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We present a dynamical description of (anti)proton number cumulants and correlation functions in
central Au-Au collisions at

√
sNN = 7.7− 200 GeV by utilizing viscous hydrodynamics simulations.

The cumulants of proton and baryon number are calculated in a given momentum acceptance
analytically, via an appropriately extended Cooper-Frye procedure describing particlization of an
interacting hadron resonance gas. The effects of global baryon number conservation are taken into
account using a generalized subensemble acceptance method. The experimental data of the STAR
Collaboration are consistent at

√
sNN & 20 GeV with simultaneous effects of global baryon number

conservation and repulsive interactions in baryon sector, the latter being in line with the behavior
of baryon number susceptibilities observed in lattice QCD. The data at lower collision energies
show possible indications for sizable attractive interactions among baryons. The data also indicate
sizable negative two-particle correlations between antiprotons that are not satisfactorily described
by baryon conservation and excluded volume effects. We also discuss differences between cumulants
and correlation functions (factorial cumulants) of (anti)proton number distribution, proton versus
baryon number fluctuations, and effects of hadronic afterburner.

I. INTRODUCTION

Proton number fluctuations are one of the key ob-
servables in the beam energy scan (BES) program at
RHIC [1]. The fluctuations are a sensitive probe of the
QCD phase structure at finite baryon densities [2–5], the
hypothetical QCD critical point in particular is thought
to be very sensitive [6–8]. The STAR Collaboration has
recently presented measurements of (net-)proton number
cumulants up to fourth order from BES-I [9, 10]. The
measurements, which still have considerable error bars,
indicate a possible non-monotonic energy dependence of
the net-proton kurtosis. It is expected that BES-II re-
sults, which will have smaller statistical uncertainties,
will provide a more definitive result. Fluctuation mea-
surements are also being performed by other heavy-ion
experiments, including the ALICE Collaboration at the
LHC [11], the NA61/SHINE Collaboration at SPS [12],
and the HADES Collaboration at GSI [13].

From the theory side, the heavy-ion collisions are usu-
ally described by relativistic hydrodynamics [14–17]. At
a so-called particlization stage [18], the QCD fluid is
transformed into an expanding gas of hadrons and reso-
nances, based on the picture of grand-canonical hadron
resonance gas (HRG). Indeed, this picture works quite
well to describe bulk properties of measured hadrons,
such as spectra and flow, in a broad range of collision en-
ergies [19–23]. However, a quantitative theoretical anal-
ysis of fluctuations in this picture is challenging. In con-
trast to mean hadron yields, the event-by-event fluctu-
ations, especially the high-order cumulants, are influ-
enced by several effects which make direct application
of the grand-canonical statistical mechanics question-
able. The most important effects are the global conser-

vation laws [24–28] and the smearing of fluctuations due
to momentum cuts [29, 30]. Other mechanisms include
volume fluctuations [31–33] or diffusion in the hadronic
phase [34, 35].

The two main issues mentioned above were recently
addressed in Ref. [36] at LHC energies via a general-
ized Cooper-Frye procedure called the subensemble sam-
pler, utilizing the approximately boost invariant nature
of heavy-ion collisions at the LHC parameterized by the
blast-wave model. In this work we extend this method
to the RHIC-BES energies. This is achieved in the fol-
lowing way. First, we relax the assumption of boost
invariance. Instead, we employ realistic particlization
hypersurfaces obtained from (3+1)-dimensional viscous
hydrodynamics simulations using code MUSIC [37–39].
Second, we calculate the cumulants of (anti)proton num-
ber distribution emitted from the hypersurface subject
to global baryon conservation analytically (rather than
using Monte Carlo as in Ref. [36]). For this purpose we
use a recently developed subensemble acceptance method
2.0 (SAM-2.0) [40], which allows one to perform a correc-
tion of cumulants of accepted protons for the effect of ex-
act global baryon conservation analytically. As a result,
we are able to calculate cumulants of (anti)proton num-
ber distribution emerging from hydrodynamics to high
orders without the need to generate large numbers of
Monte Carlo events. The results are then confronted with
the experimental data of the STAR Collaboration.

The paper is organized as follows. Section II presents
the method to calculate cumulants of proton and baryon
number distribution at particlization. The calculation
results for Au-Au collisions at RHIC-BES energies are
presented in Sec. III. Discussion and summary in IV close
the article.
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II. CUMULANTS FROM HYDRODYNAMICS

We employ relativistic viscous hydrodynamics to sim-
ulate the evolution of a system created in 0-5% Au-Au
collisions at RHIC, using the open-source code MUSIC
v3.0 [19, 37, 41]. We perform hydrodynamic simula-
tions with event averaged initial density profiles at each
collision energy, which describes the expansion of quark-
gluon plasma created in the earlier stage of the collision
and its transition to a hadron gas. Cumulants of proton
and baryon number distributions are computed at the
end of hydrodynamic evolution at particlization.

A. Hydrodynamics

The 3D initial conditions are taken from Ref. [39].
They are based on the Glauber collision geometry, em-
ploy local energy and momentum conservation, and cali-
brated to reproduce the measured proton transverse mo-
mentum distributions and midrapidity yields at different
collision energies. This makes it suitable for the analysis
of second and higher-order proton cumulants, which we
perform here.

The hydrodynamic evolution is calculated in MUSIC
v3.0 by numerically solving the equations correspond-
ing to energy-momentum and baryon number conserva-
tion, as well as Israel-Stewart-type relaxation equation
describing the viscous stress tensor. We include shear vis-
cous corrections but neglect bulk viscous corrections and
baryon diffusion. We employ a NEOS-BSQ1 equation of
state from Ref. [42] which interpolates between lattice
QCD equation at large temperatures [43], described via
the Taylor expansion, and hadron resonance gas at low
temperatures. This equation of state imposes vanishing
net strangeness, nS = 0, and a fixed charge-to-baryon ra-
tio, nQ/nB = 0.4, in every fluid cell. The shear viscosity
to entropy baryon ratio is temperature- and chemical-
potential-dependent, the details can be found in Fig. 4
of Ref. [39]. The hydrodynamic equations are solved in
Milne coordinates, (τ, x, y, ηs), and evolved in τ until all
computational cells reach a threshold energy density εsw

for particlization.

B. Cumulants of baryon-proton number
distribution at particlization

The hydrodynamic evolution ends at a particlization
hypersurface σ(x) of constant “switching” energy den-
sity εsw. The value of εsw = 0.26 GeV/fm3 has been
adjusted in Ref. [39] to fit bulk observables and it is used
here throughout. Note that a further improvement of the

1 NEOS-BSQ stands for nuclear equation of state with baryon
number, strangeness, and electric charge

proton spectra at
√
sNN & 39 GeV can be achieved by

increasing the value of εsw at those energies [44]. In our
calculations we observed a mild effect of a changing εsw

on proton cumulants (this is detailed in the Appendix A),
mainly in a form of stronger excluded volume effects at
larger densities, thus we keep εsw = 0.26 GeV/fm3 at all
energies for consistency.

The QCD fluid is transformed at particlization into a
system consisting of hadrons and resonances. The mo-
mentum spectrum for hadron species j emerging from
hydrodynamics is given by the Cooper-Frye formula [45]2

ωp
dNj
d3p

=

∫
σ(x)

dσµ(x) pµ fj [u
µ(x)pµ;T (x), µj(x)], (1)

with

fj [u
µpµ;T (x), µ(x)] =

dj λj(x)

(2π)3
exp

[
µj(x)− uµ(x)pµ

T (x)

]
.

(2)

Here λj(x) describes deviations from the ideal gas
distribution function due to interactions. We assume
that these deviations are momentum-independent. In
the ideal HRG limit one has λj(x) = 1. On the other
hand, this factor is different from unity in case of a
non-ideal HRG. Here we employ the excluded volume
HRG (EV-HRG) model with repulsive baryon-baryon in-
teractions [47, 48], which has been observed to provide an
improved description of the lattice QCD data on baryon
number susceptibilities near the pseudocritical tempera-
ture Tpc ∼ 155 MeV at µB = 0 compared to the standard
ideal HRG. This model has been used in our previous
study of proton fluctuations for the LHC energies [36]
and we refer to that work for further details on the EV-
HRG model. We also perform calculations in the ideal
HRG limit to establish the relevance of baryon repulsion
in the investigated observables. We use the open source
package Thermal-FIST v1.3 in all our HRG model cal-
culations [49].

The particlization hypersurfaces, consisting of a list
of fluid elements each containing the normal four-vector
dσµ, the fluid four-velocity uµ as well as energy and
baryon densities, are available via [50]. For each hy-
persurface element we recalculate the values of the tem-
perature T (x) and the chemical potential µB(x) such
that the HRG model equation of state at these T -µB
values matches the energy and baryon densities corre-
sponding to this hypersurface element. We also enforce
nQ/nB = 0.4 and nS = 0 for each fluid element to deter-
mine the electric charge and strangeness chemical poten-
tials µQ and µS .

2 We neglect the shear viscous corrections to particle momentum
distributions at particlization, which only has a small influence
on the high-pT tail of the distribution [46].
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With the numerical output from MUSIC the Cooper-
Frye integral becomes a sum over all fluid elements:

ωp
dNj
d3p

=
∑
i∈σ

δσµ(xi) p
µ f [uν(xi)pν ;T (xi), µj(xi)]. (3)

In what follows we neglect the modification of the
shape of (anti)baryon spectra due to resonance decays
and evolution in the hadronic phase. All baryons are
modeled as thermal particles with nucleon mass mN =
0.938 GeV emitted from a Cooper-Frye hypersurface.
These simplifications make it feasible to evaluate proton
number cumulants analytically. We relax these assump-
tions in Appendix B using a Monte Carlo approach and
show that they have only small influence on the result-
ing proton number cumulants, at least up to the third
order. Equation (3) is sufficient to calculate the number
of (anti)baryons in a given momentum acceptance by in-
tegrating over the momenta. To calculate fluctuations,
however, we need a generalization beyond the standard
Cooper-Frye prescription.

Let us first calculate the cumulants in the grand-
canonical limit, i.e. neglecting the exact global conserva-
tion of the baryon number. We shall correct the cumu-
lants for the baryon number conservation via the recently
developed method of Ref. [40] afterwards. We further as-
sume that the dynamical correlation length ξ that defines
the range of correlations is smaller than any other rele-
vant scale, such that one can assume ξ → 0. This is in
analogy to the model of critical fluctuations at freeze-
out studied in Refs. [29, 51]. In our case, where parti-
cle number correlations in the grand-canonical ensemble
are attributed purely to the excluded volume effect, the
emission of particles from all the hypersurface elements
proceeds independently. To calculate the cumulants of
(anti)baryon number distribution inside a particular mo-
mentum acceptance it is thus sufficient to sum up contri-
butions from all the volume elements independently. The
number of (anti)baryons emitted from a hypersurface ele-
ment i fluctuates in accordance with the grand-canonical

susceptibilities χB
±

of (anti)baryon number fluctuations.
The corresponding cumulants, therefore, read

δκB
±,gce

n (xi) = δV eff
i [T (xi)]

3 χB
±

n (xi). (4)

Here δV eff
i = δσµ(xi)u

µ(xi) is the effective volume of a
hypersurface element i. The probability pacc(xi; ∆pacc)
that an (anti)baryon emitted from a fluid element i ends
up in a momentum acceptance ∆pacc can be calculated
from the Cooper-Frye formula (3):

pacc(xi; ∆pacc) =∫
p∈∆pacc

d3p

ωp
δσµ(xi) p

µ f [uν(xi)pν ;T (xi), µj(xi)]∫
d3p

ωp
δσµ(xi) p

µ f [uν(xi)pν ;T (xi), µj(xi)]

. (5)

The contribution δκB
±,gce

n (xi; ∆pacc) of element i to
the nth order cumulant of the accepted (anti)baryons is

obtained by convoluting the cumulants {δκB
±,gce

l (xi)},
l = 1 . . . n with the binomial distribution with probability
pacc(xi; ∆pacc). One obtains (see e.g. [52]):

δκB
±,gce

n (xi; ∆pacc) =
n∑
l=1

δκB
±,gce

l (xi)Bn,l

(
φ′t, . . . , φ

(n−l+1)
t

)
. (6)

Here φ ≡ φ(t, pacc) = ln(1 − pacc + etpacc) and Bn,l are
partial Bell polynomials.

In the same way we can also obtain the (anti)baryon

cumulants δκB
±,gce

n (xi; ∆pacc) outside the acceptance
∆pacc, i.e. for p 6∈ ∆pacc. This is achieved by substi-
tuting pacc(xi; ∆pacc)→ 1− pacc(xi; ∆pacc) in Eq. (6).

To obtain (anti)proton number cumulants one can ap-
ply the arguments of Kitazawa and Asakawa [53, 54]:
based on the isospin randomization in the hadronic
phase, the (anti)proton cumulants are obtained by the bi-
nomial filtering of the (anti)baryon cumulants. Note that
this argument does not necessarily require a long-lasting
hadronic phase with many pion-nucleon scatterings to
randomize the isospin. The binomial filtering is valid
also in the case of models where primordial correlations
between baryons do not depend on the isospin. This is
the case for the EV-HRG model studied here, where the
same excluded volume parameter is used for all baryon
pairs, regardless of their isospins. The probability that
a randomly chosen (anti)baryon is (anti)proton is sim-
ply the ratio between the mean numbers of (anti)protons

and (anti)baryons, q(xi) =
〈Np± (xi)〉
〈NB± (xi)〉 . The value of q(xi)

is calculated using the HRG model in each hypersurface
element. To be consistent with the experimental con-
ditions realized in the STAR experiment, we include all
weak decay contributions [44]. In practice, this yields
q(xi) ≈ 1/2 in most cases.

We shall use the binomial distribution argu-
ment to obtain the joint baryon-proton cumulants

δκB
±,p±

n,m (xi; ∆pacc) in terms of baryon cumulants

δκB
±,gce

n (xi; ∆pacc) and the proton-to-baryon ratio q(xi),
for each hypersurface element xi. We calculate the joint
cumulants because these quantities will later be needed to
apply the correction for baryon number conservation us-
ing the method of Ref. [40]. Given the probability P (NB)
to have NB baryons the joint probability P (NB , Np) to
have NB baryons and Np protons is

P (NB , Np) = B(NB , Np; q)P (NB), (7)

where

B(NB , Np; q) =

(
NB
Np

)
qNp(1− q)NB−Np (8)

is the binomial distribution.

The joint cumulant generating function for NB and Np
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reads

G(tB , tp) = ln〈etBNBetpNp〉

=
∑
NB

P (NB)etBNB

∑
Np

B(NB , Np; q) e
tpNp

=
∑
NB

P (NB)eγ(tB ,tp,q)NB

= GB [γ(tB , tp, q)] . (9)

Here GB is the cumulant generating function of the NB
distribution and

γ(tB , tp, q) = tB + ln[1− (1− etp)q] . (10)

To obtain Eq. (10) we used an identity∑NB

Np=0B(NB , Np; q) e
tpNp = (1− q + et q)NB .

The joint cumulants κB
+,p+

n,m of baryon-proton distri-
bution correspond to the Taylor expansion coefficients of
the generating function G(tB , tp) around tB = tp = 0.
The corresponding derivatives of G(tB , tp) are evaluated
with the help of Faà di Bruno’s formula and expressed in
terms of the cumulants κBn of the NB distribution:

κB
+,p+

n,m = κB
+

n , m = 0 , (11)

κB
+,p+

n,m =

m∑
k=1

κB
+

n+k Bm,k(γ′tp , . . . , γ
(m−k+1)
tp ), m ≥ 1 .

(12)

The same procedure applies for the joint cumulants of
antiproton-antibaryon distribution. Rewriting Eq. (11)
for the cumulants corresponding to the accepted particles
emitted from volume element xi we get

δκB
±,p±,gce

n,m (xi; ∆pacc) = δm,0 δκ
B±,gce
n (xi; ∆pacc)

+

m∑
k=1

δκB
±,gce

n+k (xi; ∆pacc)Bm,k(γ′tp , . . . , γ
(m−k+1)
tp ) .

(13)

The joint cumulants of all accepted
(anti)baryons/(anti)protons are obtained by sum-
ming over the contributions of all the hypersurface
elements:

κB
±,p±,gce

n,m (∆pacc) =
∑
i∈σ

δκB
±,p±,gce

n,m (xi; ∆pacc) . (14)

The joint net-baryon/net-proton cumulants can be ob-
tained straightforwardly in the case when there are no
grand-canonical correlations between baryons and an-
tibaryons. This is the case for the EV-HRG model used
here. The cumulants read:

κB,p,gce
n,m (∆pacc) = κB

+,p+,gce
n,m (∆pacc)

+ (−1)n+m κB
−,p−,gce

n,m (∆pacc) .

(15)

We also list here, for completeness, the joint net-
baryon/proton and net-baryon/antiproton cumulants

κB,p
+,gce

n,m (∆pacc) = κB
+,p+,gce

n,m (∆pacc)

+ δm,0 (−1)n κB
−,p−,gce

n,0 (∆pacc) ,

(16)

κB,p
−,gce

n,m (∆pacc) = δm,0 κ
B+,p+,gce
n,0 (∆pacc)

+ (−1)n κB
−,p−,gce

n,m (∆pacc) , (17)

The joint net-baryon/(net-)(anti-)proton cumulants
outside the acceptance are obtained in the same fashion,
by substituting pacc(xi; ∆pacc)→ 1− pacc(xi; ∆pacc).

C. Correction for global baryon conservation

To account for the exact global baryon conservation
we apply a generalized version of the subensemble ac-
ceptance method (SAM) developed in Ref. [40]. The
SAM-2.0 allows one to calculate the effect of global con-
servation of a conserved quantity, such as net baryon
number, on the cumulants of arbitrary non-conserved
quantity, such as (net) proton number. The original
SAM [55, 56] was formulated for uniform thermal sys-
tems in the thermodynamic limit and acceptances in the
coordinate space. The SAM-2.0 extends the method to
non-uniform systems and momentum space acceptances.
The method takes joint net-baryon/(net-)(anti-)proton
number cumulants calculated inside and outside the ac-
ceptance without the account of exact baryon conser-
vation and produces the cumulants that are subject to
global baryon conservation, i.e. it provides a mapping

κB,p,ce
n,m (∆pacc) = S̃

[
κB,p,gce
n,m (∆pacc), κB,p,gce

n,m (∆pacc)
]
.

(18)

Here ∆pacc corresponds to particles outside the mo-
mentum acceptance ∆pacc. The details of the pro-
cedure to calculate the mapping S̃ are presented in
Ref. [40]. The grand-canonical cumulants κB,p,gce

n,m (∆pacc)

and κB,p,gce
n,m (∆pacc) entering the right-hand-side of

Eq. (18) were calculated in the previous subsection.
It is assumed in SAM-2.0 that the system is sufficiently

large, such that the means of all the relevant quanti-
ties correspond to the maximum of probability distribu-
tion (see Ref. [40] for details). This assumption is realized
in central Au-Au collisions at RHIC-BES. The second as-
sumption of the method is that the distributions inside
and outside the acceptance are independent, i.e. that cu-
mulants κB,p,gce

n,m (∆pacc) and κB,p,gce
n,m (∆pacc) are additive,

such that κB,p,gce
n,m = κB,p,gce

n,m (∆pacc) + κB,p,gce
n,m (∆pacc).

This assumption is satisfied exactly in the ideal HRG
model and to a high accuracy within the EV-HRG model
at RHIC-BES energies. As discussed in Ref. [40], even in
an extreme case where the additivity of cumulants does
not hold, the SAM-2.0 results exhibit only small devia-
tions from the exact result, thus the possible deviations
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from the true results for the EV-HRG model applications
considered in the present work are expected to be neg-
ligible. The results presented in the next section that
incorporate the effect of global baryon conservation have
all been obtained using SAM-2.0. A Mathematica note-
book which calculates the mapping S̃ is available via [57]
and used in this work.

III. RESULTS

Calculations are performed for 0-5% Au-Au collisions
for collision energies

√
sNN = 7.7, 14.5, 19.6, 27, 39,

62.4, and 200 GeV. The particlization hypersurfaces,
which at all collision energies correspond to the switch-
ing energy density of εsw = 0.26 GeV/fm3, are avail-
able via [50]. For reference, the energy density εsw =
0.26 GeV/fm3 corresponds to the particlization temper-
ature Tsw = 150.6 MeV at µB = 0. In Appendix A other
values of εsw are explored for

√
sNN = 200 GeV which

shows that the results exhibit mild dependence on εsw.
The net proton, proton, and antiproton cumulants are
calculated in the relevant momentum acceptances ana-
lytically, following the method presented in the previous
section. We perform separate calculations employing EV-
HRG and ideal HRG models, and study the behavior of
cumulants with and without the correction for baryon
number conservation. These different configurations al-
low us to establish the relevance of repulsive interactions
and global baryon conservation. In Appendix B we per-
form a cross-check of the analytic results for the case of
the ideal HRG model by means of Monte Carlo sampling
of hadrons at particlization.

A. Rapidity distributions

First we look at the net proton rapidity distributions.
To calculate the net proton dN/dy we partition the ra-
pidity axis into bins. The rapidity density in a given bin
then corresponds to the first net proton cumulant evalu-
ated for that bin. As dN/dy is determined by the mean
numbers of particles, it is unaffected by the correction
for global baryon conservation. We observe that net pro-
ton rapidity distributions calculated in the EV-HRG and
ideal HRG models virtually coincide. This is attributed
to the fact that we match the net baryon density at par-
ticlization to the MUSIC output in both scenarios, which
leads to virtually identical mean numbers of net protons.

The resulting rapidity distributions are depicted in
Fig. 1 for various collision energies. The results agree
qualitatively with earlier MUSIC calculations in Ref. [39].
The calculations also agree within errors with the midra-
pidity net proton yields measured by the STAR Collab-
oration [58–60]. The rapidity dependence of the net pro-
ton distribution agrees qualitatively with the experimen-
tal data of the BRAHMS Collaboration for

√
sNN = 62.4

and 200 GeV [61, 62], although the data for
√
sNN =
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Figure 1. Net proton rapidity distributions in 0-5% Au-Au
collisions at various RHIC beam energy scan collision energies.
The experimental data of the STAR Collaboration [58–60] are
shown by the symbols.

200 GeV is notably overestimated by the model. The re-
sults are also qualitatively consistent with the measure-
ments of the NA49 Collaboration for Pb-Pb collisions at√
sNN = 8.8 and 17.3 GeV [63].
The net proton rapidity distributions show peaks in

the forward-backward rapidity regions at all collision en-
ergies except for 7.7 GeV. This reflects the fact that large
rapidities probe baryon-rich matter. It is observed for in-
stance, that larger longitudinal space-time rapidities are
characterized by larger values of the baryochemical po-
tential µB at particlization. This underlines the fact that
it is impossible to characterize the whole fireball by a sin-
gle pair of temperature T and baryon chemical potential
µB but instead one has to integrate over different µB-T
values encompassing the hypersurface.

B. Net proton cumulants

The leading four cumulants of net proton distribution
have been measured and presented by the STAR Collab-
oration in Ref. [9] as a function of collision energy. The
measurements were performed in the momentum accep-
tance |y| < 0.5 and 0.4 < pT < 2.0 GeV/c. Here we
calculate these cumulants in the same momentum accep-
tance. The results are presented in Fig. 2. The calcu-
lations are performed within the EV-HRG model with
(solid red lines) and without (dotted black lines) the ef-
fect of exact baryon number conservation. We also per-
form a calculation within the ideal HRG model but in-
cluding the effect of baryon number conservation (dash-
dotted red line). The dashed blue lines correspond to the
uncorrelated (anti)protons baseline, which is given by the
Skellam distribution, i.e. κ1[p−p̄] = κ3[p−p̄] = 〈Np−Np̄〉
and κ2[p− p̄] = κ4[p− p̄] = 〈Np +Np̄〉.

The first net-proton cumulant is unaffected by the cor-
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Figure 2. Collision energy dependence of the leading four net proton cumulants in 0-5% Au-Au collisions. The calculations are
performed using EV-HRG with (solid red lines) and without (dotted black lines) the effect of exact baryon number conservation.
The dash-dotted red lines correspond to calculations including exact baryon number conservation but neglecting the excluded
volume. The dashed lines correspond to the Skellam distribution baseline, i.e. κ1[p − p̄] = κ3[p − p̄] = 〈Np − Np̄〉 and
κ2[p− p̄] = κ4[p− p̄] = 〈Np +Np̄〉. The experimental data of the STAR Collaboration [9] are shown by the red symbols with
error bars.

rection for global baryon conservation. It is also virtu-
ally unaffected by the excluded volume effects due to the
matching of the EV-HRG model equation of state to the
net baryon density at particlization. The model provides
a reasonable description of the experimental data, with
the possible exception of the 19.6 and 27 GeV points.
The description of these data points can be improved by
fine-tuning the simulation parameters.

The second, third, and fourth cumulants are affected
by both the excluded volume and baryon conservation,
the latter effect being the stronger of the two. Both
effects suppress the cumulants, and the suppression is
stronger for higher-order cumulants and lower collision
energies. The effect of excluded volume is stronger
at lower collision energies because they probe baryon-
rich matter with smaller inter-particle distances between
baryons at particlization. The baryon conservation plays
a larger role at smaller energies because a larger fraction
of the full baryon number ends up in the midrapidity

region which is where the measurements are performed.
Compared to the STAR data, the calculation with sim-
ulatenous excluded volume and baryon conservation ef-
fects generally yields the best agreement. The agreement
is not perfect everywhere, in particular κ2[p−p̄] is notably
overestimated by the model at

√
sNN ≥ 19.6 GeV. This is

a reflection of an overestimated mean numbers of protons
and antiprotons produced by the model compared to the
data. There are different possible reasons for this. For in-
stance, if weak decay contributions are overestimated in
the model calculation, this may explain the discrepancy.
Although it has been argued that the integrated yields
of (anti)protons measured by STAR contain essentially
all weak decay contributions [44], the situation might be
different in the measurements of fluctuations. We per-
formed calculations of the cumulants neglecting all weak
decay contributions, and indeed obtain an improved de-
scription of the data at some of the energies, although
in this case the data are generally underestimated by the
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model. We did observe, however, that weak decays af-
fect only mildly the various volume-independent ratios
of cumulants, thus we keep all weak decay contributions
in all our further results throughout this work. Other
potential reasons that may contribute to the overesti-
mation of (anti)proton yields include neglecting baryon
annihilation in the hadronic phase [64], or a reflection of
the so-called thermal proton yield anomaly in the HRG
model [65, 66]. As all these possible mechanisms are not
linked directly to the QCD equation of state, we shall not
study them in detail here but instead look at observables
where the effect of describing the total (anti)proton yield
is minimized.

We thus analyze the following ratios of cumulants

Sσ3

M
≡ κ3

κ1
, κ σ2 ≡ κ4

κ2
. (19)

These two ratios have a baseline of unity in the (Skellam)
limit of an uncorrelated production of protons and an-
tiprotons, at any collision energy. Deviations from unity
can be a signal of new physics, in particular, the QCD
critical point has been predicted to have a strong in-
fluence on these non-Gaussian measures of net proton
number fluctuations [7, 67, 68]. In this sense, Sσ3/M
is more convenient than the commonly adopted normal-
ized skewness sσ2 ≡ κ3/κ2 which shows strong collision
energy dependence even in the Skellam limit. Note that
the absolute yields of (anti)protons drop out in the ra-
tios of cumulants, thus the ratios are not very sensitive
to possible inaccuracies in the description of the overall
yields discussed above. The ratios, however, are sensitive
to both the excluded volume and baryon number conser-
vation.

Figure 3 depicts the collision energy dependence of
Sσ3/M and κσ2 calculated in the model along with
the experimental data of the STAR Collaboration from
Ref. [9]. Both the data and the model calculations show
a suppression of Sσ3/M with respect to the Skellam
baseline of unity. When baryon excluded volume, but
not global baryon conservation, is incorporated (dotted
black lines), this leads to an improved agreement with
the data compared to Skellam, although the suppression
of Sσ3/M due to the excluded volume is not sufficient
to obtain a quantitative agreement. Calculations that
incorporate global baryon conservation but not excluded
volume (dash-dotted red lines) indicate that the former
effect is stronger than the latter one. In this case the
data at

√
sNN . 20 GeV are described but not at higher

collision energies. Finally, when both the baryon con-
servation and excluded volume are incorporated, the ex-
perimental data at

√
sNN & 20 GeV are described on a

quantitative level. On the other hand, the data at lower
collision energies are underestimated. It should be noted
that the magnitude of the excluded volume effects in the
EV-HRG model that we use has been constrained using
lattice QCD data at µB = 0 in Ref. [48]. Thus, we ex-
pect the model to be most reliable at the highest collision
energies that probe the QCD phase diagram close to the

vanishing net baryon density. Deviations from the data
at
√
sNN . 20 GeV may be an indication of a breakdown

of the EV-HRG model that we use. We explore this issue
further in the next subsection by studying proton corre-
lation functions. The behavior of the net proton kurtosis
κσ2 is qualitatively similar to Sσ3/M , although the er-
ror bars are considerably larger, especially at the lower
collision energies. This precludes making strong conclu-
sions from the available data on κσ2 from RHIC-BES-I,
it should however be possible to use the more precise
future data from RHIC-BES-II for this purpose.

Figure 4 depicts our predictions for the net proton hy-
perkurtosis, κ6/κ2. This quantity is strongly suppressed
by both the excluded volume and baryon conservation,
and it turns negative as the collision energy is decreased
to below

√
sNN . 40− 60 GeV. These predictions can be

probed by future high-statistics measurements at RHIC.
We also compare our results with a non-critical base-

line of Ref. [27], which is based on the ideal HRG model
and the empirical rapidity distributions. These results,
shown in Figs. 3 and 4 by the blue points, agree fairly well
with our ideal HRG model results with exact baryon con-
servation (dash-dotted red lines). Thus, there is a consis-
tency between our ideal HRG model based calculations
and the prior literature.

C. Cumulants versus correlation functions

More information can be obtained by analyzing cumu-
lants of proton and antiproton distributions separately.
In particular, one can construct the so-called correlation
functions (factorial cumulants) Ĉn from the ordinary cu-
mulants κn [69]. The correlation functions characterize
genuine multi-particle correlations. For n > 1 they van-
ish in the limit of Poisson statistics (uncorrelated particle
production). The correlation functions are linear combi-
nations of the cumulants:

Ĉ1 = κ1, (20)

Ĉ2 = −κ1 + κ2, (21)

Ĉ3 = 2κ1 − 3κ2 + κ3, (22)

Ĉ4 = −6κ1 + 11κ2 − 6κ3 + κ4. (23)

Experimental measurements of both the cumulants κn
and the correlation functions Ĉn have recently been pre-
sented by the STAR Collaboration in Ref. [10]. Figure 5
depicts the comparison of our model calculations with
the experimental data, in terms of normalized quanti-
ties, κn/κ1 − 1 and Ĉn/Ĉ1

3. Deviations of these quanti-
ties from zero signal physics beyond the uncorrelated gas
of hadrons.

3 Note that here we follow the notation of Ref. [1] and designate

cumulants and correlation functions by κn and Ĉn, respectively.
This is different from STAR’s Ref. [10] where this notation is
reversed.



8

� �� �� ����� ���
���

���

���

���

���

���

���

�����
�	����������������
��������
�����������

('(����������
��� ����	��������

���!'������"�!%�#�������&��$����%��$��
���!'������"�!%�#�������'
��&��$����%��$������'
��������
������������!����������
��������������
�����$�$������������	��������������

��
��	


�
��
��
�σ

� ��

���������
� �� �� ����� ���

�

�

�

� ���!'������"�!%�#�������&��$����%��$��
���!'������"�!%�#�������'
��&��$����%��$������'
��������
������������!����������
��������������
�����$�$������������	��������������

���������

('(����������
��� ����	��������

��
���

��
��
��

κσ
2

Figure 3. Collision energy dependence of the net-proton cumulant ratios κ3[p − p̄]/κ1[p − p̄] ≡ Sσ3/M (left) and κ4[p −
p̄]/κ2[p − p̄] ≡ κσ2 (right) in 0-5% Au-Au collisions. The red lines depict calculations with (solid) and without (dash-dotted)
the excluded volume effect, both calculations incorporate the effect of exact baryon conservation. The dotted black lines
correspond to calculations incorporating the excluded volume effect, but not exact baryon conservation. The dashed blue lines
correspond to the Skellam distribution baselines of unity. The experimental data of the STAR Collaboration [9] are depicted
by the red circles. The blue circles correspond to the canonical ensemble ideal HRG model of Ref. [27].
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Figure 4. Same as Fig. 3 but for the net proton hyperkurtosis
κ6[p− p̄]/κ2[p− p̄].

The normalized second order cumulants and correla-
tion functions are equivalent and characterize the two-
particle correlations. The experimental data clearly es-
tablish the existence of negative two-particle correlations,
both among the protons and the antiprotons. The data
for protons at

√
sNN & 20 GeV are adequately described

when both the baryon conservation and excluded volume
effects are taken into account. The baryon conservation
exerts a stronger influence on Ĉ2/Ĉ1 than the excluded
volume although both effects are necessary to obtain a
fair agreement with the data at

√
sNN & 20 GeV.

At lower energies the suppression of Ĉ2/Ĉ1 is overes-
timated by the model, especially at

√
sNN = 7.7 GeV.

This can be due to different mechanisms. For instance,
we have neglected the effect of volume fluctuations which
would increase Ĉ2/Ĉ1 [70]. The STAR Collaboration
has applied the centrality bin width correction [71] to
minimize the effects of volume fluctuations in the data,
which, however, does not remove volume fluctuations
completely [33]. To leading order, the volume fluctua-

tions lead to an additive correction to Ĉ2/Ĉ1 [32], namely

ĈvolF
2

ĈvolF
1

=
Ĉ2

Ĉ1

+ Ĉ1 v2. (24)

Here v2 is a normalized variance of volume fluctuations.
The 7.7 GeV STAR data point could be described with
volume fluctuations for v2 ≈ 0.002, however one would
require v2 < 0.001 to not spoil the agreement at higher
collision energies. Thus, the volume fluctuations could
only explain the deviations from experimental data if
their effect is considerably larger at

√
sNN = 7.7 GeV

than at higher energies. Qualitatively, such a behavior
has been indicated before [72] and it remains to be seen
if it can provide a quantitative resolution.

A potentially more intriguing explanation for the dis-
agreement at

√
sNN = 7.7 GeV is a presence of sizable

attractive interactions among protons. This effect is not
included in our model and would lead to an increase
in Ĉ2/Ĉ1. If this is the case, the data would indicate
a transition from repulsive to attractive proton interac-
tion regime as the collision energy is decreased below√
sNN ' 20 GeV. One possible mechanism for this would

be approaching the QCD critical point. It should be
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Figure 5. Collision energy dependence of scaled (anti)proton cumulants and factorial cumulants (correlation functions) in
0-5% Au-Au collisions up to fourth order. The solid lines depict calculations that incorporate both the baryon conservation
and excluded volume effects (EV-HRG model) while the dashed lines correspond to baryon conservation only (ideal HRG
model). The red squares and gray triangles correspond to the experimental data of the STAR Collaboration [10] for protons
and antiprotons, respectively. The blue circles correspond to the canonical ensemble ideal HRG model calculation based on
(anti)proton acceptance fractions from Ref. [27].

noted however that approaching the QCD critical point
would be also expected to generate multi-particle correla-
tions [29], which has not yet been established by the data.
At lower collision energies one can also expect sizable ef-
fects due to the nuclear liquid-gas transition [73–75].

It should be noted that at
√
sNN = 7.7 GeV the pro-

ton cumulants are expected to also be affected by exact
conservation of electric charge. We estimate this effect in
Appendix C and show that this would lead to a further
suppression of Ĉ2/Ĉ1 by about 20%. This would increase
the disagreement with the experimental data.

The trends in the data for antiprotons are repro-
duced by the model, although, in contrast to the pro-

tons, the data point to considerably stronger anticor-
relation among the antiprotons than predicted by the
model. This difference between the protons and antipro-
tons may be related to their possibly different produc-
tion mechanisms. While the measured protons consist of
both the stopped and the newly produced protons, all
the measured antiprotons are the newly produced par-
ticles only. If the newly produced particles are affected
by a different mechanism compared to the stopped pro-
tons, for instance by local rather than global baryon con-
servation, this may lead to a difference in the behavior
of two-particle correlations of protons and antiprotons.
A more involved modeling, however, is required to shed
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light on this possibility. It should also be noted that
the agreement of our present model with the data is al-
ready much better than that of the UrQMD model cal-
culations [76, 77] shown in the STAR paper [10]. The
results based on the non-critical baseline of Ref. [27] are
shown in Fig. 5 by the blue points. They agree well with
our ideal HRG model based results and thus show a sim-
ilar quantitative disagreement with the STAR data for
the antiprotons.

The higher order correlation functions Ĉ3/Ĉ1 and

Ĉ4/Ĉ1 show only small deviations from zero in our model.
This is consistent with the fact that our model has
no critical point and the associated critical fluctuation
dynamics which would be expected to generate strong
multi-particle correlations among protons in the vicinity
of the critical point [29]. The result is also consistent
with an earlier observation made in Ref. [70] that baryon
conservation, which is included in our model, has a mod-
est effect on three- and four-proton correlation functions.
Our results for Ĉ3/Ĉ1 and Ĉ4/Ĉ1 are consistent with the
STAR data, if the experimental error bars are to be taken
seriously. This also means that the statistically signifi-
cant deviations of the third and fourth order cumulants
from the Skellam baseline are indeed driven by the two
particle correlations, i.e. by the contributions of Ĉ2 to
κ3 and κ4 rather than by genuine multi-particle corre-
lations. Thus, these data presently show no indication
for the existence of the QCD critical point in the stud-
ied collision energy regime. As the experimental uncer-
tainties at

√
sNN . 14.5 GeV are sizable, however, the

present data also do not rule out a possible presence of
notable multi-particle correlations among protons in that
collision energy regime. The high statistics data coming
from RHIC-BES-II will thus be able to shed light on this
issue.

D. Acceptance dependence

The cumulants and correlation functions have been
measured by the STAR Collaboration as a function of
acceptance in rapidity. Here we compare our model pre-
dictions for the acceptance dependence of cumulants with
the STAR data. As neither the model nor the STAR
data show conclusive notable deviations from zero for
the higher order normalized correlation functions Ĉ3/Ĉ1

and Ĉ4/Ĉ1, we focus the analysis of the acceptance de-
pendence on the second normalized correlation function
Ĉ2/Ĉ1.

The results for proton and antiproton number Ĉ2/Ĉ1

as function of the rapidity cut ymax (i.e. |y| < ymax) are

shown in Fig. 6. The magnitude of Ĉ2/Ĉ1 increases with
ymax for both the protons and antiprotons, at all collision
energies. This is the expected result which reflects that
(i) the effect of baryon conservation becomes stronger
when larger fraction of particles is accepted [26] and (ii)
the thermal smearing of local correlations diminishes for
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Figure 6. Rapidity acceptance dependence of the second
normalized factorial cumulant (correlation function) Ĉ2/Ĉ1

of protons (blue lines) and antiprotons (black lines) calcu-
lated from hydrodynamics and compared to the experimental
data of the STAR Collaboration [10]. The calculations in-
corporate both the excluded volume effect and global baryon
conservation.

larger ymax [29].

For protons, the STAR data at
√
sNN = 19.6 GeV and

above are described by the model quite well, including
the slope of the ymax dependence. For

√
sNN = 14.5 GeV

the data are described up to ymax = 0.3, whereas at
ymax = 0.4 and 0.5 the model predictions are below the
data, i.e. the slope in the data changes faster than in
the model. For

√
sNN = 7.7 GeV the model is below the

data for all ymax, the largest deviations being observed
at the maximum measured ymax = 0.5. Interestingly,
the data at

√
sNN = 7.7 and 14.5 GeV (as well as at√

sNN = 11.5 GeV [10] not shown here) show indications

that the slope of the ymax dependence of proton Ĉ2/Ĉ1

may flip sign at ymax > 0.5. Such a qualitative feature is
not observed in our model, i.e. it cannot be attributed
to baryon conservation or baryon repulsion.

The STAR data for antiprotons are described at the
lowest two energies,

√
sNN = 7.7 GeV and 14.5 GeV, as

well as at the top RHIC energy
√
sNN = 200 GeV. At

the intermediate energies the magnitude of the negative
two-particle correlation among the antiprotons is under-
estimated by the model, for all values of ymax. The data
indicate a larger negative slope of antiproton Ĉ2/Ĉ1 than
predicted by the model at these energies.
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E. Centrality dependence

Our calculations have been focused on 0-5% Au-Au col-
lisions, as in that regime the assumptions of our formal-
ism are most appropriate. Namely, the degree of thermal
and chemical equilibration is expected to the highest in
most central collisions, the effect of volume fluctuations
smaller than in peripheral collisions, and the applicabil-
ity conditions of SAM-2.0 satisfied with the highest ac-
curacy. Nevertheless, for the sake of completeness, we
have also performed calculations of proton cumulants at
different centralities within our event-averaged hydrody-
namics framework. We find that all cumulant ratios stay
essentially flat as function of centrality at a given col-
lision energy, i.e. our framework predicts essentially no
centrality dependence for all volume-independent mea-
sures of event-by-event fluctuations. This observation
agrees well with the measurements of the STAR Collabo-
ration [10] for

√
sNN & 20 GeV and 〈Npart〉 & 100, while

at lower energies and in peripheral collisions deviations
from this picture are observed, indicating that a more
involved modeling is warranted in those regimes.

F. Protons vs baryons

Here we discuss an important issue which affects many
theory-to-experiment comparisons, namely the difference
between baryon and proton number fluctuations. The
experiment has direct access to the latter but it is no-
toriously difficult to measure all baryons. On the other
hand, proton number is inaccessible in many (effective)
QCD theories, for instance lattice QCD. Cumulants of
net baryon number are computed instead, and often di-
rectly compared to net proton cumulants measured in the
experiment.

In our model it is possible to compute both the proton
and baryon number cumulants. This then allows us to
establish to what extent the two correspond to each other
for conditions realized in heavy-ion collisions at RHIC-
BES. Figure 7 depicts the beam energy dependence of
Sσ3/M , κσ2, and κ6/κ2 of net protons (red lines) and
net baryons (black lines) calculated within our formal-
ism including the excluded volume and baryon conserva-
tion effects. It is seen that net proton and net baryon
cumulants are quite different, with baryons generally ex-
hibiting larger deviations from the Skellam baseline. In
particular, the net baryon Sσ3/M disagrees with the ex-
perimental data on net protons at all collision energies,
whereas the net proton calculation agrees much better.
The error bars in the data for κσ2 are still too large to
make a clear distinction between the model predictions
for net protons and net baryons. However, from the dif-
ference between red and black lines it is clear that the
issue will persist once precision measurements of κσ2 be-
come available.

Qualitatively, Sσ3/M and κσ2 exhibit similar trends
as functions of collision energy when compared between
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Figure 7. Collision energy dependence of Sσ3/M , κσ2, and
κ6/κ2 of net protons (red lines) and net baryons (black lines)
in 0-5% central Au-Au collisions. The calculations incorpo-
rate both the baryon conservation and excluded volume ef-
fects. The experimental data of the STAR Collaboration [9]
are depicted by the red circles.

protons and baryons. As seen in the bottom panel of
Fig. 7, this is no longer the case for κ6/κ2, where the
net proton hyperkurtosis monotonically increases with√
sNN while the net baryon hyperkurtosis exhibits a non-

monotonic dependence. Note that this nonmonotonicity
here is unrelated to critical phenomena, which our model
does not have, but is caused by an interplay between
baryon repulsion and conservation which is sensitive to
the collision energy.

Note that a method exists to reconstruct baryon num-
ber fluctuations from the measured proton number fluc-
tuations [53, 54]. This method assumes that the isospin is
randomized at the final stage of the collision, for instance
due to ∆ resonance formation and regeneration reactions
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Figure 8. Collision energy dependence of the second
scaled factorial cumulant Ĉ2/Ĉ1 of protons (red line) and
baryons (black line) in 0-5% central Au-Au collisions. The
calculations incorporate both the baryon conservation and ex-
cluded volume effects. The red squares depict the experimen-
tal data of the STAR Collaboration for protons [10] while the
black circles correspond to baryons reconstructed from the
proton data using the binomial distribution.

during the hadronic phase. In that case baryon num-
ber cumulants can be obtained by performing a binomial
unfolding of the measured proton cumulants. This es-
sentially corresponds to an additional binomial efficiency
correction with the efficiency probability q ≈ 1/2, as dis-
cussed in Refs. [53, 54, 78]. Experiment can do this pro-
cedure, however this requires very precise measurements
of high-order cumulants, because the binomial unfolding
increases the error in κn by factor of order q−n ≈ 2n.
Thus applying the unfolding may not be useful using the
presently available data on the skewness and kurtosis of
(net-)proton distributions which have sizable error bars.

On the other hand, the second order cumulants have al-
ready been measured fairly precisely, making the baryon
unfolding procedure feasible to do. To illustrate this, we
apply the unfolding to the STAR data on the ratio Ĉ2/Ĉ1

of proton number factorial cumulants. Following [53, 54],
the baryon and proton factorial cumulants are related by
ĈBn = Ĉpn/q

n. Thus,

ĈB2

ĈB1
=

1

q

Ĉp2
Ĉp1

. (25)

We apply Eq. (25) with q = 1/2 to the STAR data to
reconstruct two-particle correlations of the baryon num-
ber. The result is depicted in Fig. 8. The baryon number
Ĉ2/Ĉ1 constructed from the STAR data agrees well with
our model calculation at

√
sNN & 20 GeV, similarly to

the agreement for the proton number Ĉ2/Ĉ1.
The results presented in this section indicate that there

are essential quantitative differences between proton and

baryon number cumulant ratios, and that the two may
not be compared directly. Either baryon number cumu-
lants should be reconstructed from the data on proton
number cumulants via the method of Refs. [53, 54], or
the proton number cumulants, rather than baryon num-
ber cumulants, should be calculated in the theory.

IV. DISCUSSION AND SUMMARY

In this work we calculated the leading six (net-
)(anti)proton cumulants in heavy-ion collisions at RHIC
beam energy scan energies in the framework of relativistic
viscous hydrodynamics. The cumulants have been calcu-
lated in the momentum acceptance where experimental
measurements have been performed by the STAR Collab-
oration. For the first time, effects of exact global baryon
conservation and repulsive interactions among baryons,
modeled by excluded volume, have been incorporated si-
multaneously and in a dynamical description of heavy-
ion collisions. The excluded volume parameter has been
chosen such that deviations from the Skellam distribu-
tion in net baryon cumulants computed in lattice QCD
at µB = 0 are reproduced by the excluded volume HRG
model used in our analysis. The model does not incor-
porate any critical point effects at finite baryon density,
thus, our calculations correspond to the no-critical-point
scenario.

We obtain good agreement with the experimental data
of the STAR Collaboration on net-proton cumulant ra-
tios Sσ3/M and κσ2 at

√
sNN & 20 GeV. It is observed

that the effect of baryon conservation has a stronger
influence on the proton cumulants than excluded vol-
ume, although incorporating both effects simultaneously
is required in order to reproduce the experimental data
on Sσ3/M quantitatively. At lower collision energies,√
sNN . 20 GeV, the data are underestimated by the

full model. The model is in fair agreement with the data
on net proton κσ2, although the available data has rather
large error bars. Our model predicts that the net proton
hyperkurtosis κ6/κ2 in the STAR acceptance |y| < 0.5,
0.4 < pT < 2.0 GeV/c turns negative at

√
sNN . 40 GeV,

mainly as a consequence of strong effect of baryon con-
servation.

We explored the behavior of cumulants and factorial
cumulants of proton and antiproton distributions. It is
observed that our model produces notable negative two-
particle correlations among protons and antiprotons, but
only mild three- and four-particle correlations, character-
ized by small values of the third and fourth scaled facto-
rial cumulants, Ĉ3/Ĉ1 and Ĉ4/Ĉ1. In this case the be-
havior of the high-order cumulants such as skewness and
kurtosis is driven by the two-particle correlations rather
than by multi-particle correlations that would have been
expected near the critical point. The experimental data
are consistent with small, if not vanishing, three- and
four-particle proton correlations within errors, thus these
data do not contain statistically significant evidence for
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the existence QCD critical point in the studied collision
energy regime. Note, however, that the error bars on
Ĉ3/Ĉ1 and especially Ĉ4/Ĉ1 are quite large, and it is
possible that more precise measurements may find evi-
dence for multi-particle correlations. The upcoming data
from RHIC-BES-II will be essential to shed light on this
possibility.

The experimental data for the second normalized cor-
relation function Ĉ2/Ĉ1 of protons is described well by
the model at energies

√
sNN = 19.6 GeV and above. At

lower energies the model predictions are notably below
the data. We discussed volume fluctuations and/or at-
tractive interactions as a possible explanation for this dis-
crepancy but further studies are required to shed more
light on this issue. It has also been observed that nega-
tive two-particle correlations among antiprotons seen in
STAR data are notably underestimated by the model
at
√
sNN = 11.5 GeV and 19.6-62.4 GeV, whereas at√

sNN = 7.7, 14.5, and 200 GeV the data are described
well. An explanation of this observation is presently an
open question.

Compared to other quantitative theoretical predictions
for the cumulants that are available in the literature, our
model demonstrates a much better agreement with the
STAR data than the UrQMD transport model calcula-
tions shown in [10]. Our calculations that incorporate
baryon conservation but not the excluded volume repul-
sion (ideal HRG model) are consistent with the data-
driven approach of Ref. [27] within the same ideal HRG
model framework. We do observe, however, that the
quantitative agreement with the STAR data on net pro-
ton Sσ3/M and proton number normalized correlation
function is obtained at

√
sNN & 20 GeV only when the

baryon repulsion is incorporated in addition to baryon
conservation. The presence of baryon repulsion is in line
with the behavior of baryon number susceptibilities at
µB = 0 observed in lattice QCD.

Comparisons between (net-)proton and (net-)baryon
cumulants revealed essential quantitative differences be-
tween the two in the RHIC-BES regime. The higher-
order net baryon cumulants generally exhibit larger de-
viations than the net proton ones from the Skellam dis-
tribution baseline of an uncorrelated particle production.
This is due to the fact that protons form a subset of all
baryons, thus the strength of the measured correlations
is diluted compared to the full baryon set. As a conse-
quence, for instance, the calculated net baryon Sσ3/M
underestimates significantly the measured net proton
Sσ3/M , whereas the calculated net proton Sσ3/M agrees
well with the data. It is thus essential that the same
quantities are employed for theory-to-experiment com-
parisons, in particular, we find no justification for direct
comparisons between the measured (net-)proton and cal-
culated (net-)baryon cumulants that have often been per-
formed in the literature.

One way to address the issue of the difference between
proton and baryons cumulants is to unfold the baryon
cumulants from the proton ones using the method of Ki-

tazawa and Asakawa [53, 54]. In the present work we have
demonstrated the feasibility of this procedure by unfold-
ing the scaled factorial cumulant ĈB2 /Ĉ

B
1 of baryons from

the corresponding scaled factorial cumulant Ĉp2/Ĉ
p
1 of the

protons that was measured by the STAR Collaboration.
The resulting data on baryon number ĈB2 /Ĉ

B
1 agrees rea-

sonably well with our model calculations of this quantity.
The challenge in applying the unfolding to high-order cu-
mulants lies in the fact the this procedure significantly in-
creases the resulting experimental uncertainties. For this
reason the method may not be viable for the presently
available data from RHIC-BES phase I but should be
viable to do using the more precise data coming from
phase II. We hope that results presented here will serve
as a motivation for this procedure to be done.

We have not incorporated any critical fluctuation dy-
namics associated with the QCD critical point in our
study. In that sense, our results can be viewed as a
baseline that incorporates essential non-critical contribu-
tions to (net-)proton number cumulants stemming from
baryon number conservation and repulsive baryonic in-
teractions. Unambiguous signals of the QCD critical
point in the beam energy scan regime, if there is one
to be found, shall manifest themselves as deviations
from our model calculations. We view the three- and
four-particle correlation functions (factorial cumulants)
of proton number to be particularly promising in that
regard, perhaps more so than the ordinary cumulants.
Our model, which has no critical fluctuations, predicts
these scaled factorial cumulants to be small. On the
other hand, the multi-particle correlations among pro-
tons are expected to be strong in the vicinity of the criti-
cal point [29] and may well be reflected in a sizable mag-
nitude of the corresponding scaled factorial cumulants
such as Ĉ3/Ĉ1 and Ĉ4/Ĉ1. We note that the development
of a quantitative hydrodynamics framework to describe
critical fluctuations is in progress [79–81] which should
eventually be able to provide more robust predictions of
the critical point signals in both ordinary and factorial
cumulants.
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Figure 9. Rapidity acceptance dependence of the second
normalized factorial cumulant Ĉ2/Ĉ1 of protons (top) and
antiprotons (bottom) at

√
sNN = 200 GeV calculated from

hydrodynamics and compared to the experimental data of the
STAR Collaboration [10]. The calculations incorporate both
the excluded volume effect and global baryon conservation
and were performed for three different values of the parti-
clization switching energy density εsw: 0.26 GeV/fm3 (solid
black lines), 0.5 GeV/fm3 (dash-dotted blue lines), and
0.6 GeV/fm3 (dashed red lines).

Appendix A: Dependence on the switching energy
density

We used a constant value of the switching energy den-
sity εsw = 0.26 GeV/fm3 for all collision energies in the
main text. On the other hand, it has been argued that
larger values of εsw may give a better description of bulk
observables at higher collision energies [44]. Thus, here
we explore the dependence of the (anti)proton cumulants
on the choice of εsw at

√
sNN = 200 GeV.

As the behavior of all the high-order cumulants is pri-
marily driven by the two-particle correlation functions
in our model, we focus on the behavior of Ĉ2/Ĉ1 of
protons and antiprotons. Figure 9 depicts the rapid-
ity acceptance dependence (|y| < ycut) of these quan-
tities for three values of εsw: 0.26 GeV/fm3 (solid
black lines), 0.5 GeV/fm3 (dash-dotted blue lines), and
0.6 GeV/fm3 (dashed red lines).

The calculations indicate that higher values of εsw lead
to slightly suppressed values of Ĉ2/Ĉ1. We attribute
this effect to a larger role of the excluded volume: par-
ticle number densities increase with εsw which leads to
stronger effects of repulsion among baryons. While the
resulting sensitivity of Ĉ2/Ĉ1 to the choice of εsw is not
strong, we do observe that εsw = 0.5 GeV/fm3 appears to

yield the best agreement with the experimental data of
the STAR Collaboration [10]. This observation is in line
with Ref. [44], where the value εsw = 0.5 GeV/fm3 was
suggested based on the optimal description of the proton
yields at midrapidity.

Appendix B: Validating the analytic results with
Monte Carlo

The cumulants of (net-)(anti-)proton number distri-
bution can be calculated via Monte Carlo sampling of
hadrons and resonances at particlization. These calcula-
tions can be used to validate the analytic results obtained
in this paper, and to estimate the possible error due to
simplifications employed in the analytic procedure, in
particular neglecting the difference in the kinematics of
nucleons and baryonic resonances, as well neglecting the
rescattering in the hadronic phase.

Here we restrict the Monte Carlo calculations to the
ideal HRG model. Monte Carlo sampling of the EV-HRG
model is more involved, but can eventually be performed
following the subensemble sampler method introduced in
Ref. [36].

The Monte Carlo sampling of hadrons and resonances
at Cooper-Frye particlization within the ideal HRG
model with exact conservation of baryon number consists
of the following steps:

1. Mean hadron yields in 4π are evaluated by sum-
ming the grand-canonical ideal HRG model means
from each hypersurface element, for each hadron
species. These means are then scaled such that the
total net baryon number is rounded to the nearest
integer.

2. The hadron yields in 4π for each event are sam-
pled from the Poisson distribution using the pre-
computed mean yields.

3. The event is rejected if the sampled yields violate
the exact global baryon number conservation, i.e. if
the sampled total net baryon number does not co-
incide with the expected baryon number computed
in the first step. If the sampled yields satisfy the
global conservation, we go to the next step.

4. Momenta and coordinates of each hadron are sam-
pled, independently from all other hadrons. To do
that first we determine the hypersurface element
from which the given hadron is sampled from, this
is done via the multinomial distribution where each
volume element is weighted by its grand-canonical
mean yield for the given hadron species. Then the
momenta and coordinates of the hadron emitted
from the chosen hypersurface element are sampled
via the standard procedure.

5. The chain of all strong, electromagnetic, and weak
decays is performed.



15

We sample 100 000 events for each collision energy.
Figure 10 depicts the collision energy dependence of the
subtracted scaled second and third cumulants κ2/κ1 − 1
and κ3/κ1 − 1 for protons and antiprotons, evaluated in
the STAR momentum acceptance. The analytic calcula-
tions (dashed lines) are the same that are shown in Fig. 5
of the main text. The Monte Carlo results are depicted
by the bands. The Monte Carlo and analytic results are
in good agreement with each other. This validates the
analytic calculations and also indicates that the simpli-
fying assumptions made in the analytic calculation, like
neglecting the difference between the masses of nucle-
ons and baryon resonances, have negligible influence on
the cumulants. The Monte Carlo results also validate
the accuracy of the generalized subensemble acceptance
method of Ref. [40] used to correct the grand-canonical
cumulants for baryon number conservation.

Note that although here we explicitly tested only the
cumulants up to third order, we expect the analytic calcu-
lations to be accurate also for the high-order cumulants.
This is due to the fact that both the baryon conservation
and excluded volume generate only small multi-particle
correlations (see Fig. 5), thus the high-order cumulants
are mainly determined in this setup by two-particle corre-
lations that we checked to be calculated accurately. The
situation may change if one incorporates effects that gen-
erate strong multi-particle correlations like the QCD crit-
ical point. In that case the question of accuracy of the
analytic calculations for high-order cumulants may have
to be revisited.

Appendix C: Exact conservation of electric charge
and strangeness

In our analysis we have incorporated the effect of ex-
act global baryon conservation but not of other conserved
charges like electric charge and strangeness. While the
effect of baryon conservation is expected to be the domi-
nant one, the (anti)proton cumulants are also affected by
other conserved charges [36, 56]. This can be particularly
relevant at lower collision energies where protons form a
considerable fraction of the total electric charge. Thus
here we evaluate the effect of multiple exactly conserved
charges through Monte Carlo sampling within the ideal
HRG model.

The sampling algorithm in Appendix B is adjusted
in the following way: all events that do not satisfy ex-
act conservation of all three conserved charges are re-
jected. The total net strangeness is constrained to be
exactly zero in all events while the total electric charge
is constrained to reproduce the charge-to-baryon ratio
of Q/B = 0.4.4 To speed up the sampling procedure,

4 If the total electric charge satisfying the Q/B = 0.4 condition is
not an integer, it is rounded to the nearest integer.
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Figure 10. Collision energy dependence of scaled
(anti)proton cumulants κ2/κ1 − 1 (top) and κ3/κ1 − 1 (bot-
tom) in 0-5% Au-Au collisions, evaluated at Cooper-Frye par-
ticlization using the ideal HRG model analytically (dashed
lines) and via Monte Carlo sampling (bands).

we employ the multi-step method of Becattini and Fer-
roni [82]. Sampling with multiple conservation laws is
more time-consuming than with only baryon number con-
servation. We generate about 20 000 events for each col-
lision energy and restrict the analysis to the second order
moments only.

The collision energy dependence of the subtracted
scaled proton cumulant κ2/κ1 − 1 in 0-5% Au-Au col-
lisions evaluated with the simultaneous conservation of
baryon number, electric charge, and strangeness is shown
in Figure 11 by the blue band. The result is compared to
the calculations with exact conservation of only baryon
number (red band). The two calculations agree within
statistical errors at

√
sNN & 20 GeV, suggesting that

the restriction of the global conservation laws to only
baryon number might be sufficient in that regime. At
the lower collision energies the conservation of electric
charge and strangeness lead to a notable further sup-
pression of the two-particle correlation function of the
protons. Thus, accounting for exact conservation of mul-
tiple conserved charges is important for analyses of fluc-
tuations at

√
sNN . 20 GeV.
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Figure 11. Collision energy dependence of the subtracted
scaled proton cumulant κ2/κ1 − 1 in 0-5% Au-Au colli-
sions, evaluated at Cooper-Frye particlization using the ideal
HRG model via Monte Carlo sampling within the baryon-
canonical (red band) and BQS-canonical (blue band) ensem-
bles.

Appendix D: Effect of the hadronic phase

Our analytic calculations neglect rescatterings in the
hadronic phase. The hadronic phase may affect the cu-
mulants in a couple of different ways: (i) it modifies the
pT spectrum of (anti)protons, thus the number of protons
in the acceptance may change and (ii) BB̄-annihilations
may decrease the numbers of protons and antiprotons.
To evaluate the possible effect of the hadronic phase we
use the Monte Carlo sampling of the ideal HRG from the
previous subsection and, instead of performing the chain
of decays, we run the output through the hadronic after-
burner UrQMD [83, 84]. This is achieved by replacing the
step 5 of the Monte Carlo sampling in the previous sub-
section by the following: all resonances which are not rec-
ognized by UrQMD are decayed until only hadrons and
resonances recognized by UrQMD are left and then the
hadronic phase is simulated by UrQMD via the hadronic
afterburner toolkit from [85].

We evaluate the effect of hadronic afterburner at

√
sNN = 27 GeV by sampling around 200 000 events. The

relevance of the hadronic phase is established by compar-
ing the results with the afterburner (hydro + UrQMD)
to the results without applying the afterburner (hydro +
decays). Figure 12 depicts the rapidity acceptance de-

pendence of the second scaled factorial cumulant Ĉ2/Ĉ1

of protons and antiprotons in the STAR transverse mo-
mentum range, 0.4 < pT < 2.0 GeV/c. For antiprotons
the difference between the two scenarios is within the
statistical uncertainty. For protons the difference is also
mild, with indications that Ĉ2/Ĉ1 is slightly more sup-
pressed when the hadronic phase evolution is included.
This appears to be due to a larger fraction of protons
ending up in the STAR acceptance and hence a larger
effect of the baryon number conservation. The hadronic
phase leaves the ymax dependence of the scaled cumulants
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Figure 12. Rapidity acceptance dependence of the scaled
second factorial cumulant of proton and antiprotons distribu-
tions in 0-5% Au-Au collisions at

√
sNN = 27 GeV calculated

in hydro + decays (gray bands) and hydro + UrQMD (blue
bands) scenarios.

essentially unchanged. Thus, incorporating the time-
consuming hadronic afterburner would seem only be nec-
essary for very precise studies of cumulant ratios, at least
for
√
sNN = 27 GeV.
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