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We propose a static auxiliary field approximation to study the hybridization physics of Kondo
systems without the sign problem and use the mutual information to measure the intersite hybridiza-
tion correlations. Our method takes full account of the spatial fluctuations of the hybridization fields
at all orders and overcomes the artificial (first-order) phase transition predicted in the mean-field
approximation. When applied to the two-impurity Kondo model, it reveals a logarithmically diver-
gent amplitude mutual information near the so-called “Varma-Jones” fixed point and a large phase
mutual information manifesting the development of intersite phase coherence in the Kondo regime,
with observable influences on physical properties. These highlight the importance of hybridization
fluctuations and confirm the mutual information as a useful tool to explore the hybridization physics
in Kondo systems.

Correlation between subsystems plays a key role in
many-body quantum systems whose collective phenom-
ena cannot be viewed as a simple addition of microscopic
properties [1, 2]. The mutual information, a key concept
in the information theory, measures the statistical depen-
dency between two random variables and may be used to
probe the total amount of correlations between subsys-
tems [3, 4]. It has recently been introduced to identify
phase transitions without explicit knowledge of the bro-
ken symmetry and the order parameter [5–18], but the
concept has not been widely applied in strongly corre-
lated electronic systems.

The Kondo systems are arguably one of the most
well studied correlated systems. Theoretically, a pseud-
ofermion representation is often used for the impurity
spins and the underlying physics has been described by
an effective hybridization between pseudofermions and
conduction electrons [19–21]. However, most studies fo-
cus on the mean-field approximation [22–35] and ignore
fluctuations of the hybridization fields that may give rise
to important new physics as recently observed in ultrafast
optical pump-probe experiments [36]. The mean-field
theory has made false predictions such as an artificial
(first-order) phase transition in multi-impurity Kondo
systems [34, 35]. Efforts to take into account some ther-
mal and quantum fluctuations have led to some effective
low-energy theories but include only low order expan-
sions of the hybridization due to analytical difficulties
[37–43]. Numerical simulations [44–56] usually do not
directly probe the hybridization fields due to the sign
problem. A proper treatment of hybridization fluctua-
tions is lacking, which severely limits our exploration of
the richness of the hybridization physics.

In this work, we propose a static auxiliary field ap-
proximation to directly simulate the probabilistic distri-
bution of the hybridization fields beyond the mean-field

approach. We show that mutual information may be
used as a tool to reveal some important aspects of the
hybridization physics. The method allows us to capture
full spatial correlations of the hybridization fields using
the Monte Carlo sampling without the sign problem. As
an example, when applied to the two-impurity Kondo
model, it suppresses the artificial first-order phase tran-
sition, in good agreement with the exact numerical renor-
malization group (NRG) analysis [57–59]. We find that
the mutual information of the hybridization amplitude,
calculated using the recently developed neural estima-
tor, exhibits a logarithmic divergence with lowering tem-
perature near the so-called “Varma-Jones” fixed point,
while that of the phase adopts a finite value in the Kondo
regime but diminishes for large impurity distance, pro-
viding for the first time a measure of the intersite phase
coherence. These have important influences on physi-
cal properties, in particular near the critical point. Our
method can be easily extended to other models to provide
useful insight on their hybridization physics.

We start with the two-impurity Kondo model,

H =
∑

kσ

ǫkc
†
kσckσ + JK

2
∑

i=1

si · Si + JHS1 · S2, (1)

where ǫk is the conduction electron dispersion, JK and
JH are the Kondo and Heisenberg exchange interactions,
respectively, Si is the impurity spin located at Ri, and

si =
∑

αβ c
†
iα

~σαβ

2 ciβ is that of conduction electrons. The
model describes one of the simplest systems that fea-
ture strong electronic correlations and competition be-
tween different many-body ground states. In the mag-
netic limit (JH ≫ JK), the two impurities are locked into
a spin singlet, while in the Kondo limit (JK ≫ JH), both
are screened by conduction electrons. While the mean-
field theory has predicted a first-order transition between
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two phases [34, 35], NRG and the conformal field theory
(CFT) suggest a crossover at finite temperatures and a
“Varma-Jones” fixed point at zero temperature for a con-
duction band with the particle-hole symmetry [57–61].
The hybridization physics is best seen in the Abrikosov

pseudofermion representation, Si =
∑

ηγ f
†
iη

~σηγ

2 fiγ . The
Kondo and Heisenberg terms can be decomposed using
the standard Hubbard-Stratonovich factorization, result-
ing in a bilinear action of pseudofermions and conduction
electrons that are only coupled through fluctuating back-
ground auxiliary fields,

S = β
∑

i,n

(
JK |Vi,n|

2

2
+

JH |χn|
2

4
)− β

2
∑

i=1

λi + S1, (2)

where Vi,n and χn are the auxiliary fields in Matsub-
ara frequency (iωn) representing the Kondo hybridiza-
tion and intersite magnetic correlation, respectively.
S1 =

∑

nmσ Ψ
†
nσ (Onm − iωnδnm)Ψmσ, with Ψnσ =

[ck1σn, · · · , ckN0σn
, f1σn, f2σn]

T andN0 being the number
of k points in the Brillouin zone of conduction electrons.
The matrix Onm is

Onm =

















ǫk1 · · · 0 V 1
1,n−m V 1

2,n−m
...

. . .
...

...
...

0 · · · ǫkN0
V N0
1,n−m V N0

2,n−m

V
1

1,m−n · · · V
N0

1,m−n λ1
JHχn−m

2

V
1

2,m−n · · · V
N0

2,m−n
JHχm−n

2 λ2

















,

where V j
i,n−m =

JK eiRi·kj Vi,n−m

2
√
N0

. λi is the Lagrange mul-

tiplier for the constraints ni
f = 1 and takes a real value

after a Wick rotation [62].
The above action is, however, generally unsolvable.

To proceed, we propose a static approximation assuming
Vi,n−m = Viδnm, χn−m = χδnm such that Onm = Oδnm.
This ignores the temporal fluctuations of the auxiliary
fields but takes full account of their spatial fluctuations
and probabilistic distribution beyond the mean-field ap-
proximation [63–68]. To see how it works, we first inte-
grate out all fermionic degrees of freedom and obtain an
effective action only of the auxiliary fields,

Seff = β

2
∑

i=1

(
JK |Vi|

2

2
+
JH |χ|

2

4
−λi)−2

∑

n

ln det(O−iωn).

(3)
The summation over Matsubara frequency can be evalu-
ated using

∑

n ln det(O− iωn) =
∑

l ln(1+e−βξl), where
ξl denote the eigenvalues ofO and are always real because
O is Hermitian. This action can also be derived from an
effective Hamiltonian (with the constraints ni

f = 1):

Heff =
∑

kσ

ǫkc
†
kσckσ +

JK
2

∑

i,σ

(

Vic
†
iσfiσ +H.c.

)

+
JH
2

∑

σ

(

χf †
1σf2σ +H.c.

)

, (4)
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FIG. 1: (a) The mean-field phase diagram. (b) Comparison
of the mean-field |V1| and that derived from the peak position
of p(V1, V2, χ) and p(V1, V2) as a function of temperature for
JK = 0.34 (dashed line in (a)). (c) Evolution of the probabilis-
tic distribution p(V1) on the complex plane of V1 = (V x

1 , V
y

1
)

at T = 0.001 for three different values of JK in the magnetic
regime, near the quantum critical point, and in the Kondo
regime, respectively.

where the auxiliary fields Vi and χ are random vari-
ables satisfying p0(Vi) ∼ exp(−βJK|Vi|

2/2) and p0(χ) ∼
exp(−βJH|χ|

2/2), respectively. The model can then
be studied using Monte Carlo simulations [69–73]. Al-
ternately, one may first eliminate the conduction elec-
tron part in O and obtain

∑

n ln det(O − iωn) =
∑

n ln det(An − iωn) + S0 with

An =

[

λ1 −∆11(iωn)
JHχ
2 −∆12(iωn)

JHχ
2 −∆21(iωn) λ2 −∆22(iωn)

]

. (5)

Here ∆ij(iωn) =
J2
KV iVj

4N0

∑

k

e− i k·(Ri−Rj)

− iωn+ǫk
. S0 is a

constant from conduction electrons and can be safely
dropped. The result is also real because A†

n = A−n.
The hybridization physics can then be studied with

the probabilistic distribution p(Vi, χ) = Z−1 exp(−Seff),
where Z is the partition function serving as the normal-
ization factor. Vi and χ are both complex numbers and,
due to the high dimensionality of all variables, one may
use the Monte Carlo and Metropolis algorithm for im-
portance sampling. Compared to the perturbation ex-
pansion or mean-field theory, all spatial fluctuations of
the hybridization fields are included. Below we will fix
JH = 0.1 and the impurity distance |R| = |R2 −R1| = 1
unless noted. For simplicity, we also set the half conduc-
tion bandwidth to unity and use ǫk = −(cos kx+cos ky)/2
with the particle-hole symmetry. The Lagrangian multi-
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pliers are then approximated by their saddle-point value
λi = 0 [74].
To better understand the fluctuation effect, we present

in Fig. 1(a) the mean-field phase diagram with three dis-
tinct regions. For small JK, the mean-field hybridization
is zero (|V | = 0) and there is an artificial second order
phase transition from |χ| = 0 to |χ| 6= 0 at T = JH/4,
below which the two impurity spins form a singlet due
to the Heisenberg interaction. With increasing JK, the
mean-field theory predicts an artificial first-order transi-
tion to the Kondo phase (|V | 6= 0) [34, 35]. By contrast,
NRG and CFT analyses suggest a “Varma-Jones” unsta-
ble fixed point at zero temperature [57–61] and argue that
fluctuations will suppress the artificial first-order transi-
tion and turn it into a crossover.
This is indeed the case in our method. The mean-field

solution is equivalent to the saddle point approximation
for the effective action Seff. Figure 1(b) compares the
mean-field |V1| and that of maximal p(V1, V2, χ) at a cho-
sen JK (the dashed line in Fig. 1(a)). As expected, the
two agree well with each other. However, if we first in-
tegrate out χ and estimate |V1| from the maximum of
the joint distribution p(V1, V2), the transition tempera-
ture will be greatly suppressed. Since p(V1, V2) includes
the probabilistic distribution of χ, the difference reflects
the effect of fluctuating magnetic correlations between
impurities in reducing Kondo screening by conduction
electrons. We will show later that once the statistical
fluctuations of Vi are also included, the first-order tran-
sition does turn into a crossover in physical properties.
Here just for illustration, we plot in Fig. 1(c) the dis-
tribution p(V1) of the complex field V1 = (V x

1 , V y
1 ) after

integrating out V2 and χ from p(V1, V2, χ). With increas-
ing JK, the region of large p(V1) is seen to first expand
from a spot around the origin and gradually develop into
a ring, showing a “Mexican hat” potential for the hy-
bridization in the Kondo phase.
To extract useful information on hybridization fluctu-

ations, we define the mutual information of two random
variables X and Y with the joint probability p(x, y),

I(X ;Y ) =

∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (6)

where p(x) =
∫

p(x, y)dy and p(y) =
∫

p(x, y)dx are the
marginal probabilities. Its calculation has historically
been challenging because we typically only have samples
rather than the underlying distribution [75]. A straight-
forward approach is to partition the samples into bins of
finite size but the results are very sensitive to the bin sizes
[76]. Here we use a neural estimator recently proposed
for the mutual information [77]:

Iθ(X ;Y ) = sup
θ∈Θ

Ep(x,y)[fθ]− log
(

Ep(x)p(y)[e
fθ ]

)

, (7)

where fθ is a function parametrized by neural networks
with the parameters θ ∈ Θ. Iθ gives a lower bound for the
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FIG. 2: (a) The amplitude mutual information I(|V1|; |V2|)
as a function of the temperature and Kondo coupling. The
left inset shows a schematic diagram of the three-layer neural
network and the right inset shows logarithmic divergence of
the maximal mutual information at low temperatures. The
black solid line is a guide to the eye. (b) Comparison of the
distribution p(|V1|, |V2|) at three different JK at T = 0.001.

true mutual information, I(X ;Y ) ≥ Iθ(X ;Y ), following
the Donsker-Varadhan representation [78]. As long as
the parameter space Θ is large enough, the inequality is
tight and becomes a good approximation. The neural
estimator has been successfully applied to both thermal
and athermal systems [79]. We implement it here with
a three-layer neural network using Tensorflow and the
Adam optimizer [80, 81].
We first integrate out the phase θi of the complex

Vi = |Vi| e
i θi and study the mutual information of the

amplitude |Vi|. The results are plotted in Fig. 2(a) as a
function of the temperature and Kondo interaction, re-
spectively. For small JK, the amplitude mutual informa-
tion I(|V1|; |V2|) is small but grows with lowering temper-
ature due to increasing intersite magnetic correlations;
while for large JK, a peak appears at finite temperature,
indicating the weakening of intersite magnetic correla-
tions due to Kondo screening at low temperatures. Re-
markably, the amplitude mutual information varies non-
monotonically with JK and exhibits a maximum whose
height increases rapidly and diverges logarithmically with
lowering temperature, manifesting the quantum critical
behavior above the “Varma-Jones” fixed point. To get
an intuitive picture, we compare in Fig. 2(b) the distri-
bution p(|V1|, |V2|) at three different JK. We see that the
values of |Vi| are scattered along the diagonal direction
near the critical JK. Hence the divergence comes from
strong cooperative fluctuations of the hybridization fields
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FIG. 3: (a) The phase mutual information I(θ1; θ2) as a func-
tion of the temperature and Kondo coupling. (b) Comparison
of the distribution p(θ1, θ2) for different JK at T = 0.001.

on two impurities. Note that the maximal distribution of
|Vi| is not around the origin for small JK in polar coordi-
nate, showing the presence of hybridization fluctuations
even deep inside the magnetic phase.

The mutual information of the phases is presented in
Fig. 3(a). Since the effective action of the two-impurity
model is invariant under the transformation Vi → Vi e

iφi ,
χ → χ e− i(φ1−φ2), we fix the gauge such that χ is real
and nonnegative and study the phase mutual informa-
tion I(θ1; θ2) of the hybridization fields. We see that it
is nearly zero at high temperatures where the intersite
magnetic correlations are negligible. But unlike that of
the amplitude, here it always grows with decreasing tem-
perature and, in the Kondo regime, varies only slightly
with JK as shown in Fig. 3(a). Its large value reflects the
establishment of cooperative phase fluctuations between
two Kondo impurities. To see this more clearly, we plot in
Fig. 3(b) the probabilistic distribution p(θ1, θ2) for three
different values of JK. For small JK, the distribution is
featureless; while for large JK, it is peaked along the diag-
onal direction, indicating that the two are “locked” with
each other. The mutual information therefore provides
a useful tool to measure the intersite phase coherence of
the hybridization fields. Note that while the pattern of
p(θ1, θ2) may shift with the gauge of χ, I(θ1; θ2) is gauge
invariant. It is also related to the Shannon entropy of the
phase difference through I(θ1; θ2) = const − S(θ) where
S(θ) = −

∫

p(θ) log p(θ)dθ with θ = θ1 − θ2.

We may further study physical properties under this
scheme taking partly account of the effect of magnetic
and hybridization fluctuations. Figure 4(a) plots the lo-
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FIG. 4: (a) Comparison of the our results (SAF) and the
mean-field results (MF) for the electron spectrum at (i = 1)
and away from (i = 3) the impurity sites at T = 0.001, show-
ing strong suppression (pseudogap) due to hybridization fluc-
tuations even in the magnetic regime. (b) Temperature evo-
lution of the resistivity ρ at three different JK compared with
the MF result (inset). (c) Comparison of the phase mutual
information for different impurity distances |R| = 1 and 8 at
T = 0.001. The inset shows the mean-field order parameter
χ. (d) Resistivity as a function of temperature for JK = 0.4,
showing a significant drop due to the intersite phase coher-
ence for |R| = 1 compared to that of the single impurity limit
(|R| = 8). The inset reproduces the experimental resistivity
of Ce1−xLaxCu6 for various x [87].

cal density of states (LDOS), Ac(i, ω = 0) ≈ −β
πGc(i, τ =

β/2), where Gc(i, τ) = −〈Tτ [ci(τ)c
†
i (0)]〉 is the Green’s

function of conduction electrons. We find a strong sup-
pression (pseudogap) at the impurity sites in the Kondo
regime, in agreement with that observed in the scan-
ning tunnelling experiments [82]. Interestingly, the sup-
pression already starts in the magnetic regime owing to
the hybridization fluctuations. There appears no abrupt
change across the critical point, in contrast to the mean-
field expectation of a first-order phase transition. Fig-
ure 4(b) plots the magnetic resistivity as a function

of temperature calculated using ρ ≈ −πT 2

gxx(τ=β/2) , where

gxx(τ) = −〈Tτ jx(τ)jx(0)〉 is the current-current corre-

lation function and jx(τ) = i
2

∑

lσ[c
†
l+x,σcl,σ − h.c.] is

the current operator [83, 84]. We find logarithmic diver-
gence near the critical point, suppression in the magnetic
regime and saturation in the Kondo regime, indicating
non-Fermi liquid, metallic, and Kondo-like behaviors, re-
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spectively. Again, the smooth evolution across the mean-
field phase boundary implies a crossover rather than a
first-order phase transition once fluctuations are included
as in our method.
The importance of phase coherence is more evidently

seen if we increase the distance between two impurities.
Figure 4(c) compares the phase mutual information for
|R| = 1 and 8. For large distance |R| = 8, the mutual
information is reduced to zero even in the Kondo regime.
A large finite phase mutual information only appears
for small |R|, indicating a fundamental difference of the
multi-impurity Kondo physics from the single-impurity
case. For comparison, the mean-field order parameter
χ is also shown in the inset and found to be zero for
|R| = 8 and finite for |R| = 1. The phase coherence is
therefore closely associated with the intersite magnetic
correlations [85, 86]. As shown in Fig. 4(d), it causes a
significant drop of the resistivity for |R| = 1, in qual-
itative agreement with the experimental observation in
Ce1−xLaxCu6 at large x [87].
We conclude that the static auxiliary field approxima-

tion can take good account of some fluctuation effects
beyond the mean-field approximation. The employment
of the mutual information can effectively reduce the di-
mensionality of the data and allow one to extract key
information hidden in the complicated probabilistic dis-
tribution functions. It is thus a useful tool to probe the
quantum phase transition and phase coherence in Kondo
systems. Our method can be extended easily to other
Kondo models to investigate spatial correlations of the
hybridization physics. In the dense Kondo lattice, we
expect that it will also suppress the artificial phase tran-
sitions predicted in an effective Ginzburg-Landau-Wilson
theory [41–43] and reveal the importance of cooperative
hybridization fluctuations and intersite phase coherence,
which is important for understanding the heavy Fermi
liquid [54]. The method may also be used to reveal the
snapshot or spatial modulation of hybridization configu-
rations [88–90] and provide novel insight on the Kondo
physics in multi-impurity or lattice systems.
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[39] I. Paul, C. Pépin, and M. R. Norman, Kondo Breakdown
and Hybridization Fluctuations in the Kondo-Heisenberg
Lattice, Phys. Rev. Lett. 98, 026402 (2007).
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