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In the classic Landau damping initial value problem, where a planar electrostatic wave transfers energy and
momentum to resonant electrons, a recoil reaction occurs in the nonresonant particles to ensure momentum
conservation. To explain how net current can be driven in spite of this conservation, the literature often
appeals to mechanisms that transfer this nonresonant recoil momentum to ions, which carry negligible current.
However, this explanation does not allow the transport of net charge across magnetic field lines, precluding
E × B rotation drive. Here, we show that in steady state, this picture of current drive is incomplete. Using
a simple Fresnel model of the plasma, we show that for lower hybrid waves, the electromagnetic energy
flux (Poynting vector) and momentum flux (Maxwell stress tensor) associated with the evanescent vacuum
wave, become the Minkowski energy flux and momentum flux in the plasma, and are ultimately transferred
to resonant particles. Thus, the torque delivered to the resonant particles is ultimately supplied by the
electromagnetic torque from the antenna, allowing the nonresonant recoil response to vanish and rotation to
be driven. We present a warm fluid model that explains how this momentum conservation works out locally,
via a Reynolds stress that does not appear in the 1D initial value problem. This model is the simplest that can
capture both the nonresonant recoil reaction in the initial-value problem, and the absence of a nonresonant
recoil in the steady-state boundary value problem, thus forbidding rotation drive in the former while allowing
it in the latter.

I. INTRODUCTION

Consider an electrostatic wave propagating through
an unmagnetized plasma. For certain particles in the
plasma, the particle velocity happens to match the phase
velocity of the wave. These particles, which see the same
wave phase for an extended time, are said to be “Lan-
dau resonant,” and can exchange energy and momentum
efficiently with the wave. Whether the wave adds or sub-
tracts energy to each particle is essentially random, de-
pending on the wave phase, and so averaged over an en-
semble of resonant particles the wave interaction results
in diffusion of the particles in momentum and energy.

To this simple system, add a background magnetic field
along an axis ẑ, chosen so that the frequency of particle
gyration Ω around this field is much lower that the wave
frequency ω. If we choose our wavevector k ‖ ẑ, then the
resonant particles are pushed along the magnetic field,
resulting in a current. This setup is the basis for much of
the wave-based current drive used in tokamaks1. Alter-
natively, if we choose our wavevector k ⊥ ẑ, then the gy-
rocenters of the resonant particles, which are determined
by the particle canonical momentum, diffuse along the

third direction k × b̂. This gyrocenter diffusion is the
basis for alpha channeling2,3.

While we will focus here on alpha channeling via lower
hybrid waves2–6, one can also make use of waves in the
ion-cyclotron range of frequencies7–18, and can further
optimize the effect by combining multiple waves19–22. For
any of these schemes, the basic idea is to set up the gyro-
center diffusion path so that hot, fusion-born alpha parti-
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cles at the plasma center are cooled as they diffuse out of
the plasma, thus transferring their energy into the waves,
which can then be used either to drive current or heat
fuel ions.

One of the most intriguing proposed applications of al-
pha channeling is to drive rotation in axially-magnetized
plasmas23,24. The basic idea is to manipulate particles
of a certain type to on average diffuse from a source at
the plasma center to a sink at the plasma edge, so that
the net charge of these particles is extracted from the
plasma. This creates a radial electric field in the plasma,
which combines with the axial magnetic field to drive
rotation. Such rotation, if sheared, can suppress tur-
bulent transport25,26 and stabilize the plasma27,28. In
addition, this alpha channeling paradigm alters the en-
ergy flow in the plasma, as the waves can transfer energy
from the alpha particles directly into the plasma rotation.
Interestingly, in certain regimes, the viscous dissipation
of this plasma rotation can disproportionately heat the
ions, allowing the plasma to achieve a natural hot-ion
mode without the use of direct ion heating29.

However, the success of these schemes, for both cur-
rent and rotation drive, depends on the response of the
nonresonant particles. Although each nonresonant par-
ticle interacts only very weakly with the wave, there are
many more nonresonant than resonant particles, so the
many weak responses can add up.

The importance of this nonresonant response is partic-
ularly notable in a classic plasma physics problem rele-
vant to current drive: the bump-on-tail instability30–32.
In this purely one-dimensional problem, a high-frequency
electrostatic wave interacts with electrons in an unmag-
netized plasma, and the kinetic distribution is set up in
such a way that energy is transferred from the resonant
electrons into the waves, and the waves grow. In the
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process, the resonant electrons lose momentum as well.
However, the electrostatic field of the wave contains no
average momentum, and so the momentum lost from the
resonant particles ends up in the nonresonant particles.
For a wave that interacts only with electrons, this means
that no net current is driven after all.

Despite this theoretical result, experiments have long
demonstrated that currents are, in fact, driven by waves
in tokamaks33–38. Often, this is attributed to some mech-
anism to put the nonresonant momentum into the ions,
which are much heavier than the electrons and thus con-
tribute negligibly to the current (Fig. 1a). This offloading
of nonresonant momentum into the ions can be accom-
plished directly by an appropriately chosen wave39–41.
Alternatively, because wave frequencies are typically cho-
sen so as to drive resonant currents in the high-energy tail
electrons, the inverse energy dependence of the Coulomb
cross section causes bulk thermal electrons to transfer
their momentum to ions much more quickly than reso-
nant electrons32,42–44.

If these explanations for how current drive works were
correct, then rotation drive via alpha channeling would
be impossible. In a uniformly magnetized plasma with
no electric field, the gyrocenter position of a particle
is intrinsically linked to its momentum. As a result,
if two particles exchange momentum, their gyrocenters
will move in such a way that no net charge moves
(Fig. 1b). This link between charge transport and mo-
mentum conservation is why classical transport45 is to
lowest order ambipolar46–49. It is also responsible for
the cancellation50–52 of proposed radial currents53 in the
study of intrinsic rotation in tokamaks. Thus, if equal
and opposite forces are applied to the resonant and non-
resonant particles, then regardless of which species the
nonresonant force is applied to, no net charge can be
transported: the resonant charge transport will simply
be cancelled by a nonresonant charge transport, making
rotation drive impossible. Indeed, just such a cancella-
tion was recently shown to exist for this 1D initial value
problem in a magnetized plasma54.

Fortunately, as we will discuss in this paper, the above
explanation for current drive is incorrect. There is a fun-
damental difference between how momentum conserva-
tion works in a multi-dimensional boundary-value prob-
lem (BVP) compared to a one-dimensional initial-value
problem (IVP). As a result, in many cases of interest,
the cancelling current or charge transport that appears
in the IVP is absent in the BVP, allowing both current
and rotation drive immediately.

The precise way in which the boundary value prob-
lem differs from the initial value problem has been the
focus of some conflicting explanations. For instance, it
has been recognized that, in the BVP, an electrostatic
wave is really only quasi-electrostatic, carrying a mag-
netic field which allows energy flow into the plasma (see
e.g. Sec. 16.7 of32). It has also been recognized that the
off-diagonal component of the generalized stress tensor
in the presence of a wave plays a crucial role in driving
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FIG. 1. Consequence of the nonresonant recoil in current
vs. rotation drive. (a) For current drive, the nonresonant
recoil momentum can be put into the ions, which contribute
negligibly to the current, allowing for current drive despite
the recoil. (b) For cross-field charge transport to drive E×B
rotation, even if the nonresonant recoil is put into ions, the
gyrocenter shifts of ions and electrons will cancel, so that no
net charge moves across field lines.

rotation. The relative importance of these two sources
has not been extensively explored.

Much of the previous work in the area of wave-
driven rotation has focused on low-frequency electrostatic
turbulence55–58. Often in this work, key assumptions ap-
propriate to low-frequency turbulence were made, which
make the analysis less suitable for our current and rota-
tion drive mechanisms. For instance, dissipation due to
resonances was often neglected or assumed to be in de-
tailed balance, whereas such dissipation provides the ba-
sis for current and charge transport in our mechanisms.
In addition, a key part of some theorems56 involved re-
placing the radial velocity with the wave-induced E ×B
velocity, an approximation valid only for low-frequency
waves.

A second category of prior work in this area focused
on hot, kinetic, magnetized plasmas59–63. However, these
models focused exclusively on the steady-state boundary-
value problem, rather than incorporating the initial value
problem as well. In addition, the complexity of the ki-
netic mathematics has a couple drawbacks. First, it
makes the theory tricky to generalize to more complex
plasmas, such as those with shear flow. Second, it ob-
scures possible issues with the calculation, such as a fail-
ure for some of the theories to agree with the cold-fluid
ponderomotive force in the appropriate limit, which have
taken years to emerge64.

A third area of prior work65–67, focused on deficiencies
of the Kennel-Engelmann quasilinear theory68 in describ-
ing perpendicular momentum effects in hot-plasma cur-
rent drive problems, ignored the nonresonant particles
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entirely. However, these papers exposed important sim-
plifying features of the resonant particle behavior, show-
ing how the resonant particle momentum absorption was
consistent with the absorption of Minkowski momentum
from geometrical optics69.

In this paper, we aim to put forth the simplest possi-
ble model that captures the behavior in both the initial
and boundary value problem, and exposes the core differ-
ences that allow for momentum injection in the bound-
ary value problem but not the initial value problem. To
this end, we begin in Sec. II with an overview of the
different types of energy and momentum commonly en-
countered in plasma wave problems: the electromagnetic
energy-momentum, the particle energy momentum, and
the Minkowski energy-momentum. These energy and
momenta, which can be grouped into energy-momentum
tensors, form a couple different closed systems. We use
these concepts in Sec. III to review how in the 1D initial
value problem, no net momentum is transferred into the
particles.

In Sec. IV, we introduce the overall framework for wave
injection we use throughout the paper. The subsequent
two sections use this framework to show how momentum
conservation works out globally, and locally in the area
of wave damping, for lower hybrid current and rotation
drive.

In Sec. V, we adopt a simple Fresnel model for wave
injection into the plasma, that is broadly consistent with
the theory70,71 of low-frequency (ω � Ωe) wave launch-
ing into a plasma. In this model, an evanescent wave
in a homogeneous vacuum region converts into a trav-
eling slow wave in a bordering low-density plasma re-
gion. We show that, in steady state, the flux of electro-
magnetic energy and non-radial momentum through the
evanescent vacuum region, as given by the Poynting flux
and Maxwell stress tensor, are identical to the flux of
the Minkowski energy and non-radial momentum in the
plasma region. This result stands in contrast to the ini-
tial value problem, where the electromagnetic energy and
momentum are in general different from the Minkowski
energy and momentum40. As a consequence, we show
that in the boundary-value problem, all the energy and
momentum that ends up in the resonant particles is ul-
timately supplied by the fields near the waveguide, sug-
gesting that the nonresonant response vanishes. This fact
establishes global momentum conservation.

In Sec. VI, we focus on the region of wave damping,
after the wave has mode-converted into an electrostatic
wave. Here, we show how the absence of the nonresonant
response can be understood to be consistent with momen-
tum conservation, arising partially (as in earlier works)
from a wave-induced off-diagonal component of the stress
tensor. We show that the minimal model required to un-
derstand the behavior is the warm-fluid model, which is
related to the fact that it gives a wave with non-vanishing
group velocity. Using the warm-fluid model, we recover
the behavior in both the initial value problem, where
no momentum is injected into the plasma, and in the

boundary-value problem, where momentum is injected
exclusively into the resonant particles. This result estab-
lishes the local momentum conservation of the theory.

II. FORMS OF ENERGY AND MOMENTUM

Before we delve into the specific scenario we will study
for wave-driven rotation, we review the types of energy
and momentum that will be important throughout the
paper.

Energy, momentum, and their associated fluxes are of-
ten grouped together into a single object T known as an
energy-momentum tensor (EMT):

T =

(
W S/c
cp Π

)
. (1)

Here, W is the energy, p is the momentum, S is the
energy flux, and Π is the momentum flux, also called the
stress.

In a closed system in space, energy and momen-
tum conservation are expressed by the vanishing of 4-
divergence of the energy-momentum tensor, i.e:

∇νTµν = 0, (2)

where ∇ν is the covariant derivative72, and we use Ein-
stein summation notation. For flat spacetime and Carte-
sian coordinates, this becomes:

1

c

∂

∂t
Tµ0 +

∂

∂xi
Tµi = 0. (3)

Energy conservation corresponds to the µ = 0 portion of
this equation, and momentum conservation to the µ =
1− 3 components.

Eq. (3) applies to the stress tensor which encompasses
all forms of energy and momentum in the system. Of-
ten, it is useful to separate out different subsystems. For
instance, in a plasma, we can separate out the electro-
magnetic and particle subsystems:

T = TEM + TP . (4)

Then, Eq. (3) applies to this sum. The components of
the electromagnetic subsystem are given by:

WEM =
E2 +B2

8π
(5)

SiEM =
c

4π
εijkEjBk (6)

piEM =
Si

c2
(7)

Πij
EM = − 1

4π

(
EiEj − 1

2
δijE2 +BiBj − 1

2
δijB2

)
,

(8)
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where E is the electric field and B is the magnetic field.
Meanwhile the components of the particle subsystem P
are given by73:

TµνP =

∫
fp(t,x,p)pµpν

dp

p0
(9)

p0 = UP =
√
m2c4 + |p|2c2, (10)

where p here is the relativistic 4-momentum (UP ,pP ), so
that p0 = UP and pi = mvi/(1 − v2/c2), and fp is the
distribution function in momentum space. In the sub-
relativistic limit v � c, the components of the tensor
become:

WP =

∫ (
mc2 +

1

2
mv2

)
f(t,x,v)dv (11)

SiP =

∫ (
mc2 +

1

2
mv2

)
vif(t,x,v)dv (12)

piP =

∫
mvif(t,x,v)dv (13)

Πij
P =

∫
mvivjf(t,x,v)dv, (14)

In addition to these familiar and physically intuitive
forms of energy and momentum, there is another energy-
momentum tensor we can form for waves in a plasma,
known as the Minkowski energy-momentum tensor69.
The components of the Minkowski EMT are expressed
in terms of the wave action I and group velocity vg:

WM = ωrI (15)

SiM = WMv
i
g (16)

piM = kirI (17)

Πij
M = piMv

j
g. (18)

Consider a quasi-monochromatic electromagnetic wave
with complex amplitude Ẽ, such that the physical wave
is given by:

E = Re
(
Ẽeik·x−iωt

)
(19)

For such a wave, when the magnetic susceptibility µ = 1,
the action is given by69:

I =
1

16πω2
Ẽi∗

∂

∂ωr

(
ω2εH,ij

)
Ẽj . (20)

Here, εH,ij is the Hermitian part of the dielectric
tensor32. The group velocity is obtained from the part
Dr of the dispersion function D that is real when D is
evaluated at real ω, k:

vig = −∂Dr/∂kri
∂Dr/∂ωr

. (21)

If the polarization is known, the dispersion function can
be written in terms of the polarization vector ẽc ≡
Ẽ/|Ẽ|69:

D =

[
ẽ∗c · ε · ẽc −

c2

ω2
(k× ẽ∗c) · (k× ẽc)

]
. (22)

There are a couple limitations of the Minkowski EMT
that must be noted. First, the Minkowski EMT is only
well-defined in areas where the wavepacket is eikonal, i.e.
|ki| � |kr| and |ωi| � |ωr|. Thus, it is not well-defined
in regions where the wave is evanescent.

Second, there is no relevant EMT that combines with
the Minkowski EMT in such a way that Eq. (3) is sat-
isfied for the combination of systems. In other words,
the Minkowski EMT does not form a physically-relevant
subsystem of the closed plasma-wave system.

Nevertheless, the Minkowski energy-momentum tensor
is extremely useful for ray tracing calculations and calcu-
lating the evolution of wavepackets. Furthermore, since
it incorporates the energy of the oscillating particles, it
provides an intuitive notion of “total” wave energy.

In regions where geometrical optics applies and the
wave remains eikonal, the evolution of the Minkowski
EMT follows from the conservation of the wave action69

[should put some other references here]:

∂I
∂t

+∇ · (vgI) = −ΓI. (23)

Γ ≡ 2Di

∂Dr/∂ωr
(24)

The right hand side of Eq. (23) represents dissipation
on resonant particles. Thus, in areas where Dr is
purely real—i.e. in areas without resonant particles
interactions—the action is perfectly conserved, and ad-
vected at the group velocity.

This action conservation principle is useful even in
wave problems where the eikonal approximation breaks
down in a local region, known as a caustic. Such caustics
occur in regions of wave reflection, tunneling, or mode
conversion. In caustic regions, the wave action on rays
flowing into the caustic reappears on rays flowing out of
the caustic, and action is still conserved [should double
check that this is always 100% true]74.

Though the Minkowski EMT does not generally com-
bine with anything to form a closed subsystem of a total
EMT, it can be shown from Eq. (23) that in the special
case when kr and ωr are constant, all energy and mo-
mentum that are lost from the Minkowski EMT show up
in the resonant particle EMT57,66. I.e., if there are no
other forces on the resonant particles R, then

T = TM + TR (25)

forms a closed system. Here, the components of the res-
onant particle EMT TR are similar to the components of
the total particle EMT TP , except the integrations are
performed only over the resonant parts of the particle
distribution, i.e. over the region where k · v ≈ ωr for a
Landau resonance. We will make use of this extremely
useful property throughout the paper.

For a propagating light wave in a vacuum, the electro-
magnetic EMT and Minkowski EMT coincide69. How-
ever, in general the two EMTs can be completely differ-
ent, as we review in the next section.
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III. 1D INITIAL VALUE PROBLEM EXAMPLE

As an example of the stark difference between the
Minkowski EMT and the electromagnetic EMT, and of
the ways in which our various conservation laws are
useful, consider the classic problem of Landau damp-
ing of electron Langmuir waves in an unmagnetized
plasma30–32. For this problem, the ions barely interact
with the wave and can be ignored. We proceed quickly,
since similar discussions can be found in Refs.40,41,69.

The unmagnetized, hot-plasma susceptibility tensor
is30,32:

εij = δij

[
1−

ω2
pe

k2

∫
L
dv

k · ∂fe0/∂v

k · v − ω

]
, (26)

where δij is the Kronecker delta function, fe0 is the elec-
tron distribution function in velocity space (normalized
to one), ωpe = (4πe2ne/me)

1/2 is the electron plasma
frequency, and e, me, and ne, are the electron charge,
mass, and average number density, respectively. The in-
tegral is performed along the Landau contour, wrapping
around singularities as necessary to analytically continue
the contour from ωi � 1.

For this 1D problem, k is purely real, and we will take
k ‖ ŷ. Then, the integral can be trivially integrated over
vx and vz, and we can reduce the integral to a 1D integral
with fe0 replaced by ge0 =

∫
dvxdvzfe0. Then, taking the

standard expansions |ωi/ωr| � 1 and |k · v/ωr| � 1, we
find to lowest order the Hermitian and anti-Hermitian
susceptibilities:

εH,ij = δij

[
1−

ω2
pe

ω2

]
(27)

εA,ij = −δijiπ
ω2
ps

k2

∂ge0
∂vy

∣∣∣∣
ωr/k

. (28)

Because we are examining an electrostatic wave, we
have Ẽ ‖ k. Without loss of generality, we can take

Ẽ ∈ R (this merely sets the wave phase), so that ẽc = ŷ.
Then, our wave action is given from Eq. (20) by:

I =
|Ẽyc |2

8πω
, (29)

and our dispersion function is given from Eq. (22) by:

D = 1−
ω2
pe

ω2
− iπ

ω2
pe

k2

∂ge0
∂vy

∣∣∣∣
ωr/k

, (30)

from which

ω2
r = ω2

pe (31)

Γ = −πω
3
r

k2

∂ge0
∂vy

∣∣∣∣
ωr/k

(32)

Because this problem is homogeneous and 1D, the ac-
tion conservation equation (23) takes the simple form:

∂I
∂t

= −ΓI. (33)

Thus, when ∂ge0/∂vy < 0, the action will decay, con-
sistent with Landau damping. As long as the wave am-
plitude is small enough for the quasilinear theory to be
valid, the action will asymptotically approach 0.

For this problem, we can easily calculate the compo-
nents of both the Minkowski and electromagnetic EMTs.
Since this is an initial value problem with no spatial vari-
ation, we ignore the flux terms S and Π. Our Minkowski
energy and momentum are given by:

WM =
|Ẽyc |2

8π
pyM =

ky
ωr
WM . (34)

Meanwhile, our electromagnetic energy and momentum
are given by:

WEM =
|Ẽyc |2

16π
pyEM = 0. (35)

Thus, the Minkowski energy of the wave is double the
electromagnetic energy of the wave, and the wave has
Minkowski momentum, but no electromagnetic momen-
tum.

To see how this plays out physically as the wave damps,
we can make use of our closed systems and conservation
relation 3. From the closed EMT in Eq. (25), we find:

∆WRP = WM0 ∆pyRP = pyM0, (36)

while from the closed EMT in Eq. (4) we find:

∆WP = WEM0 ∆pyP = pyEM0, (37)

where the ∆ indicates the change in the quantity once the
wave has completely damped, and the subscript 0 repre-
sents the initial value. Together, these imply a relation
for the nonresonant particles NP :

∆WNP = ∆(WP −WRP ) = −∆WRP /2 (38)

∆pyNP = ∆(pyP − p
y
RP ) = −∆pyRP . (39)

Thus, as the wave damps, all the Minkowski energy and
momentum in the wave end up as physical energy and
momentum in the resonant particles. To be consistent
with overall energy and momentum conservation of the
electromagnetic-particle closed system, the nonresonant
particle must lose energy, and gain momentum equal and
opposite to the resonant particle momentum. The non-
resonant momentum shift thus cancels out the current
driven in the resonant particles.

The loss of energy from the nonresonant particles can
be understood as the loss of “sloshing” motion associated
with the wave, rather than some sort of thermal cooling.
The resulting “negative diffusion” in energy space, which
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also arises in more detailed quasilinear calculations, was
a source of consternation in the plasma waves community
for some time, until it was shown to be consistent with
energy and momentum conservation in this way75.

This simple example of Landau damping of a uniform
plane electron Langmuir wave in a homogeneous unmag-
netized plasma demonstrates both the power and lim-
itations of the Minkowski energy-momentum, and the
dangers of considering only the resonant particles when
evaluating effects such as current drive and momentum
damping. Understanding the relationships between the
various forms of momentum, as well as the behavior of
the nonresonant particles, is thus key to understanding
rotation and current drive.

IV. A SIMPLE MODEL OF WAVE INJECTION

We now turn our attention to the boundary value prob-
lem. We design our overall model to make maximal use of
the conservation properties of our system, while avoiding
calculational complexity whereever possible.

The coordinate system and model of wave injection we
use throughout the paper are shown in Fig. 2. We work
in a slab geometry, with all gradients along the “radial
coordinate” x and a magnetic field along the “axial” or
“toroidal” coordinate z, with y taking the place of the
“poloidal” coordinate.

Our simple model is motivated by the coupling of
waveguides for lower hybrid current drive70,71. For such
waves, an evanescent wave in a vacuum region converts
into a plasma slow wave (also known as the extraordinary
wave, or X-mode) as the plasma density ramps up past
the point where |ωpe| > |ω|. To avoid calculational com-
plexity associated with the slowly ramping density, which
often necessitates numerical full-wave calculations, we in-
stead consider a Fresnel-type model, where an evanescent
wave in a homogeneous vacuum region converts into a
propagating slow wave at a sharp boundary to a dilute
plasma region. This reduces the coupling calculation to
a boundary-matching condition, dramatically simplifying
the mathematics.

In the physics of lower hybrid coupling, assuming we
have chosen a wave with k2

zc
2/ω2 > 1 + ω2

pe/Ω
2
ce, as

the plasma density ramps up, the wave continues to
propagate until it hits the lower hybrid resonance layer,
where |ω| = |ωLH | = (ω−2

pi + |ΩeΩi|−1)−1/2, with Ωs =

qsB0/msc the cyclotron frequency. At this point, the
wave mode-converts into an outward-propagating lower
hybrid wave70,76. We incorporate this process in our
model by having a region of gradually ramping density,
where we will make use of the action conservation both
in the region where geometric optics applies, and in bal-
ancing action going into and out of the mode conversion
layer.

It is this mode-converted lower hybrid wave that in-
teracts with the resonant particles strongly. In order to
simplify our analysis of the resonant particles, we will as-

sume that resonant particles only exist in a uniform re-
gion in the middle the density ramping region. This will
allow us to use our closed system from Eq. (25) easily,
though it is not actually essential to our final result. We
assume that there are enough resonant particles to com-
pletely deplete the energy in the wave, so that no wave
energy propagates back out of the plasma after entering.

What we will show, in the next sections, is that for
this system in steady state, the x-directed fluxes of elec-
tromagnetic energy SxEM and y and z momentum Πyx

EM
and Πzx

EM for the evanescent wave in the vacuum region,
are equal to the x-directed fluxes of Minkowski energy
SxM and y and z momentum Πyx

M and Πzx
M for the propa-

gating slow wave in the dilute plasma region. Via action
conservation, these are the same energy and momentum
that eventually end up in the resonant particles. In other
words, the energy and momentum that are transferred to
the resonant particles is supplied by electromagnetic en-
ergy and momentum through the waveguide-plasma gap.

The correspondence between the electromagnetic mo-
mentum and the momentum that ends up in the resonant
particles strongly suggests that the nonresonant momen-
tum should disappear in the purely boundary-value prob-
lem. However, there is still a possibility that the wave
would induce rearrangement of momentum within the
plasma, perhaps locally canceling the resonant momen-
tum but transferring an equivalent amount of momentum
elsewhere. Thus, in the subsequent sections, we will ex-
plicitly calculate the momentum balance within the res-
onant damping region using a warm fluid theory for the
particles, and show how the absence of a nonresonant re-
sponse is consistent with momentum conservation. This
warm fluid theory is capable of explaining both the initial
value problem and the boundary value problem, demys-
tifying questions of momentum conservation in current
and rotation drive.

V. VACUUM ELECTROMAGNETIC ENERGY AND
MOMENTUM FLUX END UP IN RESONANT
PARTICLES

A. Vacuum: energy and momentum flux relation

Our problem has two symmetry directions: ŷ and ẑ.
In this section, we will show that for any electromagnetic
wave in a vacuum, either propagating or evanescent along
the non-symmetry direction x̂, the fluxes of electromag-
netic energy and momentum are related by:

Πyx
EM =

ky
ω
Sx Πzx

EM =
kz
ω
Sx. (40)

Since this is the same relation as exists between the
Minkowski energy flux SxM and momentum flux Πix

M ,
this will mean that we only have to demonstrate
the equivalence of the vacuum electromagnetic energy
and Minkowski energy to show the equivalence of the
symmetry-direction momentum fluxes as well.
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Uniform 
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Resonant 
Particles
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Ramping 
Density

Mode 
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FIG. 2. Coordinate system and wave injection model used throughout the paper. The coordinates x, y, and z correspond to
radial, azimuthal, and axial / toroidal directions, respectively. Darker color represents higher density. A vacuum evanescent
wave (black), consisting of a forward-decaying “incident” wave (dotted gray) and backward-decaying “reflected” wave (dashed
gray), converts to a “transmitted” slow wave at the plasma / vacuum interface. This slow wave then continues to propagate
inward as the plasma density increases until it hits the lower hybrid resonance, where it mode converts into an electrostatic
lower hybrid wave (blue). Wave action is conserved during the in-plasma propagation and mode conversion. This wave then
propagates back to a uniform region containing resonant particles, where it damps.

We will begin by rotating our coordinate system about
the x axis to a new set of coordinates (x, u, v), so that
the wavevector lies in the x-u plane. Explicitly, we take
û ‖ ky ŷ+kz ẑ, and v̂ = x̂×û. Then, defining the refractive
index n = kc/ω, the dispersion relation is given from
Fourier transforming Maxwell’s equations as:1− n2

u nxnu 0
nxnu 1− n2

x 0
0 0 1− n2

x − n2
u

ẼxẼy
Ẽz

 = 0. (41)

Taking the determinant of the left matrix leads to the
single dispersion relation for electromagnetic waves in a
vacuum:

D = 1− n2
x − n2

u = 0. (42)

Any such waves will be a linear combination of two pos-
sible polarizations: the p polarization, given by:

Ẽc,p = nuE0x̂− nxE0û, (43)

and the s polarization, given by:

Ẽc,s = E0v̂, (44)

where E0 is an arbitrary complex constant. Note that no
assumption has been made as to whether the components
of n are real or complex. From Faraday’s Law, B̃c =
n × Ẽ, so the magnetic field components corresponding
to the p and s polarizations are:

B̃c,p = −(n2
x + n2

u)E0v̂ = E0v̂ (45)

B̃c,s = nuE0x̂− nxE0û (46)

As we calculate the relation between the energy and
momentum fluxes, we will focus only on the p polariza-
tion. The reason that we are able to do this is that we can
easily show that the same relations hold if the wave is in
s polarization. To see this, tote that the above relations
imply that:

Ẽc,s = −B̃c,p B̃c,s = Ẽc,p. (47)

These in turn imply that:

Es = −Bp Bs = Ep. (48)

Thus,

SEM,s =
Es ×Bs

4π
=

(−Bp)×Ep

4π
=

Ep ×Bp

4π
(49)

= SEM,p (50)

ΠEM,s = − 1

4π

(
EsEs −

1

2
E2
sI + BsBs −

1

2
B2
sI

)
(51)

= − 1

4π

(
BpBp −

1

2
B2
pI + EpEp −

1

2
E2
pI

)
(52)

= ΠEM,p, (53)

and it is sufficient to prove the relation only for the p
polarization.

From here, the proof is very short. In general, there
will be an “incident” wave I, with Im(nxI) > 0, and a
“reflected” wave R, with Im(nxR) < 0 (we use this ter-
minology because it is familiar from Fresnel calculations
in introductory electromagnetism77,78. It is important
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to consider both these fields together, rather than inde-
pendently, because it will turn out to be the interplay
between the incident and reflected wave fields that allow
power to flow through the vacuum. The refractive indices
of the incident and reflected waves satisfy nxR = −nxI
and nuR = nuI ≡ nu. Furthermore, as u is a symmetry
direction, nu is purely real. From these two relations,
Eq. (19), and the definitions of Ẽc,p and B̃c,p, it follows
that:

Exp = Re
[(
−nuI × E0Ie

ikI ·x−iωt − nuR × E0Ie
ikR·x−iωt

)]
(54)

= −nuBvp . (55)

We can now calculate the components of the stress tensor
in the (x, u, v) coordinate system. Recalling that nu =
kuc/ω, we have:

Πux
EM = − 1

4π
〈EuEx〉 =

ku
ω

c

4π
〈EuBv〉 =

ku
ω
SxEM (56)

Πvx
EM = 0. (57)

Rotating our coordinate system to (x, y, z) recovers the
relation in Eq. (40).

With this proof in hand, we now only need to show the
equivalence of SxEM in the vacuum to SxM in the plasma.
Once this is established, the equivalence of Πix

EM and
Πix
M for i ∈ {y, z} follows automatically from Eq. (40)

and Eqs. (16-18).

B. Fresnel equations for vacuum-plasma transition

Showing the equivalence of the electromagnetic and
Minkowski energy fluxes requires relating the electric
fields in the vacuum in plasma using boundary match-
ing conditions at the interface, which we now turn to.

We are interested in calculating wave propagation
through the vacuum, which we denote region 1, and the
dilute boundary region of the plasma, which we denote
region 2 (Fig. 2). In these regions, a cold plasma model
is sufficient. For the slow waves that eventually become
lower hybrid waves, we have |ω| � |Ωe|, and we choose
the plasma density at the edge such that |ω| . |ωpe|. For
such a wave, the S-P -D susceptibility tensor of Stix32

becomes:

ε =

1 0 0
0 1 0
0 0 P

 P ≡ 1−
ω2
pe

ω2
. (58)

Note that in the vacuum, this susceptibility tensor still
works; we simply have P1 = 1.

From this susceptibilty tensor, the dispersion relation
is given from:

(ninj − n2δij + εij)E
j = 0. (59)

Taking the determinant gives two dispersion branches.
The slow wave branch that we are interested in is:

n2
x + n2

y + Pn2
z = P. (60)

Plugging this back to the dispersion relation matrix equa-
tion in gives the polarization:

Ẽxc =
nx
n⊥

E0; Ẽyc =
ny
n⊥

E0; Ẽzc = − 1

P

n⊥
nz
E0, (61)

where n⊥ =
√
n2
x + n2

y, and we take the root that is

either positive or positive imaginary. This polarization
applies to both the wave in the vacuum, where P1 = 1,
and in the plasma, where P2 < 0.

The dispersion relation can be put in the form:

n2
⊥ = P (1− n2

z). (62)

Thus, in order for the plasma wave to propagate (n2
⊥ > 0)

in the plasma, where P2 < 0, we must have n2
z > 1.

Furthermore, because y and z are symmetry directions,
ny and nz stay constant thoughout the problem. Thus,
we must have n2

⊥ < 0 in the vacuum, implying that nx
is imaginary, and the wave is evanescent. This switch-
ing of the wave from evanescent to propagating at the
boundary reflects the crossing of the P = 0 cutoff at the
boundary32.

For the evanescent wave in the vacuum, we can de-
compose the electric field into an “incident” wave with
Im(nxI) > 0, and a “reflected” wave with nxR = −nxI .
Thus, the complex amplitudes of the vacuum wave com-
ponents take the form:

ẼI =
nxI
n⊥I

E0I x̂+
ny
n⊥I

E0I ŷ −
n⊥I
P1nz

E0I ẑ (63)

ẼR = −nxR
n⊥I

E0Rx̂+
ny
n⊥I

E0Rŷ −
n⊥I
P1nz

E0Rẑ. (64)

In the plasma region, there will be a single propagating
“transmitted” wave, with nT > 0, with complex wave
component amplitudes:

ẼT =
nxT
n⊥T

E0T x̂+
ny
n⊥T

E0T ŷ −
n⊥T
P2nz

E0T ẑ. (65)

As before, the magnetic field amplitude is given from the
electric field amplitude in each case by B̃ = n× Ẽ.

For a boundary in the y-z plane at x = 0, the boundary
matching conditions for materials with magnetic perme-
ability µ = 1 are77,78:

ε1,xjẼ
j
1 = ε2,xjẼ

j
2 (66)

Ẽi1 = Ẽi2 i ∈ {y, z} (67)

B̃i1 = B̃i2 i ∈ {x, y, z}. (68)

Plugging our waveforms into these equations, Eqs. (67)
and the x component of Eq. (68) yield:

E0I + E0R = αE0T ; α ≡ n⊥I
n⊥T

, (69)



9

while Eq. (66) and the y component of Eq. (68) yield:

E0I − E0R = βE0T ; β ≡ nxT
nxI

n⊥I
n⊥T

. (70)

The z component of Eq. (68) is trivially satisfied, since

B̃z = 0. Note that α is a pure imaginary number, while
β is a pure real number. The solution to these coupled
equations is:

E0R =
α− β
α+ β

E0I (71)

E0T =
2

α− β
E0I . (72)

These equations take the exact same form as that for p-
polarized light for an isotropic dielectric in introductory
electromagnetism77, except for the redefinition of α and
β.

C. Electromagnetic energy flux in the vacuum

We are now in a position to calculate the electromag-
netic energy flux in the vacuum. Since B̃z = 0, we have:

SxEM = − c

4π
〈EzBy〉 . (73)

The relevant fields are given by:

Ez = Re

[
−n⊥I

nz

(
E0Ie

ikxIx + E0Re
−ikxIx

)
eikyy+ikzz−iωt

]
(74)

By = Re

[
nxI

nzn⊥I

(
E0Ie

ikxIx − E0Re
−ikxIx

)
eikyy+ikzz−iωt

]
.

(75)

The average of two quantities A and B oscillating at the
same frequency is given by 〈AB〉 = Re(A∗B)/2. Thus:

Sx
EM =

c

8π
Re

{[
n⊥I

nz

(
E0Ie

ikxIx + E0Re
−ikxIx

)]∗
×

[
nxI

nzn⊥I

(
E0Ie

ikxIx − E0Re
−ikxIx

)]}
(76)

=
c

8π
Re

{
nxIn

∗
⊥I

n2
zn⊥I

×
[(
E0IE

∗
0Ie
−2Im(kx)x − E0RE

∗
0Re

2Im(kx)x

)
+

(
−E∗0IE0Re

−2iRe(kx)x + E0IE
∗
0Re

2iRe(kx)x

)]}
.

(77)

Here, we have separated out the terms in parentheses;
the first parentheses contain a purely real quantity, and
the second parenthese contain a purely imaginary quan-
tity. For a propagating wave in vacuum (as is considered
in boundary value problems in introductory electromag-
netism), nxI is real, and it is the first set of parenthe-
ses that matter; we can recognize these as the energy

fluxes associated with the incident and reflected waves,
respectively. However, when nxI is imaginary, as for our
vacuum evanescent wave, it is the cross amplitudes in
the second set of parentheses that determine the energy
flux. Thus, using the fact that nxI and n⊥I are pure
imaginary, we have:

SxEM = − c

4πn2
z

Im(nxI)Im (E∗0IE0R) . (78)

Now we make use of Eq. (71), and the fact that α is
imaginary and β is real. We have:

Im (E∗0IE0R) = Im

(
E∗0IE0I

α− β
α+ β

)
(79)

= Im (α)
2β

β2 − α2
E∗0IE0I . (80)

Plugging this back in, using the definitions of α and β
and the fact that n2

⊥T /n
2
⊥I = P2, yields:

SxEM =
c

2πn2
z

nxT
P

E∗0IE0I

β2 − α2
. (81)

D. Minkowski energy flux in the plasma

The Minkowski energy flux in the plasma is given from
Eq. (16) by:

SxM = ωIvxg . (82)

The group velocity is given by vxg =
−(∂D/∂kx)/(∂D/∂ω), with

D = k2
x + k2

y +

(
1−

ω2
pe

ω2

)(
n2
z − 1

)
, (83)

which yields:

vxg = PcnxT
(
P 2n2

z + n2
⊥T
)−1

. (84)

From Eq. (20), we have

I =
1

16πω2
Ẽi∗T

∂

∂ωr

ω2

1 0 0
0 1 0

0 0 1− ω2
pe

ω2

 Ẽj (85)

=
1

8πω
Ẽi∗T Ẽ

j
T . (86)

Plugging in our definition for ẼT in Eq. (65), and recall-
ing that nxT is real, we find:

I =
1

8πω

P 2n2
z + n2

⊥T
n2
zP

2
Ẽ∗0T Ẽ0T . (87)

We can evaluate E∗cTEcT using Eq. (72). Recalling
that α is imaginary and β real, this gives:

E∗0TE0T =
4

β2 − α2
E∗0IE0I . (88)
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Putting this all together, we find:

SxM =
c

2πn2
z

nxT
P

E∗0IE0I

β2 − α2
, (89)

so that SxM = SxEM .

E. Energy-momentum flow to resonant particles

From Eq. (23), we have:

∂

∂x

(
vigI
)

= −ΓI. (90)

Thus, as the wave travels from the dilute plasma region to
the mode conversion layer, the quantity vigI remains con-
stant. At the mode conversion layer, the action flux mag-
nitude is conserved, but the direction flips sign. Then,
vigI is constant again until the edge of the uniform re-
gion with the resonant particles. Because ω, ky, and kz
are constant throughout, this means in turn that the fi-
nal quantities (upon entering the uniform region) SxMf ,

Πyx
Mf , and Πzx

Mf are equal in magnitude and opposite to
their initial signs at the interface with the vacuum.

In the uniform region with resonant particles, the ac-
tion starts to spatially decay, and eventually disappears.
However, we know that over this region, the conserva-
tion Eq. (25) holds. We can calculate the energy transfer
rate to resonant particles by taking the flux terms SRP
and ΠRP in the resonant particle EMT to be 0. Then,
Eq. (25) becomes:

∂

∂t

WRP

pyRP
pzRP

 = − ∂

∂x

SxMf

Πyx
Mf

Πzx
Mf

 . (91)

Now, we integrate over the uniform region volume, as-
suming that the damping is strong enough that the wave
has completely damped out by the low-x edge of the uni-
form region. Thus, integrating over an area A in the
y-z plane, and using our derived relations between the
Minkowski and electromagnetic momentum, we fine:

∂

∂t

URPP yRP
P zRP

 = A

SxEMΠyx
EM

Πzx
EM

 , (92)

where URP and PRP are the volume-integrated resonant
particle energies and momenta respectively. Thus, we
see that in the boundary-value problem, the energy and
momentum that end up in the resonant particles are ul-
timately supplied by the electromagnetic field.

Now, it is still possible that in spite of this, there is
a response of nonresonant particles in the plasma to the
wave. However, because the electromagnetic momentum
and energy that enters the plasma is all accounted for in
the resonant particles, such a response could only lead
to a rearrangement of energy and momentum within the

wave region. Thus, the net force (or net torque in a cylin-
drically symmetric system) on the plasma all results from
flow of electromagnetic momentum through the vacuum
bordering the plasma, and is consistent with the total
force / torque on the resonant particles.

While it is important to know the net force on the
plasma volume, it is also often important to know the
local force, and thus to see if a momentum rearrangement
within the plasma due to a nonresonant response does in
fact take place. In the next section, we will show that
no such momentum rearrangement takes place, at least
within the uniform region. Thus, the local force on the
resonant particles will be shown to constitute the total
local force on the plasma.

VI. WARM-FLUID MODEL OF THE ELECTROSTATIC
WAVE

We will now shift our focus to the uniform regime in
Fig. (2), and the mode-converted electrostatic wave that
damps on the resonant particles there. We will employ a
warm-fluid model to describe the bulk plasma response.
Of course, the resonant particles cannot be described by
this fluid model; thus, we will assume that the resonant
particle damping is calculated already, and appears as
a “given” imaginary portion of the dispersion relation.
In light of Eq. (25), this information immediately tells
us the energy and momentum transfer to the resonant
particles. Our focus in this section will be the momen-
tum transferred to the nonresonant particles at the same
time.

Our goal is to show that the momentum conservation
principle from the closed system in Eq. (4) is ultimately
consistent with the absence of a nonresonant force along
the symmetry directions in steady-state lower hybrid cur-
rent and rotation drive. Crucially, we want to accomplish
this in a theory that also captures the momentum cancel-
lation result for the initial value problem. We will thus
proceed fairly slowly, calculating each component of the
tensor from the first principles presented, and showing
that the familiar fluid equations respect this momentum
conservation. We will then perform a quasilinear analy-
sis of these equations to show how the nonresonant force
vanishes, leaving only the resonant force.

Our analysis here is similar in spirit to that in Refs.56

and79,80. However, in contrast to the former, our analy-
sis will incorporate wave dissipation and the transfer of
energy and momentum to the resonant particles, and will
not assume an E×B radial fluid velocity. In contrast to
the latter, our warm fluid analysis gives a finite group
velocity, which allows us to relate the spatial action gra-
dients to the magnitude of the damping. This in turn
enables a comparison of the resonant forces, which de-
pend on the damping, to the nonresonant forces, which
depend on the gradients. The vanishing of the nonres-
onant response in the boundary-value problem thus re-
quires evaluating the problem to this order.



11

A. Preliminaries: electrostatic wave dispersion

For any electrostatic wave, our starting point is the
Poisson equation:

−∇2φ = 4π
∑
s

qsns. (93)

Generally, we assume quasineutrality, wherein the 0th-
order charge densities of the various species cancel. Thus,
the charge density is determined by the first-order den-
sities n1:

−∇2φ1 = 4π
∑
s

qsns1. (94)

Fourier transforming in x and t, we find

k2φ̃ = 4π
∑
s

qsñs. (95)

This gives us the dispersion function:

D ≡ 1 +
∑
s

Ds (96)

Ds ≡ −
4πqs
k2

ñs

φ̃
. (97)

To get Ds, we will in general have to solve the fluid or
Vlasov equations; however, for deriving the general form
of the force on the plasma in terms of the dispersion
relation, the above form is sufficient.

It will be useful to separate the dispersion function
into components that are real (Dr) and imaginary (Di)
when evaluated at real ω and k. We define ωi ≡ Im(ω),
κ ≡ Im(k). In the eikonal limit |ωi/ωr| � 1, |κi/ki| � 1,
our dispersion relation becomes:

0 = Dr (98)

= 1 +
∑
s

Drs (99)

0 =

(
ωi

∂

∂ωr
+ κ · ∂

∂k

)
Dr +Di (100)

=
∑
s

[(
ωi

∂

∂ωr
+ κ · ∂

∂k

)
Drs +Dis

]
, (101)

where Drs and Dis are the real and imaginary parts of
Ds evaluated at real ω and k. Because I ∼ |φ|2, we have
∂I/∂t = 2ωiI and ∂I/∂xi = −2κiI, and Eq. (102) can
be seen to be equivalent to Eqs. (23-24).

We note that since k and ω now have imaginary com-
ponents, there can be some confusion in the definition
of the tilde quantites from Eq. (19). We will choose the
convention that includes the imaginary parts:

φ = Re
(
φ̃eikr·x−iωrte−κ·x+ωit

)
. (102)

Thus, the local amplitude φa of the wave will be given
by:

|φa| = |φ̃|e−κ·x+ωit, (103)

where φ̃ is constant in space and time. Then, the elec-
tromagnetic energy density is given by

WEM =
k2
r |φa|2

16π
∝ e−2κ·x+2ωit. (104)

This convention makes taking derivatives straightfor-
ward, but can be a little confusing.

B. Wave action and resonant particle force

We will start by calculating the wave action and reso-
nant particle force in the electrostatic theory. This will
allow us to clearly disambiguate resonant and nonreso-
nant forces later in the problem.

The wave action is given from Eq. (20) by:

I =
1

16πω2
Ẽi∗

∂

∂ωr

(
ω2εH,ij

)
Ẽje−2κ·x+2ωit. (105)

To calculate this for electrostatic waves, we will have to
relate the species susceptibility χijH to the dispersion func-
tion Drs. Using the Fourier-transformed charge continu-
ity equation, and the definition32 of the susceptibility
j̃i = −iωχH,ijẼj/4π, we have:

k2Drsφ̃ = 4πρ̃s = −4π
kmj̃m
ω

= kmχH,mnk
nφ̃. (106)

Using this in to our action equation, we find:

I = WEM

∑
s

∂Drs

∂ω
= WEM

∂Dr

∂ω
. (107)

Consider the conserved Minkowski-resonant particle
system; specifically, the i ∈ (y, z) components of Eq. (3),
for T in Eq. (25). Using Eqs. (21), (107), and (100), we
find the simple result:

∂piRP
∂t

= −∂pM
∂t
− ∂

∂xj
Πij
M (108)

= −ki
(
∂I
∂t

+
∂

∂xj
(
vjgI
))

(109)

= −2ki
(
ωi + κj

∂Dr/∂k
j

∂Dr/∂ω

)(
WEM

∂Dr

∂ω

)
(110)

= 2WEMk
iDi. (111)

It is then clear that the species-specific resonant force is:

∂piRP,s
∂t

= 2WEMk
iDis. (112)

C. EMT-consistent force from oscillating electric field

With the force on the resonant particles established,
we now turn to the momentum conservation-consistent
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total force on the particle distribution. The total elec-
tromagnetic force on the plasma is given from the closed
system Eq. (4) as:

∂piP
∂t

+
∂

∂xj
Πij
P = −∂p

i
EM

∂t
− ∂

∂xj
Πij
EM . (113)

Now, an electrostatic wave does technically have a small
magnetic field associated with it, and thus nonvanishing
momentum piEM . This can be seen by Lorentz boosting
the truly electrostatic solution in the frame traveling at
the wave phase velocity to the observer frame. However,
for a wave traveling at phase velocity vp = |ωr/kr| � c,
this magnetic field is O(vp/c) smaller than the electric
field, and thus the momentum from Eq. (7) is O(v2

p/c
2)

smaller than the stress terms, and can be ignored. Thus,
the total force from the wave on the plasma, which we
denote FEM , can be written:

F iEM = − ∂

∂xj
Πij
EM . (114)

We are ultimately interested in the average effect of the
wave on the plasma, rather than the oscillations them-
selves. This requires calculating the average value of the
electromagnetic stress tensor over one of the symmetry
directions y or z. To lowest order in |κ/k|, we have:〈

Πij
EM

〉
y

= − 1

4π

〈
EiEj − 1

2
δijE2

〉
y

(115)

= −e
−2κ·x+2ωit

8π
Re

[
Ẽi∗Ẽj − 1

2
δijẼm∗Ẽm

]
(116)

= −2
WEM

k2
r

(
kirk

j
r −

1

2
δijk2

r

)
, (117)

where we used Ẽi = −ikiφ̃ and Eq. (104). Taking the
derivative to obtain the force thus yields (using the scal-
ing in Eq. (104)):〈

F iEM
〉

= −4
WEM

k2
r

κj

(
kirk

j
r −

1

2
δijk2

r

)
. (118)

Of course, we are often interested in calculating the
specific force FEM,s the plasma exerts on each species s in
the plasma. To do this, we need to calculate the average
correlation between the density of s and the electric field:〈

F iEM,s

〉
=
〈
Eiqsns

〉
(119)

=
1

2
Re
[
Ẽi∗qsñs

]
(120)

= 2
WEM

k2
r

Im
[
k∗k2Ds

]
, (121)

where we have used Eq. (97) and Eq. (104). Now, keeping
only to lowest order in κ, we can Taylor expand around
real ω, k as in Eq. (101) to find:〈
F iEM,s

〉
≈ 2WEMk

i
r

[
Dis +

(
κλ

∂

∂kλ
+ ωi

∂

∂ωr

)
Drs

]
+ 4

W

k2
r

κj

(
kirk

j
r −

1

2
k2
rδ
ij

)
Drs. (122)

Here, the term with Dis is the resonant force, and all
other terms are the nonresonant force. If we sum this
over all species and make use of Eqs. (99) and (101),
we find 〈FEM 〉 =

∑
s 〈FEM,s〉, showing that this elec-

tric force is (as expected) consistent with the momentum
conservation law.

Eq. (122) also shows why a warm fluid model is, in
general, necessary to demonstrate that vanishing of the
nonresonant ponderomotive force to the order of the res-
onant force. Consider a wave interacting with only a
single species. In steady state, from Eq. (101), we see
that for this wave:

Dis = −κλ ∂Drs

∂kλ
. (123)

Thus, the nonresonant force contribution from the of the
same order nonresonant force term involving ∂Drs/∂k

j ,
which is usually 0 in the cold fluid model. Thus the
warm fluid model is actually the simplest model which
can calculate the nonresonant force to the correct order.

D. Fluid equations from particle EMT

In order to calculate the total force on a plasma fluid
element, we plug a fluid ansatz into the EMT components
for the particle distribution in Eqs. (11-14). The ansatz
we use is typically a position-dependent Maxwellian:

fs(x,v) =
n(x)

(2πTs(x)/ms)3/2
ems(v−us(x))2/2Ts(x), (124)

though this shape is not essential so much as the fact
that the distribution is primarily located in a region with
v � vp.

Plugging this ansatz into Eqs. (11-12), we find to low-
est order in mc2 that for species s:

WPs = msc
2ns (125)

SPs = msc
2nsu

i
s. (126)

The EMT conservation Eq. (3) for component i = 0 thus
gives a mass-weighted sum over the familiar fluid conti-
nuity equations for each species:∑

s

ms

[
∂ns
∂t

+
∂

∂xj
(nsu

j
s)

]
= 0. (127)

Of course, we take these each to be individually satisfied.
We also have:

pPs = msnsu
i
s (128)

Πij
Ps = msnsu

i
su
j
s + Psδ

ij , (129)

with Ps = nsTs, so that the EMT conservation Eq. (3) for
components i = 1-3 gives the sum over the momentum
equations:∑
s

[
∂

∂t
(msnsu

i
s) +

∂

∂xj
(nsu

i
su
j
s) +

∂Ps
∂xi

]
= − ∂

∂xj
Πij
EM .

(130)
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Because the separate species only interact through the in-
fluence of the electric field, and because the electric forces
sum to the electromagnetic stress tensor, this equation is
simply the sum of the individual momentum equations:

∂

∂t
(msnsu

i) +
∂

∂xj
(nsu

iuj) +
∂Ps
∂xi

= F iEM,s. (131)

Often, this is combined with the continuity equation to
obtain:

msns

(
∂

∂t
+ ujs

∂

∂xj

)
uis = F iEM,s. (132)

Thus, the standard fluid momentum equation is consis-
tent with our momentum conservation law, as expressed
in the closed system in Eq. (4).

We close this system of equations with an adiabatic
expression for the pressure evolution:(

∂

∂t
+ uj

∂

∂xj

)(
Ps
nγss

)
= 0, (133)

where γs is the adiabatic index for species s.

E. Linearizing the fluid equations

To study waves, we must linearize these equations. To
clean the notation, we will suppress the subscripts s in
this section. Now when we linearize, we take the standard
approach of decomposing into an average contribution
n0, u0, and P0, and a smaller oscillating portion n1, u1,
and P1. [Interestingly, you get slightly different results
if you use, e.g., n1, p1, and T1]. For simplicity, we take
u0 = 0, corresponding to the application of torque to a
non-rotating plasma; however, the results can be easily
generalized, if desired.

To first order, from Eqs. (127), (132), and (127), we
get the familiar warm fluid equations32:

∂n1

∂t
= −n0

∂uj1
∂xj

(134)

mn0
∂ui1
∂t

= −∂P1

∂xi
+ qn

(
Ei +

1

c
εijku1jB0k

)
(135)

∂P1

∂t
= γT0

∂n0

∂t
, (136)

where T0 = γn0.
At second order, we obtain our quasilinear theory. We

will use the original form (Eq. (131)) of the momentum
equation here, obtaining the average force on the plasma,
which we define as the time change in the average mo-
mentum:

Ffluid ≡
∂
〈
piP
〉

∂t
= − ∂

∂xj
Πij

Rey + 〈FEM,s〉 . (137)

Here, the average momentum in the plasma is given by:〈
piP
〉

= mn0u
i
0 +m

〈
n1u

i
1

〉
, (138)

and we have identified the Reynolds stress:

Πij
Rey = mn0

〈
ui1u

j
1

〉
=

1

2
mn0Re

[
ũi1ũ

j
1

]
e−2κ·x+2ωit

(139)

We will show that for the lower hybrid wave in steady
state, this Reynolds stress cancels with the electromag-
netic force FEM,s in just such a way as to leave only
the force on the resonant particles. Note crucially that
the factor of ∂/∂xi out front of the stress term implies
a factor of the decay rate κi; thus, in order to calculate
the force to the same order as the electromagnetic EMT,
i.e. first order in κi, we need only calculate the tensor in
brackets to 0th order in |κ|/|k|.

F. Lower hybrid wave solution

Eqs. (94) and (134-136) can be Fourier transformed
and solved to yield both the dispersion function Ds (from
Eq. (97)):

Ds = −
ω2
ps

k2

(
k2
⊥

ω2 − Ω2
s

+
k2
z

ω2

)
Cs, (140)

and fluid velocities ũis for species s:

ũxs =
qs
ms

kxω + ikyΩs
ω2 − Ω2

s

Cs (141)

ũys =
qs
ms

kyω − ikxΩs
ω2 − Ω2

s

Cs (142)

ũzs =
qs
ms

kz
ω
Cs, (143)

where k2
⊥ = k2

x + k2
y, and Cs captures the thermal cor-

rections and is given by:

Cs =

(
1−

γs(k
2
x + k2

y)v2
ths

ω2 − Ω2
z

− γsk
2
zv

2
ths

ω2

)−1

, (144)

where vths ≡
√
Ts/ms.

The warm lower hybrid dispersion relation can be re-
covered if we take |Ωi| � |ω| � |Ωe|, vthi � |ω/k|,
vthe � |Ωe/k|, and |kz/k| � |ω2/(ω2−Ω2

s)| ∀s. This can
be shown to agree with the kinetic dispersion relation
when γe = 3/4 and γi = 381. In this limit,

Cs ≈ 1 +
γs(k

2
x + k2

y)v2
ths

ω2 − Ω2
z

+
γsk

2
zv

2
ths

ω2
. (145)

G. Total force on fluid for magnetized electrostatic wave

Now we are in a position to calculate the force on a
fluid element. To calculate the quasilinear force, first
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note that Eq. (122) can be rewritten:〈
F iEM,s

〉
≈ 2WEM

[
kirDis − κiDrs

+
kir

k2

(
κλ

∂

∂kλ
+ ωi

∂

∂ωr

)(
k2Drs

)]
. (146)

Focus on the term involving the derivative with respect
to k: 〈

F iEM,s,k

〉
≡ kir

k2
κλ

∂

∂kλ
(
k2Drs

)
. (147)

For our problem, we only need to consider λ = x. Thus,
using Eq. (140), we have:

〈
F iEM,s,k

〉
= −4WEM

kirk
x
r

k2
κx

ω2
ps

ω2 − Ω2
s

×
(

1 + 2γv2
ths

(
k2
⊥

ω2 − Ω2
s

+
k2
z

ω2

))
. (148)

Now we calculate the Reynold’s stress. Plugging
Eqs. (141-143) into Eq. (139), we find:

Πix
Rey = 2WEM

ω2
ps

ω2 − Ω2
s

[
kikx
k2

C2
s + δix

Ω2
s

(ω2 − Ω2
s)

k2
⊥
k2
C2
s

]
.

(149)

Examining the force along the symmetry directions, we
take i ∈ (y, z). By taking the x derivative using
Eq. (104), we find:

− ∂

∂x
Πix

Rey = −
〈
F iEM,s,k

〉
. (150)

Thus, the total force on the fluid element along the sym-
metry directions is:〈
F itot,s

〉
= 2WEMk

i
r

[
Dis − ωi

∂Drs

∂ωr

]
; i ∈ (y, z). (151)

Eq. (151) captures the behavior of the plasma in both
the 1D initial value problem, and in the steady-state
multidimensional boundary problem. For the 1D IVP,
κi = 0, and from Eq. (100) we see that the sum of all res-
onant and nonresonant forces on the plasma is 0. Thus,
the nonresonant particles recoil, canceling out the mo-
mentum transferred by the wave to the resonant parti-
cles. For the steady-state multidimensional BVP, mean-
while, ωi = 0, and thus the force on the plasma is pre-
cisely equal to the force on the resonant particles; in other
words, the recoil response on the nonresonant particles
vanishes. Thus, the behaviors of both the IVP and BVP
are shown to arise from a consistent, coherent, energy-
and momentum-conserving framework.

VII. DISCUSSION

The topic of flow drive by waves in plasma, and more
broadly of ponderomotive forces in plasma, has been a

subject of research for many years. Thus, we begin our
discussion with a comparison of our results to some of
the existing literature.

It has long been known that the electromagnetic EMT
of a propagating electromagnetic wave in vacuum are the
same as the Minkowski momentum of that wave69. Thus,
for plasma waves which arise from propagating vacuum
electromagnetic waves, such as high-frequency |ω| > |ωpe|
modes, our result in Sec. V would be trivial. Our result
differs from this historical result precisely because the
vacuum wave is evanescent rather than eikonal, and thus
has no defined Minkowski EMT, so that a comparison of
EMTs across regions was required.

Sec. VI bears more similarity to the existing litera-
ture. The key role played by the off-diagonal component
of the Reynolds stress has been noted in several papers
employing a fluid theory. In the study of low-frequency
electrostatic turbulence, similar results for poloidal flow
generation56 and parallel momentum transport57 have
been obtained; however, an early theorem used in these
results relied on assuming an E × B radial velocity
urs = EθBz, which is certainly not the case for the ions in
the lower-hybrid waves we considered here. In addition,
consideration of the different forces on resonant and non-
resonant effects are only considered in the paper on par-
allel momentum transport57, not the paper on poloidal
momentum damping56, making it difficult to compare
the results to theories incorporating only the resonant
particles. Here, we have clearly distinguished resonant
and nonresonant forces for both the parallel and perpen-
dicular forces, making clear the deep parallels between
current drive and rotation drive via cross-field charge ex-
traction.

The importance of the Reynolds stress was also noted
in several papers examining nonresonant current and flow
drive in the cold-fluid theory79,80. These papers estab-
lished the cancellation between the electromagnetic force
on the nonresonant particles and the Reynolds’ stress to
zeroth order in v2

th. However, as discussed in Sec. VI,
the resonant forces actually appear at O(v2

th), so it is
necessary to work to this order to establish that the
nonresonant forces vanish in steady state. In addition,
these references did not consider the possibility of time-
dependence in the problem, and so could not show con-
sistency with the initial value problem result.

In addition to fluid theory, the Reynolds stress has
appeared in magnetized hot-plasma kinetic theories as
well59–63. These theories do not require a guess for the
adiabatic index γs, and are capable of tackling waves,
such as Bernstein waves, which do not satisfy the order-
ing requirements for fluid waves. However, this ability
comes at the price of significant computational complex-
ity, since calculating ΠRey requires evaluating the evo-
lution of the second-order distribution function f2 in a
multi-dimensional magnetized plasma. Thus, none of
these papers attempt the time-dependent initial value
problem, and thus cannot establish consistency with
the conventional quasilinear theory of Landau damp-
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ing. Even with this simplification, the calculations are
plagued with subtle difficulties. For instance, it was
only recently established65–67 that the classic Kennel-
Engelman theory of quasilinear diffusion incorrectly gyro-
averaged the diffusion tensor rather than the whole quasi-
linear equation, and thus missed perpendicular momen-
tum input into the resonant particles. Similarly, the sud-
den turning on of the wave fields at t = 0 used to calculate
f2 in Refs.59,60 was shown to yield incorrect forces in the
cold-fluid limit, an error ultimately coming from the fact
that |ωi/ωr| � 1 was not satisfied64.

In summation, this paper fulfills a valuable role, pro-
viding a relatively simple theory that captures the be-
haviors of both the initial- and boundary-value problems
in magnetized and unmagnetized plasmas, while estab-
lishing that when nonresonant forces vanish, they do so
at the order of the resonant forces.

In identifying this gap in the literature, it is impor-
tant to note that we do not claim that existing theo-
ries of hot particle extraction by alpha channeling2–22

are incorrect. These theories simply focused exclusively
on the resonant particles, and thus were not positioned
to answer questions that depended sensitively on the re-
sponse of the nonresonant particles. For those papers
which did focus on rotation drive while neglecting non-
resonant particles23,24, it turns out fortuitously that the
relevant nonresonant response vanishes in steady-state,
making the alpha channeling rotation drive scheme pos-
sible in practice.

Finally, we note that there is a whole other approach
to the calculation of nonresonant ponderomotive forces,
using the variational theory of the oscillation center82.
Such methods begin with an action principle for the sin-
gle particle, and then transform to a set of oscillation-
center coordinates. These methods are deep and pow-
erful, especially when combined with Weyl transform
methods that allow for consistent handling of plasma
nonuniformities74, and come with self-consistent energy
and momentum conservation theorems built in. How-
ever, such theories are intrinsically kinetic, and self-
consistency involves a Lagrangian coordinate calculation
of the oscillation center dynamics. In addition, the phys-
ical currents present in the system are often buried in
the transformation from physical to oscillation center co-
ordinates, and can be difficult to extract and integrate
over the plasma distribution. A detailed comparison of
cross-field charge transport in the oscillation-center and
warm fluid pictures is outside the scope of the present
paper, and will be left for future work.

VIII. CONCLUSION

In this paper, we have shown that the conventional
explanation for momentum conservation in steady-state
current drive applies only in the case of an initial value
problem, which is generally not the case of interest in
present devices, in which wave power is brought into the

device from a boundary. In steady state, the nonresonant
particle recoil response does not get transferred into ions
via collisions, or even get transferred directly into the
ions by the wave; it simply does not exist. This absence
of a nonresonant response was shown to be consistent
with global energy-momentum conservation, through the
use of a Fresnel model which identified the electromag-
netic energy and momentum flux in the vacuum with
the Minkowski momentum in the plasma. It was also
shown to be consistent with local energy-momentum con-
servation, via the use of a simple electrostatic warm fluid
model. This model recovered both the behavior of the
1D initial value problem, where a recoil reaction does
exist, and the multidimensional steady-state boundary-
value problem, where no recoil occurs. The absence of
the recoil response in the boundary value problem allows
not only for current drive, but also for the extraction
of the charge associated with the resonant particles, and
thus for rotation drive via alpha channeling, along with
all the advantages rotating plasmas provide.
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