (4.13)

(This is only an upper bound because (p2, p3) ∈ Z
2 for which the r. h. s. of (4.12) is not

integer do not contribute to Bm(k)). On the (p2, p3)–plane, we define new variables (q2, q3)
by

p2 :=
k2√
k22 + k23

q2 −
k3√
k22 + k23

q3 +
k2 +m

2|k|

√
k22 + k23
|k| ,

p3 :=
k3√
k22 + k23

q2 +
k2√
k22 + k23

q3 .

(4.14)
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In terms of these new variables, we can rewrite (4.13) as

k2F −
(
k2 +m

2|k|

)2

≤ k2

k21
q22 + q23 ≤ k2F +m−

(
k2 +m

2|k|

)2

. (4.15)

We can therefore apply Proposition 4.4 to estimate the number of points (p2, p3) ∈ Z
2

contained between the two ellipses described by (4.15). (From the assumptions |k1| ≥ |k2|
and |k1| ≥ |k3| we have 1 ≤ |k|/|k1| ≤ 3, which implies that the error term in (4.9) is uniform
in k.) We conclude that

|Bm(k)| ≤ π
k1
|k|m+ CkγF ≤ C(m+Nγ/3) for a γ >

131

208
.

Inserting this bound in (4.11) and choosing γ < 1 we arrive at

∑

p∈Bc
F∩(BF+k)

χ(p2 − (p− k)2 ≤ 4N1/3)

p2 − (p− k)2
≤ C

4N1/3∑

m=1

1

m
(m+Nγ/3) ≤ CN1/3 .

To show (4.6), we proceed analogously. The only difference is that now the sum in (4.11)
can be restricted to m ≤ CN1/3−δ (here, the case p2− (p− k)2 ≥ 4N1/3 is not relevant).

From Lemma 4.3, we immediately obtain a bound on the operators b(k) and b∗(k). For
details, see [BNPSS21a, Lemma 2.3].

Corollary 4.5 (Kinetic bound on pair operators). There exists a C > 0 such that for all
k ∈ Z

3 we have
b∗(k)b(k) ≤ CNH0 , b(k)b∗(k) ≤ CN(H0 + ~) .

Using the last corollary, we obtain an a–priori bound for the bosonizable interaction QB.

Corollary 4.6 (Bosonizable interaction). Assume ‖V̂ ‖1 <∞. Then there exists C > 0 such
that

−C(H0 + ~) ≤ QB ≤ C(H0 + ~) .

Proof. We observe that, for any k ∈ Z
3, by Corollary 4.5,

0 ≤ (b∗(k)± b(−k))(b(k) ± b(−k))
= b∗(k)b(k) + b(−k)b∗(−k)± [b∗(k)b∗(−k) + b(−k)b(k)]
≤ CN(H0 + ~)± [b∗(k)b∗(−k) + b(−k)b(k)] .

Hence
−CN(H0 + ~) ≤ b∗(k)b∗(−k) + b(−k)b(k) ≤ CN(H0 + ~) .

After summing over k, this implies the desired estimate for QB.

Finally, the a–priori bound for H0 (and the resulting estimates on N and Nε from Corol-
lary 4.2) imply that the error terms in (2.6) are negligible. First of all, the exchange operator
X can be bounded with the following lemma, taken from [BNPSS21a, Lemma 2.5].

Lemma 4.7 (Exchange term). Assume ‖V̂ ‖1 < C. Then there exists a C > 0 such that for
all ξ ∈ χ(N p −N h = 0)F we have

|〈ξ,Xξ〉| ≤ CN−1/3〈ξ,H0ξ〉 .
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The next lemma provides control on the error term E1 in (2.6). It is one of the key
achievements of the present paper.

Lemma 4.8 (Non–bosonizable interaction). Assume ‖V̂ ‖1 < ∞. Fix 0 < ε < 1/3 and
131/208 < γ < 1. Then there exists C > 0 such that for all ξ ∈ χ(Nh −Np = 0)F we have

〈ξ, E1ξ〉 ≤ CN−1‖(N + 1)3/2ξ‖‖N 1/2
1/3−εξ‖+ CN ε−1(N ε +Nγ/3)‖N 1/2ξ‖2 . (4.16)

Remark. With a localization argument, we will be able to restrict our attention to states
for which N ≤ CN1/3 and Nδ ≤ CN δ (for the expectation value as stated in Corollary 4.2,
but also for higher moments). Applying (4.16) for such states, choosing γ < 1 and ε > 0
small enough, we conclude that E1 ≪ N−1/3 and therefore that E1 does not contribute to
the correlation energy, to leading order.

Proof of Lemma 4.8. Recall the definition (2.8) of the operators d∗(k) and d(k). Since d(0) =
d∗(0) = 0 on χ(Nh −Np = 0)F , we find

〈ξ, E1ξ〉 =
1

2N

∑

k∈Z3\{0}

V̂ (k)
∑

q1,q2∈[Bc
F∩(B

c
F+k)]∪[BF∩(BF−k)]

σq1σq2〈ξ, a∗q1aq1−σq1ka
∗
q2−σ2kaq2ξ〉

where we introduced the notation σq = 1, if q ∈ Bc
F ∩ (Bc

F + k), and σq = −1, if q ∈
BF ∩ (BF + k). With the canonical anticommutation relations (2.1), we obtain

〈ξ, E1ξ〉 =− 1

2N

∑

k∈Z3\{0}

V̂ (k)
∑

q1,q2∈[Bc
F∩(B

c
F+k)]∪[BF∩(BF−k)]

σq1σq2〈ξ, a∗q1a∗q2−σ2kaq1−σq1kaq2ξ〉

+
1

2N

∑

k∈Z3\{0}

V̂ (k)
∑

q1∈[Bc
F∩(B

c
F+k)]∪[BF∩(BF−k)]

〈ξ, a∗q1aq1ξ〉 . (4.17)

The second term can be estimated by

1

2N

∑

k∈Z3\{0}

V̂ (k)
∑

q1∈[Bc
F∩(B

c
F+k)]∪[BF∩(BF−k)]

‖aq1ξ‖2 ≤ CN−1‖N 1/2ξ‖2 .

Let us focus on the first term on the r. h. s. of (4.17). The first observation is that contri-
butions with at least one of the four momenta q1, q1 − σ1k, q2, q2 − σ2k at distances larger
than N−1/3+ε from the Fermi sphere, for an 0 < ε < 1/3 to be chosen later, can be bounded
using a combination of N and of the gapped number operator N1/3−ε defined in (4.2). In

fact, considering for example the case ||q1| − kF| > N−1/3+ε (and dropping, for an upper
bound, all other restrictions on q1 and q2), we have

1

N

∑

k∈Z3\{0}

V̂ (k)
∑

q1,q2∈Z3:||q1|−kF|>N−1/3+ε

|〈ξ, a∗q1a∗q2−σ2kaq1−σq1kaq2ξ〉|

≤ 1

N

∑

k∈Z3\{0}

V̂ (k)


 ∑

q1,q2∈Z3:||q1|−kF|>N−1/3+ε

‖aq1aq2−σ2k(N + 1)−1/2ξ‖2



1/2

×


 ∑

q1,q2∈Z3

‖aq1−σq1kaq2(N + 1)1/2ξ‖2



1/2

≤ CN−1‖N 1/2
1/3−εξ‖‖(N + 1)3/2ξ‖
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where we used a∗pN = (N − 1)a∗p for all p ∈ Z
3. Thus

〈ξ, E1ξ〉 ≤ CN−1‖N 1/2ξ‖2 + CN−1‖N 1/2
1/3−εξ‖‖(N + 1)3/2ξ‖

+
1

N

∑

k∈Z3\{0}

V̂ (k)
∑

q1,q2∈A
p
k∪A

h
k

|〈ξ, a∗q1a∗q2−σ2kaq1−σ1kaq2ξ〉|
(4.18)

where we defined the momentum sets

Ap
k :=

{
q ∈ Z

3 : kF < |q| < kF +N−1/3+ε and kF < |q − k| < kF +N−1/3+ε
}
,

Ah
k :=

{
q ∈ Z

3 : kF −N−1/3+ε < |q| ≤ kF and kF −N−1/3+ε < |q + k| ≤ kF

}
.

Note that for q1 ∈ Ap
k we have

k2F ≤ (q1 − k)2 = q21 + k2 − 2q1 · k
≤ (kF +N−1/3+ε)2 + k2 − 2q1 · k ≤ k2F + CN ε + k2 − 2q1 · k

and thus 2q1 ·k−k2 ≤ CN ε. Inverting the roles of q1 and q1−k, we also obtain 2q1 ·k−k2 ≥
−CN ε. Arguing similarly for q1 ∈ Ah

k, we conclude that

−CN ε ≤ 2q1 · k − k2 ≤ CN ε (4.19)

for all q1 ∈ Ap
k ∪ Ah

k (which means that the set Ap
k ∪ Ah

k is localized close to the equator of
the Fermi sphere, thinking of the direction of k as defining the north pole).

Using the Cauchy–Schwarz inequality and ‖aq1‖op ≤ 1, ‖aq1−σ1k‖op ≤ 1, we conclude
that the last term on the r. h. s. of (4.18) can be bounded by

1

N

∑

k∈Z3\{0}

V̂ (k)
∑

q1,q2∈A
p
k∪A

h
k

|〈ξ, a∗q1a∗q2−σ2kaq1−σ1kaq2ξ〉|

≤ 1

N

∑

k∈Z3\{0}

V̂ (k)|Ap
k ∪Ah

k|‖N 1/2ξ‖2 ≤ ‖N 1/2ξ‖2
N

∑

k∈Z3\{0}

V̂ (k)

CNε∑

m=−CNε

|Bm,k|
(4.20)

where we defined

B̃m(k) := {q ∈ Z
3 : kF −N−1/3+ε ≤ |q| ≤ kF +N−1/3+ε and 2q · k − k2 = m} . (4.21)

Proceeding as in the proof of Lemma 4.3 following (4.11), we find, for 131/208 < γ < 1,

|B̃m(k)| ≤ C(N ε +Nγ/3) .

Inserting in (4.20) and using ‖V̂ ‖1 <∞, we obtain

1

N

∑

k∈Z3\{0}

V̂ (k)
∑

q1,q2∈A
p
k∪A

h
k

|〈ξ, a∗q1a∗q2−σ2kaq1−σ1kaq2ξ〉| ≤
C

N
N ε(N ε +Nγ/3)‖N 1/2ξ‖2 .

With (4.18) this concludes the proof of Lemma 4.8.

Lemma 4.8 proves that the error term E1 is negligible (in the ground state and, more
generally, on low–energy states with correlation energy of order ~). Together with Corol-
lary 4.5, it also allows us to neglect the term E2 in (2.6). The following corollary improves
[BNPSS21a, Lemma 9.1] in not requiring smallness of V , and is also simpler to prove.
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Corollary 4.9 (Coupling of bosonizable and non–bosonizable terms). Assume ‖V̂ ‖1 < ∞
and V̂ ≥ 0. With the error terms E1, E2 defined as in (2.6), we have

± E2 ≤ NαE1 + CN−α
H0 for every α ≥ 0. (4.22)

With Lemma 4.8, we conclude that for 131/208 < γ < 1 and ε > 0 small enough (choosing
α = ε/4 in (4.22)), there exists a constant C > 0 such that

〈ξ, (E1 + E2)ξ〉 ≥ − CN−1+ε/4‖(N + 1)3/2ξ‖‖N 1/2
1/3−εξ‖ − CN5ε/4+γ/3−1‖N 1/2ξ‖2

− CN−ε/4‖H1/2
0 ξ‖22

(4.23)

for all ξ ∈ χ(Nh −Np = 0)F .

Remark. The choice α = ε/4 optimizes the sum of the first and the last term on the r. h. s.
of (4.23), counting (following the argument in the remark after Lemma 4.8) ‖(N +1)3/2ξ‖ .

N1/2, ‖N 1/2
1/3−εξ‖ . N1/6−ε/2, and ‖H1/2

0 ξ‖2 . N−1/3. The second term on the r. h. s. of

(4.23) is of lower order if γ is chosen small enough.

Proof of Corollary 4.9. By Cauchy–Schwarz, Corollary 4.5, and ‖V̂ ‖1 <∞, we find

±E2 ≤ NαE1 +N−α−1
∑

k∈Z3

V̂ (k)b∗(k)b(k) ≤ NαE1 + CN−α
H0 .

5 Patch Decomposition and Almost Bosonic Operators

The bounds in last section allow us to approximate the correlation Hamiltonian (2.4) by
H0 + QB, with H0 and QB defined in (2.5). The term QB, arising from the interaction, is
quadratic in the particle–hole pair creation and annihilation operators b∗(k), b(k). It turns
out that, on states with few excitations of the Fermi ball, the operators b∗(k) and b(k) satisfy
approximately bosonic commutation relations.

In order to express also the kinetic energy H0 in terms of almost bosonic creation and
annihilation operators, we have to decompose a layer around the Fermi sphere ∂BF into M
patches {Bα}Mα=1, for the number of patches M ∈ N to be chosen as a function of N at the
end of the paper. Such a decomposition has been constructed in [BNPSS20]. One starts by
decomposing a half sphere in M/2 patches. The sidelengths of the patches are comparable
(they are both of order N1/3/M1/2). The patches have thickness

1 ≪ 2R≪ N1/3

in the radial direction (later we will impose stronger conditions). Furthermore, the patches
are disjoint and separated by corridors, larger than R. We denote by ωα the center of the
patch Bα. Finally, the patch decomposition of the first half sphere is mirrored by the map
k 7→ −k onto the other half sphere. The construction is so that the area of the radial
projection pα of the patch Bα on the unit sphere S2 has area 4π/M , up to corrections of
order N−1/3M−1/2, and diameter bounded by C/

√
M , for all α = 1, . . . ,M ; see [BNPSS20,

Section 3.2] for the details.
For fixed k ∈ Z

3 with |k| < R, we are going to exclude patches in a small strip around the
equator (thinking of the direction of k as defining the north direction) of the Fermi sphere.
More precisely, for 0 < δ < 1/6, we define Ik := I+

k ∪ I−
k , with

I+
k := {α ∈ {1, . . . ,M} : k · ω̂α ≥ N−δ} ,

I−
k := {α ∈ {1, . . . ,M} : k · ω̂α ≤ −N−δ} .

(5.1)
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Given k ∈ Z
3, |k| < R and α ∈ I+

k , we introduce the particle–hole pair creation operator

b∗α(k) :=
1

nα(k)

∑

p : p∈Bc
F∩Bα

p−k∈BF∩Bα

a∗pa
∗
p−k (5.2)

with the normalization constant

nα(k)
2 :=

∑

p : p∈Bc
F∩Bα

p−k∈BF∩Bα

1

counting the number of particle–hole pairs of relative momentum k in Bα. The normalization
constant nα(k) should be large (the more summands contribute to (5.2), the less the b∗-
operators are affected by the Pauli principle, and the more bosonic they behave). The
following lemma is a variation of [BNPSS20, Prop. 3.1] and [BNPSS21a, Lemma 5.1].

Lemma 5.1 (Number of pairs per patch). Assume that N2δR2 ≪ M ≪ N
2
3
−2δR−4. Then

for all k ∈ Z
3 with |k| < R and α ∈ Ik, we have

nα(k)
2 =

4πk2F
M

|k · ω̂α| (1 + o(1)) .

Proof. The proof follows the argument given in [BNPSS20, Section 6]; only the control of
the error terms needs to be refined in two respects.

First, in order for the vector k to point from inside the Fermi ball to outside the Fermi ball
even at the boundaries of the patch, we need N2δR2 ≪M , as can be verified by elementary
geometry. This condition is illustrated in Fig. 2.

Second, the error term arising from the loss of particle–hole pairs near the boundary of
the patch (thus proportional to the number of pairs in the patch of thickness |k| ≤ R not
more than a distance |k| ≤ R from the patch boundary on the Fermi sphere) implies

nα(k)
2 =

4πk2F
M

|k · ω̂α|+O
(
N1/3

√
M

|k|2
)

=
4πk2F
M

|k · ω̂α|
(
1 +O

( √
M |k|2

N1/3|k · ω̂α|

))
. (5.3)

The error term becomes o(1) since by assumption
√
MR2N−1/3N δ ≪ 1.

It will be convenient to combine modes associated with k and −k. To this end, we set

c∗α(k) :=

{
b∗α(k) for α ∈ I+

k
b∗α(−k) for α ∈ I−

k

(5.4)

for every k ∈ Γnor. Here, we introduce the notation

Γnor :=
{
k = (k1, k2, k3) ∈ Z

3 with |k| < R : k3 > 0 or (k3 = 0 and k2 > 0)

or (k3 = k2 = 0 and k1 > 0)
} (5.5)

so that Γnor ∩ (−Γnor) = ∅ and Γnor ∪ (−Γnor) = BR(0)\{0}. Note that compared to
[BNPSS21a], in the definition of Γnor we replaced the restriction k ∈ supp V̂ by |k| < R,
with the parameter R to be optimized at the end.

Our analysis is based on the observation that the pair operators c∗α(k) and cα(k) behave
approximately as bosonic creation and annihilation operators, on states with few excita-
tions. This is established by the following lemma, taken from [BNPSS20, Lemma 4.1] and
[BNPSS21a, Lemma 5.2].
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k

ωα

θ1

θ2

Figure 2: Illustration for the condition N2δR2 ≪M of Lemma 5.1. The angle between patch
center and patch boundary is θ1 ∼ 1/

√
M . The angle between the tangent at the center and

at the boundary is θ2 = θ1 by elementary geometry. We know k · ω̂α ≥ N−δ by definition of
Ik. This means that the angle between k and the tangent at the center (being perpendicular
to ωα) is at least of order ∼ N−δ/R. To have k pointing from the inside to the outside of
the Fermi ball even at the boundary we need N−δ/R≫ 1/

√
M .

Lemma 5.2 (Approximate bosonic CCR). Let k, ℓ ∈ Γnor. Let α ∈ Ik and β ∈ Iℓ. Then

[cα(k), cβ(ℓ)] = 0 = [c∗α(k), c
∗
β(ℓ)] , [cα(k), c

∗
β(ℓ)] = δα,β

(
δk,ℓ + Eα(k, ℓ)

)
, (5.6)

where the error operator Eα(k, ℓ) is controlled by the bounds
∑

α∈Ik∩Iℓ

|Eα(k, ℓ)|2 ≤ C(MN− 2
3
+δN )2 (5.7)

and
∑

α∈Ik∩Iℓ

||Eα(k, ℓ)ψ|| ≤ CM
3
2N− 2

3
+δ||Nψ|| for all ψ ∈ F . (5.8)

Another important property of the operators c∗α(k) and cα(k) is that they can be con-
trolled in terms of the gapped number of particles operator Nδ introduced in (4.2), with
δ > 0 the parameter introduced in (5.1) to exclude a strip around the equator of the Fermi
sphere in the definition of the sets Ik. The point is that, since we are away from the equator,
k has a component orthogonal to the Fermi sphere, which makes sure that the momentum
of either the particle or of the hole annihilated by cα(k) is at least at distance N

−δ from the
Fermi sphere. More precisely, we have the following lemma, whose proof can be found in
[BNPSS21a, Lemmas 5.3 and 5.4] (the first estimate in (5.10) and in (5.12) are not stated
explicitly in [BNPSS21a, Lemmas 5.3 and 5.4] but can be proven like the second bounds).

Lemma 5.3 (Bounds on pair operators). Assume M ≫ R2N2δ and R≪ N1/6−δ/2. For all
k ∈ Γnor we have ∑

α∈Ik

c∗α(k)cα(k) ≤ Nδ . (5.9)
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Moreover, for any f ∈ ℓ2(Ik),
∥∥∥
∑

α∈Ik

fαcα(k)ψ
∥∥∥ ≤ ‖f‖2‖N 1/2

δ ψ‖ ,
∥∥∥
∑

α∈Ik

fαc
∗
α(k)ψ

∥∥∥ ≤ ‖f‖2‖(Nδ + 1)1/2ψ‖ . (5.10)

For k ∈ Γnor, α ∈ Ik and g : Z3 × Z
3 → R, we define the weighted pair operator

cgα(k) :=
1

nα(k)

∑

p:p∈Bc
F∩Bα

p−σαk∈BF∩Bα

g(p, k)ap−σαkap

with σα = 1 if α ∈ I+
k , and σα = −1 if α ∈ I−

k . Similarly to (5.9) and (5.10), we find

∑

α∈Ik

cg∗α (k)cgα(k) ≤ ‖g‖2∞Nδ .

Furthermore

∑

α∈Ik

∥∥∥cgα(k)ψ
∥∥∥ ≤ CM1/2‖g‖∞‖N 1/2

δ ψ‖2 ,

∑

α∈Ik

∥∥∥cg∗α (k)ψ
∥∥∥ ≤ CM1/2‖g‖∞‖(Nδ +M)1/2ψ‖2

(5.11)

and, for f ∈ ℓ2(Ik),
∥∥∥
∑

α∈Ik

fαc
g
α(k)ψ

∥∥∥ ≤ ‖f‖2‖g‖∞‖N 1/2
δ ψ‖2 ,

∥∥∥
∑

α∈Ik

fαc
g∗
α (k)ψ

∥∥∥ ≤ ‖f‖2‖g‖∞‖(Nδ + 1)1/2ψ‖2 .
(5.12)

6 Reduction to an Almost Bosonic Quadratic Hamiltonian

Comparing (2.7) with (5.4), we find

b∗(k) ≃
∑

α∈I+
k

nα(k)c
∗
α(k) , b∗(−k) ≃

∑

α∈I−

k

nα(k)c
∗
α(k)

for all k ∈ Γnor (these are only approximate decompositions since, on the r. h. s., pairs in
corridors and close to the equator are missing). Inserting this decomposition in (2.5) we find
the following approximation for QB, quadratic in c– and c∗–operators:

QRB =
1

N

∑

k∈Γnor

V̂ (k)

(
∑

α,β∈I+
k

nα(k)nβ(k)c
∗
α(k)cβ(k) +

∑

α,β∈I−

k

nα(k)nβ(k)c
∗
α(k)cβ(k)

+
∑

α∈I+
k ,β∈I

−

k

nα(k)nβ(k)c
∗
α(k)c

∗
β(k) +

∑

α∈I−

k ,β∈I
+
k

nα(k)nβ(k)cα(k)cβ(k)

)
.

(6.1)

The difference between QB and QRB is estimated in the following lemma, which we take from
[BNPSS21a, Lemma 4.1]. Compared to [BNPSS21a], here we only need to compare QB with
QRB since we already controlled E2 in Corollary 4.9; therefore the bound also does not use E1.
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Lemma 6.1 (Removing corridors and removing patches near the equator). Assume that∑
k∈Z3 |V̂ (k)||k| <∞. Then there exists C > 0 such that for all ψ ∈ F we have

|〈ψ,
(
QB −QRB

)
ψ〉| ≤ C(N−δ/2 +R1/2M1/4N−1/6+δ/2 +R−1/2)〈ψ, (H0 + ~)ψ〉 .

Proof. We consider the difference

b(k)−
∑

α∈I+
k

nα(k)cα(k) =
∑

p∈Uk

ap−kap

where Uk consists of all momenta p ∈ Bc
F with p− k ∈ BF that do not belong to any patch.

For |k| < R, we bound

∥∥∥
(
b(k)−

∑

α∈I+
k

nα(k)cα(k)
)
ψ
∥∥∥ ≤

∑

p∈Yk

‖ap−kapψ‖+
∑

p∈Uk\Yk

‖ap−kapψ‖

with
Yk := {p ∈ Uk : e(p) + e(p − k) ≤ 4N−1/3−δ}

containing pairs close to the equator. Proceeding as in the proof of [BNPSS21a, Lemma 4.1]
and using (4.6), we obtain

∑

p∈Yk

‖ap−kapψ‖ ≤ CN1/2−δ/2‖H1/2
0 ψ‖

and (again under the assumption that |k| < R)

∑

p∈Uk\Yk

‖ap−kapψ‖ ≤ C|k|1/2R1/2M1/4N1/3+δ/2‖H1/2
0 ψ‖ .

Here we estimated |Uk\Yk| ≤ CR|k|N1/3M1/2 (for |k| < R, the set Uk\Yk contains momenta
p ∈ Z

3 localized in a shell of thickness |k| around the Fermi sphere, so that either the
projection of p or the projection of p − k onto the Fermi sphere falls in corridors of size R
between patches). For |k| > R, on the other hand, we use Corollary 4.5. We conclude that

∥∥∥
(
b(k)−

∑

α∈I+
k

nα(k)cα(k)
)
ψ
∥∥∥

≤ C
(
N1/2−δ/2 + |k|1/2R1/2M1/4N1/3+δ/2 + χ(|k| > R)N1/2

)
‖H1/2

0 ψ‖ .

Proceeding as in the last part of the proof of [BNPSS21a, Lemma 4.1], using Corollary 4.5
and the assumption

∑
k∈Z3 V̂ (k)|k| <∞, we arrive at the intended bound.

To understand how the kinetic energy H0, defined in (2.5), can be expressed through the
patch–wise particle–hole creation and annihilation operators, we compute the commutator

[H0, c
∗
α(k)] =


∑

q∈Z3

e(q)a∗qaq,
1

nα(k)

∑

p∈Bc
F∩(BF+k)∩Bα

a∗pa
∗
p−k




=
1

nα(k)

∑

p∈Bc
F∩(BF+k)∩Bα

(e(p) + e(p − k))a∗pa
∗
p−k .
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With e(p) + e(p − k) = ~
2p2 − ~

2(p − k)2 ≃ 2~κ|k · ω̂α| (with ω̂α = ωα/|ωα| the normalized
vector pointing to the center of the α-th patch), we obtain

[H0, c
∗
α(k)] ≃ 2~κ |k · ω̂α|c∗α(k) (6.2)

which suggests that, in a sense to be made precise,

H0 ≃ 2κ~
∑

k∈Γnor

M∑

α=1

|k · ω̂α| c∗α(k)cα(k) =: DB . (6.3)

Based on this heuristic observation, we expect that the correlation Hamiltonian (2.4) can be
approximated by

Hcorr ≃ DB +QRB =
∑

k∈Γnor

2~κ|k|heff(k) (6.4)

with the quadratic (in c– and c∗–operators) expression

heff(k) =
∑

α,β∈Ik

(
(D(k) +W (k))α,βc

∗
α(k)cβ(k) +

1

2
W̃ (k)α,β

(
c∗α(k)c

∗
β(k) + cβ(k)cα(k)

))

(6.5)

where D(k), W (k), and W̃ (k) are |Ik| × |Ik| real symmetric matrices with entries

D(k)α,β = δα,β |k̂ · ω̂α| , for all α, β ∈ Ik

W (k)α,β =
V̂ (k)

2~κN |k| ×
{
nα(k)nβ(k) if α, β ∈ I+

k or α, β ∈ I−
k

0 otherwise ,

W̃ (k)α,β =
V̂ (k)

2~κN |k| ×
{

0 if α, β ∈ I+
k or α, β ∈ I−

k

nα(k)nβ(k) otherwise .

(6.6)

7 Approximate Bogoliubov Transformations

If the c– and c∗–operators were exactly bosonic, we could write

heff(k) = H− 1

2
tr (D(k) +W (k))

with the quadratic Hamiltonian (in the following discussion we omit the fixed argument k)

H :=
1

2
((c∗)T , cT )

(
D +W W̃

W̃ D +W

)(
c
c∗

)
. (7.1)

Introducing the |Ik| × |Ik| matrix

E :=
[
(D +W − W̃ )1/2(D +W + W̃ )(D +W − W̃ )1/2

]1/2

and setting S1 := (D +W − W̃ )1/2E−1/2, S2 := (D +W − W̃ )−1/2E1/2 (so that S1S
T
2 =

S2S
T
1 = 1) and

S :=

(
S1 0
0 S2

)
(7.2)

we can decompose
(
D +W W̃

W̃ D +W

)
=

(
S1+S2

2
S1−S2

2
S1−S2

2
S1+S2

2

)T (
E 0
0 E

)(
S1+S2

2
S1−S2

2
S1−S2

2
S1+S2

2

)
. (7.3)
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Using the polar decomposition S1 = O|S1| with an orthogonal matrix O and the positive
matrix |S1| = (ST1 S1)

1/2 we obtain S2 = O|S1|−1 from S2S
T
1 = 1. Moreover, |ST1 | = O|S1|OT

and thus S1 = |ST1 |O, S2 = |ST1 |O and, from (7.3),

(
D +W W̃

W̃ D +W

)
=

(
|ST

1 |+|ST
1 |−1

2
|ST

1 |−|ST
1 |−1

2
|ST

1 |−|ST
1 |−1

2
|ST

1 |+|ST
1 |−1

2

)(
O 0
0 O

)(
E 0
0 E

)

×
(
O 0
0 O

)T ( |ST
1 |+|ST

1 |−1

2
|ST

1 |−|ST
1 |−1

2
|ST

1 |−|ST
1 |−1

2
|ST

1 |+|ST
1 |−1

2

)
.

Defining
K := log |ST1 |

we obtain
(
D +W W̃

W̃ D +W

)
=

(
cosh(K) sinh(K)
sinh(K) cosh(K)

)(
O 0
0 O

)(
E 0
0 E

)

×
(
O 0
0 O

)T (
cosh(K) sinh(K)
sinh(K) cosh(K)

)
.

(7.4)

Hence, a symplectic conjugation of the 2|Ik| × 2|Ik| matrix defining the quadratic Hamil-
tonian (7.1) is sufficient to obtain a block–diagonal matrix (with |Ik| × |Ik| blocks OEOT )
corresponding to a “diagonal” quadratic Hamiltonian in the sense of containing only terms
of the form c∗c and none of the form c∗c∗ or cc.

However, it will be important to further transform the block–diagonal matrix as to make
the resulting quadratic Hamiltonian comparable with the bosonic kinetic energy DB, defined
in (6.3). To reach this goal we have to look more closely at E, decomposing it further into
blocks associated to the index sets I+

k and I−
k (associated with patches in the north and

south hemisphere, respectively). Note that I = |I+
k | = |I−

k | = |Ik|/2. With (6.6) we write

D =

(
d 0
0 d

)
, W =

(
b 0
0 b

)
, W̃ =

(
0 b
b 0

)
(7.5)

where d = diag{u2α, α = 1, . . . , I} and b = g|v〉〈v|. Here we introduced

g =
κ

2
V̂ (k) , uα = |k̂ · ω̂α|1/2 , vα =

~

κ
√

|k|
nα(k) for α = 1, . . . , I .

It will play an important role in the proof of Lemma 7.2 that, as a consequence of (5.1) and
Lemma 5.1, we have

N−δ ≤ u2α ≤ 1 , |vα| ≤ C
uα

M1/2
(7.6)

which implies ||v|| ≤ C and
∣∣∣∣d−1/2v

∣∣∣∣ ≤ C.
To block–diagonalize E (w. r. t. the decomposition Ik = I+

k ∪ I−
k ), we introduce

U :=
1√
2

(
I I

I −I

)
(7.7)

(where I is the I × I identity matrix) and observe

UT (D +W + W̃ )U =

(
d+ 2b 0
0 d

)
, UT (D +W − W̃ )U =

(
d 0
0 d+ 2b

)
.
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This implies that

UTEU =

(
[d1/2(d+ 2b)d1/2]1/2 0

0 [(d+ 2b)1/2d(d+ 2b)1/2]1/2

)
. (7.8)

The upper–left entry is clearly larger than the operator d. It seems more difficult to compare
the lower–right entry with d (thus, it seems difficult to compare UTEU withD). To solve this
problem, we define the I×I matrix X := (d+2b)1/2d1/2 and consider its polar decomposition
X = AP , with A orthogonal and P := (X∗X)1/2. Then, from (7.8), we have

UTEU =

(
(X∗X)1/2 0

0 (XX∗)1/2

)

=

(
P 0
0 APAT

)
=

(
1 0
0 A

)(
P 0
0 P

)(
1 0
0 AT

)
.

Using the easily–checked invariance of the matrix with blocks P on the diagonal w. r. t.
conjugation with U we conclude that

E = ÕP̃ ÕT ,

where we defined

Õ := U

(
1 0
0 A

)
UT , P̃ :=

(
P 0
0 P

)
. (7.9)

Inserting in (7.4), we arrive at

(
D +W W̃

W̃ D +W

)
=

(
cosh(K) sinh(K)
sinh(K) cosh(K)

)(
O 0
0 O

)(
Õ 0

0 Õ

)(
P̃ 0

0 P̃

)

×
(
Õ 0

0 Õ

)T (
O 0
0 O

)T (
cosh(K) sinh(K)
sinh(K) cosh(K)

)
. (7.10)

If the c– and c∗–operators were exactly bosonic we could therefore bring the quadratic
operator (7.1) into a diagonal form comparable to the bosonic kinetic energy DB by means
of the two Bogoliubov transformations2

T = exp


1

2

∑

k∈Γnor

∑

α,β∈Ik

K(k)α,β c
∗
α(k)c

∗
β(k)− h.c.


 ,

Z = exp


 ∑

k∈Γnor

∑

α,β∈Ik

Lα,β(k) c
∗
α(k)cβ(k)


 ,

(7.11)

where (re-inserting now the dependence on k in the notation) we introduced the matrix

L(k) := log
(
O(k)Õ(k)

)
. (7.12)

Recall that O(k) and Õ(k) are orthogonal matrices, i. e., all their eigenvalues are on the
unit circle. The function log denotes an arbitrary branch of the complex logarithm with

2The transformation Z is a trivial Bogoliubov transformation, corresponding to only a change of basis
in the one-boson Hilbert space. In the language of bosonic second-quantized operators, it corresponds to a
transformation of the form e

dΓ(L) = Γ(eL), where e
L is an orthogonal matrix acting on the one-boson space.
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Im log 1 = 0. The matrix L(k) is by definition antisymmetric, so that Z is a unitary operator
on Fock space. If the c– and c∗–operators were exactly bosonic, we would find

Z∗T ∗
HTZ =

1

2

∑

α,β∈Ik

P̃α,β (c
∗
α(k)cβ(k) + δα,β) . (7.13)

Recall that tr P̃ = trE. Since P = (X∗X)1/2 = [d1/2(d + 2b)d1/2]1/2 ≥ d, we could use
P̃ ≥ D to conclude that

Z∗T ∗
HTZ ≥

∑

α∈Ik

u2α(k)c
∗
α(k)cα(k) +

1

2
trE = DB +

1

2
trE . (7.14)

This comparison is not surprising in view of the discussion of the spectrum of E(k) in [Ben20].
There the problem is reduced to a rank–one perturbation of the matrix D(k); the perturbed
eigenvalues are all larger than the corresponding unperturbed eigenvalues. However, E(k)
and D(k) cannot be simultaneously diagonalized, so we do not have an operator inequality
between E(k) andD(k). This problem is overcome here noting that E(k) can be diagonalized
by a Bogoliubov transformation which leaves H0 − DB (though not DB alone) invariant.

Since the c– and c∗–operators are not exactly bosonic, we can expect (7.13) to hold only
approximatively, on states with few excitations of the Fermi ball. To prove that this is indeed
the case, we need some estimates on the kernels K(k) and L(k). The following bound for
K(k) has already been shown in [BNPSS21b, Lemma 2.5].

Lemma 7.1 (Bogoliubov kernel). There exists a C > 0 such that for all k ∈ Γnor we have

|K(k)α,β | ≤ C
V̂ (k)

M
for all α, β ∈ Ik.

In particular ‖K(k)‖HS ≤ CV̂ (k).

The following bounds for the antisymmetric matrix L(k) are new.

Lemma 7.2 (Kernel of one–particle transformation). Suppose that the parameters δ,M,R
used to define the patch decomposition in Section 5 are such that M ≫ R2N2δ. Then there
exists a C > 0 such that for all k ∈ Γnor we have

‖L(k)‖HS ≤ CV̂ (k) . (7.15)

Remark. Since L(k) is the logarithm of an orthogonal matrix, we always have ‖L(k)‖op ≤ 2π.
From Lemma 7.2, we also have ‖L(k)‖op ≤ CV̂ (k), which improves the bound if V̂ (k) is small.

Proof. All matrices depend on k but in this proof we do not indicate this dependence ex-
plicitly. We split the bound in two parts by

||L||HS = ‖ log(OÕ)‖HS ≤ C‖OÕ − 1‖HS ≤ C‖O‖op‖Õ − 1‖HS + C‖O − 1‖HS .

Since O is orthogonal we have ‖O‖op = 1 and we only need to estimate ‖Õ − 1‖HS and
‖O − 1‖HS. The same applies for the operator norm.
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Bound for ‖Õ − 1‖HS. From the definition (7.9), we get

‖Õ − 1‖HS = ‖A− 1‖HS (7.16)

with A the orthogonal matrix arising from the polar decomposition of X = (d+ 2b)1/2d1/2,
i. e., A = X(X∗X)−1/2. We have

‖A− 1‖HS =

∥∥∥∥X
1√
X∗X

− 1

∥∥∥∥
HS

≤
∥∥∥∥X

(
1√
X∗X

− 1

d

)∥∥∥∥
HS

+

∥∥∥∥X
1

d
− 1

∥∥∥∥
HS

. (7.17)

To bound the second term on the r. h. s. of the last equation, we use the representation

√
z =

1

π

∫ ∞

0

ds√
s

(
1− s

s+ z

)
(7.18)

to write by means of a resolvent identity

X
1

d
− 1 =

(
(d+ 2b)1/2 − d1/2

) 1

d1/2
= − 1

π

∫ ∞

0
ds

√
s

(
1

s+ d+ 2b
− 1

s+ d

)
1

d1/2

=
2

π

∫ ∞

0
ds

√
s

1

s+ d+ 2b
b

1

s+ d

1

d1/2
.

(7.19)

Recalling that b = g|v〉〈v| with g = κV̂ (k)/2 we find

∥∥X 1

d
− 1
∥∥
HS

≤ CV̂ (k)

∫ ∞

0
ds

√
s
∥∥∥ 1

s+ d+ 2b
v
∥∥∥
∥∥∥ 1

s+ d

1

d1/2
v
∥∥∥ . (7.20)

To control the norms in this integral (and similar norms that will arise in the rest of the
proof), we use (7.6) so that, for j = 1, 2 and −1/2 ≤ k ≤ j − 1, we have

∥∥∥ 1

s+ dj
dkv
∥∥∥
2
=
〈
v,

d2k

(s+ dj)2
v
〉
=
∑

α∈I+
k

v2αu
4k
α

(s + u2jα )2
≤ C

M

∑

α

u4k+2
α

(s+ u2jα )2
. (7.21)

Recall that u2α = |k̂ · ω̂α| = cos θα where θα ∈ (0;π/2) is the inclination angle of the center
ωα of the patch Bα, measured w. r. t. the vector k. We consider then the sum on the r. h. s.
of (7.21) as a Riemann sum for a surface integral on the northern hemisphere of the unit
sphere, parametrized by the angles θ ∈ (0, π/2) and ϕ ∈ (0, 2π). To estimate the error in
going from the Riemann sum to the integral, we set

f(θ) =
cos2k+1 θ

(s+ cosj θ)2

and compute its derivative, finding

f ′(θ) = f(θ)

(
(2k + 1)

sin θ

cos θ
− 2j

cosj−1 θ sin θ

(s+ cosj θ)

)
.

Let pα denote the surface area on the unit sphere S2 covered by the patch Bα. With
slight abuse of notation, let us also write pα for the set of inclination angles θ ∈ (0, π/2)
corresponding to points in pα. For all θ, θ̃ ∈ pα we have |θ − θ̃| ≤ CM−1/2 (this being the
order of the diameter of the patch). According to the definition (5.1) of the index set, for
α ∈ I+

k we have cos θα ≥ R−1N−δ. Thus for all θ ∈ pα we have

cos θ ≥ cos θα − |cos θ − cos θα| ≥ R−1N−δ − CM−1/2 ≥ 1

2
R−1N−δ ,
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where we recall the assumption M ≫ R2N2δ. Moreover, by the mean value theorem (if
necessary enlarging the set of angles pα to its convex hull in all the following supremuma to
make sure that θ0 is contained)

|f(θ)− f(θ̃)| ≤ sup
θ0∈pα

|f ′(θ0)||θ − θ̃| ≤ C
RN δ

√
M

sup
θ0∈pα

f(θ0) .

This implies |f(θ)− f(θ̃α)| ≤ 2−1 supθ0∈pα f(θ0). Thus for all θ ∈ pα we have

sup
θ̃∈pα

f(θ̃) ≤ sup
θ̃∈pα

|f(θ̃)− f(θ)|+ f(θ) ≤ 1

2
sup
θ̃∈pα

f(θ̃) + f(θ) ;

in particular f(θα) ≤ 2f(θ) for all θ ∈ pα. Therefore

∥∥∥ 1

s+ dj
dkv
∥∥∥
2
≤ C

∑

α∈I+
k

∫

pα

cos2k+1 θ

(s+ cosj θ)2
sin θdθdϕ ≤ C

∫ 1

0

t2k+1

(s+ tj)2
dt .

We conclude that

∥∥∥ 1

s+ dj
dkv
∥∥∥ ≤ C

{
min{s−1, s−1+(1+k)/j} if 1 + k < j

min{s−1, | log s|1/2} if 1 + k = j .
(7.22)

In particular, with j = 1, k = −1/2, we find

∥∥∥ 1

s+ d

1

d1/2
v
∥∥∥ ≤ Cmin{s−1; s−1/2} .

To bound the other norm in the integral in (7.20), we write

1

s+ d+ 2b
v =

1

s+ d
v − 2

1

s+ d+ 2b
b

1

s+ d
v =

1

s+ d
v − 2

〈
v,

1

s+ d
v
〉 1

s+ d+ 2b
v

which implies, applying (7.22) with j = 1 and k = 0,

∥∥∥ 1

s+ d+ 2b
v
∥∥∥ ≤

∥∥∥ 1

s+ d
v
∥∥∥ ≤ Cmin{s−1, | log s|1/2} .

Inserting this bound in (7.20) and integrating the variable s separately over the intervals
[0, 1] and [1,∞), we conclude that

∥∥X 1

d
− 1
∥∥
HS

≤ CV̂ (k) .

As for the first term on the r. h. s. of (7.17), we proceed analogously, writing

X

(
1√
X∗X

− 1

d

)
=

1

π

∫ ∞

0

ds√
s
X

(
1

s+ d1/2(d+ 2b)d1/2
− 1

s+ d2

)

= − 2

π

∫ ∞

0

ds√
s
(d+ 2b)1/2d1/2

1

s+ d1/2(d+ 2b)d1/2
d1/2 b d1/2

1

s+ d2
.

We write b = g|v〉〈v|. We can bound ‖d−1/2v‖ ≤ C, as well as

∥∥∥∥(d+ 2b)1/2d1/2
1

s+ d1/2(d+ 2b)d1/2
d1/2(d+ 2b)1/2

∥∥∥∥
op

≤ 1 ,

‖(d + 2b)−1/2d1/2‖op ≤ 1 ,
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and, using (7.22) with j = 2 and k = 1/2,

∥∥∥ 1

s+ d2
d1/2v

∥∥∥ ≤ Cmin{s−1, s−1/4} .

We conclude that ∥∥∥∥X
(

1√
X∗X

− 1

d

)∥∥∥∥
HS

≤ CV̂ (k) .

Combined with (7.17) and (7.20), this implies

‖A− 1‖HS ≤ CV̂ (k) .

Bound for ||O − 1||HS. Recall that O arises from the polar decomposition (7.2) of S1, i. e.,

O = S1|S1|−1 = (D +W − W̃ )1/2E−1/2 1√
E−1/2(D +W − W̃ )E−1/2

.

Using the orthogonal matrix U defined in (7.7) and the fact that O − 1 and UT (O − 1)U
have the same spectrum we obtain

‖O − 1‖HS ≤
∥∥∥d1/2(X∗X)−1/4 1√

(X∗X)−1/4d(X∗X)−1/4
− 1
∥∥∥
HS

+
∥∥∥(d+ 2b)1/2(XX∗)−1/4 1√

(XX∗)−1/4(d+ 2b)(XX∗)−1/4
− 1
∥∥∥
HS

.
(7.23)

To estimate the first norm on the r. h. s. of (7.23) we decompose

d1/2(X∗X)−1/4 1√
(X∗X)−1/4d(X∗X)−1/4

− 1

= d1/2
(
(X∗X)−1/4 − d−1/2

) 1√
(X∗X)−1/4d(X∗X)−1/4

+
1√

(X∗X)−1/4d(X∗X)−1/4
− 1 .

(7.24)

We start with the first summand on the r. h. s. of (7.24). With an integral representation
similar to (7.18) and using X∗X − d2 = 2d1/2bd1/2, we write it as

d1/2
(
(X∗X)−1/4 − d−1/2

) 1√
(X∗X)−1/4d(X∗X)−1/4

= C

∫ ∞

0

ds

s1/4
d1/2

1

s+ d2
d1/2 b d1/2

1

s+X∗X

1√
(X∗X)−1/4d(X∗X)−1/4

.

(7.25)

We estimate ‖d−1/2v‖ ≤ C and

∥∥∥d 1

s+X∗X

1√
(X∗X)−1/4d(X∗X)−1/4

∥∥∥
2

op

≤
∥∥∥d 1

s+X∗X

1

(X∗X)−1/4d(X∗X)−1/4

1

s+X∗X
d
∥∥∥
op

≤ ‖d(X∗X)−1/2‖op
∥∥∥(X

∗X)1/4

s+X∗X

∥∥∥
op
‖(X∗X)1/2d−1‖op

∥∥∥(X
∗X)3/4

s+X∗X

∥∥∥
op
‖(X∗X)−1/2d‖op

≤ Cmin{s−2, s−1} .
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Here we used (recalling X∗X = d1/2(d+ 2b)d1/2) that ‖d(X∗X)−1/2‖op ≤ 1 and also

‖(X∗X)1/2d−1‖2op = ‖1 + d−1/2bd−1/2‖op ≤ C . (7.26)

Using (7.22) with j = 2, k = 1, we obtain

∥∥∥ 1

s+ d2
dv
∥∥∥ ≤ Cmin{s−1, | log s|1/2} .

We conclude therefore that
∥∥∥d1/2

(
(X∗X)−1/4 − d−1/2

) 1√
(X∗X)−1/4d(X∗X)−1/4

∥∥∥
HS

≤ CV̂ (k) . (7.27)

Let us now consider the second summand on the r. h. s. of (7.24). Since X∗X = d1/2(d+
2b)d1/2 ≥ d2, we observe that

d1/2(X∗X)−1/2d1/2 ≤ 1 .

From d−1/2bd−1/2 ≤ C (uniformly in N and in k, since V̂ is bounded), we also have X∗X ≤
Cd2 and thus

d1/2(X∗X)−1/2d1/2 ≥ c

for a constant c > 0, independent of N and k. The last two bounds imply that c ≤
(X∗X)−1/4d(X∗X)−1/4 ≤ 1 and therefore that with

J := 1− (X∗X)−1/4d(X∗X)−1/4

we have
0 ≤ J ≤ 1− c < 1 .

We write

1√
(X∗X)−1/4d(X∗X)−1/4

− 1 =
1√

1− J
− 1 =

1

π

∫ ∞

0

ds√
s

1

s+ 1− J
J

1

s+ 1
.

With 1− J ≥ c > 0, we conclude that

∥∥∥ 1√
(X∗X)−1/4d(X∗X)−1/4

− 1
∥∥∥
HS

≤ C‖J‖HS . (7.28)

To estimate the Hilbert-Schmidt norm of J , we expand, similarly as we did in (7.19),

J = (X∗X)−1/4((X∗X)1/2 − d)(X∗X)−1/4

=
1

π

∫ ∞

0
ds

√
s (X∗X)−1/4 1

s+X∗X
d1/2 b d1/2

1

s+ d2
(X∗X)−1/4 .

Writing again b = g|v〉〈v| and using the bounds ‖d−1/2v‖ ≤ C, ‖(X∗X)−1/4d1/2‖op ≤ C, and
‖d(X∗X)−1/2‖op ≤ C (the latter two bounds are simple consequences of X∗X ≥ d2),

‖(X∗X)1/4(s+X∗X)−1‖op ≤ min
{
s−3/4, s−1

}

and also (7.22) with j = 2, k = 0 to bound

∥∥∥ 1

s+ d2
v
∥∥∥ ≤ min{s−1, s−1/2} ,
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we arrive at ‖J‖HS ≤ CV̂ (k). Inserting in (7.28) and combining the resulting bound with
(7.27), we conclude that

∥∥∥d1/2(X∗X)−1/4 1√
(X∗X)−1/4d(X∗X)−1/4

− 1
∥∥∥
HS

≤ CV̂ (k) . (7.29)

We turn to the second term on the r. h. s. of (7.23). Similarly as for the first term

(d+ 2b)1/2(XX∗)−1/4 1√
(XX∗)−1/4(d+ 2b)(XX∗)−1/4

− 1

= (d+ 2b)1/2
(
(XX∗)−1/4 − (d+ 2b)−1/2

) 1√
(XX∗)−1/4(d+ 2b)(XX∗)−1/4

+
1√

(XX∗)−1/4(d+ 2b)(XX∗)−1/4
− 1 . (7.30)

The term on the first line can be bounded analogously as we did with the first term on the
r. h. s. of (7.24). With XX∗ − (d+ 2b)2 = −2(d+ 2b)1/2 b (d+ 2b)1/2 we find

(d+ 2b)1/2
(
(XX∗)−1/4 − (d+ 2b)−1/2

) 1√
(XX∗)−1/4(d+ 2b)(XX∗)−1/4

= C

∫ ∞

0

ds

s1/4
(d+ 2b)1/2

1

s+ (d+ 2b)2
(d+ 2b)1/2 b (d+ 2b)1/2

1

s+XX∗

× 1√
(XX∗)−1/4(d+ 2b)(XX∗)−1/4

.

(7.31)

From ‖d1/2(d+2b)−1/2‖op ≤ C and ‖d−1/2v‖ ≤ C, we obtain ‖(d+2b)−1/2v‖ ≤ C. Moreover,
we find

∥∥∥(d+ 2b)
1

s+XX∗

1√
(XX∗)−1/4(d+ 2b)(XX∗)−1/4

∥∥∥
2

op

=
∥∥∥(d+ 2b)

1

s +XX∗

1

(XX∗)−1/4(d+ 2b)(XX∗)−1/4

1

s+XX∗
(d+ 2b)

∥∥∥
op

≤ ‖(d+ 2b)(XX∗)−1/2‖op
∥∥∥(XX

∗)1/4

s+XX∗

∥∥∥
op
‖(XX∗)1/2(d+ 2b)−1‖op

×
∥∥∥ (XX)3/4

s+XX∗

∥∥∥
op
‖(XX∗)−1/2(d+ 2b)‖op ≤ Cmin

{
s−2, s−1

}
.

Here we used, analogously to (7.26), the bounds ‖(XX∗)1/2(d+ 2b)−1‖op ≤ 1 and

‖(d+ 2b)(XX∗)−1/2‖2op = ‖(d+ 2b)(XX∗)−1(d+ 2b)‖op
= ‖(d+ 2b)1/2d−1(d+ 2b)1/2‖op
= ‖d−1/2(d+ 2b)d−1/2‖op = ‖1 + 2d−1/2bd−1/2‖op ≤ C .

(7.32)

On the other hand, we can bound

∥∥∥ 1

s+ (d+ 2b)2
(d+ 2b)v

∥∥∥
2
≤
〈
v,

1

s+ (d+ 2b)2
v

〉
.

With
1

s+ (d+ 2b)2
=

1

s+ d2
− 1

s+ (d+ 2b)2
[(d+ 2b)2b + 2bd]

1

s+ d2
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and using again b = g|v〉〈v|, we get

〈
v,

1

s+ (d+ 2b)2
v
〉
=
〈
v,

1

s+ d2
v
〉
− 2g

〈
v,

(d+ 2b)

s+ (d+ 2b)2
v
〉〈
v,

1

s+ d2
v
〉

− 2g
〈
v,

1

s+ (d+ 2b)2
v
〉〈
v,

d

s+ d2
v
〉

and therefore (proceeding as in the proof of (7.22)) arrive at

〈
v,

1

s+ (d+ 2b)2
v
〉
≤
〈
v,

1

s+ d2
v
〉
≤ C

M

∑

α

u2α
s+ u4α

≤ Cmin{s−1, | log s|} . (7.33)

This implies that

∥∥∥ 1

s+ (d+ 2b)2
(d+ 2b)v

∥∥∥ ≤ Cmin{s−1/2, | log s|1/2} . (7.34)

From (7.31), we conclude that

∥∥∥(d+ 2b)1/2
(
(XX∗)−1/4 − (d+ 2b)−1/2

) 1√
(XX∗)−1/4(d+ 2b)(XX∗)−1/4

∥∥∥
HS

≤ CV̂ (k) .

(7.35)

Finally, let us consider the term on the second line of the r. h. s. of (7.30). Since XX∗ ≤
(d+ 2b)2 (recall that XX∗ = (d+ 2b)1/2d(d+ 2b)1/2), we have

(d+ 2b)1/2(XX∗)−1/2(d+ 2b)1/2 ≥ 1 (7.36)

which also implies that (XX∗)−1/4(d+ 2b)(XX∗)−1/4 ≥ 1. We define therefore

W := (XX∗)−1/4(d+ 2b)(XX∗)−1/4 − 1 ≥ 0 .

Then we have

1√
(XX∗)−1/4(d+ 2b)(XX∗)−1/4

− 1 =
1√

1 +W
− 1 = − 1

π

∫ ∞

0

ds√
s

1

s+ 1 +W
W

1

s+ 1

and thus ∥∥∥ 1√
(XX∗)−1/4(d+ 2b)(XX∗)−1/4

− 1
∥∥∥
HS

≤ C‖W‖HS . (7.37)

To estimate the Hilbert-Schmidt norm of W we write

W = (XX∗)−1/4[(d+ 2b)− (XX∗)1/2](XX∗)−1/4

=
1

π

∫ ∞

0
ds

√
s (XX∗)−1/4 1

s+ (d+ 2b)2
(d+ 2b)1/2 b (d+ 2b)1/2

1

s+XX∗
(XX∗)−1/4

=
1

π

∫ ∞

0
ds

√
s (XX∗)−1/4(d+ 2b)1/2

(d+ 2b)1/2

s+ (d+ 2b)2
(d+ 2b)−1/2 b (d+ 2b)−1/2

× (d+ 2b) (XX∗)−1/2 (XX
∗)1/4

s+XX∗
.

With the resolvent identity, we obtain
(
1 +

〈
v,

d

s+ d2
v
〉) 1

s+ (d+ 2b)2
v =

1

s+ d2
v −

〈
v,

1

s+ d2
v
〉 (d+ 2b)

s+ (d+ 2b)2
v
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and thus ∥∥∥ 1

s+ (d+ 2b)2
v
∥∥∥ ≤

∥∥∥ 1

s+ d2
v
∥∥∥+

〈
v,

1

s+ d2
v
〉∥∥∥ (d+ 2b)

s+ (d+ 2b)2
v
∥∥∥ .

Using (7.22) with j = 2, k = 0, (7.33), and (7.34) we arrive at

∥∥∥ 1

s+ (d+ 2b)2
v
∥∥∥ ≤ Cmin{s−1/2, s−1} .

Applying also (7.32), ‖(d+ 2b)−1/2v‖ ≤ C and

∥∥∥(XX∗)1/4
1

s+XX∗

∥∥∥
op

≤ Cmin{s−1, s−3/4}

we conclude that
‖W‖HS ≤ C‖(XX∗)−1/4(d+ 2b)1/2‖opV̂ (k) . (7.38)

Since

‖(XX∗)−1/4(d+ 2b)1/2‖2op = ‖(XX∗)−1/4(d+ 2b)(XX∗)−1/4‖op
= ‖1 +W‖op ≤ 1 + ‖W‖HS

we arrive at
‖W‖HS ≤ CV̂ (k) .

Inserting this bound in (7.37) and combining it with (7.35), we can bound (7.30) by

∥∥∥(d+ 2b)1/2(XX∗)−1/4 1√
(XX∗)−1/4(d+ 2b)(XX∗)−1/4

− 1
∥∥∥
HS

≤ CV̂ (k) .

Together with (7.29) and with (7.23), we obtain

‖O − 1‖HS ≤ CV̂ (k) .

Using the bounds on the kernels K(k) and L(k), our next goal is to show that the
unitary transformations T and Z defined in (7.11) act on the c– and c∗–operators as bosonic
Bogoliubov transformations, up to errors that are small on states with few excitations.
(This will allow us to show that conjugation of the r. h. s. of (6.4) by T and Z produces
approximately the r. h. s. of (7.13).) To reach this goal, we need to show first that conjugation
with T and Z does not change the number operator N and the gapped number operators
Nδ substantially. We generalize the definition (7.11) for λ ∈ R to

Tλ := exp


λ

2

∑

k∈Γnor

∑

α,β∈Ik

K(k)α,βc
∗
α(k)c

∗
β(k)− h.c.


 ,

Zλ := exp


λ

∑

k∈Γnor

∑

α,β∈Ik

L(k)α,βc
∗
α(k)cβ(k)


 ,

(7.39)

so that T = T1 and Z = Z1.

Lemma 7.3 (Stability of number operators). Assume ‖V̂ ‖1 < ∞ and M ≫ N2δR2. Then
for every m ∈ N there exists C > 0 such that for all λ ∈ [−1, 1] we have

T ∗
λNmTλ ≤ C(N + 1)m and T ∗

λNδNmTλ ≤ C(Nδ + 1)(N + 1)m . (7.40)
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Conjugation with Zλ leaves the total number of particles constant,

Z∗
λNmZλ = Nm .

Moreover, for every m ∈ N there exists C > 0 such that, for all λ ∈ [−1, 1], we have

Z∗
λNδNmZλ ≤ CNδNm . (7.41)

Proof. The proof of (7.40) can be found in [BNPSS21a, Lemma 7.2] where it is stated under
the additional assumption that V̂ has a compact support; however, using Lemma 7.1 it easily
extends to ‖V̂ ‖1 <∞.

The invariance of N w. r. t. Zλ follows since the exponent commutes with N (the c∗-
operator creates two fermions while the c-operator annihilates two fermions).

We still have to show (7.41). We consider the case m = 0; the extension to m > 0 is
straightforward. We compute

d

dλ
〈ψ,Z∗

λNδZλψ〉 =
∑

k∈Γnor

∑

α,β∈Ik

Lα,β(k)〈ψ,Z∗
λ [c

∗
α(k)cβ(k),Nδ ]Zλψ〉 . (7.42)

Using the weighted pairs operators introduced in Lemma 5.3 we have

[c∗α(k),Nδ] = cg∗α (k) , [cβ(k),Nδ] = −cgβ(k)

for a weight function g with values in {0, 1, 2}. Thus

d

dλ
〈ψ,Z∗

λNδZλψ〉 =
∑

k∈Γnor

∑

α,β∈Ik

Lα,β(k)
〈
ψ,Z∗

λ

[
cg∗α (k)cβ(k) + c∗α(k)c

g
β(k)

]
Zλψ

〉

and by Cauchy–Schwarz

∣∣∣∣
d

dλ
〈ψ,Z∗

λNδZλψ〉
∣∣∣∣ ≤

∑

k∈Γnor


∑

β∈Ik

∥∥∥
∑

α∈Ik

Lα,β(k) c
g
α(k)Zλψ

∥∥∥
2




1
2

∑

β∈Ik

‖cβ(k)Zλψ‖2



1
2

.

Observe that

∑

β∈Ik

∥∥∥
∑

α∈Ik

Lα,β(k)c
g
α(k)Zλψ

∥∥∥
2
=

∑

β,α,α′∈Ik

Lα,β(k)Lα′,β(k) 〈cgα(k)Zλψ, cgα′(k)Zλψ〉

=
∑

α,α′∈Ik

|L(k)|2α,α′〈cgα(k)Zλψ, cgα′(k)Zλψ〉 = tr |L(k)|2Cg

with the |Ik| × |Ik| matrix Cg having entries (Cg)α,α′ = 〈cgα(k)Zλψ, cgα′(k)Zλψ〉. Since Cg is
a positive matrix, we can use (7.15) to estimate

∑

β∈Ik

∥∥∥
∑

α∈Ik

Lα,β(k)c
g
α(k)Zλψ

∥∥∥
2
≤ CV̂ (k)2 trCg = CV̂ (k)2

∑

α∈Ik

‖cgα(k)Zλψ‖2 .

Applying Lemma 5.3 and using ‖V̂ ‖1 <∞, we find
∣∣∣∣
d

dλ
〈ψ,Z∗

λNδZλψ〉
∣∣∣∣ ≤ C〈ψ,Z∗

λNδZλψ〉 .

By Grönwall’s lemma, we conclude that for all λ ∈ [−1, 1] we have

〈ψ,Z∗
λNδZλψ〉 ≤ C〈ψ,Nδψ〉 .
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We can now show that the unitary operators T and Z approximately act on c– and c∗–
operators as bosonic Bogoliubov transformations, up to errors that are negligible on states
with few excitations. The action of T is described in the next lemma, whose proof can be
found in [BNPSS21a, Lemma 7.1].

Lemma 7.4 (Approximate bosonic Bogoliubov transformation). For all λ ∈ [−1, 1], k ∈
Γnor, and γ ∈ Ik, we have

T ∗
λcγ(k)Tλ =

∑

α∈Ik

cosh(λK(k))α,γcα(k) +
∑

α∈Ik

sinh(λK(k))α,γc
∗
α(k) + Eγ(λ, k) (7.43)

where for the error term Eγ(λ, k) there exists a C > 0 such that for all ψ ∈ F we have

∑

γ∈Ik

‖Eγ(λ, k)ψ‖ ≤ CMN−2/3+δ‖(Nδ +M)1/2(N + 1)ψ‖ .

The same bound holds if we replace Eγ(λ, k) with E∗
γ(λ, k).

In the next lemma, we control the action of Z in an analogous fashion.

Lemma 7.5 (Approximate bosonic one–particle unitary). Assume ‖V̂ ‖1 < ∞. Let M ≫
R2N2δ. Then for every ℓ ∈ Γnor, γ ∈ Iℓ, and λ ∈ [−1, 1] we have

Z∗
λcγ(ℓ)Zλ =

∑

β∈Iℓ

exp(λL(ℓ))γ,βcβ(ℓ) + Fγ(λ, ℓ) (7.44)

where there exists a C > 0 such that for all ψ ∈ F we have

∑

γ∈Iℓ

‖Fγ(λ, ℓ)ψ‖ ≤ CN−2/3+δM3/2‖N 1/2
δ Nψ‖ . (7.45)

Proof. Recall that L is antisymmetric; hence Z∗
λ has the same form as Zλ, but with L

replaced by −L. For λ ∈ [−1, 1] we compute

d

dλ
Z∗
λcγ(ℓ)Zλ =

∑

β∈Iℓ

L(ℓ)γ,βZ
∗
λcβ(ℓ)Zλ +

∑

k∈Γnor:γ∈Ik

∑

β∈Ik

L(k)γ,β Z
∗
λEγ(ℓ, k)cβ(k)Zλ

with the error operator Eγ(ℓ, k) introduced in (5.6). In integral form, we obtain

Z∗
λcγ(ℓ)Zλ = cγ(ℓ) +

∑

β∈Iℓ

L(ℓ)γ,β

∫ λ

0
dτ Z∗

τ cβ(ℓ)Zτ

+
∑

k∈Γnor:γ∈Ik

∑

β∈Ik

L(k)γ,β

∫ λ

0
dτ Z∗

τ Eγ(ℓ, k)cβ(k)Zτ .

Iterating n0 times, we find (with L(ℓ)nγ,β = (L(ℓ)n)γ,β)

Z∗
λcγ(ℓ)Zλ =

n0∑

n=0

λn

n!

∑

β∈Iℓ

L(ℓ)nγ,β cβ(ℓ) +
∑

β∈Iℓ

L(ℓ)n0+1
γ,β

∫ λ

0
dτ

(λ− τ)n0

n0!
Z∗
τ cβ(ℓ)Zτ

+

n0∑

n=0

∑

k∈Γnor

∑

β∈Ik∩Iℓ

∑

α∈Ik

L(ℓ)nγ,βL(k)β,α

∫ λ

0
dτ

(λ− τ)n

n!
Z∗
τ Eβ(ℓ, k)cα(k)Zτ
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where, in the last line, for n = 0, we have L(ℓ)0γ,β = δγ,β . Thus, completing the first sum to
reconstruct the exponential, we have

Z∗
λcγ(ℓ)Zλ =

∑

β∈Iℓ

exp(λL(ℓ))γ,β cβ(ℓ) + Fγ(λ, ℓ)

with error term

Fγ(λ, ℓ) = −
∞∑

n=n0+1

λn

n!

∑

β∈Iℓ

L(ℓ)nγ,β cβ(ℓ) +
∑

β∈Iℓ

L(ℓ)n0+1
γ,β

∫ λ

0
dτ

(λ− τ)n0

n0!
Z∗
τ cβ(ℓ)Zτ

+

n0∑

n=0

∑

k∈Γnor

∑

β∈Iℓ∩Ik

∑

α∈Ik

L(ℓ)nγ,βL(k)β,α

∫ λ

0
dτ

(λ− τ)n

n!
Z∗
τ Eβ(ℓ, k)cα(k)Zτ

for an arbitrary n0 ∈ N. This error term can be estimated by

∑

γ∈Iℓ

‖Fγ(λ, ℓ)ψ‖

≤
∑

n>n0

λn

n!

∑

γ,β∈Iℓ

|L(ℓ)nγ,β |‖cβ(ℓ)ψ‖ +
∑

γ,β∈Iℓ

|L(ℓ)n0+1
γ,β |

∫ λ

0
dτ

(λ− τ)n0

n0!
‖cβ(ℓ)Zτψ‖

+

n0∑

n=0

∑

k∈Γnor

∑

γ∈Iℓ,β∈Ik∩Iℓ,α∈Ik

|L(ℓ)nγ,β ||L(k)β,α|
∫ λ

0
dτ

(λ− τ)n

n!
‖Eβ(ℓ, k)cα(k)Zτψ‖

=: I + II + III . (7.46)

We estimate

I ≤M1/2
∑

n>n0

λn

n!
‖L(ℓ)n‖HS

(∑

β∈Iℓ

‖cβ(ℓ)ψ‖2
)1/2

.

With Lemma 7.2, we obtain ‖L(ℓ)n‖HS ≤ Cn, uniformly in N and ℓ. From Lemma 5.3 then

I ≤M1/2‖N 1/2
δ ψ‖

∑

n>n0

Cn

n!
. (7.47)

Similarly, using the invariance of N w. r. t. conjugation with Zτ , we find

II ≤ Cn0

n0!
M1/2

∫ λ

0
dτ‖N 1/2

δ Zτψ‖ ≤ Cn0

n0!
M1/2‖N 1/2ψ‖ . (7.48)

Let us finally consider the last term on the r. h. s. of (7.46). We have

III ≤
∞∑

n=0

λn

n!

∑

k∈Γnor

(
∑

γ∈Iℓ,
α∈Ik ,

β∈Ik∩Iℓ

|L(ℓ)nγ,β |2|L(k)β,α|2
)1/2∫ λ

0
dτ

(
∑

γ∈Iℓ,
α∈Ik ,

β∈Ik∩Iℓ

‖Eβ(k, ℓ)cα(k)Zτψ‖2
)1/2

.

Using

(
∑

γ∈Iℓ,
α∈Ik,

β∈Ik∩Iℓ

|L(ℓ)nγ,β |2|L(k)β,α|2
)1/2

≤ ‖L(ℓ)n‖HS‖L(k)‖HS ≤ CnV̂ (k) ,

35



the bound (5.7), the relation N cα(k) = cα(k)(N − 2), and Lemma 5.3, we find

III ≤ C
∑

k∈Γnor

V̂ (k)N−2/3+δM3/2

∫ λ

0
dτ ‖N 1/2

δ NZτψ‖ .

With ‖V̂ ‖1 <∞ and Lemma 7.3, we conclude that

III ≤ CN−2/3+δM3/2‖N 1/2
δ Nψ‖ . (7.49)

Since the r. h. s. of both (7.47) and (7.48) vanishes as n0 → ∞ (and since (7.49) does not
depend on n0), we arrive at (7.45).

8 Linearization of the Kinetic Energy

We will use Lemma 7.5 to show that (7.13) and (7.14) hold approximately true on states
with few excitations. What is still missing to conclude the argument explained in Section 2 is
the invariance of H0 −DB w. r. t. the action of the approximate Bogoliubov transformations
(7.11). The proof is based on the fact that the commutators of H0 and DB with the c∗–
operators are approximately the same, as described by the following lemma.

Lemma 8.1 (Kinetic commutators). Let RM1/2 ≤ N1/3. For all k ∈ Γnor and all α ∈ Ik,
we have

[H0, c
∗
α(k)] = 2~κ|k · ω̂α|c∗α(k) + ~Elin

α (k)∗

[DB, c
∗
α(k)] = 2~κ|k · ω̂α|c∗α(k) + ~EB

α(k)
∗

(8.1)

where there exists a C > 0 such that for all f ∈ ℓ2(Ik) and all ψ ∈ F we have
∑

α∈Ik

∥∥∥Elin
α (k)ψ

∥∥∥ ≤ C|k|‖N 1/2
δ ψ‖ ,

∥∥∥
∑

α∈Ik

fαE
lin
α (k)ψ

∥∥∥ ≤ C|k|M−1/2‖f‖2‖N 1/2
δ ψ‖ ,

∑

α∈Ik

‖EB
α(k)ψ‖ ≤ CR3M3/2N−2/3+δ‖N 1/2

δ Nψ‖ .

(8.2)

Proof. The bounds for Elin
α are shown as in [BNPSS21a, Lemma 8.2], keeping track of the

k–dependence. From (2.1) we get

[H0, c
∗
α(k)] =

1

nα(k)

∑

p : p∈Bc
F∩Bα

p−k∈BF∩Bα

(e(p) + e(p − k))a∗pa
∗
p−k = 2~κ|k · ω̂α|c∗α(k) + ~Elin

α (k)∗ ,

where, using the weighted pair operators as in Lemma 5.3, Elin
α (k) = cgα(k) with

g(p, k) = ~
−1
(
e(p) + e(p− k)− 2~κ|k · ω̂α|

)
= ~

(
2k · (p − kFω̂α)− |k|2

)
.

Since Bα has diameter of order N1/3M−1/2 on the Fermi surface and since p can be at
most at distance |k| from the Fermi surface, we can bound (using the assumption |k|M1/2 ≤
RM1/2 ≤ N1/3)

|g(p, k)| ≤ C~|k| (|p − kFω̂α|+ |k|) ≤ C|k|M−1/2 .

The first two estimates in (8.2) follow from (5.11) and (5.12).
The last bound in (8.2) is shown exactly as in [BNPSS21a, Eq. (8.6)], using the bound

|Γnor| ≤ CR3 to sum over l ∈ Γnor there.
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The invariance w. r. t. T is established in the next lemma. This lemma can be shown
as [BNPSS21a, Lemma 8.1], replacing bounds for Elin

α and EB
α with those established in

Lemma 8.1 (and using the assumption
∑

k V̂ (k)|k| <∞). We skip further details.

Lemma 8.2 (Approximate T–invariance of H0−DB). Let
∑

k∈Z3 |V̂ (k)| (1 + |k|) <∞. Then
there exists a C > 0 such that for all ψ ∈ F we have

|〈Tψ,(H0 − DB)Tψ〉 − 〈ψ, (H0 − DB)ψ〉|
≤ C~

(
M−1/2‖(Nδ + 1)1/2ψ‖2 +R3MN−2/3+δ‖N 1/2

δ (N + 1)ψ‖‖(Nδ + 1)1/2ψ‖
)
.

In the next lemma, we use (8.2) to show the approximate invariance of H0 − DB w. r. t.
the action of the transformation Z defined in (7.11).

Lemma 8.3 (Approximate Z–invariance of H0−DB). Let
∑

k∈Z3 |V̂ (k)| (1 + |k|) <∞. Then
there exists a C > 0 such that for all ψ ∈ F we have

|〈Zψ, (H0−DB)Zψ〉 − 〈ψ, (H0 − DB)ψ〉|
≤ C~

(
M−1/2‖N 1/2

δ ψ‖2 +R3M3/2N−2/3+δ‖N 1/2
δ N 1/2ψ‖‖N 1/2

δ ψ‖
)
.

Proof. Recalling the definition (7.39) of the operators Zλ, we compute

d

dλ
〈Zλψ, (H0 − DB)Zλψ〉 =

∑

k∈Γnor

∑

α,β∈Ik

Lα,β(k)〈Zλψ, [c∗α(k)cβ(k), (H0 − DB)]Zλψ〉 .

With (8.1) we obtain

~
−1 d

dλ
〈Zλψ, (H0 − DB)Zλψ〉 =−

∑

k∈Γnor

∑

α,β∈Ik

Lα,β(k)〈Zλψ, (Elin
α (k)− EB

α(k))
∗cβ(k)Zλψ〉

−
∑

k∈Γnor

∑

α,β∈Ik

Lα,β(k)〈Zλψ, c∗α(k)(Elin
β (k)− EB

β (k))Zλψ〉 .

Hence
∣∣∣∣~

−1 d

dλ
〈Zλψ, (H0 − DB)Zλψ〉

∣∣∣∣ ≤
∑

k∈Γnor

∑

β∈Ik

∥∥∥
∑

α∈Ik

Lα,β(k)E
lin
α (k)Zλψ

∥∥∥‖cβ(k)Zλψ‖

+
∑

k∈Γnor

∑

α∈Ik

‖EB
α(k)Zλψ‖

∥∥∥
∑

β∈Ik

Lα,β(k)cβ(k)Zλψ
∥∥∥ .

Using Lemma 8.1 (and ‖Lα,·(k)‖2 ≤ ‖L(k)‖HS for all α ∈ Ik) we conclude that

∣∣∣~−1 d

dλ
〈Zλψ,(H0 − DB)Zλψ〉

∣∣∣

≤
∑

k∈Γnor

CM−1/2|k|
∑

β∈Ik

‖L·,β(k)‖2‖cβ(k)Zλψ‖‖N 1/2
δ Zλψ‖

+
∑

k∈Γnor

∑

α∈Ik

‖Lα,·(k)‖2‖EB
α(k)Zλψ‖‖N

1/2
δ Zλψ‖

≤ CM−1/2
∑

k∈Γnor

|k|||L(k)||HS‖N
1/2
δ Zλψ‖2

+ CR3M3/2N−2/3+δ
∑

k∈Γnor

‖L(k)‖HS‖N 1/2
δ NZλψ‖‖N 1/2

δ Zλψ‖ .
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With Lemmas 7.2 and 7.3 we obtain (since
∑

k∈Z3 |V̂ (k)| (1 + |k|) <∞)

∣∣∣∣~
−1 d

dλ
〈Zλψ, (H0 −DB)Zλψ〉

∣∣∣∣ ≤ CM−1/2‖N 1/2
δ ψ‖2

+ CR3M3/2N−2/3+δ‖N 1/2
δ Nψ‖‖N 1/2

δ ψ‖ .

Integrating over λ ∈ [0, 1] we arrive at the desired bound.

9 Proof of Theorem 1.1

We use the following proposition for localization in particle number sectors of Fock space. It
is taken from [LNSS15, Prop. 6.1] (given there for bosonic Fock space, but inspection of the
proof shows that the symmetry/antisymmetry of the wave function does not play any role).

Proposition 9.1 (Particle number localization). Let A be a non–negative operator on F with
PiD(A) ⊂ D(A) and PiAPj = 0 if |i− j| > ℓ, where Pi = χ(N = i). Let f, g : [0,∞) → [0, 1]
be smooth functions with f2 + g2 = 1, f(x) = 1 for x ≤ 1/2, and f(x) = 0 for x ≥ 1. For
L ≥ 1, let fL := f(N/L) and gL := g(N/L).

Then, there exists a C > 0 (one can take C := 2(‖f ′‖2∞ + ‖g′‖2∞)) such that

−Cℓ
3

L2
Adiag ≤ A− fLAfL − gLAgL ≤ Cℓ3

L2
Adiag

where Adiag =
∑∞

i=0 PiAPi.

We turn to the proof of our main result.

Proof of Theorem 1.1. The main work is for the proof of the lower bound; the upper bound
follows from the same operator estimates but using a specific trial state, for which the errors
are easier to control.

Lower bound. Let ψgs be a normalized ground state vector for the Hamilton operator
HN in (1.1). Since the Hartree–Fock energy arises from a restriction of the many–body
variational problem to a smaller set, we have

〈ψgs,HNψgs〉 ≤ EHF
N .

Let ξgs = R∗ψgs denote the excitation vector associated with ψgs, defined through the unitary
particle–hole transformation (2.3). From the definition (2.4) of the correlation Hamiltonian
we have 〈ξgs,Hcorrξgs〉 ≤ 0. With Lemma 4.1 and Corollary 4.6, we find a C > 0 such that

〈ξgs,H0ξgs〉 ≤ C~ , 〈ξgs, QBξgs〉 ≤ C~ , 〈ξgs, E1ξgs〉 ≤ C~ . (9.1)

The last bound follows because from Lemma 4.7 and Corollary 4.9 we get E1 ≤ C(Hcorr +
H0 + ~). Furthermore, from Corollary 4.2, we have

〈ξgs,N ξgs〉 ≤ CN1/3 , 〈ξgs,Nεξgs〉 ≤ CN ε for every ε > 0. (9.2)

Next we localize w. r. t. the number of particles. We choose smooth functions f and g as
in Proposition 9.1 and set fN := f(N/C0N

1/3), gN := g(N/C0N
1/3) for a constant C0 > 0

large enough, to be fixed below. We set A = Hcorr + C~, with C > 0 large enough. From
Lemma 4.1 we get A ≥ 0. From the definition (2.4) of Hcorr, combined with the bounds

38



in Corollary 4.6 for the operator QB, in Lemma 4.7 for the exchange operator X and in
Corollary 4.9 for the error term E2, we conclude that

A ≤ C(H0 + E1 + ~) .

Since H0 and E1 both commute with N , it also follows that Adiag ≤ C(H0 + E1 + ~).
From Proposition 9.1 (since, with the notation introduced in the proposition, PiAPj = 0 if
|i− j| > 4), we find

−CN−2/3(H0 + E1 + ~) ≤ Hcorr − fNHcorrfN − gNHcorrgN ≤ CN−2/3(H0 + E1 + ~) .

We apply this bound to the ground state ξgs. From the a–priori bounds in (9.1), we obtain

〈ξgs,Hcorrξgs〉 ≥ 〈ξgs, fNHcorrfNξgs〉+ 〈ξgs, gNHcorrgN ξgs〉 −CN−1 . (9.3)

Since ξgs is the ground state vector of Hcorr, we can estimate

〈ξgs, gNHcorrgN ξgs〉 ≥ ‖gN ξgs‖2 〈ξgs,Hcorrξgs〉 .

With (9.3) (and since f2 + g2 = 1), we arrive at

‖fN ξgs‖2〈ξgs,Hcorrξgs〉 ≥ 〈fNξgs,HcorrfNξgs〉 − CN−1 . (9.4)

From (9.2), we have, fixing C0 large enough,

‖gN ξgs‖2 = 〈ξgs, g2(N/C0N
1/3)ξgs〉 ≤

1

C0N1/3
〈ξgs,N ξgs〉 ≤

1

2
.

Hence ‖fNξgs‖2 ≥ 1/2 and, from (9.4),

〈ξgs,Hcorrξgs〉 ≥ 〈ξ,Hcorrξ〉 − CN−1 (9.5)

where we defined ξ = fNξgs/‖fNξgs‖ ∈ χ(Np − Nh = 0)F (particle number localization
leaves the space invariant, since Np and Nh commute with N ). Like ξgs, the localized vector
ξ satisfies 〈ξ,Hcorrξ〉 ≤ C~ and therefore by Lemma 4.1 we get

〈ξ,H0ξ〉 ≤ C~ . (9.6)

The advantage of working with ξ is that it satisfies stronger bounds (compared with ξgs) on
the number of particles. In fact, we find

〈ξ,Nmξ〉 ≤ CmNm/3, 〈ξ ,NmNεξ〉 ≤ CmN ε+m/3 (9.7)

for every m ∈ N and ε > 0 (to prove the second estimate, we used [N ,Nε] = 0).
From (9.5), to conclude the proof of the lower bound, it is therefore enough to show that

〈ξ,Hcorrξ〉 ≥ ERPA
N −CN−1/3−α, for sufficiently small α > 0 and for all ξ ∈ χ(Np−Nh = 0)F

satisfying (9.6) and (9.7). For such vectors, it follows from Lemma 4.7, Corollary 4.9 and
Lemma 6.1 that, for any sufficiently small ε, δ > 0 and for N2δ ≪M ≪ N2/3−2δ ,

〈ξ,Hcorrξ〉 ≥ 〈ξ, (H0 +QRB)ξ〉 − C~

(
N−1/3 +N−ε/4 +N−(1−γ)/3+5ε/4 +N−δ/2

+R1/2M1/4N−1/6+δ/2 +R−1/2
) (9.8)
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with the quadratic expression QRB defined in (6.1) (notice that the definition of QRB depends
on δ). Using the notation introduced in (6.3) and in (6.5), we can write

〈ξ, (H0 +QRB)ξ〉 = 〈ξ, (H0 − DB)ξ〉+
∑

k∈Γnor

2~κ|k|〈ξ, heff(k)ξ〉 . (9.9)

Next, we diagonalize the quadratic Hamiltonian heff(k) by means of the approximate Bo-
goliubov transformations defined in Section 7. Recalling (7.11), we define η = Z∗T ∗ξ ∈
χ(Np −Nh = 0)F . From (9.7) and from Lemma 7.3, we can control the number of particles
in η and Zη = T ∗ξ: for every m ∈ N we find a C > 0 such that

〈η,Nmη〉 ≤ CNm/3 , 〈Zη,NmZη〉 ≤ CNm/3 , (9.10)

〈η,NmNδη〉 ≤ CN δ+m/3 , 〈Zη,NmNδZη〉 ≤ CN δ+m/3 . (9.11)

Writing ξ = TZη and applying Lemma 8.2 and Lemma 8.3, we obtain

〈ξ, (H0 − DB)ξ〉 = 〈TZη, (H0 − DB)TZη〉
≥ 〈η, (H0 − DB)η〉 − C~

(
M−1/2‖(Nδ + 1)1/2η‖2

+R3M3/2N−2/3+δ‖N 1/2
δ (N + 1)η‖‖(Nδ + 1)1/2η‖

)

≥ 〈η, (H0 − DB)η〉 − C~

(
M−1/2N δ +R3M3/2N−1/3+2δ

)
. (9.12)

We now focus on the second term on the r. h. s. of (9.9). Writing ξ = TZη, we compute first
the action of T . We proceed here as in the proof of [BNPSS21a, Lemma 10.1]. Analogously
to [BNPSS21a, Eqs. (10.13)] we find
∑

k∈Γnor

~κ|k|〈ξ, heff(k)ξ〉

=
∑

k∈Γnor

2~κ|k|〈TZη, heff(k)TZη〉

≥
∑

k∈Γnor

~κ|k| tr (E(k) −D(k)−W (k)) +
∑

k∈Γnor

∑

α,β∈Ik

2~κ|k|K(k)α,β〈Zη, c∗α(k)cβ(k)Zη〉

− C~

(
N−2/3+δ‖N 1/2Zη‖2 +MR4N−2/3+δ‖(Nδ + 1)1/2Zη‖‖(Nδ +M)1/2(N + 1)Zη‖

+M2R4N−4/3+2δ‖(Nδ +M)1/2(N + 1)Zη‖2
)

(9.13)

where we introduced the |Ik| × |Ik| matrix K by
(

K(k) 0
0 K(k)

)
:=

(
cosh(K(k)) sinh(K(k))
sinh(K(k)) cosh(K(k))

)

×
(
D(k) +W (k) W̃ (k)

W̃ (k) D(k) +W (k)

)(
cosh(K(k)) sinh(K(k))
sinh(K(k)) cosh(K(k))

)
.

Comparing with (7.4), we find K(k) = O(k)E(k)O(k)T . The first error term in the square
brackets on the r. h. s. of ((9.13)) arises from [BNPSS21a, Eq. (10.10)], a bound which
holds under the assumption ‖V̂ ‖1 < ∞; this follows from the observation that [BNPSS21a,
Eq. (10.9)] can be improved to

∣∣∣
[
2 sinh(K(k))(D(k) +W (k)) sinh(K(k)) + cosh(K(k))W̃ (k) sinh(K(k))

+ sinh(K(k))W̃ (k) cosh(K(k))
]
α,α

∣∣∣ ≤ CV̂ (k)M−1 .
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The further two error terms in the square brackets arise from [BNPSS21a, Eq. (10.6)]; this
estimate holds for every fixed k. The sum over k ∈ Γnor gives the additional factor R4. Using
(9.10) and Lemma 9.2 (and recalling M ≫ N2δ) we find

∑

k∈Γnor

2~κ|k|〈ξ, heff(k)ξ〉 ≥ ERPA
N +

∑

k∈Γnor

∑

α,β∈Ik

2~κ|k|K(k)α,β〈Zη, c∗α(k)cβ(k)Zη〉

− C~

(
R2M1/4N−1/6+δ/2 +N−δ/2 +M−1/4N δ/2 +N−1/3+δ

+M3/2R4N−1/3+3δ/2 +M3R4N−2/3+2δ
)
. (9.14)

Next, we compute the action of the approximate Bogoliubov transformation (approximate
unitary transformation in the one–boson Hilbert space) Z in the second term on the r. h. s.
of (9.14). With Lemma 7.5, recalling that exp(L(k)) = O(k)Õ(k), we find

∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

Kα,β(k)〈η, Z∗c∗α(k)cβ(k)Zη〉

=
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

[
ÕT (k)OT (k)K(k)O(k)Õ(k)

]
α,β

〈η, c∗α(k)cβ(k)η〉

+
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

[
ÕT (k)OT (k)K(k)

]
α,β

〈η, c∗α(k)Fβ(1, k)η〉

+
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

[
K(k)O(k)Õ(k)

]
α,β

〈η,F∗
α(1, k)cβ(k)η〉

+
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

K(k)α,β〈η,F∗
α(1, k)Fβ(k)η〉 .

(9.15)

By Lemma 7.5 we can show that the contributions on the last three lines are negligible. For
example, the second term can be bounded by

∣∣∣
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

[
ÕT (k)OT (k)K(k)

]
α,β

〈η, c∗α(k)Fβ(1, k)η〉
∣∣∣

≤
∑

k∈Γnor

2~κ|k|
∑

β∈Ik

‖Fβ(1, k)η‖
∥∥∥
∑

α∈Ik

[
ÕT (k)OT (k)K(k)

]
α,β

cα(k)η
∥∥∥

≤
∑

k∈Γnor

2~κ|k|
∑

β∈Ik

‖Fβ(1, k)η‖‖[ÕT (k)OT (k)K(k)]β,.‖2‖N 1/2
δ η‖

≤ CN−1+δM3/2
∑

k∈Γnor

|k| ‖ÕT (k)OT (k)K(k)‖HS‖N 1/2
δ Nη‖‖N 1/2

δ η‖ .

Recalling K(k) = O(k)E(k)OT (k) and the expression (7.8) for the matrix E(k), we find

‖ÕT (k)OT (k)K(k)‖HS =
√
2
(
tr d2 + 2 tr d1/2bd1/2

)1/2
≤ CM1/2 .

Since |k| < R for all k ∈ Γnor, we conclude, with the bounds (9.10), that
∣∣∣
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

[
ÕT (k)OT (k)K(k)

]
α,β

〈η, c∗α(k)Fβ(1, k)η〉
∣∣∣ ≤ CN−2/3+2δR4M2 .

Proceeding similarly to bound the last two terms on the r. h. s. of (9.15), we obtain
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

Kα,β(k)〈η, Z∗c∗α(k)cβ(k)Zη〉

≥
∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

[
ÕT (k)OT (k)K(k)O(k)Õ(k)

]
α,β

〈η, c∗α(k)cβ(k)η〉 − CN−2/3+2δR4M2 .
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According to (7.10), we have ÕT (k)OT (k)K(k)O(k)Õ(k) = P̃ (k), with the matrix P̃ defined
as in (7.9). From P ≥ D (and recalling from (6.4) and (6.5) the relation between DB and
D), we get the key lower bound

∑

k∈Γnor

2~κ|k|
∑

α,β∈Ik

Kα,β(k)〈η, Z∗c∗α(k)cβ(k)Zη〉 ≥ 〈η,DBη〉 − C~N−1/3+2δR4M2 .

From (9.14), we obtain

∑

k∈Γnor

2~κ|k|〈ξ, heff(k)ξ〉 ≥ ERPA
N + 〈η,DBη〉 (9.16)

− C~

(
R2M1/4N−1/6+δ/2 +N−δ/2 +M−1/4N δ/2

+M2R4N−1/3+2δ +M3R4N−2/3+2δ
)
.

Inserting the last equation and (9.12) in (9.9), we find

〈ξ, (H0 +QRB)ξ〉 ≥ ERPA
N + 〈η,H0η〉

− C~

(
M−1/2N δ +R2M1/4N−1/6+δ/2 +N−δ/2 +M−1/4N δ/2

+M2R4N−1/3+2δ +M3R4N−2/3+2δ
)
.

Since H0 ≥ 0, from (9.8) we obtain

〈ξ,Hcorrξ〉 ≥ ERPA
N − C~

(
N−ε/4 +N−(1−γ)/3+5ε/4 +N−δ/2 +R2M1/4N−1/6+δ/2 +R−1/2

+M−1/2N δ +M−1/4N δ/2 +M2R4N−1/3+2δ +M3R4N−2/3+2δ
)
.

Choosing R = N δ, M = NCδ for a sufficiently large constant C > 0, γ < 1 and then both
ε > 0 and δ > 0 small enough, we conclude that 〈ξ,Hcorrξ〉 ≥ ERPA

N − CN−1/3−α for some
α > 0 and thus, from (9.5), also that 〈ξgs,Hcorrξgs〉 ≥ ERPA

N − CN−1/3−α. This completes
the proof of the lower bound for Theorem 1.1.

Upper bound. Instead of working with the state ξ = TZη and establishing its properties
through a–priori estimates, we directly use the trial state ξtrial := TΩ, where the transfor-
mation Z is not needed. We compute explicitly the expectation value

〈ξtrial,Hcorrξtrial〉 = 〈ξtrial, (H0 +QB + E1 + E2 + X)ξtrial〉 .

Note that by Lemma 7.3 we have

〈TΩ,N kTΩ〉 ≤ Ck , for k ∈ N . (9.17)

Furthermore, for all δ > 0, we have the simple bound for the gapped number operator

Nδ ≤ N , (9.18)

so that all expectations values of powers of N and Nδ in TΩ are of order one w. r. t. N . By
Lemma 8.2 we get

〈TΩ,H0TΩ〉 = 〈TΩ, (H0 −DB)TΩ〉+ 〈TΩ,DBTΩ〉
≤ 〈TΩ,DBTΩ〉+C~

(
M−1/2 +R3MN−2/3+δ

)
.
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The expectation value 〈TΩ,DBTΩ〉 can be computed by applying the approximate Bogoli-
ubov transform according to Lemma 7.4. Expressions that are normal-ordered in terms of
bosonic pairs operators vanish on Ω; only the contribution of the form cc∗ is non-vanishing
but easily seen to be of order ~. We conclude that

〈TΩ,H0TΩ〉 ≤ C~ . (9.19)

The bounds (9.17), (9.18), and (9.19) are sufficient to control all error terms in the following
computation. In fact, using Lemma 4.7 and Corollary 4.9 the contributions of E1, E2, and X

are now found to be of order N−1/3−α for some α > 0. Furthermore, by Lemma 6.1, we can
replace QB by the patch-decomposed QRB at the cost of a only a further small error.

It remains to compute explicitly the expectation value

〈TΩ, (DB +QRB)TΩ〉 =
∑

k∈Γnor

2~κ|k|〈TΩ, heff(k)TΩ〉 ≤ ERPA
N + CN−1/3−α

for α > 0 small enough. Here, we proceeded as in (9.13) (with Zη replaced by Ω) to
implement the action of the approximate Bogoliubov transformation T and used that all
pair annihilation operators vanish on Ω. This completes the proof of the upper bound for
Theorem 1.1.

We quickly discuss how to adapt the computation of [BNPSS20] of the explicit RPA
formula. The only new aspect here is the additional factor R2 in the first error term.

Lemma 9.2 (Explicit RPA formula). Let ‖V̂ ‖1 <∞. Then
∑

k∈Γnor

~κ|k| tr (E(k) −D(k)−W (k))

= ERPA
N +O

(
~
(
R2M1/4N−1/6+δ/2 +N−δ/2 +M−1/4N δ/2

))
.

Proof. The proof was given in [BNPSS20, Eqs. (5.13)–(5.18)] under the assumption that
V̂ has compact support. We only give the generalization of the main estimates in original
notation. With a factor |k|2 < R2 (for k ∈ Γnor) originating from (5.3) we find

|log f(λ)− log f̃(λ)| ≤ C

(
R2V̂ (k)

√
MN−1/3+δ +N−δ +

N δ

√
M

)
.

Furthermore

|log f(λ)| ≤ CV̂ (k)λ−2 , |log f̃(λ)| ≤ CV̂ (k)λ−2 .

Following [BNPSS20, Eq. (5.18)] and using ‖V̂ ‖1 <∞ the proof is completed as before.

A Generalized Upper Bound

As an upper bound, the estimate (1.4) for the correlation energy holds under weaker as-
sumptions on the interaction.

Theorem A.1 (Generalized RPA upper bound). Suppose V : T3 → R, V̂ ≥ 0, and
∑

k∈Z3

|k|V̂ (k)2 <∞ . (A.1)

For kF > 0 let N := |BF| = |{k ∈ Z
3 : |k| ≤ kF}|. Then, as kF → ∞, we have

EN ≤ EHF
N + ERPA

N + o (~) (A.2)

with ERPA
N as defined in (1.5).
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Remark. Expanding the logarithm, it is easy to check that the assumption (A.1) guarantees
that the sum defining ERPA

N in (1.5) is finite.

Proof of Theorem A.1. We now give the proof of Theorem A.1, explaining how to generalize
the argument presented in Section 9 in the paragraph devoted to the upper bound. For
given 0 < R ≪ N1/3, we consider the set Γnor, defined in (5.5). Note that in particular
Γnor restricts our attention to momenta |k| < R. Moreover, for δ > 0 sufficiently small, we
introduce the sets I±

k and Ik = I+
k ∪ I−

k as in (5.1). For k ∈ Γnor, we define the |Ik| × |Ik|
matrix K(k) as in Section 7. As stated in Lemma 7.1, we have pointwise in k ∈ Γnor, without
using the assumption on V̂ , the bound

|Kα,β(k)| ≤ C
V̂ (k)

M
. (A.3)

With the matrices K(k) we define the unitary operators T as in (7.11). In fact, it will again
be useful to consider, more generally, the family of operators Tλ, for λ ∈ [0, 1], as introduced
in (7.39), with T1 = T and T0 = 1.

We define the trial state ψtrial := RFTΩ ∈ L2
a(T

3N ) and the corresponding excitation
vector ξtrial := R∗

Fψ
trial = TΩ ∈ χ(Nh − Np = 0)F . Since RF and T only create particles

with momentum at distance smaller than R from the Fermi surface, and since we assumed
R≪ N1/3, we have

〈ψtrial,HNψ
trial〉 = 〈ψtrial, H̃Nψ

trial〉
where H̃N is the Hamilton operator (2.2), with V̂ (k) replaced by V̂ (k)χ(|k| ≤ CN1/3).
Proceeding as in Section 2, we find

〈ψtrial, H̃Nψ
trial〉 = EHF

N + 〈ξtrialH̃corrξ
trial〉 (A.4)

with the Hartree–Fock energy (1.3) (replacing V̂ (k) with V̂ (k)χ(|k| ≤ CN1/3) does not
change the r. h. s. of (1.3) if C > 0 is large enough) and with

H̃corr = H0 + Q̃B + Ẽ1 + Ẽ2 + X̃

where Q̃B, Ẽ1, Ẽ2, X̃ denote the operators QB, E1, E2, X, respectively, from (2.5) and (2.6),
with V̂ (k) replaced by Ṽ (k)χ(|k| ≤ CN1/3).

To estimate the expectation of H̃corr in the state ξtrial, we first establish rough bounds
on the number of particles and the energy of ξtrial.

Lemma A.2 (Bounds for particle number and kinetic energy). For every R > 0 and m ∈ N

there exists CR,m > 0 such that

〈TλΩ,NmTλΩ〉 ≤ CR,m for all λ ∈ [0, 1] . (A.5)

Moreover, for every R > 0 there exists a constant CR <∞ such that

〈TλΩ,H0TλΩ〉 ≤ CR~ for all λ ∈ [0, 1] . (A.6)

Proof of Lemma A.2. For (A.5) we can proceed as in the proof of [BNPSS20, Prop. 4.6].
The only new aspect is that we use the assumption (A.1) together with (A.3) to estimate

∑

k∈Γnor

‖K(k)‖HS ≤ C
∑

|k|≤R

V̂ (k) ≤ CR


∑

|k|<R

V̂ (k)2|k|




1/2

≤ CR . (A.7)
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This allows us to show that
∣∣∣∣
d

dλ
〈TλΩ, (N + 5)mTλΩ〉

∣∣∣∣ ≤ CR〈TλΩ, (N + 5)mTλΩ〉 .

By Grönwall’s lemma, we conclude that

〈TλΩ,NmTλΩ〉 ≤ eCmRλ .

To show (A.6) we write

〈TλΩ,H0TλΩ〉 = 〈TλΩ, (H0 − DB)TλΩ〉+ 〈TλΩ,DBTλΩ〉 (A.8)

with the operator DB introduced in (6.3). From Lemma 8.2 and (A.5), we find

|〈TλΩ, (H0 − DB)TλΩ〉| ≤ CR~
(
M−1/2 +MN−2/3+δ

)
. (A.9)

As in the proof of (A.5) above, the condition
∑

k∈Z3 V̂ (k)(1+|k|) <∞ required in Lemma 8.2
is now replaced (since K(k) = 0 for |k| > R) by

∑

|k|<R

V̂ (k)(1 + |k|) ≤ CR2

(
∑

k

V̂ (k)2|k|
)1/2

≤ CR2

which leads (together with (A.5)) to an R–dependent constant in (A.9). We also have

〈TλΩ,DBTλΩ〉 ≤ CR~
∑

k∈Γnor

M∑

α=1

〈TλΩ, c∗α(k)cα(k)TλΩ〉 ≤ CR~〈TλΩ,NTλΩ〉 ≤ CR~ , (A.10)

where we used (5.9) in the second and (A.5) in the third inequality. Inserting (A.9) and
(A.10) in (A.8), we obtain (A.6). This concludes the proof of Lemma A.2.

To estimate the potential energy we need the following lemma, which shows that, when
computing expectation values in ξtrial, we can effectively cutoff the interaction V̂ to momenta
|k| ≤ R, up to negligible errors. This observation relies on the fact that T only creates
particle–hole pairs with pair momentum |k| ≤ R.

Lemma A.3 (Control of the high–momentum cutoff). Assume
∑

k∈Z3 |k|V̂ (k)2 <∞. Then
for every R > 0 there exists CR > 0 such that

1

N

∑

k∈Z3:R<|k|≤CN1/3

V̂ (k)〈TΩ, b∗(k)b(k)TΩ〉 ≤ CRM
3/2N−1/2+δ/2 ,

∣∣∣ 1
N

∑

k∈Z3:R<|k|≤CN1/3

V̂ (k)〈TΩ, b(k)b(−k)TΩ〉
∣∣∣ ≤ CRM

3/2N−1/2+δ/2 .
(A.11)

Proof of Lemma A.3. Consider the second inequality in (A.11). We write

1

N

∑

R<|k|≤CN1/3

V̂ (k)〈TΩ, b(k)b(−k)TΩ〉 (A.12)

=
1

N

∑

R<|k|≤CN1/3

V̂ (k)
∑

k′∈Γnor

∑

α,β∈Ik′

Kα,β(k
′)

∫ 1

0
dλ
〈
TλΩ,

[
c∗α(k

′)c∗β(k
′), b(k)b(−k)

]
TλΩ

〉
.
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We compute
[
c∗α(k

′)c∗β(k
′), b(k)b(−k)

]
= c∗α(k

′)b(k)[c∗β(k
′), b(−k)] + c∗α(k

′)[c∗β(k
′), b(k)]b(−k)

+ b(k)[c∗α(k
′), b(−k)]c∗β(k′) + [c∗α(k

′), b(k)]b(−k)c∗β(k′) .
(A.13)

We consider the case α, β ∈ I+
k′ (so that c∗α(k

′) = b∗α(k
′) and c∗β(k

′) = b∗β(k
′) by (5.4)); the

other cases can be studied in the same way. We find

[c∗α(k
′), b(k)] =

1

nα(k′)

∑

p∈Bc
F∩Bα:

p−k′∈BF∩Bα

∑

q∈Bc
F∩BF+k

(
δp,qδk,k′ − δp,qa

∗
p−k′aq−k − δp−k′,q−ka

∗
paq
)
.

(A.14)
Thanks to the constraint |k′| < R < |k|, the otherwise dominant contribution due to δp,qδk,k′

vanishes. For such k and k′ and for any ψ,ϕ ∈ F we obtain

|〈ϕ, [c∗α(k′), b(k)]ψ〉| ≤
C

nα(k′)
‖N 1/2ϕ‖‖N 1/2ψ‖ . (A.15)

We can use this estimate to bound all the contributions to (A.12) arising from the various
terms in the r. h. s. of (A.13). For instance, consider the first. Using (A.14) we have

|〈TλΩ, c∗α(k′)b(k)[c∗β(k′), b(−k)]TλΩ〉| ≤
C

nβ(k′)
‖N 1/2b∗(k)cα(k

′)TλΩ‖‖N 1/2TλΩ‖

=
C

nβ(k′)
‖b∗(k)cα(k′)N 1/2TλΩ‖‖N 1/2TλΩ‖ .

Lemma 5.1, together with the assumption α, β ∈ Ik′ , implies that nβ(k
′) ≥ CN1/3−δ/2M−1/2.

Next, we will use the bounds

‖b♮(k)ϕ‖ ≤ C|k|1/2N1/3‖(N + 1)1/2ϕ‖ , ‖c♮α(k′)ϕ‖ ≤ C‖(N + 1)1/2ϕ‖ , (A.16)

where b♮ is either b or b∗, and analogously for c♮. Here, the first estimate follows from
[BNPSS21b, Eqs. (4.12) and (4.13)] (observing that |Bc

F ∩BF + k| ≤ C|k|N2/3), the second
from Lemma 5.3 (using the inequality [cα(k

′), c∗α(k
′)] ≤ 1; see [BNPSS21a, Eq. (5.10)]). Thus

|〈TλΩ, c∗α(k′)b(k)[c∗β(k′), b(−k)]TλΩ〉| ≤ C|k|1/2N δ/2M1/2〈TλΩ, (N + 1)3TλΩ〉 . (A.17)

All the other contributions in (A.13) can be estimated in a similar way. We get, using the
bounds |Kα,β(k

′)| ≤ V̂ (k′)/M and (A.5),

∣∣∣ 1
N

∑

k∈Z3:R<|k|≤CN1/3

V̂ (k)〈TΩ, b(k)b(−k)TΩ〉
∣∣∣

≤ CRM
3/2N−1+δ/2

∑

R<|k|≤CN1/3

|k|1/2V̂ (k)
∑

k′∈Γnor

V̂ (k′)

≤ CRM
3/2N−1/2+δ/2

(A.18)

where the sum over k′ has been absorbed in the constant CR (recall that |k′| < R in Γnor)
and where we estimated

∑

k:|k|≤CN1/3

|k|1/2V̂ (k) ≤ CN1/2

(
∑

k

|k|V̂ (k)2

)1/2

≤ CN1/2 . (A.19)

This concludes the proof of the second inequality in (A.11). The first can be shown similarly;
we omit the details. This concludes the proof of Lemma A.3.
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With Lemma A.2 and Lemma A.3, we can go back to the computation of the expectation
value on the r. h. s. of (A.4). We control the expectation of the error term Ẽ1 with the bound

‖Ẽ1ξ‖ ≤ C‖V̂ ‖1
N

‖N 2ξ‖

established in [BNPSS21b, Eq. (4.10)]. With (A.5) and estimating

∑

|k|≤CN1/3

V̂ (k) ≤ CN1/3
( ∑

k∈Z3

V̂ (k)2|k|
)1/2

≤ CN1/3

we find, for a constant CR depending on the cutoff R > 0,

〈ξtrial, Ẽ1ξtrial〉 ≤ CRN
−2/3 .

The expectation value of Ẽ2 in our trial state vanishes for parity reasons exactly as in
[BNPSS20, Lemma 5.2].

Applying Lemma A.3 and (A.11) and using the fact that X ≤ 0, from (A.4) we get

〈ψtrial,HNψ
trial〉 ≤ EHF

N + 〈ξtrial, (H0 + Q̃RB)ξ
trial〉+ CRN

−2/3 + CRM
3/2N−1/2+δ/2

where we defined

Q̃RB :=
1

N

∑

k∈R3:|k|≤R

V̂ (k)
(
b∗(k)b(k) +

1

2

(
b∗(k)b∗(−k) + b(k)b(−k)

))
.

In order to obtain an upper bound for the expectation of the operator H0 + Q̃RB, we proceed

as in the proof of Theorem 1.1, now with V̂ (k) replaced everywhere by V̂ (k)χ(|k| ≤ R). We
conclude that

〈ψtrial,HNψ
trial〉

≤EHF
N + ~κ0

∑

|k|≤R

|k|
(
1

π

∫ ∞

0
log

(
1 + 2πκ0V̂ (k)

(
1− λ arctan

( 1
λ

)))
dλ− π

2
κ0V̂ (k)

)

+ CRN
−2/3 + CRN

−1/3M−1/2 + CRM
3/2N−1/2+δ/2

≤EHF
N + ERPA

N + C
∑

|k|>R

V̂ (k)2|k|+CR

(
N−2/3 +N−1/3M−1/2 +M3/2N−1/2+δ/2

)
.

Fixing M = Nα, choosing α > 0 small enough and then R = R(N) so that R(N) → ∞
as N → ∞ at a sufficiently slow pace, we obtain (A.2). This concludes the proof of the
generalized RPA upper bound, Theorem A.1.
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