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We consider a single run-and-tumble particle (RTP) moving in one dimension. We assume that
the velocity of the particle is drawn independently at each tumbling from a zero-mean Gaussian
distribution and that the run times are exponentially distributed. We investigate the probability
distribution P (X,N) of the position X of the particle after N runs, with N � 1. We show that

in the regime X ∼ N3/4 the distribution P (X,N) has a large deviation form with a rate function
characterized by a discontinuous derivative at the critical value X = Xc > 0. The same is true
for X = −Xc due to the symmetry of P (X,N). We show that this singularity corresponds to a
first-order condensation transition: for X > Xc a single large jump dominates the RTP trajectory.
We consider the participation ratio of the single-run displacements as the order parameter of the
system, showing that this quantity is discontinuous at X = Xc. Our results are supported by
numerical simulations performed with a constrained Markov chain Monte Carlo algorithm.

I. INTRODUCTION

Active systems, characterized by the ability to convert
energy from the environment into persistent motion, are
ubiquitous in nature. Examples of active matter include
flocking of birds [1–3], active gels [1, 4] and self-propelled
bacteria [5–7]. The persistent motion of their compo-
nents drives these systems out-of-equilibrium, giving rise
to a wide range of fascinating phenomena. Even though
several of these features arise from the complex interac-
tions of several components [5, 6, 8, 9], many interesting
phenomena, e.g., the universality of the survival probabil-
ity [10–12], can be already observed at the single-particle
level, where one can often obtain exact analytical results.

One of the most studied models of active matter is the
run-and-tumble particle (RTP). This model was origi-
nally known as persistent random walk [13–18] and has
been applied in recent years to describe the directed mo-
tion of a class of bacteria, including E. Coli [5–8, 19].
These bacteria typically move alternating between run-
ning phases of straight motion with constant velocity, to
tumblings, i.e., sudden changes of direction. Despite its
apparent simplicity, this model encapsulates several gen-
eral features of active matter, including motility-induced
phase separation [8] and non-Boltzmann steady states in
the presence of a confining potential [5, 20–23].

One of the simplest and most natural observables that
one can investigate for the RTP model in one dimen-
sion is the probability density function (PDF) P (X,N)
of the position X of a single RTP after N running phases
[14, 24–29]. For the RTP model and its many vari-
ants, computing P (X,N) for any N is usually nontriv-
ial. Note that, if the initial velocity is chosen at ran-
dom, the PDF P (X,N) is symmetric around X = 0, i.e.
P (X,N) = P (−X,N). For N � 1, as a consequence of
the central limit theorem (CLT), one expects P (X,N) to

be Gaussian in the region |X| ∼
√
N [6]. However, out-

side the range of validity of the CLT, i.e., for |X| �
√
N ,

the shape of P (X,N) depends on the details of the model
and is usually not Gaussian. The large-deviation tails
of P (X,N) have been studied for a large class of RTP
models [25–30], including RTPs moving in d dimensions
(for which X represents the x-component of the posi-
tion of the particle) [28, 29] and RTP models for which
the speed v of the particle during each running phase
is drawn from some distribution W (v) [26, 29, 31]. In
particular, it has been shown that, under certain con-
ditions [29], the system undergoes a condensation phase
transition at some critical value Xc of the position X
[29]. Below the transition, the different running phases
contribute to the total displacement X by roughly the
same amount. Conversely, for |X| > Xc, a single run-
ning phase of size Xcond, called condensate, dominates
the trajectory, contributing to a finite fraction of X (see
the insets in Fig. 1). This condensation transition leads
to a non-analytic behavior of the PDF P (X,N) at the
critical points X = ±Xc (see Fig. 1).

In the vicinity of the transition, the PDF P (X,N) can
be written as

P (X,N) ' exp

[
−N2α−1F

(
X

Nα

)]
, (1)

where F (z) is the rate function associated to the large-
deviation regime and the exponent α > 0, that depends
on the model, determines the scale of the large devia-
tions. Notably, the dynamical phase transition is sig-
naled by the non-analyticity of F (z) at the critical point
z = zc, where zc = Xc/N

α. In particular, the transition
is said to be of order n if the n-th derivative of F (z) is
discontinuous at z = zc. For instance, in Ref. [29], it was
shown that for an RTP in d dimensions and for a family
on the speed distributions W (v) the system undergoes a
transition of order n ≥ 2, where n depends on the sys-
tem parameters. Similarly, in Ref. [26] a one-dimensional
RTP in the presence of a constant drive E > 0 and with
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FIG. 1. Main: Schematic representation of the PDF P (X,N)
of the final position X of a single run-and-tumble particle
(RTP) after N � 1 running phases. The central region

−Xc < X < Xc [with Xc ∼ O(N3/4)] describes the fluid
phase where P (X,N) has a Gaussian shape. For X > Xc

(and by symmetry for X < −Xc) the system is in the con-
densed phase, where P (X,N) has an anomalous shape. In-
sets: Typical RTP trajectories X(t) as a function of the time
t. In the condensed phase (external panels), the trajectory is
dominated by a single run. In the fluid phase (central panel),
the runs contribute to the total displacement by roughly the
same amount.

Gaussian speed distributionW (v) was considered. In this
case, it was shown that the system undergoes a first-order
phase transition, i.e., n = 1. However, it was not clear
whether a first-order transition could be observed for an
RTP system without an external drive. Moreover, it is
also relevant to ask whether or not this first-order dynam-
ical phase transition is associated with a discontinuity of
some order parameter, as observed for equilibrium phase
transitions.

In addition to RTP systems, this kind of real-space
condensation transitions has been observed in a wide
range of situations [32, 33]. Examples include the dis-
crete nonlinear Schrödinger equation [34–38], economic
and financial models [39–41], and mass-transport models
[42–50]. In these systems, a phase transition is observed
when a control parameter, e.g., the total mass of the
system [42] or the total energy [36], is increased above
a critical threshold. Above this critical point, a con-
densate appears in real space absorbing a macroscopic
fraction of the total mass. For instance, in the context
of mass-transport models on lattices the condensate is a
single lattice site carrying a finite fraction of the total
mass. Similarly, in the context of wealth distribution in
a population, the analogous of a condensate would be an
extremely wealthy individual. In the case of RTPs the
condensate is a single running phase which dominates the
trajectory.

In this paper, we consider a single RTP on a line. We
choose the velocity distribution W (v) to be Gaussian and

the distribution of the time between two tumblings to be
exponential. We investigate the distribution P (X,N) of
the position of the particle in the late-time limit. We
show that in the large-deviation regime where X ∼ N3/4,
corresponding to α = 3/4 in Eq. (1), the particle under-
goes a first-order phase transition and we compute ex-
actly the corresponding rate function F (z). Moreover,
we provide a detailed description of the mechanism of
this transition. Above the transition a condensate, i.e.,
a single displacement of length Xcond ∼ N3/4, appears.
We identify the relevant order parameter for the system,
showing that it undergoes a jump discontinuity at z = zc.
We also verify our results by performing high-precision
numerical simulations. This RTP model corresponds to
the one considered in Ref. [26] but with no external drive
(E = 0). Note that E = 0 is a singular point. This is be-
cause several features associated with the condensation
transition for E > 0 [26] are different from the E = 0
case. First, in the case E > 0, the left and right tails
of the PDF P (X,N) are not symmetric, due to the fi-
nite drive. Moreover, for E > 0, the system undergoes a
phase transition at the critical point Xc = EN + bN2/3,
where b is some constant of order one. Above the tran-
sition a condensate of size Xcond ∼ N2/3 appears. Thus
the condensate displacement Xcond is subleading with re-
spect to the total displacement X. On the other hand,
for E = 0 the PDF P (X,N) is symmetric around X = 0,
i.e., P (X,N) = P (−X,N). Furthermore, the transition
occurs when X exceeds the critical value Xc = zcN

3/4

and above the transition the condensate size Xcond scales
as N3/4. Thus, in the case E = 0 the condensate size
Xcond is of the same order as the total displacement X.

The rest of the paper is organized as follows. In Section
II we provide the details of the model and we present a
summary of the salient results. The details of the compu-
tation of the late-time position distribution of the RTP
are presented in Sec. III. In Section IV, we investigate
the marginal probability distribution of the displacement
of the RTP during a single running phase and we identify
the relevant order parameter of the system. Finally, in
Section V we conclude with a summary of the paper and
few remarks. Some details of the computations and of the
numerical simulations are presented in the Appendices.

II. THE MODEL AND THE SUMMARY OF
THE MAIN RESULTS

A. The model

We consider a single RTP on a line, starting initially
at the origin. The particle chooses a velocity v1 (posi-
tive or negative), drawn from the distribution W (v), and
starts to move with constant velocity v1. After some
time τ1, drawn from the time distribution p(τ), the par-
ticle tumbles, i.e., it chooses a new velocity v2, indepen-
dently drawn from W (v). Then, it starts moving with
the new velocity v2, until it tumbles again after some
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random time τ2, drawn from p(τ). We assume that the
tumblings happen instantaneously and that the running
times are drawn from an exponential distribution with
average value 1/γ, i.e., that

p(τ) = γ exp(−γτ)θ(τ) (2)

where θ(τ) is the Heaviside theta function, i.e., θ(τ) = 1
for τ ≥ 0 and θ(τ) = 0 for τ < 0. The parameter γ is
the tumbling rate of the RTP. Moreover, we assume that
the velocity distribution is Gaussian with zero mean and
variance σ2. In other words, we choose

W (v) =
1√

2πσ2
exp

[
−v2/(2σ2)

]
. (3)

For the sake of simplicity, we set σ2 = γ = 1 in the rest
of the paper.

When considering the RTP model, one can either ob-
serve a trajectory up to some fixed time T (fixed-T en-
semble) or until N running phases are completed (fixed-
N ensemble). Accordingly, one either studies the PDF
P (X,T ) of the position X of the RTP after time T or the
PDF P (X,N) of X after N running phases. In Ref. [29]
it was shown that the late time behavior is qualitatively
similar for the two ensembles. Since performing the com-
putation is technically easier at fixed N , for the sake of
simplicity we focus here on the fixed-N ensemble. Our
results can be generalized to the fixed-T case. The total
displacement of the particle after N runs is given by

X =

N∑
i=1

xi , (4)

where xi = viτi is the displacement during the i-th
running phase. The velocities v1 , . . . , vN are indepen-
dent and identically distributed (i.i.d.) random variables
drawn from the PDF in Eq. (3). Similarly, the times
τ1 , . . . , τN are i.i.d. exponentially distributed random
variables with rate γ.

Thus, the distribution of a single-run displacement xi
is given by

P(x) =

∫ ∞
−∞

dv

∫ ∞
0

dτ W (v) p(τ) δ(x− vτ) . (5)

Using the expressions for p(τ) and W (v) given in Eqs.
(2) and (3) respectively, one obtains

P(x) =
1√
2π

∫ ∞
0

dτ
1

τ
e−τ−x

2/(2τ2) . (6)

It turns out that this expression can be written in terms
of the Meijer G-function G3,0

0,3(x| . . .), which can be eval-
uated using Mathematica, as

P(x) =
1

2
√

2π
G3,0

0,3

 0 0 0
x2/8

0 0 1/2

 . (7)

From this expression in Eq. (7) we observe that the
marginal distribution P(x) is symmetric around x = 0.
The mean and the variance of x = vτ can be easily com-
puted. While the mean is simply

〈x〉 = 0 , (8)

the variance reads

〈x2〉 − 〈x〉2 = 〈v2〉〈τ2〉 = 2 . (9)

From the expression for the marginal distribution P(x) in
Eq. (6) one can show that when |x| → ∞ (see Appendix
A)

P(x) ≈ 1√
3 |x|1/3

e−3 |x|2/3/2 . (10)

Thus the jump distribution P(x) has a stretched expo-
nential tail ∼ exp[−(3/2)|x|2/3]. Notably, the single-run
PDF P(x) satisfies the condition for condensation pre-
sented in Ref. [29]. This criterion was derived using a
grand canonical argument and states that if the PDF
P(x) satisfies

e−c|x| < P(x) < 1/|x|3 (11)

for large |x|, where c > 0 is any positive constant, then
the corresponding RTP model displays a condensation
transition. Since the PDF in Eq. (10) satisfies the condi-
tion in Eq. (11), we expect that the system undergoes a
dynamical phase transition in the large-deviation regime
of X. Note that the standard RTP model with fixed
velocity v0 would correspond to the choice

W (v) =
1

2
δ(v − v0) +

1

2
δ(v + v0) . (12)

However, using Eq. (5), it is easy to show that the dis-
placement distribution P(x) = e−|x|/v0/(2v0) does not
satisfy the criterion in Eq. (11) and thus no condensa-
tion transition occurs in this case.

Interestingly, the condition in Eq. (11) is satisfied for
several other choices of the speed distribution W (v). In-
deed, the marginal distribution P(x) and the PDF W (v)
are related by (5). For a list of possible distributions
W (v) that lead to condensation see Ref. [29]. Moreover,
it is clear from Eq. (5) that the choice of the running-time
distribution p(τ), which is assumed to be exponential in
this work, also affects the tail behavior of P(x) and could
also lead to condensation. Note however that the crite-
rion in Eq. (11) does not provide information on the
order of the transition or the scale at which the transi-
tion occurs. To determine these features a comprehensive
analysis is required.

In Ref. [29] a detailed analysis of the condensation
transition was carried out in the case where P(x) has a
power-law tail for large |x|. The main goal of this paper is
instead to investigate the case where P(x) has a stretched
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exponential tail, for which both the scale and the mecha-
nism of the phase transition are different from the power-
law case. In particular, in the stretched-exponential case
the size of the condensate scales as N3/4 and the tran-
sition is first-order. Conversely, in the model studied in
[29], the condensate mass scales linearly in N and the
transition is of order n ≥ 2.

Note that the case where P(x) has a stretched expo-
nential tail has also been studied in the context of the
discrete nonlinear Schrödinger equation [36–38]. How-
ever, in that case the distribution P(x) has support only
for positive x and the phase transition occurs at a differ-
ent scale, namely for X ∼ O(N). In this paper instead
the variable x can be positive or negative and P(x) is
symmetric around x = 0.

Given the marginal distribution P(x) in Eq. (5) for the
displacements x1 , . . . , xN , we are interested in comput-

ing the PDF P (X,N) of the final position X =
∑N
i=1 xi.

Since the displacements x1 , . . . , xN are i.i.d. random
variables, their joint probability distribution is simply
given by the product of the marginal probabilities, and
we obtain

P (X,N) =

N∏
i=1

∫ ∞
−∞

dxi P(xi) δ

(
X −

N∑
i=1

xi

)
, (13)

where the delta function enforces the final position to be
X and P(x) is given in Eq. (5).

It is interesting to notice that one can rewrite Eq. (13)
as

P (X,N) =

N∏
i=1

∫ ∞
−∞

dXi P(Xi −Xi−1) δ (X −XN ) ,

(14)
where we have defined

Xi = x1 + x2 + . . .+ xi , (15)

with X0 = 0. The variable Xi can be interpreted as the
position after i steps of a one-dimensional random walker
with jump distribution P(x). Note that XN = X is the
final position of the walker. Thus,

Ptraj(X0 = 0, X1, . . . , XN = X) =

N∏
i=1

dXi P(Xi −Xi−1)

(16)
gives the probability of the trajectory of a discrete-time
random walk of N steps. This is a well-studied model
with several applications [51].

There is yet another interesting interpretation of Eq.
(16). We first rewrite Eq. (16) as

Ptraj({Xi}) = e−E[{Xi}] , (17)

with

E[{Xi}] = −
N∑
i=1

log [P (Xi −Xi+1)] . (18)

Then we can interpret Ptraj({Xi}) as the equilibrium
Boltzmann measure with E[{Xi}] representing the en-
ergy of a gas of N particles on a line with position co-
hordinates {Xi} with nearest-neighbor interactions. This
model is particularly relevant in the context of (1 + 1)-
dimensional solid-on-solid models, where the variable Xi

represents the height of a fluctuating interface at the i-
th site of a substrate of length N [52]. Alternatively,
Xi could describe the position of the i-th monomer in
a polymer chain consisting of N monomers. In particu-
lar, since the distribution P(x) that we consider is non-
Gaussian, our model would correspond to non-harmonic
interactions between neighboring monomers [53].

It is clear from Eq. (13) that studying the distribution
of X simply amounts to the classical problem of finding
the distribution of the sum of N i.i.d. random variables,
each drawn from the symmetric distribution P(x). This
problem has been extensively investigated in the prob-
ability literature [54] and has recently been studied for
correlated variables [55]. In particular, the case where

P(x) has stretched exponential tails P(x) ∼ e−a|x|
β

,
with a > 0 and 0 < β < 1 was first investigated by
Nagaev [56, 57], who identified the presence of a non-
trivial large deviation regime of P (X,N) in the region
|X| ∼ N1/(2−β). Note that our RTP model corresponds
to a = 3/2 and β = 2/3. Moreover, the rate function
associated to this large-deviation regime was derived for
any β > 0 in a recent mathematical work [58]. In this
paper, we present an alternative derivation of the rate
function F (z), which is in agreement with the result of
Ref. [58] (see appendix G). In addition, we provide a
detailed analysis of the mechanism of the phase transi-
tion, investigating the marginal probability distribution
of a single-run displacement and identifying the order
parameter associated to the transition, which were not
addressed in Ref. [58].

B. The summary of the main results

Since the detailed derivations are somewhat technical,
it is useful to provide a summary of the salient features
of our main results. This is the purpose of this section,
while the detailed derivations are presented in the fol-
lowing sections. We provide a threefold description of
the dynamical phase transition, based on the analysis of
three main observables: (1) the position distribution of
the particle, (2) the marginal probability of a single-run
displacement, and (3) the participation ratio, i.e., the or-
der parameter associated to the condensation transition.

1. Position distribution

Our first goal is to investigate the distribution P (X,N)
of the position X of the RTP after N running phases. In
the limit of large N we identify three distinct regimes.
In the typical regime |X| ∼

√
N , the distribution of X is
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Gaussian,

P (X,N) ∼ e−X2/(4N) , (19)

as a consequence of the CLT. On the other hand, in the
large-deviation regime where X scales linearly in N , i.e.,
|X| ∼ N , we find that the final position is dominated by
a single large displacement, a phenomenon also observed
in the recent literature on anomalous transport [55, 59–
61]. Thus, in this region the PDF of X can be written
as

P (X,N) ' NP(X) , (20)

where P(x) is the single-run PDF, given in Eq. (7), and
the factor N comes from the fact that any of the N i.i.d.
displacements can be the condensate. Thus, for |X| ∼ N ,
P (X,N) has a stretched exponential tail [see Eq. (10)]

P (X,N) ∼ e−(3/2)|X|2/3 . (21)

To identify the correct scale at which the crossover
between these two regimes occurs we match the Gaussian
weight in Eq. (19) with the stretched-exponential tail in
Eq. (21)

e−X
2/(4N) ∼ e−(3/2)|X|2/3 , (22)

yielding |X| ∼ N3/4. Thus, we zoom in this region
|X| ∼ N3/4 and set X = zN3/4, where z describes the
scaled position in the vicinity of the transition. In this
intermediate regime, the distribution of X assumes an
anomalous large-deviation form. We observe that the
PDF P (X,N) is described by a Gaussian probability
weight up to some critical value Xc = zcN

3/4 (where
zc is a constant of order one), far outside of the region
predicted by the CLT. At this critical point, the system
undergoes a first-order condensation transition, signaled
by a discontinuity in the first derivative of the rate func-
tion F (z), where z = X/N3/4.

These different regimes can be summarized as follows

P (X,N) ≈



exp
[
−X2

4N

]
for |X| ∼

√
N,

exp
[
−
√
NF

(
|X|
N3/4

)]
for |X| ∼ N3/4,

exp
[
− 3

2 |X|
2/3
]

for |X| ∼ N,
(23)

where

F (z) =


z2/4 for z < zc,

χ(z) for z > zc,

(24)

with zc = 27/4. Note that, for z < zc, P (X,N) is still
described by the same Gaussian weight as in the typical
regime. The function χ(z) can be computed only in the

0 1 2 3 4 5 6
z

0

1

2

3

4

F(
z)

Simulations (N=100)
Simulations (N=1000)
Simulations (N=10000)
Theory

FIG. 2. The rate function F (z) versus z = X/N3/4. The
continuous blue line represents the theoretical result in Eq.
(24), while the dashed lines depict the results of numerical
simulations, for different values of N . The first derivative of
F (z) is discontinuous at the critical point zc = 27/4, marked
by a dashed vertical line.

region z > z` = 4 (2/3)3/4. Luckily, it turns out that z` =
2.9511 . . . < zc = 3.3635 . . . and thus we find the exact
expression of χ(z) in the region of interest z > zc. The
full expression of χ(z) is rather complicated and is given
in Eq. (C10) of Appendix C. Its asymptotic behavior is
given by

χ(z) =


√

6 + o(1) when z → z` ,

3
2z

2/3 − z−2/3 + o(z−2/3) when z →∞.
(25)

From the second line of Eq. (25) we observe that the
rate function can be approximated as F (z) ' (3/2)z2/3

for large z, smoothly connecting to the extreme large de-
viation regime [see the third line of Eq. (23)]. From Eq.
(24), we observe that the rate function F (z) is singular
at the critical point z = zc. Since the first derivative of
F (z) is discontinuous at z = zc, we say that the system
undergoes a first-order phase transition at z = zc. The
exact result for the rate function F (z) is shown in Fig. (2)
(continuous blue line), and is in good agreement with nu-
merical simulations (dotted lines), performed with a con-
strained Markov chain Monte Carlo (MCMC) algorithm
(for the details of the numerics see Appendix B).

2. Marginal probability distribution of a single-run
displacement

To gain insights into the nature of this first-order tran-
sition, we present a detailed study of the marginal prob-
ability distribution p(x|X,N) of a single displacement
conditioned on the total displacement X after N steps.
For the sake of simplicity we will use in the rest of the ar-
ticle the notation p(x|X). However, it should be remem-
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p
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|X
)

z < zc

z > zc

x

x
FIG. 3. Marginal probability p(x|X) of a single-run displace-
ment as a function of x, obtained from numerical simulations
with N = 104. The dashed red line corresponds to numerical
simulations performed in the fluid phase, for z < zc, where
z = X/N3/4. For z > zc (continuous blue line) the system
is in the condensed phase and a bump appears in the tail of
p(x|X) at x = Xcond, where Xcond = y∗(z)N3/4 and y∗(z) is
given in Eq. (H11).

bered that the marginal distribution depends also on the
number of steps N . The variable x can be any of the
displacements x1 , . . . , xN , since these variables are i.i.d.
Thus, given an RTP trajectory with total displacement
X and choosing at random one of the N runs, p(x|X) de-
scribes the distribution of the displacement x associated
to that run. For simplicity we limit our discussion to the
case X > 0: all arguments hold identically for X < 0,
since P (X,N) is symmetric around the origin.

The marginal probability p(x|X), obtained from nu-
merical simulations, is shown in Fig. 3 as a function of
x for two different values of z = X/N3/4. For z < zc,
we observe that p(x|X) decays monotonically as a func-
tion of x. This observation is in agreement with the fact
that in the fluid phase we expect each run to provide an
order-one contribution to the total displacement. Upon
crossing the critical point z = zc, an additional bump
appears in the tail of p(x|X), signalling the presence of a
condensate. The position of the bump scales with N as
N3/4 and it has Gaussian fluctuations of order

√
N .

It turns out that for x ∼ O(1) the PDF p(x|X) is given
to leading order by

p(x|X) ' P(x) (26)

where P(x) is given in Eq. (7). In other words, when
x ∼ O(1), the marginal distribution p(x|X) is simply
given by the unconstrained PDF P(x). Note that this
is valid for any z > 0, i.e., both in the fluid and the
condensed phases. Indeed, in Fig. 3 we observe that
the two numerical lines, obtained for z < zc and z > zc,
collapse into the same curve when x ∼ O(1).

Thus, in order to distinguish between fluid and con-
densed phase one has to study the tail behavior of p(x|X).

0.0 0.2 0.4 0.6 0.8 1.0
y/z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

z(y
)

z < z
z = z
z < z < zc

z = zc

z > zc

FIG. 4. The rate function ψz(y), defined in Eq. (90), as a
function of y/z, for different values of the z. For z < z`,
ψz(y) has no minimum for y > 0. At z = z` a minimum
appears at y∗ > 0 with ψz(y∗) > 0. Increasing z further,
the value of ψz(y∗) decreases until for z = zc one finds that
ψz(y∗) = 0. For z > zc, one still has that ψz(y∗) = 0. Note
that in this figure we plot ψz(y) as a function of y/z so that
curves corresponding to different values of z have the same
range of values, since 0 < y < z.

In particular, in the region where x ∼ O(N3/4) we find
that

p(x|X) ∼ exp
[
−
√
Nψz

( x

N3/4

)]
, (27)

where z = X/N3/4,

ψz(y) =
3

2
y2/3 + F (z − y)− F (z) , (28)

and F (z) is the rate function defined in Eq. (24). Thus,
the probability of the rare fluctuations where x ∼ N3/4

is described by the rate function ψz(y) (shown in Fig. 4),
where y = x/N3/4.

For z < zc, the function ψz(y) is always positive and
thus the probability of configurations with x ∼ N3/4 de-

cays as e−c
√
N , where c > 0 is some positive constant.

This can be observed in Fig. 3, where the empirical PDF
p(x|X) vanishes in the region x ∼ O(N3/4) for z < zc.
Conversely, for z > zc we find that there is a unique
point y∗ > 0 at which ψz(y

∗) = 0. This zero of the rate
function corresponds to the isolated bump in the tail of
p(x|X) as shown in Fig. 3. The bump is located at
x = Xcond, where

Xcond = y∗(z)N3/4 , (29)

where y∗(z) is given in Eq. (H11).
Indeed, by expanding p(x|X) in the vicinity of x =

Xcond, we obtain

p(x|X) ' pcond(x−Xcond, N) , (30)

where

pcond(y,N) =

√
ψ′′z (y∗)

2π

1

N3/2
exp

[
−ψ
′′
z (y∗)y2

2N

]
, (31)
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FIG. 5. The participation ratio Y2(z) as a function of the

rescaled variable z = X/N3/4. The continuous blue line rep-
resents the theoretical result in Eq. (34), while the symbols
mark the results of numerical simulations, for different values
of N . The participation ratio vanishes for z < zc = 27/4,
while it is positive for z > zc. At the critical value z = zc,
Y2(z) has a jump discontinuity.

and ψ′′z (y) is the second derivative of ψz(y) with respect
to y. Thus, above the transition a bump appears in the
tail of the marginal distribution at x ' Xcond, corre-
sponding to a condensate with Gaussian fluctuations of
order

√
N (see Fig. 3). Additionally, we show that∫ ∞

−∞
dy pcond(y,N) =

1

N
, (32)

in agreement with the fact that any of the i.i.d. variables
x1 , . . . , xN can become the condensate. In other words,
in the condensed phase, N − 1 displacements give an
order-one contribution to the final position X, while a
single displacement contributes to a finite fraction of X.

3. Order parameter: the participation ratio

Finally, we identify an order parameter for this first-
order transition: the participation ratio Y2(z), defined
as

Y2(z) =

〈 ∑N
i=1 x

2
i(∑N

i=1 xi

)2

〉
z

, (33)

where 〈. . .〉z denotes the statistical average of the dis-
tribution of the displacements x1 . . . xN , conditioned
on the event X = zN3/4. For z < zc, the variables
x1 , . . . , xN contribute to the total displacement X by
roughly the same amount of order one. Thus, the numer-
ator in Eq. (33) scales as O(N) while the denominator

is equal to X2 ∼ O(N3/2) and hence Y2(z) ∼ O(1/
√
N).

On the other hand, in the condensed phase z > zc one
single variable absorbs a finite fraction of X, while the

other N − 1 variables remain of order one. Hence, both
the denominator and the numerator in Eq. (33) scale as
O(N3/2) and we then expect Y2(z) ∼ O(1). Indeed, we
show that, in the large-N limit,

Y2(z) =


0 for z < zc,

[y∗(z)/z]2 for z > zc ,

(34)

where y∗(z) is a given in Eq. (H11). The expression for
Y2(z) in Eq. (34) is shown in Fig. 5 and is in good agree-
ment with numerical simulations. The participation ratio
Y2(z) is the natural order parameter of the system. In-
deed, Y2(z) is zero below the transition while it becomes
non-zero for z > zc. Notably, Y2(z) has a jump disconti-
nuity at the critical value z = zc, implying a first-order
transition.

We show that the Y2(z) is related to the condensate
fraction mc, i.e., the fraction of the total displacement X
which is carried by the condensate, by the simple relation

Y2(z) = m2
c . (35)

We also compute the asymptotic behavior of Y2(z) in the
region z > zc, showing that

Y2(z) '


1/4 + 2−7/4(z − zc) for z → z+

c ,

1− 4z−4/3 for z →∞.
(36)

We observe that, above the transition, a condensate
forms and the participation ratio jumps to the finite value
1/4, corresponding to mc = 1/2, i.e., to a configuration
where the condensate absorbs half of the total displace-
ment X. Increasing z further, the participation ratio
Y2(z) increases and it goes to 1 as z → ∞. Note that a
participation ratio equal to 1 corresponds to a configu-
ration where the whole displacement X is absorbed by a
single jump.

III. POSITION DISTRIBUTION

In this Section, we investigate the PDF P (X,N) of the
position X of the RTP after N running phases. By using
the integral representation of the delta function

δ(X) =
1

2πi

∫
Γ

e−sX ds , (37)

where Γ is the imaginary-axis Bromwich contour in the
complex s plane (see Fig. 6), one can decouple the in-
tegrals over the variables xi in Eq. (13) and rewrite
P (X,N) as

P (X,N) =
1

2πi

∫
Γ

ds esX [L(s)]
N
. (38)

where

L(s) =

∫ ∞
−∞

dx e−s x P(x) . (39)
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Γ(+)

Γ(−)

Re(s)

Im(s)

FIG. 6. Analytic properties in the complex-s plane of the
function L(s), given in Eq. (41). The function L(s) is char-
acteirzed by two branch cuts (black wiggled lines), which cor-
respond to the intervals ] −∞, 0[ and ]0,∞[ in the real axis.
The full red line represents the contour Γ that we choose to
perform the integral in Eq. (40) (in the case X > 0).

The expression in Eq. (38) can be then rewritten as

P (X,N) =
1

2πi

∫
Γ

ds esX+N log[L(s)] . (40)

The function L(s) can be explicitly computed by sub-
stituting the expression for P(x), given in Eq. (7), into
Eq. (39), yielding

L(s) =
√
π
e−1/(2s2)

√
−2s2

erfc

[
1√
−2s2

]
. (41)

From a direct inspection of Eq. (41), one finds that the
contour integral in Eq. (40) cannot be computed directly
using a saddle point approximation. Indeed, looking at
the analytic structure of the function L(s) in the complex
plane in Fig. 6, we observe that L(s) is non-analytic on
the full real line in the complex-s plane, except at s = 0
where it has a removable discontinuity with L(0) = 1.
In particular, the function L(s) is characterized by two
branch cuts (the black wiggled lines in Fig. 6) in the
intervals ]−∞, 0[ and ]0,∞[ in the real-s axis. Our main
results for P (X,N) are obtained by analyzing the contour
integral in Eq. (40) in the large-N limit.

1. Typical regime

Let us first consider the typical regime where X =
z
√
N , where the rescaled variable z can be positive or

negative. To investigate this regime we can choose the
contour of integration Γ to lie on the imaginary axis in
the complex s plane. Performing the change of variable
s→ s/

√
N in Eq. (40), we obtain

P (X = z
√
N,N) =

1

2πi

1√
N

∫
Γ

ds esz+N log[L(s/
√
N)].

(42)
Expanding the expression of L(s), given in Eq. (41), for
small |s| with Re(s) = 0, we find

L(s) = 1 + s2 + o(s2) . (43)

Using this expansion in Eq. (42), we find that for large
N

P (X = z
√
N,N) ' 1

2πi

1√
N

∫
Γ

ds esz+s
2

. (44)

Performing the Gaussian integral, we finally get for N �
1 and |X| ∼

√
N

P (X,N) ' 1

2
√
πN

exp
(
−X2/4N

)
, (45)

as given in the first line of Eq. (23). Note that this result
in Eq. (45) is a simple consequence of the CLT.

2. Extreme large deviations

We now consider the regime of extreme large devia-
tions, where X scales linearly with N . In the follow-
ing, we will focus on the case X > 0. The comple-
mentary case X < 0 can be obtained by the symmetry
P (X,N) = P (−X,N).

To extract the atypical behavior of the PDF P (X,N)
in this regime from the integral representation in Eq.
(40), it is useful to deform the contour Γ, as shown in
Fig. 6. To be precise, we choose the contour to run par-
allel to the imaginary axis with Re(s) < 0. Note that the
contour needs to be deformed to pass through the origin,
due to the presence of the two branch cuts (see Fig. 6).

It is useful to define the variable z = X/N > 0. Per-
forming the change of variable s→ s/N in Eq. (40), we
find

P (X = zN,N) =
1

2πi

1

N

∫
Γ

ds esz+N log[L(s/N)]. (46)

We now need to expand L(s) for small |s|. We find that,
when Im(s) < 0 and Re(s) < 0,

L(s) ' 1 + s2 + o(s2) . (47)

On the other hand, when Im(s) > 0 and Re(s) < 0, we
obtain

L(s) ' 1 + s2 +

√
2π√
−s2

e−1/(2s2) + o(s2) . (48)
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When Im(s) > 0, one has an additional non-analytic term
in the expansion of L(s). Thus, it is useful to write the
contour Γ as the union of the contours Γ+, in the positive
imaginary semiplane, and Γ−, in the negative imaginary
semiplane. Plugging the expansions of L(s), given in Eqs.
(47) and (48), into Eq. (46), we find

P (X = zN,N) ' 1

2πi

1

N

∫
Γ−
ds esz+s

2/N (49)

+
1

2πi

1

N

∫
Γ+

ds exp

[
sz +

s2

N
+N2

√
2π√
−s2

e−N
2/(2s2)

]
.

Expanding for large N , we obtain

P (X = zN,N) ' 1

2πi

1

N

∫
Γ−
ds esz

(
1 +

s2

N

)
(50)

+
1

2πi

1

N

∫
Γ+

ds esz

[
1 +

s2

N
+N2

√
2π√
−s2

e−N
2/(2s2)

]
.

Regrouping the different terms we obtain

P (X = zN,N) ' 1

2πi

1

N

∫
Γ

ds esz
(

1 +
s2

N

)
+

N√
2πi

∫
Γ+

ds exp
[
sz −N2/(2s2)

] 1√
−s2

.

(51)

It is possible to show that the term

1

2πi

1

N

∫
Γ

ds esz
(

1 +
s2

N

)
(52)

vanishes for any z 6= 0. Thus, we are left with the inte-
gral over the contour Γ+. To perform this integral, we
rotate the contour anticlockwise by an angle of π/2 and
we obtain, using the parametrization s = ik

P (X = zN,N) ' N√
2π

∫ 0

−∞

dk

k
exp

[
ikz +N2/(2k2)

]
.

(53)
This integral can be computed exactly and we obtain in
the regime where X ∼ N

P (X,N) ' N 1

2
√

2π
G3,0

0,3

 0 0 0
X2

8
0 0 1/2

 , (54)

where G3,0
0,3(x| . . .) is the Meijer G-function. Comparing

this expression to the one for the marginal PDF P(x) of
the single displacements [see Eq. (7)], we find that

P (X,N) ' NP(X) . (55)

Finally, using the large-x expansion of P(x), given in Eq.
(10), we obtain

P (X,N) ' N 1√
3 |X|1/3

e−
3
2 |X|2/3 , (56)

as we anticipated in Eq. (23).

The result in Eq. (55) can be interpreted as follows.
In the extreme large deviation regime, the final position
X is dominated by a single large displacement, which
has probability weight P(X). Since this atypical dis-
placement can be any of the N variables x1 , . . . , xN , the
factor N is also present.

3. Anomalous large deviations: matching regime

Finally, let us consider the intermediate regime where
X ∼ N3/4, which interpolates between the typical regime
and the extreme large-deviation regime. As discussed
in Sec. II, this unusual scale N3/4 can be obtained
by matching the exponent X2/N of the expression of
P (X,N) in the typical regime and the exponent X2/3 of
the extreme large-deviation regime [see the third line in
Eq. (23)].

We will limit our discussion to the case X > 0. We
consider again the contour Γ shown in Fig. 6. We define
the variable z = X/N3/4 > 0, so that what we have to
compute is:

P (X = zN3/4, N) =
1

2πi

∫
Γ

ds eszN
3/4+N log[L(s)]. (57)

By expanding log[L(s)] around the origin, using the ex-
pressions in Eqs. (47) and (48), we get

P (X = zN3/4, N) ' 1

2πi

∫
Γ−

ds eszN
3/4+Ns2+

+
1

2πi

∫
Γ+

ds eszN
3/4+Ns2+N

√
2πe−1/(2s2)/

√
−s2 . (58)

We then expand

exp

[
N
√

2π
e−1/(2s2)

√
−s2

]
' 1 +N

√
2π

e−1/(2s2)

√
−s2

, (59)

so that in we can rewrite P (X,N) as the sum of a Gaus-
sian term and an anomalous term

P (X,N) ' PG(X,N) + PA(X,N) . (60)

Where the Gaussian term is given by

PG(X,N) =
1

2πi

∫ i∞

−i∞
ds eszN

3/4+Ns2 (61)

and the anomalous term reads

PA(X,N) =
N

i

∫
Γ+

ds
1√
−s2

eszN
3/4+Ns2−1/(2s2).

(62)

Performing the Gaussian integral in Eq. (61), we find

PG(X,N) =
1

2
√
πN

e−
√
Nz2/4 . (63)
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In order to evaluate the integral in Eq. (62) we first
perform the change of variable s→ s/N1/4, yielding

PA(X,N) =
N

i

∫
Γ+

ds
1√
−s2

e
√
NGz(s) , (64)

where

Gz(s) = zs+ s2 − 1

2s2
. (65)

It turns out that the integral in Eq. (64) can be com-
puted by means of saddle-point approximation only for
z > z` = 4(2/3)3/4 (see Appendix C). Indeed, the saddle
point equation

G′z(s) = z + 2s+
1

s3
= 0 (66)

has real solutions in s only for z > z`. Thus, for z > z`
it is possible compute the integral in Eq. (64) by saddle
point method and we obtain

PA(X = zN3/4, N) ∼ e−
√
Nχ(z) , (67)

where the function χ(z) is computed exactly in Appendix
C for z > z` and is given in Eq. (C10). Note that for
z < z` the integral in Eq. (64), even if hard to evaluate,
is still well defined.

Plugging the expressions for PA(X,N) and PG(X,N),
given in Eqs. (63) and (67), into Eq. (60), we find that

P (X = zN3/4, N) ∼ e−
√
Nz2/4 + e−

√
Nχ(z) . (68)

From this expression it is clear that for large N the two
terms will compete, since the two exponents both scale
as
√
N . In particular, for large N we find that

P (X = zN3/4, N) ∼ e−
√
NF (z) , (69)

where

F (z) = min

[
z2

4
, χ(z)

]
, (70)

where we know the expression of χ(z) only for z > z`.
Luckily, it turns out that χ(z) < z2/4 only for z > zc =
27/4 and that zc > z` (see Appendix E). Thus, we know
the exact expression of χ(z) in the relevant region z > zc
and we obtain

F (z) =


z2/4 for z < zc,

χ(z) for z > zc.

(71)

This rate function F (z) is shown in Fig. 2 and is in good
agreement with numerical simulations. From the first
line in Eq. (71) it is clear that the probability P (X,N)
remains Gaussian outside of the typical regime and up to
X = zcN

3/4. Moreover, it is easy to check that F ′(z), i.e.,
the first derivative of the rate function, is discontinuous

at z = zc, corresponding to a first-order dynamical phase
transition.

The expression in Eq. (68) clarifies the mechanism of
the transition, which resembles a first-order phase transi-
tions of classical thermodynamics. Indeed, the transition
is the result of the competition between two phases: the
fluid phase, whose probability is described by the Gaus-
sian weight, and the condensed phase, associated with
the anomalous weight. In particular, to each phase corre-
sponds a rate function (z2/4 for the fluid phase and χ(z)
for the condensed phase), which plays the role of the free
energy for out-of-equilibrium systems. At a given value of
the control parameter z, the system will be in the phase
with lower rate function. Thus, the critical point zc is by
definition the value for which the two rate functions are
equal.

It is also possible to compute the asymptotics of χ(z)
at the limits of its domain [z`,∞[ (see Appendix D). For
z → z` one obtains

χ(z) =
√

6 + o(1) , (72)

while for z →∞

χ(z) =
3

2
z2/3 − z−2/3 + o(z−2/3) . (73)

Using the expansion in Eq. (73) we find that, starting
from the intermediate regime X = zN3/4 and taking the
limit z →∞, one get, to leading order,

P (X = zN3/4, N) ∼ e−
√
N(3/2)z2/3 . (74)

Finally, using z = XN−3/4, we obtain

P (X,N) ∼ e−(3/2)X3/2

, (75)

smoothly matching with the the expression of P (X,N)
in the extreme large deviation regime, where X ∼ N [see
Eq. (23)].

IV. MARGINAL PROBABILITY DENSITY
AND THE PARTICIPATION RATIO

In this section we consider the marginal distribution
p(x|X) of a single displacement x, conditioned on the
value of the final position X. Note that x could be any
of the i.i.d. displacements x1 , . . . , xN , for example we
can choose x = x1. We focus on the intermediate regime
X = zN3/4 and X > 0. In the subcritical fluid phase
z < zc we expect this distribution to be peaked around
order-one values of x, since the different displacements
x1 , . . . , xN contribute to the final position by roughly
the same amount. On the other hand, in the condensed
phase z > zc, we expect that one single displacement,
which we will refer to as the condensate, contributes ex-
tensively to the final position X. We denote by mc the
fraction of the total displacement X which is in the con-
densate. For z > zc, we expect that a bump, correspond-
ing to the condensate, develops in the tail of the marginal
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distribution p(x|X). Since the condensate could be any
of the N displacements x1 , . . . , xN , we expect the area
under this bump to be 1/N .

Our starting point is the joint probability of the dis-
placements {xi} = x1 , . . . , xN and of the final position

X =
∑N
i=1 xi, which is given by

p({xi}, X) =

N∏
i=1

P(xi) δ

(
X −

N∑
i=1

xi

)
, (76)

where P(x) is the unconstrained marginal probability,
given in Eq. (7). From this expression, integrating over
x2 , . . . , xN , we obtain the PDF of x1 and X

p(x1, X) = P(x1)

∫ ∞
−∞

dx2 . . .

∫ ∞
−∞

dxN

[
N∏
i=2

P(xi)

]

× δ
(
X − x1 −

N∑
i=2

xi

)
. (77)

Note that in principle one could choose, instead of x1,
any of the variables x1 , . . . , xN . Thus, from now on we
will use the notation x = x1. We notice that the term∫ ∞
−∞

dx2 . . .

∫ ∞
−∞

dxN

[
N∏
i=2

P(xi)

]
δ

(
X − x−

N∑
i=2

xi

)
,

(78)
is exactly equal to P (X − x,N − 1), defined in Eq. (13).
Thus, Eq. (77) becomes

p(x,X) = P(x)P (X − x,N − 1) . (79)

Finally, since p(x|X) is defined as the PDF of the single
displacement x, conditioned on the final position X, we
find

p(x|X) = P(x)
P (X − x,N − 1)

P (X,N)
. (80)

Note that since the N runs are identically distributed
and the total displacement X =

∑
i xi is fixed, the first

moment of p(x|X) is given by∫ ∞
−∞

dx x p(x|X) =
X

N
. (81)

In particular, it is relevant to observe that even in the
large-deviation regime, where X ∼ O(N3/4), the first
moment of p(x|X) vanishes as N−1/4 for large N .

The main goal of this section is to analyze this marginal
probability p(x|X) in the intermediate large-deviation
regime, where the dynamical phase transition occurs. In
the previous section we have shown that, when X =
zN3/4, the distribution ofX is given, in the large-N limit,
by

P (X = zN3/4, N) ∼ e−
√
NF (z) , (82)

where F (z) is given in Eq. (71). Plugging this expression
into Eq. (80), for large N , we obtain

p(x|X) ∼ P(x)e−
√
N(F (z−y)−F (z)) , (83)

where y = x/N3/4 and z = X/N3/4. Thus, when x �
N3/4 the rescaled variable y goes to zero for N →∞ and,
expanding F (z − y) for small y, we obtain

p(x|X) ' P(x)exF
′(z)N−1/4

. (84)

Thus, for x � N3/4, we find that to leading order the
marginal PDF p(x|X) is simply given by the uncon-
strained PDF P(x). The exponential correction factor
in Eq. (84) skews the distribution p(x|X) to the right
(since F ′(z) > 0 for z > 0). Thus, the value F ′(z) quan-
tifies the asymmetry of p(x|X).

Indeed, computing the average value of the PDF in Eq.
(84) and expanding for large N , we find∫ ∞

−∞
dx x P(x)exF

′(z)N−1/4

(85)

'
∫ ∞
−∞

dx x P(x)
(

1 + xF ′(z)N−1/4
)
.

Using the values of the first two moments of P(x), given
in Eqs. (8) and (9), we obtain∫ ∞

−∞
dx x P(x)exF

′(z)N−1/4 ' mf
X

N
, (86)

where we have defined

mf =
2F ′(z)
z

. (87)

We will call this quantity mf fluid fraction, for reasons
that will be clarified later in this section. Notably, using
the expression of F (z) in Eq. (70), we obtain mf = 1 for
z < zc and thus∫ ∞

−∞
dx x P(x)exF

′(z)N−1/4 ' X

N
, (88)

in agreement with the strict conservation law in Eq. (81).
However, at z = zc the function F ′(z) is discontinuous
and it decreases with z for z > zc [see Fig. (7)]. Thus, for
z > zc, mf becomes a decreasing function of z, meaning
that increasing the value of the total displacement X the
value of the typical single-run displacement x decreases.

This apparent contradiction is a consequence of the
fact that the expression in Eq. (84) is only valid for x�
N3/4 and that the tail of the distribution p(x|X) could
in principle also contribute to the mean value. Thus, it
is useful to consider the regime x ∼ N3/4 and to define
the scaled variable y = x/N3/4 ∼ O(1). In this regime,
plugging the large-x expansion of P(x), given in Eq. (10),
into Eq. (83), we obtain

p(x|X) ∼ e−
√
Nψz(x/N3/4) , (89)
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FIG. 7. First derivative of the rate function F (z), given in

Eq. (70), versus z = X/N3/4.

where

ψz(y) =
3

2
y2/3 + F (z − y)− F (z) , (90)

and F (z) is given in Eq. (71). We recall that y = x/N3/4

and z = X/N3/4. This rate function ψz(y), parametrized
by z, describes the probability of the large deviations
where x ∼ O(N3/4). One can check that ψz(y) ≥ 0 for
any z > 0 and y > 0 (see Fig. 4).

It is instructive to investigate the behavior of ψz(y) as
a function of y, fixing z. For z < z`, the function ψz(y) is
monotonic in y (see Appendix H). On the other hand, for
z > z` a local minimum appears at some value y = y∗ > 0
[the precise value of y∗ depends on z and is given in
(H11)]. However, the value ψz(y

∗) corresponding to this
minimum is initially strictly positive (see Fig. 4). Thus,
configurations where x = y∗N3/4 are still exponentially
rare for large N and do not contribute to the average
value of x.

Increasing z, this minimum ψz(y
∗) decreases, until, at

the critical value z = zc it becomes zero. Thus, the
configuration where y = y∗ becomes typical and a con-
densate develops at x = Xcond, where Xcond = y∗N3/4.
For z > zc, there is always a unique value y∗ > 0 at
which ψz(y

∗) = 0. This zero of the rate function ψz(y)
corresponds to the appearance of a bump in the tail of
p(x|X) and the value y∗ increases as a function of z.
Thus, for z > zc the fraction mc = Xcond/X of the total
displacement X that belongs to the condensate is given
by

mc =
y∗N3/4

X
=
y∗

z
. (91)

On the other hand, below the transition no condensate
is present and thus mc = 0. To summarize, we obtain

mc =


0 for z < zc,

y∗/z for z > zc ,

(92)

where y∗ is given in Eq. (H11). The condensate fraction
mc is shown in Fig. 8 as a function of z. In particular,
in the region z > zc we obtain (see Appendix H)

mc '


1/2 + (z − zc)/27/4 for z → zc

+,

1− 2z−4/3 for z →∞ .

(93)

Thus, when crossing the transition line z = zc, the frac-
tion mc jumps from zero to 1/2, signaling a first-order
phase transition and a condensate, containing half of the
total displacement X, appears. Increasing z further, the
fraction mc increases and it goes to one when z → ∞.
Thus, for z � zc almost the totality of the displacement
X is in the condensate.

The behavior of ψz(y) clarifies the mechanism of the
dynamical transition, which turns out to be reminiscent
of equilibrium first-order transitions. Indeed, the rate
function ψz(y) can be interpreted as the free energy of
the system, while the variables y and z are the order and
the control parameters, respectively. The global mini-
mum of ψz(y) corresponds to the most probable value
of y = x/N3/4. In the fluid phase, where the displace-
ment x is of order one, the minimum is located at y = 0.
On the other hand, in the condensed phase there is a
single displacement with x ∼ O(N3/4), corresponding to
y > 0. Indeed, above the critical point zc, the rate func-
tion ψz(y) has two degenerate global minima, at y = 0
and y = y∗ > 0. This is in agreement with the fact
that N − 1 displacements are of order one (correspond-
ing to y = 0) and one displacement is of order N3/4

(corresponding to y = y∗). Finally, the fact that for
z` < z < zc a local minimum appears at y = y∗ > 0
means that the condensed phase is metastable for this
range of parameters.

Since the condensate is a single large run (see Ap-
pendix F), the fluid fraction mf , defined in Eq. (87),
can be interpreted as the fraction of the total displace-
ment X associated to the other N − 1 running phases,
whose displacements xi are of order one. Indeed, using
the expressions in Eqs. (87) and (92), it is possible to
check that the condensate fraction mc and the fluid frac-
tion mf sum to unity, i.e., that

mc +mf = 1 . (94)

For z < zc, we have shown that mf = 1 and mc = 0. Just
above the critical point z = zc, the condensate fraction
mc jumps to the value 1/2 and thusmf = 1/2. Increasing
z further, the value of mc increases while mf decreases.
In the limit z →∞, we find that mc → 1 and mf → 0.

It is useful to denote by Xfluid = mfX the total fluid
displacement, i.e., the displacement associated with the
N − 1 runs which are not in the condensate. From Eq.
(94) we obtain

Xcond +Xfluid = X , (95)

where Xcond = mcX. Moreover, using Eq. (93), it is
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easy to show that for large z

Xfluid '
2

z1/3
N3/4 , (96)

meaning that, increasing the total displacement X on a
scale N3/4, the fluid displacement Xfluid decreases.

This phenomenon is peculiar to this kind of first-order
condensation transition. Indeed, for standard condensa-
tion transitions, as the ones observed in mass-transport
models [42, 43] or in other RTP models [29], the mecha-
nism of condensation is quite different. In those models,
for X > Xc a condensate forms with Xcond = X−Xc. In
other words, all the excess displacement (or mass in the
case of mass-transport models) above the threshold Xc is
entirely absorbed by the condensate. As a consequence,
the displacement Xfluid due to the fluid phase freezes to
the constant value Xc for X > Xc. Thus, even if the
fluid fraction mf = Xc/X decreases with X, the fluid
displacement Xfluid remains constant. In the model con-
sidered in this article, if we increase X by some amount
∆X = X−Xc above the critical value Xc, this additional
displacement will be also absorbed by the condensate, as
in the standard condensation described above. However,
in addition to this increase, the condensate displacement
will also snatch a part of the fluid displacement. Con-
sequently, the increase in the condensate displacement
Xcond will be larger than ∆X and the additional dis-
placement is taken from the fluid displacement Xfluid,
which therefore decreases. Thus, in the case of a first-
order condensation transition as studied here, the fluid
and the condensed part of the trajectory are in some
sense interacting even for X > Xc, i.e., when the system
is fully in the condensed phase. This is at variance with
condensation transitions of higher order where the fluid
part of the trajectory is inert (frozen) for X > Xc.

Once we have identified the location y = y∗ of the
condensate, it is relevant to investigate its shape. To

do this, we need to expand the expression in Eq. (89)
around y = y∗. This yields, after few steps of algebra,

p(x|X) ' pcond(x− y∗N3/4, N) (97)

where

pcond(y,N) ∼ exp

[
−1

2
ψ′′z (y∗)

y2

N

]
. (98)

Here ψ′′z (y) denotes the second derivative of ψz(y), given
in Eq. (90), with respect to y. To obtain the result in Eq.
(97), we have used the fact that, above the transition,
ψz(y

∗) = 0 and ψ′z(y
∗) = 0. Overall, we have shown

that, above the transition, a condensate appears at x =
y∗N3/4, with a Gaussian shape and standard deviation
which grows as

√
N .

It is also possible to compute the area under the bump,
which corresponds to the probability that a given site be-
comes the condensate. To do this, one needs to compute
carefully the prefactor in Eq. (97). We present the de-
tails of this computation in Appendix I, where we show
that

pcond(y,N) =
1

N3/2

√
ψ′′z (y∗)
π

exp

[
−1

2
ψ′′z (y∗)

y2

N

]
.

(99)
From this expression, we obtain∫ ∞

−∞
dy pcond(y,N) =

1

N
, (100)

meaning that above the transition the condensate is lo-
calized in just one of the N sites. Note that it is possible
to show that in the thermodynamic limit there can be at
most one condensate (see Appendix F).

Finally, we introduce another order parameter, the
participation ratio, which is often considered in the liter-
ature of condensation transitions [36, 38]. This quantity
Y2(z) is defined as

Y2(z) =

〈 ∑N
i=1 x

2
i(∑N

i=1 xi

)2

〉
z

. (101)

The notation 〈. . .〉z denotes the average over the distri-
bution of the displacements x1 , . . . , xN , conditioned on
the value X = zN3/4 of the total displacement. In the
fluid phase, we expect the numerator in Eq. (101) to
scale as O(N), since the terms x1 , . . . , xN are of order
one. On the other hand, the denominator is equal to
X2 ∼ O(N3/2). Thus, for z < zc the participation ratio

should vanish as 1/
√
N . Conversely, in the condensed

phase, a single variable xi absorbs a finite fraction of the
displacement X. Thus, both numerator and denomina-
tor are expected to scale as N3/2 and Y2(z) ∼ O(1) in
the large N limit. For this reason, Y2(z) is a good or-
der parameter for our system, where the corresponding
control parameter is z = X/N3/4.
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Let us now compute the precise expression of Y2(z).
First of all, using the fact that the variables xi are inde-
pendent and that the denominator in Eq. (101) is simply
X = zN3/4, we can rewrite the expression in Eq. (101)
as

Y2(z) =
〈x2〉z
z2
√
N
, (102)

where

〈x2〉z =

∫ ∞
−∞

dx x2 p(x|X) . (103)

For z < zc, using the expression of p(x|X) in Eq. (84),
it is easy to show that 〈x2〉z ∼ O(1) and thus that Y2(z)

vanishes as 1/
√
N in the large-N limit. Conversely, for

z > zc, we have shown that a bump appears in the tail
of p(x|X). It turns out that above the transition 〈x2〉z
is dominated by the contribution coming from this con-
densate bump. Indeed, using the expression of p(x|X) in
the vicinity of the bump, given in Eq. (99), we obtain ,
to leading order,

〈x2〉z ' y∗2
√
N , (104)

where y∗ is given in Eq. (H11). Pugging this expression
in Eq. (102), we obtain

Y2(z) =

(
y∗

z

)2

. (105)

Recalling the expression of the condensate fraction mc

in Eq. (92), we find that the participation ratio and the
condensate fraction are simply related by

Y2(z) = m2
c . (106)

To summarize, we have shown that

Y2(z) =


0 for z < zc,

[y∗(z)/z]2 for z > zc ,

(107)

where y∗(z) is a given in Eq. (H11). This exact result is
shown in Fig. (5) and is in good agreement with numeri-
cal simulations. Using the asymptic expressions of mc in
Eq. (93), we find

Y2(z) '


1/4 + 2−7/4(z − zc) for z → z+

c ,

1− 4z−4/3 for z →∞ ,

(108)

as given in Eq. (36).

V. CONCLUSIONS

In this paper, we have investigated the position dis-
tribution of a single RTP moving in one dimension. We

have assumed that the velocity of the particle during each
running phase is independently drawn from a Gaussian
distribution. We have computed the PDF P (X,N) of
the position X of the particle after N running phases,
showing that this PDF is characterized by three different
regimes in the limit of large N . In the typical regime
X ∼ O(

√
N) and the distribution P (X,N) has a Gaus-

sian shape, as predicted by the CLT. On the other hand,
in the extreme large deviation regime X ∼ O(N), the
PDF P (X,N) has a stretched exponential form, signaling
that the full displacement X occurs in a single running
phase. Finally, in the intermediate regime X ∼ O(N3/4),
the PDF of X is described by the rate function F (z),
where z = X/N3/4. Below the critical value zc, F (z) is
quadratic, meaning that P (X,N) remains Gaussian up
to X = zcN

3/4, outside of the region predicted by the
CLT. Interestingly, at the critical point zc the rate func-
tion F (z) is non-analytic and for z > zc it is not quadratic
anymore. In particular, it turns out that the first deriva-
tive of F (z) is discontinuous at z = zc, corresponding
to a first-order dynamical phase transition. Note that
this type of condensation transition is not present in the
standard RTP model, where the velocity of the particle
is constant.

We have provided a detailed analysis of the mechanism
of the phase transition. First of all, we have investigated
the marginal probability p(x|X) of a single-run displace-
ment, conditioned on the total displacement X. We have
shown that, above the transition, a bump appears in the
tail of p(x|X), suggesting that the system undergoes a
condensation transition. In particular, we have shown
that above the transition a single running phase con-
tributes to a macroscopic fraction mc = Xcond/X of X.
We have observed that the mechanism of the transition
is different from the one of standard condensation transi-
tions, e.g., those observed in mass-transport models. In-
deed, increasing the total displacement X above the crit-
ical value Xc, the displacement Xcond contained in the
condensate does not only absorb the excess displacement
∆X = X − Xc, but it also snatches a part of the fluid
displacement Xfluid, i.e., the displacement associated to
the remaining N − 1 runs. Thus, Xcond > ∆X in this
case. This is different from the standard condensation
transitions studied before, where Xcond = ∆X and Xfluid

remains frozen in the condensed phase. In addition, we
have identified a relevant order parameter associated to
the phase transition: the participation ratio Y2(z). We
have shown that Y2(z) is zero below the transition, it
is non-zero for z > zc. We have observed that this or-
der parameter undergoes a jump ∆Y2(z) = 1/4 exactly
at z = zc, in agreement with the fact that the transi-
tion is first-order. Finally, we have performed extensive
numerical simulations to confirm our theoretical results.
In order to study numerically the probability of the rare
events associated to the large-deviation regime, we have
employed a constrained Markov chain Monte Carlo algo-
rithm.

We have shown that the problem investigated in this
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paper can be mapped into the classical problem of finding
the distribution of N i.i.d. random variables. Despite the
apparent simplicity of the setup, we have observed that
the PDF P (X,N) is highly non-trivial in the large N
limit and that a dynamical phase transition is observed
above a critical value of X. As mentioned in the intro-
duction, an alternative approach when studying the RTP
model is to fix the total elapsed time T , instead of the
number N of running phases. This corresponds to the
fixed-T ensemble, which is usually harder to treat ana-
lytically. Even if we expect the late-time behavior to be
similar for the fixed-N and fixed-T ensembles, for future
works it would be relevant to investigate the large devi-
ation regime of P (X,T ), i.e., the PDF of the RTP posi-
tion X after time T . It would be interesting to compute
the rate function associated to the large-deviation regime
X ∼ O(T 3/4) and to recover the first-order transition for
this ensemble.

It is relevant to mention that if one considers a generic
symmetric distribution P(x) with

P(x) ∼ e−a|x|β , (109)

with a > 0 and 0 < β < 1, the main results of this
paper remain valid. Indeed, even if the scale at which
the phase transition occurs is different [one can check
that Xc ∼ O(Nα) with α = 1/(2 − β)], the mechanism
and the order of the transition remain the same.

Moreover, it is interesting to notice that the criterion
for condensation presented in Eq. (11) remains valid even
if the motion of the particle between two tumbling events
is not ballistic. Note that in this general case the expres-
sion of the distribution P(x) of the displacement during
a running phase would depend on the details of the dy-
namics. For instance, a condensation transition could be
observed in RTP models which take into account rota-
tional diffusion or fluctuation of the velocity within each
running phase. Indeed, the presence of a condensation
transition is guaranteed if (i) the displacements of the
particle during different runs are i.i.d. random variables
with distribution P(x) and (ii) the PDF P(x) satisfies
the condition in Eq. (11). Thus, the result in Eq. (11)
appears to be quite robust and it is relevant to ask if con-
densation transitions as the one described in this work
could be observed in experimental systems.

Finally, let us also mention that the problem of com-
puting the distribution of the sum of several i.i.d. vari-
ables with a stretched exponential PDF appears in many
other situations, including the problem of localization
in the discrete nonlinear Schrödinger equation [36, 37].
Another example can be found in the context of one-
dimensional Brownian motion with resetting [62, 63]. In-
deed, it is easy to show that the integral of the position of
the Brownian particle between two resetting events will
have a stretched-exponential distribution with β = 1/2,
where β is the exponent defined in Eq. (109). For this
reason, the integral of the position of the resetting Brow-
nian motion can be written as the sum of several i.i.d.

stretched-exponential variables and the system will dis-
play a first-order condensation transition at late times.
Thus, we expect our results to be applicable to several
problems besides the one considered in this paper.
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Appendix A: Asymptotic tails of P(x)

In this Appendix we derive the asymptotic tails of P(x)
given in Eq. (6). Let us focus on the case x > 0 with x�
1. Performing the change of variable τ → y = τ/x2/3 in
Eq. (6), we obtain

P(x) =
1√
2π

∫ ∞
0

dy
1

y
e−x

2/3[y+1/(2y2)] . (A1)

For large x, this integral can be performed by saddle-
point approximation, which yields

P(x) ' 1√
3x1/3

e−(3/2)x2/3

. (A2)

Repeating this argument in the case of x < 0 with |x| �
1, we obtain

P(x) ' 1√
3|x|1/3

e−(3/2)|x|2/3 . (A3)

as given in Eq. (10).

Appendix B: Numerical simulations in the
large-deviation regime

In this Appendix, we present the details of the numer-
ical simulations that we have performed to confirm our
analytical results. In order to study the large-deviation
regime we employ a constrained MCMC algorithm, sim-
ilar to the ones used in Refs. [26, 29, 64, 65].

An RTP configuration with N steps is described by
the N couples {(τi, vi)} = {(τ1, v1) , . . . (τN , vN )}. The
probability weight associated to each configuration is

P ({(τi, vi)}) =

N∏
i=1

p(τi)W (vi) , (B1)

where p(τ) and W (v) are given in Eqs. (2) and (3). The
position X of the particle after N steps is given by

X =

N∑
i=1

τivi . (B2)
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We want to estimate numerically the PDF P (X,N) of
the position X, in the limit of large N . If one is just
interested in the typical fluctuations corresponding to
X ∼ O(

√
N), it is enough to employ a direct sampling

strategy, drawing for each sample N independent run-
ning times τ1 . . . τN from the PDF p(τ) and N velocities
v1 , . . . , vN from W (v). If one considers 106 samples, this
method allows to reach events that occur with probabil-
ity of order 10−6 or higher. However, to sample the rare
events corresponding to the large-deviation regime where
X ∼ O(N3/4) one has to use a more sophisticated tech-
nique. Indeed, these events have probability smaller than
10−100 and direct sampling algorithms are not computa-
tionally feasible.

For this reason, we use a biased MCMC algorithm,
which allows us to sample rare configurations which are
characterized by an atypically large displacement X.
First, we implement a MCMC dynamics in the space of
configurations {(τi, vi)}, using the Metropolis-Hastings
algorithm to guarantee that the RTP trajectories are
sampled with the correct statistical weight. In partic-
ular, starting from any initial configuration, we choose
the i-th running phase, where i is a uniformly distributed
random integer between 1 and N , and we propose a move
(τi, vi)→ (τnew

i , vnew
i ), where

τnew
i = τi + δτi , (B3)

and

vnew
i = vi + δvi . (B4)

Here δτi and δvi are uniform random numbers in the
intervals (−a, a) and (−b, b), respectively, where a and b
are parameters of the algorithm. The move is accepted
with probability

pacc = min

[
1,
p(τ inew)W (vinew)

p(τ i)W (vi)

]
, (B5)

and rejected otherwise. Initially, we let the system evolve
for 107 sweeps, i.e., 107N moves, in order to let the
MCMC thermalize and then we measure the position X
of the RTP every 102 sweeps, to avoid correlations. From
these samples, we build an histogram that approximates
the PDF P (X,N). Up to this point, the MCMC al-
gorithm is completely equivalent to the direct sampling
strategy and it only allows to sample typical trajectories.

In order to investigate the large deviations of P (X,N),
we need to bias the MCMC dynamics towards large val-
ues of X. For the sake of simplicity we will focus on
positive values of X, the case X < 0 can be treated
analogously. We start by choosing some large value
X∗. Since we want to investigate the regime where
X ∼ O(N3/4), we will take X∗ ∼ O(N3/4). We initialize
the MCMC from some initial condition with X > X∗.
Then, we evolve the system according to the MCMC
dynamics described above, adding the hard constraint
X > X∗. In other words, attempted updates correspond-
ing to X < X∗ are always rejected.

The histogram that we obtain from this biased algo-
rithm will approximate the PDF P (X,N |X > X∗), i.e.,
the PDF of X conditioned on the event X > X∗. This
quantity is then simply related to the PDF P (X,N) by,
for X > X∗,

P (X,N |X > X∗) =
P (X,N)

P (X > X∗)
. (B6)

Taking the natural logarithm of both sides, we obtain

log [P (X,N |X > X∗)]

= log [P (X,N)]− log [P (X > X∗)] . (B7)

Diving both sides by
√
N and recalling that in the large-

N limit the rate function F (z) is defined as

F

(
X

N3/4

)
= − log [P (X,N)]√

N
, (B8)

we find

F

(
X

N3/4

)
= − log [P (X,N |X > X∗)]√

N
+ CX∗ . (B9)

In the equation above, we have defined the constant (with
respect to X)

CX∗ =
log [P (X > X∗)]√

N
. (B10)

Thus, in order to estimate numerically F (z) we need
to compute the value of CX∗ . This can be achieved by
the following strategy. First, we perform an unbiased
simulation, which will allow us to estimate F (z) in a
small interval around the origin. Then, we choose a value
of X∗ such that z∗ = X∗/N3/4 falls within the range of
values for which F (z) is known. The biased simulation
will give us an estimate of F (z) in a small region with
z > z∗, up to the constant CX∗ . Since the two estimates
of F (z), the one obtained without the constraint and the
one with the constraint, overlap for some values of z,
one can compute the constant CX∗ by matching the two
curves. This allows us to know F (z) in a slightly larger
interval. Then, we continue by performing a new MCMC
simulation with a larger value of X∗ and so on until F (z)
is known in a large-enough interval. Note that to speed
up the algorithm the procedure above can be parallelized
by choosing a fine enough grid of values X∗ in order to
ensure the overlap between the different histograms. For
instance, to obtain the numerical curves in Fig. 2 we
have used 90 equispaced values of X∗.

Let us also mention that with the technique described
above one can also obtain the marginal PDF p(x|X) (see
Fig. 3). From the MCMC dynamics one has access to the
values of the single-run displacements x1 , . . . xN . Mea-
suring a randomly chosen displacement at every step one
can build an histogram which will approximate the PDF
p(x|X > X∗). However, it turns out that when X∗ is
large, the system will typically stay in a small region to
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FIG. 9. Plot of G′z(s), given in Eq. (C3) as a function of s,
for z = 1. For this value of z the saddle point condition in
Eq. (C3) has no real solutions.

the right of X∗. In other words, even if X is free to fluc-
tuate during the simulation, it will typically remain close
to X∗. Thus, one can approximate

p(x|X > X∗) ' p(x|X∗) . (B11)

Alternatively, one can avoid this approximation by per-
forming a MCMC dynamics at fixed X (e.g., by propos-
ing moves that conserve the total displacement X). How-
ever, the convergence of the algorithm turns out to be
slower in this case. With the same technique one can
also estimate Y2 and mc as functions of z (see Figs. 5
and 8). The results of our numerical simulations are in
good agreement with the theory.

Appendix C: Exact computation of the function χ(z)

Our starting point is the integral in Eq. (64), which
reads

PA(X = zN3/4, N) (C1)

=
1√
2πi

N

∫
Γ+

ds
1√
−s2

e
√
NGz(s) .

where

Gz(s) = zs+ s2 − 1

2s2
. (C2)

We recall that we are considering the case z > 0 and
that the integral in Eq. (C1) is performed over the con-
tour Γ+ in the complex s plane, running in the negative
real semiplane, parallel to the imaginary axis and with
Im(s) > 0 and with Re(s)→ 0− (see Fig. 6).

Our goal is to perform this integral by saddle-point
approximation. To do that, let us consider the saddle-
point equation

G′z(s) = z + 2s+
1

s3
= 0 , (C3)

where G′z(s) indicates the first derivative of Gz(s) with
respect to s. This function G′z(s) is shown in Fig. 9 as a
function of s for z = 1. It is clear from Fig. 9 that Eq.
(C3) has no real solution for z = 1. However, increasing
z amounts to a rigid upward vertical translation of the
curve in Fig. 9. Thus, at a critical value of z, that we
call z`, the G′z(s) curve will hit the negative s axis and
the saddle point equation (C3) will have a single real
solution s∗ < 0. Increasing z further, Eq. (C3) will have
two real solutions, which we denote by s1 and s2, with
s1 < s2 < 0. It is easy to check that s1 corresponds to a
minimum of Gz(s), while s2 corresponds to a maximum.

Thus, for z > z` the complex integral in Eq. (C1)
can be computed as follows. First, we rotate the contour
Γ+ anticlockwise by an angle π/2, so that it now passes
through the saddle points s1 and s2. Then, since s2 is
a maximum, the integral will be dominated, for large N ,
by contributions close to s2 and one obtains

PA(X = zN3/4, N) ' 1

−s2

√
−G′′z (s2)

N3/4e−
√
Nχ(z) .

where

χ(z) = −Gz(s2) , (C4)

and

G′′z`(s2) = 2− 3

s2
4
< 0 , (C5)

where G′′z (s) denotes the second derivative of Gz(s) with
respect to s.

We now need to compute the limit value z`, which can
be identified with the following argument. As explained
above, at z = z`, the saddle-point condition in Eq. (C3)
will have exactly one real solution s∗ < 0. Thus, s∗

satisfies the condition

z` + 2s∗ +
1

s∗3
= 0 . (C6)

Moreover, it is clear from Fig. 9 that at z = z` the point
s∗ corresponds to a maximum of the function G′z(s).
Thus, one also has the condition

G′′z`(s
∗) = 2− 3

s∗4
= 0 . (C7)
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Solving the two conditions in Eqs. (C6) and (C7), one
finally finds that

s∗ = −
(

3

2

)1/4

(C8)

and

z` = 4

(
2

3

)3/4

= 2.95115 . . . (C9)

Then, for z > z` the saddle point s2 is defined as the
largest real root of Eq. (C3) and can be computed by
using Mathematica. Plugging this expression for s2 into
the definition of χ(z) in Eq. (C4), we find that

χ(z) = z2/3

z4/3

8
+

1

8

(
64 (2/3)

1/3

a(z)
+ 4 (2/3)

2/3
a(z) z4/3 + z8/3

)1/2

− 1

2

(
−4 (2/3)

1/3

a(z)
− a(z)z4/3

2 21/332/3
+
z8/3

8

+
z4

8
√

64(2/3)1/3

a(z) + 4
(

2
3

)2/3
a(z) z4/3 + z8/3

1/2

−2

+
z2/3

2

−z4/3

8
− 1

8

√
64 (2/3)

1/3

a(z)
+ 4 (2/3)

2/3
a(z)z4/3 + z8/3

+
1

2

(
−4
(

2
3

)1/3
a(z)

− a(z)z4/3

2 21/332/3
+
z8/3

8
+

z4

8
√

64(2/3)1/3

a(z) + 4 (2/3)
2/3

a(z)z4/3 + z8/3

1/2
 , (C10)

where

a(z) =

(
9 +
√

3

√
27− 2048

z2

)1/3

. (C11)

Appendix D: Asymptotics of χ(z)

In this section we want to compute the asymptotics of
the function χ(z) at the edges of its domain z` < z <∞.

When z → z` we already know that s2 → s∗. Thus,
plugging the value of s∗, given in Eq. (C8), into the
definition of χ(z), given in Eq. (C4), we find that when
z → z`

χ(z)→
√

6 , (D1)

as given in Eq. (25).
In order to investigate the limit z →∞, it is useful to

define the variable

φ = −z1/3s . (D2)

Then the saddle point equation (C3) can be rewritten in
terms of φ as

2z−4/3φ4 − φ3 + 1 = 0 . (D3)

Note that after the transformation in Eq. (D2), the rel-
evant saddle point is the smallest positive root φ2 of Eq.
(D3). Using the expression of the function Gz(s), given
in Eq. (C2), and the definition of χ(z), given in Eq. (C4),
we obtain

χ(z) = z2/3

(
1

2
φ2 +

1

φ2
2

)
. (D4)

It turns out that Eq. (D3) is particularly useful to
compute the large-z asymptotics. Indeed, for large z,
Eq. (D3) can be solved perturbatively and one obtains

φ2 = 1 +
2

3
z−4/3 + o(z−4/3) . (D5)

Plugging this expansion into Eq. (D4) and expanding for
large z, we obtain

χ(z) =
3

2
z3/2 − z−2/3 + o(1) , (D6)

as given in Eq. (25).

Appendix E: Computation of the critical point zc

In the main text we have shown that the rate function
for the intermediate matching regime is given by [see Eq.
(70)]

F (z) = min

[
z2

4
, χ(z)

]
, (E1)

where χ(z) is given in Eq. (C10). It is easy to check, for
instance numerically, that χ(z) > z2/4 for z > zc, where
zc is a constant of order one. Thus, one obtains

F (z) =


z2/4 for z < zc,

χ(z) for z > zc.

(E2)

In this section, we want to compute exactly the critical
point zc, which is defined by the equation

χ(zc) = z2
c/4 . (E3)



19

Computing zc starting from the explicit expression of
χ(z) in Eq. (C10) appears to be rather challenging. How-
ever, using the representation of χ(z), given in Eq. (D4),
in terms of the variable φ, defined in Eq. (D2), solving
Eq. (E3) becomes simpler. First of all, from Eq. (D3),
evaluated at the critical point z = zc, we find that

zc =

(
φ2

3 − 1

2φ2
4

)−3/4

, (E4)

where we recall that φ2 is the smallest positive root of
Eq. (D3). Plugging the representation of χ(z) in terms
of φ2, given in Eq. (D4), into Eq. (E3), we obtain

z2/3
c

(
1

2
φ2 +

1

φ2
2

)
= z2

c/4 . (E5)

Finally, solving Eqs. (E4) and (E5), it is easy to show
that

zc = 27/4 = 3.36359 . . . (E6)

Appendix F: The number of condensates

In this appendix, we show that configurations with two
condensates are less likely with respect to those with a
single condensate. We start by rewriting the expression
in Eq. (13) as

P (X,N) =

∫ ∞
−∞

dx1 P(x1)

∫ ∞
−∞

dx2 P(x2) (F1)

×
N∏
i=3

∫ ∞
−∞

dxi P(xi) δ

(
X − x1 − x2 −

N∑
i=3

xi

)
,

where P(X) is the single-run PDF, given in Eq. (5).
Using again Eq. (13), we can write Eq. (F2) as

P (X,N) =

∫ ∞
−∞

dx1 P(x1)

∫ ∞
−∞

dx2 P(x2)

× P (X − x1 − x2, N − 2) . (F2)

In the regime X ∼ O(N3/4) we use the large deviation
form of P (X,N), given in Eq. (23), and the large-x be-
havior of P(x), given in Eq. (10), and we obtain

e−
√
NF (X/N3/4) ∼

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 (F3)

× e−
√
NF [(X−x1−x2)/N3/4]−(3/2)|x1|2/3−(3/2)|x2|2/3 .

Note that we are using the large-x asymptotics of P(x)
because we are probing for configurations where x1 and
x2 represent two condensates and hence are of order
O(N3/4). Using the scaled variables z = X/N3/4, y1 =
x1/N

3/4, and y2 = x2/N
3/4, we obtain the relation

e−
√
NF (z) ∼

∫ ∞
−∞

dy1

∫ ∞
−∞

dy2 (F4)

× e−
√
N{F [(z−y1−y2)/N3/4]+(3/2)|y1|2/3+(3/2)|y2|2/3} .

The variables y1 and y2 represent the fraction of the total
displacement contained in the two condensates. Thus,
the presence of two condensate would correspond to both
y1 > 0 and y2 > 0. Performing both integrals via saddle-
point approximation, we find

F (z) (F5)

= min
0≤y1≤z

min
0≤y2≤z−y1

[
F (z − y1 − y2) +

3

2
y

2/3
1 +

3

2
y

2/3
2

]
.

Performing the change of variables (y1, y2) → (y1, y =
y1 + y2), we obtain

F (z) (F6)

= min
0≤y≤z

min
0≤y1≤y

[
F (z − y) +

3

2
y

2/3
1 +

3

2
(y − y1)2/3

]
,

which can be rewritten as

F (z) (F7)

= min
0≤y≤z

[
F (z − y) + min

0≤y1≤y

(
3

2
y

2/3
1 +

3

2
(y − y1)2/3

)]
.

It is easy to show that the minimum over y1 is obtained
for y1 = 0 and y2 = y > 0, or by symmetry for y2 = 0
and y1 = y > 0. Recalling that the presence of two con-
densates would require both y1 > 0 and y2 > 0, we have
shown that configurations with two condensates cannot
be observed in this model when N →∞.

Note that we have also verified that there can be only
one condensate by showing that [see Eq. (32)]∫ ∞

−∞
dy pcond(y,N) =

1

N
, (F8)

i.e., that the area under the condensation bump is 1/N .
This is in agreement with the fact that only one of the
N running phases can become the condensate.

Appendix G: Equivalence with the result of Ref. [58]

In Ref. [58] Brosset et al. derived by mathematical
methods the rate function F (z), defined in Eq. (1), show-
ing that

F (z) = min
0≤y≤z

[
(z − y)2

4
+

3

2
y2/3

]
. (G1)

At first sight, this result seems different from the one
derived in this paper and given in Eq. (24). However,
performing the minimization numerically, we find that
they are equivalent [see Fig. 10]. In this appendix we
show analytically that the two expressions are equivalent.

Let us define

gz(y) =
(z − y)2

4
+

3

2
y2/3 , (G2)

so that we can write the expression in Eq. (G1) as

F (z) = min
0≤y≤z

gz(y) (G3)
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FIG. 10. Comparison between the rate function F (z) com-
puted by Brosset et al. (BKLP), given in Eq. (G1), and our
result (MGM), given in Eq. (24).

Thus, we look for the solution y∗ of the equation

g′z(y
∗) =

y∗ − z
2

+ y∗−1/3 = 0 . (G4)

Moreover, since y∗ is a minimum, it also satisfies

g′′z (y∗) = −1

3
y∗−4/3 +

1

2
> 0 . (G5)

Note that the minimum of gz(y) could be also reached at
y = 0 or y = z.

One can show that y∗ is related to the solution φ2 of
the saddle point equation (D3) by the relation

y∗ = zφ−3
2 . (G6)

Note that both y∗ and φ2 depend on z. Thus, from Ap-
pendix D, we know that Eq. (G4) will have no solution
for z < z`, implying that the minimum will be reached
either at y = 0 or at y = z. It is easy to show that, for
z < z`, gz(0) < gz(z) and therefore we obtain

F (z) = gz(0) =
z2

4
, (G7)

for z < z`. In the region z > z` a solution y∗ of Eq. (G4)
that satisfy the condition (G5) exists. However, it is easy
to check that just above z` the global minimum is still
reached at y = 0. Increasing z, the value of the minimum
corresponding to y∗ decreases until at some value z = zc,
the global minimum is reached at y = y∗. Thus, the
critical point z = zc is defined as

gzc(0) = gzc(y
∗) , (G8)

where y∗ is the solution of Eq. (G4) that satisfies the
condition (G5). One can check that the point y = z is
never the global minimum.

Plugging the expression of gz(y), given in Eq. (G2),
into Eq. (G8), we find that zc satisfies

z2
c

4
=

(zc − y∗)2

4
+

3

2
y∗2/3 . (G9)

Using Eq. (G6), we get

z2
c

4
=

(zc − zcφ−3
2 )2

4
+

3

2

(
zcφ
−3
2

)2/3
, (G10)

where we recall that φ2 is the smallest positive solution
of the saddle point equation (D3). Moreover, from Eq.
(D3), we obtain

z4/3 = 2
φ4

2

φ3
2 − 1

. (G11)

Eq. (G10) can be rewritten as

z
4/3
c

4

[
1− (1− φ−3

2 )2
]

=
3

2
φ−2

2 . (G12)

Plugging the expression for z
4/3
c given in Eq. (G11) and

solving for φ2 yields

φ2 = 21/3 , (G13)

for z = zc. Using Eq. (G11), we obtain zc = 27/4. Thus,
for z < zc we have shown that

F (z) =
z2

4
, (G14)

in agreement with our result in Eq. (24).
Finally, we need to show that for z > zc the two results

in Eqs. (G1) and (24) coincide, i.e., that

(z − y∗)2

4
+

3

2
y∗2/3 = χ(z) , (G15)

where χ(z) is given in Eq. (C10). From Eq. (D4) we
know that χ(z) can be written in terms of the variable
φ2 as

χ(z) = z2/3

(
1

2
φ2 +

1

φ2
2

)
. (G16)

The left-hand side of Eq. (G15) can be rewritten, using
Eq. (G6), as

(z − y∗)2

4
+

3

2
y∗2/3 = z2/3

[
z4/3

4
(1− φ−3

2 )2 +
3

2
φ−2

2

]
.

(G17)
Using Eq. (G11), we rewrite the term z4/3 as

(z − y∗)2

4
+

3

2
y∗2/3 = z2/3

[
φ4

2(1− φ−3
2 )2

2(φ3
2 − 1)

+
3

2
φ−2

2

]
,

(G18)
which can be rewritten, after few steps of algebra, as

(z − y∗)2

4
+

3

2
y∗2/3 = z2/3

(
1

2
φ2 +

1

φ2
2

)
. (G19)

Recalling Eq. (G16), we finally obtain the result in Eq.
(G15). Thus, we have shown that for any z > 0 the
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two representations of F (z) in Eq. (24) and (G1) are
equivalent.

Finally, we provide a physical interpretation of the for-
mula in Eq. (G1). In the rest of this appendix we will
only consider the case X > 0. We start from the defini-
tion of the PDF of X, given in Eq. (13),

P (X,N) =

N∏
i=1

∫ ∞
−∞

dxi P(xi) δ

(
X −

N∑
i=1

xi

)
, (G20)

where P(X) is the single-run PDF, given in Eq. (5). The
expression in Eq. (G20), can be rewritten as

P (X,N) =

∫ ∞
−∞

dx1 P(x1) (G21)

×
N∏
i=2

∫ ∞
−∞

dxi P(xi) δ

(
X − x1 −

N∑
i=2

xi

)
.

Using Eq. (G20), we obtain

P (X,N) =

∫ ∞
−∞

dx1 P(x1)P (X − x1, N − 1) . (G22)

In the condensed phase, the term P(x1) represents the
condensate while the term P (X−x1, N−1) is associated
with the otherN−1 variables which are in the fluid phase,
meaning that their contribution is of order one. Note
that we have shown that no more than one condensate
can appear in the thermodynamic limit (see App. F).

We now focus in the regime where X ∼ O(N3/4).
Plugging the large deviation form of P (X,N) in the fluid-
phase, given in Eqs. (23) and (24), and the large-x be-
havior of P(x), given in Eq. (10), into Eq. (G22), we
find

e−
√
NF (X/N3/4) ∼

∫ ∞
−∞

dx1 e
−(X−x1)2/(4N)−(3/2)|x1|2/3 .

(G23)
Using the scaled variables y = x1/N

3/4 and z = X/N3/4,
we obtain

e−
√
NF (z) ∼

∫ ∞
−∞

dy e−
√
N(z−y)2/4−(3/2)

√
N |y|2/3 . (G24)

For large N , one can perform the integral over y via
saddle-point approximation, yielding

F (z) = inf
−∞<y<∞

[
(z − y)2

4
+

3

2
|y|2/3

]
. (G25)

Moreover, it is easy to show that configurations with y <
0 or y > z are never optimal. Thus, we obtain

F (z) = min
0≤y≤z

[
(z − y)2

4
+

3

2
y2/3

]
, (G26)

in agreement with Eq. (G1).

Appendix H: Location of the condensate

In this Appendix, we derive an exact expression for
the location y∗ of the condensate, presented in Section
IV. For z > zc, we recall that mc = y∗/z is the fraction
of the total displacement belonging to the condensate,
where z = XN−3/4. The variable y∗ is defined as

y∗ = argminy>0 [ψz(y)] . (H1)

where

ψz(y) =
3

2
y2/3 + F (z − y)− F (z) , (H2)

and F (z) is given in Eq. (71). We limit our discussion
to the case z > 0, the complementary case z < 0 can be
obtained by symmetry.

From Eq. (H1) we find that y∗ satisfies the equation

ψ′z(y
∗) = 0 , (H3)

where ψ′z(y) denotes the first derivative of ψz(y) with
respect to y. We now assume that y∗ > z−zc (to be ver-
ified a posteriori). Under this assumption the condition
in Eq. (H3) becomes

2y∗−1/3 + y∗ − z = 0 . (H4)

Since y∗ has to be a minimum, one also has the additional
condition

ψ′′z (y∗) = −1

3
y∗−4/3 +

1

2
> 0 , (H5)

where ψ′′z (y) denotes the second derivative of ψz(y) with
respect to y.

Remarkably, it turns out that the solution y∗ of the
conditions above can be exactly related to the solution
φ2 of the saddle-point equation (D3) as

y∗ = z φ2
−3 . (H6)

Thus, from the results in Appendix C, we know that no
solution of the saddle-point equation exists for z < z` =
4 (2/3)3/4. Thus, for z < z` the function ψz(y) will not
have any minimum for y > 0 and no condensation is
possible. For z > z` a minimum of the function ψz(y)
appears at y = y∗ > 0. However, it is easy to check
that, for z` < z < zc, this minimum will correspond to a
non-zero value of the function ψz(y

∗) and thus the prob-
ability density of configurations with y > 0 will decay
exponentially fast with N [see Eq. (89)]. Finally, above
the transition ψz(y

∗) becomes, using Eq. (71),

ψz(y
∗) =

3

2
y∗2/3 +

(z − y∗)2

4
− χ(z) , (H7)

where χ(z) is defined in Eq. (C4). We recall that the
function χ(z) can be expressed in terms of the variable
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φ2, as given in Eq. (D4). Using also the representation
of y∗ in terms of φ2, given in Eq. (H6), we obtain

ψz(y
∗) (H8)

=
3

2
z2/3φ−2

2 + z2 (1− φ2
−3)2

4
− z2/3

(
1

2
φ2 + φ2

−2

)
.

From Eq. (D3), we obtain

z4/3 =
2φ2

4

φ2
3 − 1

. (H9)

Thus, writing the term z2 in Eq. (H9) as z2 = z2/3 z4/3

and using Eq. (H9), we obtain, after few steps of algebra,
that for z > zc (see also Fig. 4)

ψz(y
∗) = 0 . (H10)

Thus, for z > zc a condensate appears at x = y∗N3/4

[see Eq. (89)].

It is also possible to find an explicit expression for y∗.
Solving the conditions in Eqs. (H3) and (H5), we obtain

y∗ = z

z4/3

8
+

1

8

(
64 (2/3)

1/3

a(z)
+ 4 (2/3)

2/3
a(z) z4/3 + z8/3

)1/2

− 1

2

(
−4 (2/3)

1/3

a(z)
− a(z)z4/3

2 21/332/3
+
z8/3

8

+
z4

8
√

64(2/3)1/3

a(z) + 4
(

2
3

)2/3
a(z) z4/3 + z8/3

1/2

−3

, (H11)

where

a(z) =

(
9 +
√

3

√
27− 2048

z2

)1/3

. (H12)

From this expression in Eq. (H11), we obtain, for z =
zc = 27/4, y∗ = 23/4 and hence that mc = y∗/z = 1/2, as
given in the first line of Eq. (93). It is easy to show that
y∗ is an increasing function of z and that our assumption
y∗ > z− zc is always satisfied. Moreover, close to z = zc,
we find that

y∗ ' 23/4 +
3

2
(z − zc) , (H13)

and thus that

mc '
1

2
+
z − zc
27/4

. (H14)

Finally, to investigate the large-z behavior of y∗, we use
express y∗ in terms of the variable φ2, using Eq. (H6).
Using the asymptotics of φ2 for large z, given in Eq.
(D5), we obtain

y∗ ' z − 2z−1/3 , (H15)

and, using mc = y∗/z, we finally find that, for large z

mc ' 1− 2z−4/3 , (H16)

as given in the second line of Eq. (93).

Appendix I: Shape of the condensate

In Section IV we have shown that for z > zc the con-
densate appears as a bump in the marginal probability

p(x|X) of the single displacement x conditioned on the
total displacement X. We have also shown that the con-
densate is located in the proximity of x = y∗N3/4, where
the function p(x|X) can be approximated as

p(x|X) ' pcond(x− y∗N3/4, N) (I1)

∼ exp

[
−1

2
ψ′′z (y∗)

(x− y∗N3/4)2

N

]
,

where y∗ is given in Eq. (H11) and ψ′′z (y∗) is given in Eq.
(H5). The goal of this appendix is to compute the full
distribution pcond(y,N) (and not only the exponential
part given above). Knowing the full expression of the
function pcond(y,N) is useful because the integral∫ ∞

−∞
dy pcond(y,N) (I2)

is the probability that a specific displacement among
x1 , . . . , xN becomes the condensate. In the presence of a
single condensate one expects this probability to be 1/N .

Our starting point is the exact expression in Eq. (80),
which reads

p(x|X) = P(x)
P (X − x,N − 1)

P (X,N)
. (I3)

We are interested in the regime where x = yN3/4 and
X = zN3/4, the variables y and z being of order one.
Note that the function P (X,N) has different expressions
below and above the transition. Since z > zc the term
P (X,N) is given by [see Eq. (C4)]

P (X,N) ' 1

−s2

√
−G′′z (s2)

N3/4e−
√
NGz(s2) . (I4)
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where

Gz(s2) = z s2 + s2
2 − 1

2s2
2
, (I5)

and

G′′z`(s2) = 2− 3

s2
4
< 0 . (I6)

We recall that the variable s2 is the largest negative so-
lution of the saddle point equation (C3) and that it is
related to the variable φ2 by s2 = −z−1/3φ2.

In Appendix H we have shown that the condensate is
located at y = y∗ and that y∗ > z − zc, thus P (X −
x,N − 1) is given by the Gaussian weight (see Eq. (63))

P (X − x,N − 1) ' 1

2
√
πN

e−
√
N(z−y)2/4 . (I7)

Finally, we can approximate P(x), using the expansion
in Eq. (10), as

P(x = yN3/4) ≈ N−1/4

√
3 y1/3

e−
3
2

√
Ny2/3 . (I8)

Thus, plugging the expressions in Eqs. (I4), (I7), and
(I8), into Eq. (I3), we obtain

p(x|X) ' −s2

√
−G′′z (s2)√

3πy1/3

1

N3/2
(I9)

× exp

[
−
√
N

(
3

2
y2/3 + (z − y)2/4−Gz(s2)

)]
.

To investigate the shape of the condensate, we now
expand the expression (I10) around y∗, the location of the

condensate. Thus, setting x = N3/4(y∗+wN−1/4) (with
w of order one) and expanding for large N we obtain

p(x|X) ' pcond(
√
Nw,N) =

− s2

√
−G′′z (s2)

2
√

3πy∗1/3
(I10)

× 1

N3/2
exp

[
−1

2
ψ′′z (y∗)w2

]
,

where ψ′′z (y) is given in Eq. (H5).
We can now compute the integral of the condensate dis-

tribution pcond(x,N). Using the expression in Eq. (I10)
with w = N−1/2(x−N3/4y) we obtain∫ ∞

−∞
dx pcond(x,N) =

1√
6

−s2

√
−G′′z (s2)

y∗1/3
√
ψ′′z (y∗)

1

N
. (I11)

It is useful to write the right-hand side of this equationd
in terms of the variable φ2, defined in Appendix C as
the smallest positive root of Eq. (D3). Indeed, using the
relations y∗ = zφ2

−3 and s2 = −z−1/3φ2, we obtain∫ ∞
−∞

dx pcond(x,N) =
1√
6
z−2/3φ2

2

√
−G′′z (−z−1/3φ2)√
ψ′′z (zφ2

−3)

1

N
.

(I12)
Using the expressions for G′′z (s) and ψ′′z (s), given in Eqs.
(I6) and (H5), we obtain∫ ∞
−∞

dx pcond(x,N) =
1√
6

√
3− 2z−4/3φ2

4√
1/2− z−4/3φ2

4/3

1

N
=

1

N
,

(I13)
as anticipated in Eq. (100). This result implies that the
condensate is localized in just one of the displacements
x1 , . . . , xN .

[1] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1,
323 (2010).
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