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Abstract: We present a compact Baker–Campbell–Hausdorff–Dynkin formula for

the composition of Lorentz transformations eσi in the spin representation (a.k.a.

Lorentz rotors) in terms of their generators σi:

ln(eσ1eσ2) = tanh−1
(

tanhσ1 + tanhσ2 + 1
2
[tanhσ1, tanhσ2]

1 + 1
2
{tanhσ1, tanhσ2}

)
This formula is general to geometric algebras (a.k.a. real Clifford algebras) of dimen-

sion ≤ 4, naturally generalising Rodrigues’ formula for rotations in R3. In particular,

it applies to Lorentz rotors within the framework of Hestenes’ spacetime algebra, and

provides an efficient method for composing Lorentz generators. Computer implemen-

tations are possible with a complex 2× 2 matrix representation realised by the Pauli

spin matrices. The formula is applied to the composition of relativistic 3-velocities

yielding simple expressions for the resulting boost and the concomitant Wigner angle.
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1 Introduction

In studying proper Lorentz transformations, it is often easier to represent them in

terms of their generators σi belonging to the Lorentzian Lie algebra so(1, 3). A

fundamental question is how Lorentz transformations compose in terms of these

generators: “given σ1 and σ2, what is σ3 such that eσ1eσ2 = eσ3?” This is useful

theoretically and in practical applications, where representing transformations in

terms of their generators is cheaper. One may use the Baker–Campbell–Hausdorff–

Dynkin (BCHD) formula σ1 } σ2 := ln(eσ1eσ2) which is well studied in general Lie

theory [1]. However, the general BCHD formula

a} b = a+ b+
1

2
[a, b] +

1

12
[a, [a, b]] +

1

12
[[a, b], b] + · · · (1.1)

involves an infinite series of nested commutators and so is not immediately of prac-

tical use for the study of Lorentz transformations. Some closed-form expressions

for (1.1) under the 2-form representation of so(1, 3) have been found [2, 3], but the

expressions are complicated and do not clearly reduce to well-known formulae in, for

example, the special cases of pure rotations or pure boosts.

We present a relatively simple closed-form BCHD formula for orthogonal trans-

formations in any space of dimension ≤ 4 within the framework of geometric algebra.

In the case of Lorentzian spacetime, we point out how the 2×2 complex linear repre-

sentation enabled by the Pauli spin matrices provides an efficient method to numer-

ically or symbolically compose Lorentz transformations in terms of their generators.

The formula is of sufficient simplicity to be of pedagogical interest, easily yielding

standard results for the composition of relativistic 3-velocities and the associated

Wigner angle [4–6].

1.1 Geometric algebra: Historical context and motivation

The basic ingredient of geometry in the context of classical physics and special rel-

ativity is a real vector space V = Rn representing a (local) frame in physical space.

This space is equipped with a (possibly indefinite) vector inner product, or metric1

η(u,v) ≡ 〈u,v〉 ≡ ηab u
a vb ∈ R (1.2)

which gives rise to notions like length and angle. Denote by Rp,q the real (p + q)-

dimensional vector space of signature2 (p, q). The isometries of Rp,q taken together

form the orthogonal groups SO(p, q) and describe transformations between inertial

1Mathematically, a symmetric bilinear form.

2That is, with metric η ∼= diag(

p︷ ︸︸ ︷
+1, · · ·+ 1,

q︷ ︸︸ ︷
−1, · · · ,−1) in the standard basis. We shall not

consider degenerate signatures, although these find use in computer graphics as projective geometric

algebras [7, 8] and in areas of general relativity involving light-like hypersurfaces [9, 10].
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observers in that space. These groups (along with their Lie algebras so(p, q), asso-

ciated spin groups Spin(p, q) and linear representations) are central objects of study

in relativistic and quantum physics.

Historically, there was tension regarding the best algebraic framework in which

to express these geometric objects. The vector algebra “war” of 1890–1945 saw

Hamilton’s quaternions H, once hailed as the optimal language for describing R3

rotations, lose popularity in favour of Gibbs’ 3-vectors. For their elegant handling of

R3 rotations, many authors have tried coercing quaternions into R1,3 for application

to special relativity [11–13]. This has been done in various ways, usually by complex-

ifying H into an eight-dimensional algebra C ⊗ H and then restricting the number

of degrees of freedom as seen fit [4, 14]. However, it is fair to say that quaternionic

formulations of special relativity never gained notable traction. Today, the physics

community is most familiar with tensor calculus, differential forms and the Dirac γ-

matrix formalism, and has relatively little to do with quaternions or quaternion-like

algebras [15, 16].

Arguably, this outcome of history is unfortunate, because both approaches —

tensorial and quaternionic — possess some advantages over the other. While quat-

ernionic algebras describe rotations with maximal efficiency, they are clouded by a

history of inconsistent interpretations and odd notational choices. For instance, a no-

table defect in Hamilton’s original presentation of his quaternions was that, because

they naturally represent rotation operators, pure quaternions are actually bivectors

(i.e., “axial” vectors or “pseudovectors”) rather than true (“polar”) vectors. This

leads to a mysterious negative Pythagorean norm and makes the interpretation of

pure quaternions as R3 vectors misleading [15]. On the other hand, while the usual

tensor formalisms represent vectors, bivectors, and general tensors with great ease,

their explicit algebraic description of rotations is prohibitively cumbersome.

It appears that geometric algebra, being a unified language for both vectorial

objects and rotation operators, provides a comprehensive framework for geometry

in physics [15, 17–21]. Geometric algebra intrinsically describes rotations as rotors

which exist in the spin representation, leading to a great simplification of formulae

involving rotations, and in particular, to a useful geometric BCHD formula.

1.2 Notations and terminologies in geometric algebra

A self-contained primer on geometric algebra is given in appendix A. See also [17, 19,

22] for introductions aimed at a physics audience. We mostly adopt the notations

of [17], denoting by G(V, η) ≡ G(p, q) the geometric algebra (a.k.a. the real Clifford

algebra) over a real vector space V of dimension p + q equipped with a metric η of

signature (p, q). Denote the subspace of grade k by Gk(p, q), and the even sub-algebra

by G+(p, q) ≡
⊕

k G2k(p, q).
Generic elements of G(p, q) are called multivectors, and homogeneous multivec-

tors of a fixed grade k are called k-vectors. Write the grade k projection of a as
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〈a〉k. Grade one vectors are denoted in boldface, ‘v’; and even multivectors (usu-

ally rotors) are in script, ‘R’. Finally, a multivector A which is a sum of k-vectors

for k ∈ K is called a K-multivector (e.g., the sum of a scalar and a k-vector is a

{0, k}-multivector).

We denote by ã the reverse of a (where the order of the geometric product is

reversed, as in ãb = b̃ã), and the volume element in n dimensions by i. In G(p, q)

generally, i2 = ±1, but in Euclidean 3-space G(3) and in spacetime G(1, 3), the

pseudoscalar satisfies i2 = −1 as suggested by its symbol.

1.3 Bivectors, rotors and Lorentz transformations

It is worth noting the relationship between orthogonal transformations of a vector

space and their analogous description as rotors, which belong to the double-cover

of the orthogonal group (see [17, § 11.3] and [19, 20].) The advantage of this addi-

tional formalism is hopefully clear: It leads to an elegant and unified3 treatment of

generalised rotations, including Lorentz transformations.

An orthogonal transformation in n dimensions may be achieved by the compo-

sition of at most n reflections.4 In geometric algebra, a multivector A ∈ G(p, q) is

reflected across the vector v by the map

A 7→ − vAv (1.3)

where v2 = ±1. A parity-preserving orthogonal transformation R ∈ SO(p, q) is

therefore achieved by an even number of reflections (1.3), resulting in a double-sided

transformation

R : A 7→ RAR̃ (1.4)

where R = v1v2 · · ·v2k ∈ G+(p, q) is a multivector product of vectors satisfying

RR̃ = ±1. For concreteness, the matrix components of R with respect to a basis

{ea} may be obtained from the rotor by Ra
b = ηac

〈
ec,RebR̃

〉
where ηab = 〈ea, eb〉

raises and lowers indices.

Under the geometric product, these even multivector products form the spin

group

Spin(p, q) :=
{
R ∈ G+(p, q) | RR̃ = ±1

}
� SO(p, q). (1.5)

3Rotors are ‘elegant’ because: they are always of the form ±eσ for a bivector σ carrying clear

geometric meaning [17, § 11.3]; their description of rotations is free of gimbal lock, and; they can

always be interpolated without ambiguity [23]. The formalism is ‘unified’ because rotors: eliminate

the need for special treatment of spinors [20]; are general to a space of any dimension or signature,

and; act on objects of all grades via the single transformation law (1.4). Of mathematical signifi-

cance: any finite Lie group is realised as a rotor group, and every Lie algebra as a set of bivectors

[24].
4This is the Cartan–Dieudonné theorem [25].
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To any transformation R ∈ SO(p, q), there are exactly two multivectors of Spin(p, q)

which generate R under (1.4), namely +R and −R, making the spin group a double

cover of SO(p, q), signified by Spin(p, q) � SO(p, q). The even-dimensional lin-

ear representations of Spin(p, q) map to linear representations of SO(p, q), while

odd-dimensional representations map to projective representations of SO(p, q) (or as

commonly known in physics, the spinorial representations). Thus, all the tensorial

and spinorial transformation laws utilised in physics are realised by the represen-

tation theory of multivectors in the spin group. When dealing with non-spinorial

vector representations of SO(p, q), the overall sign of a rotor is redundant because it

does not affect the associated orthogonal transformation.

The further restriction thatRR̃ = +1 defines the identity-connected component5

of the spin group, called the rotor group

Spin+(p, q) :=
{
R ∈ G+(p, q) | RR̃ = +1

}
� SO+(p, q), (1.6)

whose elements R are called rotors. In Euclidean spaces, SO(n) is connected, and so

there is no distinction between the spin and rotor groups — but in mixed signature

spaces, Spin(p, q) = Spin+(p, q) × Z2. All rotors of Spin+(p, q) are of the form

R = ±eσ for some bivector generator σ ∈ G2(p, q) [17, § 11.3.3]. Indeed, the subspace

of bivectors G2(p, q) forms a Lie algebra under the commutator, with the exponential

map σ 7→ eσ sending bivectors to rotors in Spin+(p, q). This Lie algebra is isomorphic

to the Lie algebra so(p, q) of the (special) orthogonal group. Thus, the Lie algebraic

description of generalised rotations by their generators is embedded in the bivector

subspace G2(p, q) of the unified geometric algebra.

Conveniently, for (anti-)Euclidean spaces (where either p or q is zero) and the

special case of Minkowski spacetime {p, q} = {1, 3}, every rotor R ∈ Spin+(p, q) is of

the formR = eσ (see § 3.2). We shall keep our main result general to ≤ 4 dimensions,

but with emphasis on the case of Minkowski spacetime R1,3. In this context, proper

orthochronous Lorentz transformations Λ ∈ SO+(1, 3) are represented by rotors eσ ∈
Spin+(1, 3), which are in turn generated by spacetime bivectors σ ∈ G2(1, 3).

2 A Geometric Baker–Campbell–Hausdorff–Dynkin Formula

Suppose σ ∈ G2(p, q) is a bivector in a geometric algebra of dimension p+ q ≤ 4. By

their definitions as formal power series, we have eσ = coshσ + sinhσ, where ‘cosh’

involves even powers of σ and ‘sinh’ odd powers. For convenience, define the linear

projections onto self-reverse and anti-self-reverse parts respectively as

{{A}} =
1

2

(
A+ Ã

)
and [[A]] =

1

2

(
A− Ã

)
. (2.1)

5Except for the degenerate (1 + 1)-dimensional case, p = q = 1 [17].
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Since any bivector obeys σ̃ = −σ, it follows that ẽσ = e−σ = coshσ − sinhσ.

Using the notation (2.1), the self-reverse and anti-self-reverse projections of eσ are

{{eσ}} = coshσ and [[eσ]] = sinhσ, respectively. Furthermore, these two projections

commute, and so

[[eσ]]{{eσ}}−1 = {{eσ}}−1[[eσ]] = tanhσ (2.2)

which leads to an expression for the logarithm of any rotor R = ±eσ.

σ = ln(R) = tanh−1
(

[[R]]

{{R}}

)
(2.3)

Note that the overall sign of the rotor is not recovered, and ln(+R) = ln(−R)

according to (2.3). Since ±R both represent the same transformation R ∈ SO+(p, q),

this does not affect vector representations, but becomes important when considering

spinors. The exact sign can be recovered by considering the relative signs of [[R]] and

{{R}}, as in [23, § 5.3].

From this we may derive a BCHD formula by substituting R = eσ1eσ2 for any

two bivectors σi ∈ G2(p, q). Using the shorthand Ci := coshσi and Si := sinhσi,

the composite rotor is

R = eσ1eσ2 = (C1 + S1)(C2 + S2) = C1C2 + S1C2 + C1S2 + S1S2. (2.4)

For p + q < 4, any even function of a bivector (such as Ci) is a scalar, while for

p + q = 4 the result is a {0, 4}-multivector α + βi. In either case, the Ci commute

with even multivectors; [Ci,Cj] = [Ci, Sj] = 0. Therefore, the self-reverse and anti-

self-reverse parts are

{{R}} = C1C2 +
1

2
{S1, S2} and [[R]] = S1C2 + C1S2 +

1

2
[S1, S2]. (2.5)

Hence, from (2.3) we obtain an explicit BCHD formula

σ1 } σ2 = tanh−1
(

T1 + T2 + 1
2
[T1,T2]

1 + 1
2
{T1,T2}

)
(2.6)

where we abbreviate Ti := tanhσi.

We may wish to express (2.6) in terms of geometrically significant products

instead of (anti-)commutators. The geometric product of two bivectors a and b is

generally a {0, 2, 4}-multivector

ab = 〈ab〉0 + 〈ab〉2 + 〈ab〉4 . (2.7)

Employing the notation of Hestenes [17], this may be written as

ab = a · b+ a× b+ a ∧ b, (2.8)
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where here a × b = 〈ab〉2 = 1
2
(ab − ba) is the bivector commutator product, and the

scalar inner product a · b = 〈ab〉0 is extended to bivectors. We may then write a

BCHD formula in which the grade of each term is explicit:

σ1 } σ2 = tanh−1
(

T1 + T2 + T1 × T2

1 + T1 · T2 + T1 ∧ T2

)
(2.9)

The numerator is a bivector, while the denominator contains scalar (T1 · T2) and

4-vector (T1 ∧ T2) terms.

2.1 Specialisation in low dimensions

It is illustrative to see how the BCHD formula (2.6) reduces in the two- and three-

dimensional special cases.

2.1.1 2D: The Euclidean and hyperbolic plane

In two dimensions, all bivectors are scalar multiples of i = e1e2, and we recover the

trivial case eaeb = ea+b. Specifically, in the Euclidean G(2) plane (or anti-Euclidean

G(0, 2) plane) we have i2 = −1, and equation (2.6) simplifies by way of the tangent

angle addition identity

tan−1
(

tan θ1 + tan θ1
1− tan θ1 tan θ2

)
= θ1 + θ2. (2.10)

This identity encodes how angles add when given as the gradients of lines; m = tan θ.

Similarly, in the hyperbolic plane G(1, 1) with basis {e+, e−}, e2± = ±1, the

pseudoscalar i = e+e− generates hyperbolic rotations eξi = cosh ξ + i sinh ξ owing to

the fact that i2 = −e2+e2− = +1. Then, formula (2.6) simplifies by the hyperbolic

angle addition identity

tanh−1
(

tanh ξ1 + tanh ξ1
1 + tanh ξ1 tanh ξ2

)
= ξ1 + ξ2 (2.11)

which encodes how collinear rapidities add when given as relativistic velocities; β =

tanh ξ.

2.1.2 3D: Rodrigues’ rotation formula

Less trivially, a rotation in R3 by θ may be represented by its Rodrigues vector

r = r̂ tan θ
2

pointing along the axis of rotation. The composition of two rotations is

then succinctly encoded in Rodrigues’ rotation formula

r12 =
r1 + r2 − r1 × r2

1− r1 · r2
(2.12)

involving the standard vector dot and cross products.
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We can easily derive (2.12) as a special case of (2.9) as follows: Let σ1, σ2 ∈ G2(3)

be two bivectors defining the rotors eσ1 and eσ2 in three dimensions. In G(3), the

only 4-vector is trivial, so σ1 ∧ σ2 = 0 and for the composite rotor eσ3 := eσ1eσ2 we

have

σ3 = σ1 } σ2 = tanh−1
(

tanhσ1 + tanhσ2 + tanhσ1 × tanhσ2

1 + tanhσ1 · tanhσ2

)
(2.13)

where a× b is the commutator product of bivectors as in (2.8), not the vector cross

product. Observe that Euclidean bivectors σi ∈ G2(3) have negative square (e.g.,

(e1e2)
2 = −e21e22 = −1) and that they are related to their dual normal vectors ui

by σi = uii. Therefore, by rewriting tanhσi = tanh(uii) = (tanui)i, we obtain the

formula in terms of plain vectors and the vector cross product.

u12 = (u1i} u2i)i
−1 = tan−1

(
tanu1 + tanu2 − tanu1 × tanu2

1− tanu1 · tanu2

)
(2.14)

Indeed, a bivector σi = uii generates an R3 rotation through an angle θ = 2‖ui‖
via the double-sided transformation law a 7→ euiae−ui. Hence, tanui = v̂i tan θ

2
≡ ri

are exactly the half-angle Rodrigues vectors and we recover (2.12). The necessity of

the half-angle in the Rodrigues vectors reflects the fact that they actually generate

rotors, not rotations directly, and so belong in the underlying spin representation of

SO(3) — a fact made clearer in the context of geometric algebra.

2.2 In higher dimensions

In fewer than four dimensions, the 4-vector T1 ∧ T2 = 0 appearing in the geometric

BCHD formula (2.9) is trivial, and so (2.6) involves only bivector addition and scalar

multiplication. In four dimensions, there is one linearly independent 4-vector — the

pseudoscalar — which necessarily commutes with all even multivectors. However,

in more than four dimensions, 4-vectors do not necessarily commute with bivectors,

and the assumptions underlying (2.5) and hence the main result (2.6) fail.

On the face of it, the BCHD formula (2.6) in the four-dimensional case appears

deceptively simple — it hides complexity in the calculation of the trigonometric

functions

tanhσi = σ − 1

3
σ3 +

2

15
σ5 + · · · and tanh−1 σi = σ +

1

3
σ3 +

1

5
σ5 + · · · (2.15)

of arbitrary bivectors. In fewer dimensions, σ2 is a scalar, and so these power se-

ries are as easy to compute as their real equivalents (if Nσ ∈ R satisfies σ2 = Nσ
2

then tanhσ = (tanhNσ)Nσ
−1σ). But in four dimensions, σ2 is in general a {0, 4}-

multivector (by lemma 1 of appendix A) and the power series (2.15) are more com-

plicated. However, if σ2 6= 0 has a square root Nσ = α+βi in the scalar-pseudoscalar

plane, then one has σ = Nσσ̂ = σ̂Nσ where σ̂ := σ/Nσ is ‘normalized’ so that σ̂2 = 1.
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With a bivector σ = Nσσ̂ expressed in this form, the valuation of a formal power

series f(z) =
∑∞

n=1 fnz
n simplifies to

(f even) f(σ) =
∞∑
n=1

f2nσ
2n =

∞∑
n=1

f2nNσ
2n = f(Nσ), (2.16a)

(f odd) f(σ) =
∞∑
n=1

f2n+1σ
2n+1 =

∞∑
n=1

f2nNσ
2n+1σ̂ = f(Nσ)σ̂. (2.16b)

This is especially useful in the case of Minkowski spacetime G(1, 3) because the scalar-

pseudoscalar plane G0,4(1, 3) ∼= C is isomorphic to the complex plane, and therefore

a square root of σ2 always exists. Furthermore, complex square roots and complex

trigonometric functions are easily computable. From now on, we focus on the special

case of Minkowski spacetime, considering its practical and theoretical application.

3 The Algebra of Spacetime

Spacetime algebra (STA) is the name given to the geometric algebra of Minkowski

space, G(R4, η) ≡ G(1, 3), where η = ± diag(−1,+1,+1,+1). Introductory material

on the STA can be found in [21, 22, 26].

Denote the standard vector basis by {γµ}, where Greek indices run over {0, 1, 2, 3}.
(This is a deliberate allusion to the Dirac γ-matrices, whose algebra is isomorphic

to the STA — however, the γµ of STA are real, genuine spacetime vectors.) A basis

for the entire STA is then

scalars

{1} ∪
vectors

{γ0,γi} ∪
bivectors{

γ0γi,γjγk
}
∪

trivectors{
γ0γjγk,γ1γ2γ3

}
∪

pseudoscalar

{i := γ0γ1γ2γ3}

where Latin indices range spacelike components, {1, 2, 3}. Multivectors constructed

in a basis-invariant manner are manifestly Lorentz-invariant quantities.

The right-handed unit pseudoscalar i represents an oriented volume element and

satisfies i2 = −1. This is one way in which complex structure arises within the

real STA. The scalar–pseudoscalar plane G0,4(1, 3) = spanR {1, i} is algebraically

isomorphic to the complex plane C, and so for the sake of computation, {0, 4}-
multivectors may be simply regarded as complex numbers. In particular, we define

the principal root
√
a of a {0, 4}-multivector a ∈ G0,4(1, 3) in the same way as it is

defined in C with a branch cut at θ = π. It is worth emphasising that there are many

square roots of −1 in the spacetime algebra, with distinct geometrical meanings. (For

instance, a spacelike bivector (γiγj)
2 = −1 represents a directed spacelike plane.)

We have chosen to define “
√

” in such a way that
√
−1 = i is singled out as the

principal root, as this proves to be useful.6

6Especially in electromagnetic theory, the imaginary unit i often has the geometrical interpreta-

tion of the pseudoscalar i, as in equation (3.1), where both i and i play a role similar to the Hodge

dual [26]. In these cases, i is “the” principal root of −1.

– 9 –



3.1 The space/time split

While we actually live in R1,3 spacetime, to any particular observer it appears that

space is R3 with a separate scalar time parameter. This is reflected in the fact

that G+(1, 3) and G(3) are isomorphic7 — in fact there is a distinct isomorphism

for each distinct inertial frame’s observed spacetime split. A space/time split en-

ables spacetime multivectors to be represented in a frame-dependent manner as G(3)

multivectors, and is performed as follows.

Suppose K is an inertial observer, and for simplicity choose the standard basis{
γµ
}

so that γ0 is the instantaneous velocity of the K frame. There is an associated

set of relative vectors γiγ0
∼= σi which form a vector basis for G(3) specific to

the K frame.8 For example, with respect to the K frame, a spacetime bivector

F = F µνγµγν may be separated into timelike F i0 and spacelike F ij components and

viewed as a {1, 2}-multivector in G(3).

F = F i0γiγ0 + F ijγiγj
∼= Eiσi +Biiσi = E + iB (3.1)

Note that γiγj = (γiγ0)(γjγ0)
∼= σiσj = εij

kiσk where i = σ1σ2σ3 also denotes

the G(3) pseudoscalar.9 This is precisely the frame-dependent decomposition of a

spacetime bivector (or “2-form”) into two R3 vectors familiar from electromagnetic

theory.

A proper orthochronous Lorentz transformation Λ ∈ SO+(1, 3) is represented

by a rotor eσ ∈ Spin+(1, 3), which is in turn generated by a spacetime bivector

σ ∈ G2(1, 3). The bivector σ ∈ G2(1, 3) in the form of (3.1) is

σ =
1

2
(ξiγi + iθiγi) ∧ γ0

∼=
1

2
(ξ + iθ), (3.2)

where ξi and θi are triplets of values representing the three rapidities and three

angles which characterise the Lorentz transformation in the K frame. The right-

most equality shows a space/time split into a rapidity vector ξ ∈ R3 and rotation

bivector iθ.

The geometric BCHD formula (2.6) as written only involves the geometric prod-

uct, and so lifts into G(3) identically. (However, (2.9) does not translate directly,

since the grade-dependent products are not preserved by the isomorphism.)

7An isomorphism of geometric algebras is a linear map ϕ respecting the geometric product

ϕ(ab) = ϕ(a)ϕ(b). Other operations (such as reversion and grade projection) are not necessarily

preserved.
8Explicitly, there is an isomorphism G+(1, 3) ∼= G(3) constructed in this way for each timelike

vector v ∈ G1(1, 3). Each isomorphism ‘splits’ even spacetime multivectors into time and space

components as observed in the inertial frame with velocity v, providing an efficient, purely algebraic

method for switching between inertial frames [22]. Read “A ∼= B” with the understanding that

A ∈ G+(1, 3) and B ∈ G(3) are equal under such an isomorphism.
9We temporarily assume γ2

0 = 1 for illustration, but of course either metric signature is suitable.
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3.2 The invariant bivector decomposition

Spacetime bivectors σ ∈ G2(1, 3) may always be normalized, in the sense that there

exists some Nσ ∈ G0,4(1, 3) such that

σ = Nσσ̂ = σ̂Nσ where σ̂2 = 1, (3.3)

except in the case σ2 = 0, where we let σ̂2 = 0 instead. This is because the square

of a spacetime bivector σ2 = α + iβ = ρ2e2iφ always possesses a {0, 4}-multivector

principal root

Nσ :=
√
σ2 = ρeiφ, (3.4)

assuming without loss of generality that ρ > 0 and φ ∈ (−π/2, π/2]. The invariant

bivector decomposition

σ = ρeiφσ̂ = (ρ cosφ)σ̂︸ ︷︷ ︸
σ+

+ (ρ sinφ)iσ̂︸ ︷︷ ︸
σ−

(3.5)

also defined in [17, § 5.4.1] and [22] separates σ into commuting parts [σ+, σ−] = 0

each of which satisfy ±σ±2 > 0.

This decomposition makes clear the non-injectivity of the exponential map. For

instance, each bivector in the family σn = λ+σ̂ + (λ− + nπ)iσ̂ generates the same

Lorentz rotor up to an overall sign,

eσn = eσ0enπiσ̂ = (−1)neσ0 , (3.6)

and all such rotors correspond to the same Lorentz transformation of vectors. The

equivalence 3.6 shows that every Lorentz rotor ±eσ0 is equal to a pure bivector

exponential eσn with a shifted rotational part λ− 7→ λ− + nπ. The BCHD formula

(2.6) discards overall sign, so assuming |λ−| ≤ π then ln(eσn) = σ0 using the standard

branch cut
∣∣I(tanh−1 z

)∣∣ ≤ π
2
.

3.3 The BCHD formula in Minkowski spacetime

Because the geometric BCHD formula is constructed from sums and products of

bivectors, it involves only even spacetime multivectors. Therefore, in numerical ap-

plications, it is not necessary to represent the full STA, but only the even sub-algebra

G+(1, 3) ∼= G(3). The algebra of physical space G(3) admits a faithful complex linear

representation by the Pauli spin matrices [19, 22, 27]. The real dimension of both

C2×2 and G(3) is eight, so there is no redundancy in the Pauli representation, so it

is convenient for computer implementation.

An even G+(1, 3) multivector — or equivalently, a general G(3) multivector —

may be parametrised by four complex scalars qµ = R(qµ) + iI(qµ) ∈ C as

A = R
(
q0
)

+ R
(
qi
)
σi + I

(
qi
)
iσi + I

(
q0
)
i, (3.7)

– 11 –



where the σi may be read both as spacetime bivectors σi ≡ γ0γi ∈ G+(1, 3) or as

basis vectors of G(3) under a space/time split. The Pauli matrices σi ∈ C2×2 form a

linear representation of G(3) by the association σi ≡ σi. Explicitly, identifying

σ1 ≡
[

0 +1

+1 0

]
σ2 ≡

[
0 −i

+i 0

]
σ3 ≡

[
+1 0

0 −1

]
(3.8)

along with 1 ≡ I and i ≡ iI where I is the identity matrix, we obtain a representation

of the multivector A by a 2× 2 Hermitian matrix:

A ≡
[
q0 + q3 q1 − iq2
q1 + iq2 q0 − q3

]
. (3.9)

A proper Lorentz transformation Λ ∈ SO+(1, 3) is determined in the K frame by

a vector rapidity ξ ∈ R3 and axis-angle vector θ ∈ R3. The standard 4 × 4 matrix

representation of Λ is obtained as the exponential of the generator

[
0 ξᵀ

ξ εijkθ
k

]
=


0 ξ1 ξ2 ξ3

ξ1 0 +θ3 −θ2
ξ2 −θ3 0 +θ1

ξ3 +θ2 −θ1 0

 ∈ so(1, 3). (3.10)

In the spin representation, the transformation Λ corresponds to a rotor L = eσ, and

the generating bivector (3.2) may be expressed via (3.9) as the traceless complex

matrix

Σ = qkσk =

[
+q3 q1 − iq2

q1 + iq2 −q3

]
, (3.11)

where qk := 1
2
(ξk + iθk) ∈ C. Note that, since the square of a spacetime bivector is a

{0, 4}-multivector, its representative matrix Σ squares to a complex scalar multiple

of the identity.

Given two generators σi with matrix representations Σi, the geometric BCHD

formula (2.6) reads in terms of matrix operations,

Σ3 := Σ1 } Σ2 = tanh−1
(

T1 + T2 + A

I + S

)
, (3.12)

where Ti := tanh Σi. To efficiently compute Ti, make use of the fact that Σ2
i = λ2i I

where λi ∈ C and evaluate Ti = (tanhλi)λ
−1
i Σi. In the null case Σ2

i = λ = 0, we

have trivially tanh Σi = Σi = tanh−1 Σi.

The commutator A := 1
2
[T1,T2] and anti-commutator S := 1

2
{T1,T2} terms may

be efficiently computed by separating the single matrix product Π := T1T2 = A + S

into off-diagonal and diagonal components, respectively; i.e.,

Aij = (1− δij)Πij and Sij = δijΠij. (3.13)
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The numerator of (3.12) is therefore a matrix with zeros on the diagonal, and the

denominator is a complex scalar multiple of the identity, so the argument of tanh−1

(call it M) is of the form (3.11). Computing tanh−1 M again simply amounts to

Σ3 = tanh−1 M = (tanh−1 λ)λ−1M where M2 = λ2I. The Lorentz generator in

the standard vector representation (3.10) can then be recovered from Σ3 with the

relations ξk = 2R
(
qk
)

and θk = 2I
(
qk
)
, and the final SO+(1, 3) vector transformation

is its 4× 4 matrix exponential.

4 Composition of Relativistic 3-velocities and the Wigner

Angle

As an example of its theoretical utility, we shall use the geometric BCHD formula

to derive the composition law for arbitrary relativistic 3-velocities. The innocuous

problem of composing relativistic velocities has been called “paradoxical” [5, 28, 29],

owing in part to the fact that irrotational boosts are not closed under composition,

and that it is difficult to make sense of this additional complexity by representing the

general composition in explicit matrix form. Of course, there is no paradox, and the

full description of the composition of boosts is pedagogical as it highlights aspects

of special relativity which differ from common intuition.

Given an inertial frame K, we may speak of pure rotations or pure boosts relative

to the K frame (a pure rotation or pure boost relative to K is not pure in all other

frames). The restriction of the BCHD formula to pure boosts is not as simple as the

restriction to rotations (2.12), because pure boosts do not form a closed subgroup of

SO+(1, 3) like pure rotations do. Instead, the composition of two pure boosts Bi is a

pure boost composed with a pure rotation (or vice versa),

B1B2 = BR. (4.1)

The direction of the boost B lies within the plane defined by the boost directions of

B1 and B2, and R is a rotation through this plane by the Wigner angle [5]. Applying

(2.6) to this case immediately yields formulae for the resulting boost and rotation.

These results are isomorphic to those in [4] which are formulated using complexified

quaternions.

For ease of algebra, we conduct the following analysis under a space/time split

with respect to the K frame. Under this split, a pure boost B is generated by an R3

vector ξ
2
, and a pure rotation R is generated by an R3 bivector θ

2
r̂. Here, ξ ∈ G1(3)

is the vector rapidity, related to the velocity by v/c = β = tanh ξ, and the rotation

is through an angle θ in the plane spanned by the bivector r̂ ∈ G2(3). Equation (2.6)

with two pure boosts ξ1 and ξ2 is

tanh

(
ξ1
2
}
ξ2
2

)
=
w1 +w2 +w1 ∧w2

1 +w1 ·w2

(4.2)
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where wi := tanh ξi
2

are the relativistic half-velocities, also defined in [4, 14]. The

generator (4.2) has vector and bivector (namely w1 ∧w2) parts, indicating that the

Lorentz transformation it describes is indeed some combination of a boost and a

rotation.

Similarly, for an arbitrary pure boost and pure rotation, equation (2.6) is

tanh

(
ξ

2
}
θ

2
r̂

)
=
w + ρ+ 1

2
[w, ρ]

1 +w ∧ ρ
(4.3)

where ρ := tanh θr̂
2

= r̂ tan θ
2

is a bivector. In general, (4.3) has vector, bivector and

pseudoscalar parts (the commutator 1
2
[w, ρ] = 〈wρ〉1 +w ∧ ρ and the denominator

both have grade-three part w∧ρ). However, (4.2) and (4.3) are equal by supposition

of (4.1), and by comparing parts of equal grade, we deduce the pseudoscalar part

of (4.3) is zero. This enforces w ∧ ρ = 0, or equivalently, that w lies in the plane

defined by ρ — meaning the resulting boost lies within the plane of Wigner rotation

as expected. Hence, for a coplanar boost and rotation, (4.3) is simply

tanh

(
ξ

2
}
θ

2
r̂

)
= w + ρ+wρ. (4.4)

The term wρ = 〈wρ〉1 = −ρw is a vector orthogonal to w in the plane defined by ρ.

Equating the bivector parts of (4.2) and (4.4) determines the rotation

ρ =
w1 ∧w2

1 +w1 ·w2

, implying θ = 2 tan−1
(

w1w2 sinφ

1 + w1w2 cosφ

)
(4.5)

where φ is the angle between the two initial boosts (in the K frame). The angle θ is

precisely the Wigner angle. Equating the vector parts determines the boost

w =
w1 +w2

1 +w1 ·w2

(1 + ρ)−1, (4.6)

noting that wi and ρ do not commute. Substituting ρ leads to the remarkably

succinct composition law w = (w1 +w2)(1+w1w2)
−1 exhibited in [4], with the final

relativistic velocity being β = tanh ξ = tanh
(
2 tanh−1w

)
.

5 Conclusions

In geometric algebras of dimension p + q ≤ 4, orthogonal transformations a 7→
eσae−σ ∈ SO+(p, q) may be composed in terms of their generators using the geometric

BCHD formula (2.6), which satisfies

eσ1eσ2 = ±eσ1}σ2 . (5.1)

This holds for bivectors σi ∈ G2(p, q), generalizing Rodrigues’ formula — but also for

arbitrary {1, 2}-multivectors in G(3), by exploiting the space/time split G+(1, 3) ∼=
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G(3). Representing G(3) by 2×2 complex matrices results a computationally efficient

formula (3.12) for the composition of proper Lorentz transformations in terms of their

generators.

The benefit of adopting geometric algebra here is the utility of the double-cover

spin representation: the geometric BCHD formula is simpler than previous results

[2, 3] formulated in terms of 2-forms. It is sufficiently simple to be of theoretical

use: it easily reduces to well-known formulae in lower dimensions, and yields the

composition law [4] for relativistic 3-velocities and the associated Wigner angle [5, 14].

A Geometric Algebras in Physics

For any real vector space with a metric (V, η), there is a unique geometric algebra

G(V, η). “Geometric algebra” is a synonym for Clifford algebra Cl(V, q) in the case

that the vector space V is real and is provided with a quadratic form. The prescrip-

tion of a quadratic form10 q is equivalent to a choice of metric η, but the notion

of a metric is more common in physics (whereas the mathematical viewpoint often

starts with q). While for its pure mathematical study Clifford’s name is retained, the

name geometric algebra emphasising its rich geometric interpretation is preferred in

application to physics.

Succinctly put, G(V, η) is obtained by allowing vectors in V to be multiplied

freely to form objects of higher grade, modulo the identification

u2 = 〈u,u〉 = ηabu
aub ∈ R (A.1)

of the square of any vector with its scalar inner product. This rule completely

defines the geometric product which we denote by juxtaposition. The resulting 2n-

dimensional algebra is graded : as a vector space is isomorphic to the exterior algebra∧
(V ) with a

(
n
k

)
-dimensional subspace for each grade k. However, G(V, η) is a metric-

dependent generalisation of the exterior algebra (and is not usually defined on the

dual space V ∗ as p-forms are). Also, unlike
∧

(V ), objects of mixed grade in G(V, η)

play the extremely useful role of describing reflections and rotations in arbitrary

dimensions.

By expanding (u+ v)2 = 〈u+ v,u+ v〉, we immediately find

〈u,v〉 =
1

2
(uv + vu). (A.2)

So the symmetric part of a product of vectors is their inner product; a scalar, or

grade zero quantity. The antisymmetric part coincides with the alternating wedge

10A quadratic form q : V → R satisfies q(λu) = λ2q(u) and measures the (possibly negative)

squared norm of a vector. The associated metric satisfying 〈u,u〉 = q(u) is uniquely recovered from

〈u,v〉 = 1
2 (q(u+ v)− q(u)− q(v)).
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product familiar to exterior algebra (only now defined on vectors, not co-vectors)

u ∧ v =
1

2
(uv − vu). (A.3)

This is a grade 2 object, or bivector, dual to a 2-form. Therefore, for the geometric

product of vectors we have the famous relation

uv = 〈u,v〉+ u ∧ v (A.4)

and it follows that parallel vectors commute and orthogonal vectors anticommute.

We denote by G(p, q) the geometric algebra over V = Rp,q, which then admits

an orthonormal basis
{
e+1 , ..., e

+
p , e

−
1 , ..., e

−
q

}
with (e±i)

2
= ±1. A basis of the entire

algebra consists of

vectors or 1-blades ei, i ∈ {1, 2, . . . , n}
2-blades eiej = −ejei, i 6= j

...

k-blades ei1ei2 · · · eik = εj1j2···jkeij1eij2 · · · eijk
...

and so on up to the pseudoscalar i := e1e2 · · · en.

A k-vector is a sum of k-blades, and a k-blade is a k-vector which is expressible

as the wedge product of k vectors.11 A general element of the algebra (of uniform

or mixed grade) is called a (homogeneous or inhomogeneous) multivector. Finally, if

the non-zero parts of a multivector A have grade k ∈ K ⊆ N for some set of grades

K, we shall call A a K-multivector.

A.1 Fundamental dualities of a geometric algebra

Linear operations such as the matrix transpose or complex and hermitian conjugates

are useful because they preserve (or reverse) multiplication: they are (anti-)auto-

morphisms. Geometric algebras possess two distinguished automorphisms:

• Grade involution, ι. Reflection through the origin ι(u) = −u is an isometry and

so extends to an algebra automorphism by the requirement ι(ab) = ι(a)ι(b). Its

action on k-vectors is ι(a) = (−1)ka and is defined on multivectors by linearity.

• Reversion, ˜. The reverse flips the order of the geometric product, ãb =

b̃ã (making it an anti-automorphism) and is the identity on vectors, ũ = u.

Explicitly, if a is a k-blade, then ã = ska, where sk = εk···21 = (−1)
(k−1)k

2 = ±1

is the sign of the reverse permutation on k symbols.

11The simplest example of a 2-vector which is not a 2-blade is e1e2 + e3e4 6= u ∧ v.
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Grade involution fixes even-grade elements, which together form the even sub-algebra

G+(p, q) := {a ∈ G(p, q) | ι(a) = a}. (A.5)

The even sub-algebra is algebraically closed, and can generally be interpreted as the

rotation algebra for Rp,q. Elements which are their own reverse ã = a are sums of

blades of grade k ∈ {4n, 4n+ 1 | n ∈ N} = {0, 1, 4, 5, 8, 9, . . . } only.

These operations are useful in practice. In particular, the following result follows

easily from reasoning about grades.

Lemma 1. If A is a k-vector, then A2 is a 4N-multivector, i.e., a sum of blades of

grade {0, 4, 8, . . . } only.

Proof. The multivector a2 is its own reverse, since ã2 = (ã)2 = (±a)2 = a2, and

hence has parts of grade {4n, 4n+ 1 | n ∈ N}. Similarly, a2 is self-involutive, since

ι(a2) = ι(a)2 = (±a)2 = a2, and is thus of even grade. Therefore a2 is a {0, 4, 8, ...}-
multivector.

A.2 Relationships to other common algebras

Geometric algebra reproduces many of the useful algebraic structures found in physics.

Complex numbers are fit for describing SO(2) rotations; quaternions for SO(3) ro-

tations in R3; and work has been done with complexified quaternions C ⊗ H in

describing Lorentz transformations [4, 14]. All these algebras are isomorphic to an

even geometric sub-algebra

C ∼= G+(2), H ∼= G+(3), C⊗H ∼= G+(1, 3), (A.6)

where the role of conjugation is played by reversion. Common to all these isomor-

phisms is the identification of each “imaginary” unit with a unit bivector eiej. In 2d,

there is one linearly independent bivector, e1e2, and one imaginary unit, i. Indeed,

in 3d, there are
(
3
2

)
= 3 bivectors, and so three imaginary units {i, j,k} are needed.

The interpretation of a bivector is clear: it generates a rotation in the oriented

plane which it spans. That imaginary units are best interpreted as bivectors (or

“axial” vectors), and not as ordinary (“polar”) vectors, reveals some of the confusion

that surrounds the quaternions [15, 16]. It is only a happy (or misleading) coincidence

that in R3 vectors and bivectors can be interchanged—but not without sacrificing

proper transformation behaviour. This is also why the complex numbers do not

represent vectors in an isotropic12 way: C does not contain ordinary vectors; it is the

linear combination of one scalar 1 and one bivector i.

Enlarging G+(p, q) to the full algebra G(p, q) adds the missing polar 1-vectors

along with other objects of odd grade. Such an algebra describes vectors and ro-

tations in a unified and isotropic way. Physics has independently invented G(p, q)

12In a way that treats all directions on equal footing.
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in at least two instances in the form of the Pauli and Dirac matrix algebras. The

Pauli matrices {σ1, σ2, σ3}, satisfying {σi, σj} = 2δijI form a faithful complex linear

representation of G(3). Likewise, their relativistic counterpart the Dirac matrices

{γ0, γ1, γ2, γ3} are algebraically isomorphic to G(1, 3). In both cases, hermitian con-

jugation in the matrix algebra corresponds to reversion in the geometric algebra [17,

§ 5].
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