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Probabilistic message-passing algorithms are developed for routing transmissions in multi-
wavelength optical communication networks, under node and edge-disjoint routing constraints and
for various objective functions. Global routing optimization is a hard computational task on its own
but is made much more difficult under the node/edge-disjoint constraints and in the presence of
multiple wavelengths, a problem which dominates routing efficiency in real optical communication
networks that carry most of the world’s Internet traffic. The scalable principled method we have
developed is exact on trees but provides good approximate solutions on locally tree-like graphs.
It accommodates a variety of objective functions that correspond to low latency, load balancing
and consolidation of routes, and can be easily extended to include heterogeneous signal-to-noise
values on edges and a restriction on the available wavelengths per edge. It can be used for routing
and managing transmissions on existing topologies as well as for designing and modifying optical
communication networks. Additionally, it provides the tool for settling an open and much debated
question on the merit of wavelength-switching nodes and the added capabilities they provide. The
methods have been tested on generated networks such as random-regular, Erdős Rényi and power-
law graphs, as well as on the UK and US optical communication networks. They show excellent
performance with respect to existing methodology on small networks and have been scaled up to
network sizes that are beyond the reach of most existing algorithms.

I. INTRODUCTION

Optical communication networks underpin the global
digital communications infrastructure and carry most of
the Internet traffic. They comprise thousands of kilome-
ters of optical fibers, organized in a complex web of con-
stituent sub-networks including the Internet backbone,
Metro access and Data Center farms. The exponential
growth in Internet traffic and energy consumption threat-
ens to overload the existing infrastructure and a capacity
crunch is looming [1]. Not only that a matching growth
in infrastructure is infeasible, it raises fundamental ques-
tions on the ultimate capacity of optical communication
networks and the manner in which we could optimize
their use. The next-generation digital infrastructure has
to offer flexibility, low latency, high network throughput
and resilience.

One of the key requirements is the routing and wave-
length assignment (RWA) for all traffic demands across
this complex heterogeneous network in a way that opti-
mizes a given objective function, be it low latency, high
throughput or resilience [2]. Each optical fiber carries
information using light of one or many wavelengths. The
latter uses, among others, dense wavelength-division mul-
tiplexing (DWDM) methods that employ as many as 80–
160 channels of different laser wavelengths [3]. The main
constraint in the RWA is that any complete individual
route, from source to destination, uses the same single
wavelength and that two separate routes using the same
wavelength cannot shares the same fiber. This constraint
makes the corresponding mathematical problem hard to
solve in general.

Route optimization in optical communication networks

can be mapped onto the hard computational problem
of edge-disjoint routing on a graph, where transceivers
(transmitter-receiver) are mapped to vertices (or nodes)
and fibers to edges (or links). Given that routes are
constrained to be contiguous and interaction between
paths is non-localized, local optimization methods are
insufficient and global optimization is required. Glob-
ally optimal routing of multiple messages or vehicles
given a general objective function is a computationally-
hard constraint satisfaction problems on its own and has
been addressed in the physics literature using scalable
and distributed message passing approximation tech-
niques, inspired by statistical physics methodology [4–7].
Moreover, similar techniques have been suggested also
for addressing the single-wavelength Node-Disjoint Paths
(NDP) [8] and Edge-Disjoint Paths (EDP) [9] problems
where multiple paths of different origin-destination pairs
cannot share nodes or edges on a graph, respectively.
Generally, both optimization tasks are within the class
of NP-hard combinatorial problems [10–13] and the ap-
proximation offered by message passing techniques work
well. However, the existing methods developed for single-
wavelength routing become intractable in the presence of
multiple wavelengths, making them inapplicable for real-
istic scenarios.

It is worthwhile noting that in some extreme cases
these hard computational problems become polynomial
in the single wavelength case as discussed in [9]. For in-
stance, when the number of origin-destination pairs is low
with respect to the systems size [14] and where all origin-
destination pairs are identical [15, 16]. Nevertheless, the
general problems of NDP and EDP routing on graphs
are computationally hard even in the single wavelength
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case and a variety of methods have been used to address
them in the context of optical communication networks
and more general problems. Alongside established meth-
ods, such as integer/linear programming and its vari-
ants [17–21] bin-packing based approaches [22], Monte
Carlo search [23], post-optimization [24] and greedy al-
gorithms [25–28], a large number of heuristics have also
been used to obtain approximate solutions in both prob-
lems, among them genetic algorithms [29–31], ant colony
optimization [32] and particle swarm optimization [33].
Specifically in the area of optical communication net-
works, it is common to use integer/linear programming
and its variants for small networks, to obtain exact re-
sults, and a variety of heuristics for larger networks. In
practice, current optical networks use overprovision of
capacity to compensate for sub-optimal routing, result-
ing in both over-engineering and underutilized capac-
ity [34, 35].

The main challenge we address here is the RWA un-
der heavy traffic using multiple wavelengths and a very
large number of origin-destination pairs under the NDP
and EDP constraints and for various objective functions.
Globally optimal routing is a non-localized difficult prob-
lem but adding the NDP/EDP restrictions and having a
large number of different wavelengths increases the com-
plexity considerably, making the problem intractable for
existing algorithms [8, 9]. We map the globally-optimal
routing problem in the presence of multiple wavelengths
onto a multi-layer replica of the original graph and uti-
lize probabilistic optimization approaches. The methods
developed here are based on message passing techniques,
developed independently in several fields including sta-
tistical physics, computer science and information the-
ory [36–38] but are closely interlinked [39, 40]. The meth-
ods we develop allow for messages, in the form of condi-
tional probability values to be passed between nodes and
the replicated networks representing the different wave-
lengths, in a way that keeps the algorithms scalable and
applicable even for a large number of wavelengths, trans-
missions (corresponding to source-destination pairs) and
nodes.

The main result of this paper is the derivation of prin-
cipled scalable algorithms, capable of obtaining approx-
imate solutions for routing problems in large graphs,
where the number of transmissions is of similar order
to that of the number of free variables (vertices/edges)
and a large number of wavelengths, under the NDP and
EDP constraints and for various objective functions, both
convex and concave. The algorithm also accommodate
cases where the number of transmissions is much larger
than the number of vertices (quadratic with respect to
the number of vertices). The computational complex-
ity of the NDP/EDP algorithms for sparse graphs is
O(MQ(M +N +Q))/O(MQ(M/N + N + Q)), with N
the number of vertices, M the number of transmissions
and Q the number of wavelengths. The algorithm has
been tested for a variety of sparse network topologies,
both synthetic random graphs and real optical commu-

nication networks, and for different objective functions,
showing excellent results in obtaining high quality ap-
proximate solutions. Among the generic networks exam-
ined are random regular graphs, Erdős Rényi (ER) [41]
and scale free networks [42], while the realistic networks
considered include the British 22 nodes (BT22) and US
60 node (CONUS) [43]backbone optical communication
networks. When tested on small networks against known
results obtainable using unscalable methods like variants
of integer/linear programming, it was shown to provide
the optimal routing results.

The results provide the maximal number of communi-
cation pairs that could be accommodated given the net-
work size, topology and number of wavelengths used; the
minimal number of wavelengths required for a given net-
work, topology and communication pairs; and the result-
ing utilization of edges. They identify the impact of using
the suggested algorithm on the average path length, the
utilization of wavelengths per edge and how it can be
controlled using concave and convex objective functions.

In addition, our algorithms can be used for routing
transmissions across networks in single instances, study
the limitations of heterogeneous networks of different de-
gree distributions, with variable edge signal-to-noise ra-
tios and wavelength availability. Moreover, our algo-
rithms could be employed in the design of new infrastruc-
ture, especially through the use of concave cost functions
that consolidate routes, by determining the least impor-
tant routes that could be removed with little effect on
the network throughput or resilience. These are of both
academic and practical values since the performance of
optical communication networks is often directly related
to their capacity limits, traffic congestion, rate of infor-
mation flow and bandwidth flexibility. Moreover, we also
studied a switching model, where wavelength can be con-
verted (switched) at the vertices (transceivers) to set-
tle an open and much debated question on the merit of
wavelength-converters [44–46] for increasing throughput,
resource utilization and resilience in optical communica-
tion networks.

While we mainly focus here on the optical communi-
cation network application and test the efficacy of the
method on networks and number of wavelengths that
are relevant to this application domain, one should point
out that these problems are highly relevant to other do-
mains. For instance, multi-wavelength NDP/EDP are
relevant to both 5G and the future 6G wireless com-
munication systems and wireless ad-hoc communication
networks in the relay setting, where each node can act
as a relay. Our algorithms can reduce path overlaps,
which represent transmissions in similar wavelength, re-
sulting in signal interference and low transmission qual-
ity, or to consolidate paths since longer paths result in
signal degradation and the need for higher transmission
power [26, 27, 47]. Another application is the design of
very large system multilayer integrated circuits (VLSI),
where non-overlapping wired paths to connect different
components are sought to avoid cross-path interference.
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In all cases, higher throughput, robustness and lower
latency can be achieved for the same resource by ob-
taining a good approximation to the globally optimal
solution. Practical algorithms for various applications
often depend on the specific network topologies consid-
ered [48] and are aimed at maximizing the number of
paths routed [49].

The reminder of the paper is organized as follows: in
Sec. II we introduce the model used followed by the
message-passing based algorithmic solutions for NDP,
EDP and wavelength switching scenarios in Sec. III. Re-
sults obtained from numerical studies on a range of syn-
thetic and real networks and a variety of objective func-
tions are presented in Sec. IV followed by a discussion
on their computational complexity. Possible extensions
of the framework to accommodate real-world scenarios
such as edges with different signal-to-noise ratios or wave-
length availability are presented in Sec. V. Finally, we
discuss the efficacy of the methods developed and point
to future research directions in Sec. VI.

II. MODEL

We consider a dense wavelength-division multiplexing
(DWDM) optical network G(V,E), with V ≡ {i | i ∈ G}
and |V | = N , the set of nodes representing transceivers
and E ≡ {(i, j) | (i, j) ∈ G} the set of edges, such that
the indices (i, j) represent the optical fiber between node
i and j. For a network which uses Q wavelength chan-
nels to deliver M transmissions, we introduce a variable
si,j on the link from node i to j such that sai,j = s or
−s if transmission s passes from node i to j or from
j to i respectively, through link (i, j) using wavelength
a; the transmission s corresponds to one of the origin-
destination pair {0, 1, . . . ,M}. A similar variable sai is
defined for node i in the case of NDP, as explained in
Sec. III. Since each transmission has to occupy an individ-
ual wavelength channel on a link, more wavelengths are
generally required for more transmissions, i.e. a larger
value of Q is required for a larger M . For specific net-
work instances with Q wavelength channels, there exists
a maximum number of transmissions denoted as Mmax

which can be transmitted; alternatively, one can define
the minimum number of wavelength channels, i.e. Qmin,
which accommodate all M transmissions on a specific
instance. The relationship between Mmax and Q, or be-
tween M and Qmin, would be highly relevant for charac-
terizing the maximum capacity of optical networks.

This framework can accommodate a variety of objec-
tive functions; here, we consider the sum of the cost (or
utility) on each link to be the objective function for op-
timization, given by

H(~~s) =
∑
(i,j)

Fi,j

(
Q−

Q∑
a=1

δ0sai,j

)
, (1)

where δyx is the Kronecker delta such that δyx = 1 if x = y

and δyx = 0 otherwise; the function Fi,j denotes the cost
on link (i, j) as a function of the argument in parenthe-
sis; while it can take an arbitrary form we will mostly
focus on simple polynomial functions. In the context of
statistical physics, we introduce the inverse temperature
β, and the partition function Z of the system is given by

Z(β) =
∑
~~s

Ω(~~s)e−βH(~~s),

=
∑
~~s

Ω(~~s)
∏
(i,j)

e−βFi,j(~si,j),
(2)

where Ω(~~s) is an indicator function such that Ω(~~s) = 1

if ~~s satisfies all the constraints of the problem or oth-

erwise Ω(~~s) = 0. The double vector notation comes to
emphasize dependence on both topology and wavelength.

We now summarize the constraints of the optimization
problem. Firstly, the route for each transmission must
be contiguous. A loopless path is a sequence of non-
repeating nodes from origin to destination, for example,
path s is constructed as Os → · · · → j → i→ k → · · · →
Ds, where Os and Ds are the origin and destination pair
of transmission s. Secondly, for an intermediate node
i along the path there exist only two used edges (j, i)
and (i, k) for that wavelength and transmission. This
constraint could be expressed as follows: if sai,j = s 6= 0,
then ∑

k∈∂i\j

(1− δ0sai,k) = 1 and
∑

k∈∂i\j

sai,k = −s, (3)

where ∂i ≡ {j | (i, j) ∈ E} is the set of the nearest
neighbors of node i, and ∂i \ j ≡ ∂i−{j} is the subset of
∂i except node j. Regarding the wavelength constraints
along the path, we will consider three scenarios in the
subsequent analyses:

1. Node-disjoint paths (NDP) — where only a single
transmission is allowed to utilize a specific wave-
length channel on a node [8], but there can be mul-
tiple transmissions using different channels through
the same node as shown in Fig. 1(a); this may cor-
respond to transceivers which can only process a
single transmission for each individual wavelength.
The expression of the node-disjoint constraint is
sai,j = s 6= 0⇒ ∀k ∈ ∂i \ j : sai,k ∈ {0,−s}.

2. Wavelength-switching (WS) with NDP — where all
incoming or outgoing transmissions to transceivers
(nodes) use different wavelength channels, but
transmissions are allowed to switch between wave-
length channels at the transceivers as shown in
Fig. 1(b), leading to a larger routing flexibility.

3. Edge-disjoint paths (EDP) — where multiple trans-
missions using the same wavelength channel, are al-
lowed to be routed through any given node [9]but
cannot share an edge, as shown in Fig. 1(c). This is
the typical scenario in optical communication net-
works.
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III. MESSAGE-PASSING ALGORITHMS

To derive optimization algorithms to allocate simul-
taneously the optimal route and wavelength for a large
number of transmissions, we solve the problem on multi-
layer graphs where each layer represents a different wave-
length, and messages are passed within each layer for
assignment of routes and between layers for allocation
of wavelength. By applying the cavity approach from
the study of spin glass systems [36, 50], we can de-
rive distributed message-passing algorithms for optimiz-
ing transmission routes in optical networks for NDP, WS
and EDP scenarios.

A. Node-disjoint routing

First, we consider the NDP routing scenario [8] shown
in Fig. 1(a). The network is represented by a factor graph
with two types of variables, namely sai defined on nodes
and sai,j defined on links. According to the Bethe-Peierls
approximation [51, 52], we assume only large loops exist
in the network such that all neighboring nodes and edges
of a node i are nearly independent in the absence of i.

To derive the multi-wavelength routing algorithm, we
first define pi→j to be the message from node i to edge
(i, j) and qi→j to be the message from edge (i, j) to node
j. Both messages are conditional probabilities: pi→j(s)
is the probability of edge (i, j) to be in state s due to the
state of node i and qi→j(s) the probability of edge (i, j)
to be in state s without the interaction from node i. We
then write a closed set of recursion relations to express
the message pi→j in terms of qk→i, as well as another set
of relations representing qi→j in terms of pi→j and pj→i:

pai→j(0) ∼
∏

k∈∂i\j

qak→i(0)+

∑
m,n∈∂i\j

s 6=0

qam→i(s)q
a
n→i(−s)

∏
k∈∂i\j,m,n

qak→i(0),

pai→j(s) ∼
∑

k∈∂i\j

qak→i(s)
∏

l∈∂i\j,k

qal→i(0);

qai→j(0) ∼ pai→j(0)
∑
n

e−βFi,j(n)
∑
b 6=a:
sb=0,1

δn∑
b6=a

sb

∏
b6=a

q̃bi,j(s
b),

qai→j(s) ∼ pai→j(s)
∑
n

e−βFi,j(n+1)
∑
b 6=a:
sb=0,1

δn∑
b 6=a

sb

∏
b 6=a

q̃bi,j(s
b),

(4)

where we have further defined the auxiliary quantities
q̃bi,j given by 

q̃ai,j(0) = q̂ai,j(0),

q̃ai,j(1) =
∑
s6=0

q̂ai,j(s);

q̂ai,j(s) = pai→j(s) p
a
j→i(−s).

(5)

For brevity we omit the normalization term and use

the notation “∼” instead of the equality symbol. For a
brief explanation of how these equations are construed:
the first equation of (4), looks at the probability for no
transmission on the edge i → j, as a summation of the
probability of no transmission entering i (first term) and
the probability of transmissions arriving at i from node
m but leaving through some other node n (second term);
the second equation looks at the message s arriving at
node i but not leaving through any other edge but i→ j;
the third and fourth equations describe the probability
of edge i→ j to be in a given state 0 or s, given the re-
lated cost on the edge, in conjunction with all other wave-
lengths. In Eq. (4), node messages using wavelength a de-
pend only on the messages from their neighbors using the
same wavelength and the network is effectively mapped
to a system with Q separate layers, each of which employs
a different wavelength channel, as shown in Fig. 1(a);
the interdependence between wavelengths is considered
at the origin and destination of individual transmissions
(Fig. 2), as discussed below.

With the messages pi→j and qi→j having converged to
stable values, one can express the marginal probability
of node i being in state s using wavelength a as


pai (0)∼

∏
j∈∂i

qaj→i(0),

pai (s)∼
∑

m,n∈∂i

qam→i(s)q
a
n→i(−s)

∏
j∈∂i\m,n

qaj→i(0).

(6)
The marginal probability of edge (i, j) being in state s
with wavelength a is given by



qai,j(0) ∼ q̂ai,j(0) ·
∑
n

e−βFi,j(n)
∑
b 6=a:
sb=0,1

δn∑
b 6=a

sb

∏
b6=a

q̃bi,j(s
b),

qai,j(s) ∼ q̂ai,j(s) ·
∑
n

e−βFi,j(n+1)
∑
b 6=a:
sb=0,1

δn∑
b6=a

sb

∏
b6=a

q̃bi,j(s
b),

(7)

where the factors after the dot symbols correspond to
contributions from all neighboring links of (i, j) to the
partition function, which takes into account all possi-
ble variable configurations in the trees terminated at the
neighboring edges.

To simplify the algorithms, we introduce the variables
φ ≡ − 1

β log q and ψ ≡ − 1
β log p, and take the zero-

temperature limit for optimization β → ∞. The recur-
sion relations of messages in Eq. (4) thus become equiv-
alent to the min-sum belief propagation relations, given
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Wavelength 1

i
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Wavelength 2

(a) Node-disjoint

i

j m

n k

i

j m

n k

(b) Node-disjoint wavelength-switching

i

j m

n k

i

j m

n k

(c) Edge-disjoint

Figure 1. An exemplar graph with N = 5 nodes and 4 edges, where M = 2 transmissions with origins and destinations j and
k (solid), and m and n (dashed) respectively, are transmitted by Q = 2 wavelength channels represented by the red and blue
layers. (a) The node-disjoint (NDP) case, where the whole transmission path uses the same wavelength. For instance, the
red wavelength channel of node i is used by the transmission from m → n, so the red node i cannot be a part of the other
transmission from j → k, which instead uses the blue wavelength channel. (b) The wavelength-switching scenario of NDP
(WS), where the two transmission switch their wavelength channels at node i; both (a) and (b) are valid under this switching
scenario. (c) The edge-disjoint (EDP) case, where the red layer is sufficient for accommodating the two transmissions, and the
blue layer is idle.

by

ψai→j(0) ∼ min

{ ∑
k∈∂i\j

φak→i(0), min
m,n∈∂i\j

s 6=0

[
φam→i(s)

+ φan→i(−s) +
∑

k∈∂i\j,m,n

φak→i(0)
]}
,

ψai→j(s) ∼ min
k∈∂i\j

[
φak→i(s) +

∑
l∈∂i\j,k

φal→i(0)
]
;

φai→j(0) ∼ ψai→j(0)+

min
n

[
Fi,j(n) + min∑

b 6=a
sb=n:

sb=0,1

∑
b 6=a

φ̃bi,j(s
b)
]
,

φai→j(s) ∼ ψai→j(s)+

min
n

[
Fi,j(n+ 1) + min∑

b 6=a
sb=n:

sb=0,1

∑
b6=a

φ̃bi,j(s
b)
]
,

(8)
where 

φ̃ai,j(0) = ψai→j(0) + ψaj→i(0),

φ̃ai,j(1) = min
s6=0

[
ψai→j(s) + ψaj→i(−s)

]
.

(9)

For each individual transmission, we then introduce
auxiliary nodes labeled as µ = ±|µ|, which connect to the
origin and destination nodes in each of the Q wavelength
network layers, respectively (see in Fig. 2). These auxil-
iary origin-destination pairs of each transmission commu-
nicate with all wavelength replica networks to determine
the path and wavelength channel allocated to each trans-
mission, using the message passing algorithm, given by

φµ→a(0) ∼ min
b 6=a

[
φb→µ(−µ) +

∑
c 6=a,b

φc→µ(0)
]
,

φµ→a(µ) ∼ 1 +
∑
b6=a

φb→µ(0),

φµ→a(s) ∼ ∞, s 6= 0, µ,

(10)

i

j

k

l

µ

i

j

k
l

i

j

k
l

i

j

k
l

Figure 2. Mapping the original network (left) onto multi-layer
replica networks that use different wavelengths (right). In
this example, node i is the origin/destination of transmission
|µ|. Introducing an auxiliary node µ, denoted by a square
and connected to nodes i at each of the layers, facilitates
message passing between the new node and the different layers
to determine the allocation of transmissions to wavelengths.
These auxiliary nodes also facilitate the interaction among
different wavelengths.

such that the transmission routes are determined inde-
pendently on each wavelength channel. After introducing
the auxiliary nodes, we treat the messages to and from
them as to other network nodes. For example, the neigh-
boring nodes set of node i in Fig. 2 is ∂i = {j, k, l, µ},
and the calculation of messages i → j and i → µ both
follow Eq. (8). The marginal probability of edge (i, j)
being in state s using wavelength a is then given by



φai,j(0) ∼ ψai→j(0) + ψaj→i(0) + min
n

[
Fi,j(n)+

min∑
b 6=a

sb=n:

sb=0,1

∑
b 6=a

φ̃bi,j(s
b)
]
,

φai,j(s) ∼ ψai→j(s) + ψaj→i(−s) + min
n

[
Fi,j(n+ 1)

+ min∑
b 6=a

sb=n:

sb=0,1

∑
b 6=a

φ̃bi,j(s
b)
]
,

(11)
and the state sai,j of wavelength a of edge (i, j) is deter-
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mined by

sai,j = arg min
s
φai,j(s), (12)

which ultimately leads to the optimized configuration of
routes for all M transmissions through the optical net-
work with Q wavelength channels.

1. Linear cost

While the objective function can take many different
forms we use a simple power as the cost function Fi,j(x)
on edges xγ [4, 53], as it provides a good example of
both concave and convex costs. When γ = 1, the cost
function is linear and equivalent to the total length of all
transmissions L ≡

∑
(i,j);a

(
1− δ0sai,j

)
, and optimizing it

is equivalent to finding the shortest average path.

In this case (γ = 1), the message-passing equations
Eq. (8) can be simplified to



φai→j(0) ∼ min

{ ∑
k∈∂i\j

φak→j(0), min
m,n∈∂i\j

s 6=0

[
φam→i(s)+

φan→i(−s) +
∑

k∈∂i\j,m,n

φak→i(0)
]}
,

φai→j(s) ∼ 1 + min
k∈∂i\j

[
φak→i(s) +

∑
l∈∂i\j,k

φal→i(0)
]
.

(13)
where and the variable ψ in Eq. (8) can be omitted. The
marginal quantities are then given by

φai,j(s) = φai→j(s) + φaj→i(−s) + (δ0s − 1), (14)

and the messages to the auxiliary nodes at the origins
and destinations are the same as Eq. (10).

2. Switching wavelength channels at nodes

A generalization of the NDP scenario is to allow for
transmissions to change wavelengths at nodes (WS) as
shown in Fig. 1(b), which is equivalent to a single-
wavelength network routing with both node and edge
capacity being Q, and utilize other multiplexing tech-
niques than wavelength division (e.g. code or time di-
vision multiplexing). A variable τ is introduced to en-
force this capacity constraint on nodes. In this case, the

message-passing equations are given by

φµi→j(0) ∼ min

{
τµi (0) +

∑
k∈∂i\j

φµk→i(0), τµi (1)+

min
m,n∈∂i\j

[
φµm→i(1) + φµn→i(−1)

+
∑

k∈∂i\j,m,n

φµk→i(0)
]}
,

φµi→j(±1) ∼ τµi (1) + 1+

min
k∈∂i\j

[
φµk→i(±1) +

∑
l∈∂i\j,k

φµl→i(0)
]
,

(15)

where τµi denotes the summation over ψ̃i from a total of
at most Q transmissions, excluding µ, that pass through
node i, given by

τµi (0) = min∑
ν 6=µ σν≤Qi
ν 6=µ:σν=0,1

∑
ν 6=µ

ψ̃νi (σν),

τµi (1) = min
1+

∑
ν 6=µ σν≤Qi

ν 6=µ:σν=0,1

∑
ν 6=µ

ψ̃νi (σν).
(16)

Specifically, τµi (1) could be understood as indicating that
there are free wavelength channels on i that µ could take,
and τµi (0) indicates that transmission µ does not pass

through node i. The quantity ψ̃µi is an auxiliary variable
related to the probability that node i would be a part of
the path of transmission µ, which leads to
ψ̃µi (0) ∼

∑
j∈∂i

φµj→i(0),

ψ̃µi (1) ∼ min
j,k∈∂i

[
φµj→i(1) + φµk→i(−1) +

∑
l∈∂i\j,k

φµl→i(0)

]
.

(17)
The messages from the origin and the destination of
transmission µ to the neighboring edges are slightly dif-
ferent from the previous case of NDP without switching.
In Eq. (16) Qi = Q, and ψ̃i(1) = 0 and ψ̃(0) = ∞ for
the transmissions using node i as their origin or destina-
tion. Alternatively, one can set Qi = Q−Mi, where Mi

is the number of transmissions using node i as their ori-
gin or destination, and then exclude these transmissions
when one calculates τi. Here, we first introduce a vari-
able µi = ±1 to denote node i as the origin or destination
of transmission µ respectively, given by

φµi→j(0) ∼ min
k∈∂i\j

[
φµk→i(−µi) +

∑
l∈∂i\j,k

φµk→i(0)
]
,

φµi→j(µi) ∼ 1 +
∑

k∈∂i\j

φµk→i(0),

φµi→j(−µi) = ∞.
(18)



7

The variable φµi,j determines the state of edge (i, j), i.e.
whether it is a part of the path of transmission µ or not,
and its expression is given by

φµi,j(σ) = φµi→j(σ) + φµj→i(−σ) + (δ0σ − 1), (19)

such that the optimized state is σµi,j = arg minσ φ
µ
i,j(σ).

B. Edge-disjoint routing

Edge-disjoint path routing (EDP) is similar to NDP
routing but is less restrictive, since nodes can accommo-
date any number of paths with the same wavelength but
edges do not [9] (Fig. 1(c)). In other words, for node
i, if there exists an edge (i, j) with sai,j = s0 6= 0, then
there exists one and only one edge (i, k) with sai,k = −s0
continuity of transmission path, while other neighboring
edges using the same wavelength channel a could be ei-
ther in state 0 or take up other transmissions such that
sai,m1

= −sai,n1
= s1 6= 0, sai,m2

= −sai,n2
= s2 6= 0 etc.

In comparison, for NDP at most two variables sai,j for
neighboring nodes j ∈ ∂i can assume a non-zero value.
In other words, single-wavelength EDP is equivalent to
a generalized version of WS, where the capacity of each
node is non-uniform and determined by its degree and
the number of it being chosen as origins or destinations of
transmissions. Consequently, the message passing equa-
tions for EDP scenarios are more complicated and their
computational complexity is higher. The corresponding
message passing equations are given by

ψai→j(0) ∼ min
matched

pairs: ~s∂i\j

∑
k∈∂i\j

φak→i(sk),

ψai→j(s) ∼ min
k∈∂i\j

[
φak→i(s) + min

matched
pairs: ~s∂i\j,k

∑
l∈∂i\j,k

φal→i(sl)
]
;

φai→j(0) ∼ ψai→j(0) + min
n

[
Fi,j(n) + min∑

b 6=a sb=n:

sb=0,1

∑
b 6=a

φ̃bi,j(s
b)
]
,

φai→j(s) ∼ ψai→j(s) + min
n

[
Fi,j(n+ 1)+

min∑
b 6=a sb=n:

sb=0,1

∑
b 6=a

φ̃bi,j(s
b)
]
,

(20)

where the message from node i to edge (i, j) (first two
equations) are different from those of NDP in Eq. (8),
while Eq. (9)–(12) in the NDP scenario apply also here.

It is numerically difficult to compute the message pass-
ing relations in Eq. (20), since all feasible configurations
satisfying the constraints have to be considered by the
first two equations, which results in a computational
complexity of

min{bK/2c,M}∑
n=0

MCn
KP2n, (21)

where K = |∂i| − 1 is the number of neighboring edges
of node i, M is the total number of transmissions, bxc is

i j

k
m

n

µ

ν

k

m

n

µ ν

Figure 3. Mapping from EDP to a maximum weighted match-
ing graph. To calculate the message ψi→j by Eq. (20), we
have to consider all valid paired configurations of neighbor-
ing nodes {k,m, n, µ, ν}. Transmissions could pass through
m → i → n, so there is an edge (m,n) representing the pair
interaction, and the contribution to φi→j is approximately
mins[φm→i(s)+φn→i(−s)] , whose inverse value is the weight
of edge (m,n). Auxiliary (square) nodes µ and ν represent
virtual origins or destinations of different transmissions so
there are no paths of the form µ → i → ν, and consequently
no edges between them exist.

the floor function that is equal to the greatest integer less
than or equal to x, nPk = n!

(n−k)! is the number of ordered

permutations of k out of n elements and nCk = n!
k!(n−k)!

the number of unordered combinations. To simplify the
computation we map the task on to the maximum weight
matching problem [9, 54]. As in [9], we consider all the
possible pairs of considered edges {(i, k) | k ∈ ∂i\ j} and
obtain the weight of each pair

wk,l = −
M

min
s=−M

[
φk→i(s) + φl→i(−s)

]
. (22)

Then, we construct a weighted graph with |∂i| − 1 nodes
where the weight of each edge is given by Eq. (22). After
that, ψai→j in Eq. (20) could be obtained by the maximum
weight matching algorithm [9, 55].

In Fig. 3, we show the transformation employed for
calculating the messages i→ j. Links between all pairs,
including auxiliary origin-destination and graph edges,
are shown on the left. The right figure shows all valid
links between nodes, while distinguishing between auxil-
iary and graph nodes: any of the ordinary graph nodes
could be paired but the auxiliary nodes could only be
paired with ordinary graph nodes. The maximum match-
ing algorithm finds edge sets with the maximum sum of
weights, where matched edges have no common nodes;
the inverse value of the weights sum is approximately the
value of minimum matched configurations in Eq. (20).

1. Linear cost

Similar to Sec. III A 1, if the cost function on edges is
linear Fi,j(x) = x, then the message-passing equations
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could be simplified as follows,

φai→j(0) ∼ min
matched

pairs: ~s∂i\j

∑
k∈∂i\j

φak→i(sk),

φai→j(s) ∼ 1 + min
k∈∂i\j

[
φak→i(s)+

min
matched

pairs: ~s∂i\j,k

∑
l∈∂i\j,k

φal→i(sl)
]
.

(23)

The marginal states of nodes and edges, and messages to
the auxiliary nodes at transmission origins and destina-
tions, are the same as in the NDP case of Eq. (10) and
(14).

C. Algorithmic framework

The same algorithmic procedure governs both NDP
and EDP routing algorithms based on the message pass-
ing equations. The min-sum algorithm, i.e. zero-
temperature optimization algorithm, follows the process
outlined below:

1. initialize the messages {ψai→j , φai→j , φµ→a};

2. update the messages by Eq. (8)–(10) in the node-
disjoint scenarios, and Eq. (20) and (10) in the
edge-disjoint scenarios until convergence or when
a maximum number of iteration steps is reached;

3. calculate the marginal state of edges by Eq. (11)
and the state of each wavelength channel by
Eq. (12).

After obtaining the marginal states of edges and wave-
lengths, the allocation of transmissions to specific wave-
length and path would follow.

However, there are some cases when the algorithms
need many iterations to provide a valid configuration, for
example if the cost function Fi,j(x) in Eq. (1) is concave,
e.g. F (x) =

√
x in these cases, a decimation procedure

can be introduced to speed up convergence. As an exam-
ple, here we show the NDP algorithm with decimation
(fixing states at intermediate steps) incorporated as part
of the process:

1. initialize the messages {ψai→j , φai→j , φµ→a} and the
state of all wavelength channels per available (un-
decimated) edge;

2. update the messages of the available wavelength
channels and edges by Eq. (8)–(10) for a specific
number of iteration steps;

3. compute the marginal states of the available wave-
length channels and edges by Eq. (11); calculate

the quantity φ̂ai,j = mins6=0 φ
a
i,j(s)−φai,j(0), and fix

the state of the wavelength channel a of edge (i, j)

with the largest value of φ̂ai,j to be sai,j = 0.

4. iterate step 2 and 3 and determine the state of
the available wavelength channels and edges by
Eq. (12) until a valid solution is obtained or a max-
imum number of iteration steps is reached.

The algorithms with or without the decimation proce-
dures have a similar performance in terms of the opti-
mized cost, but for harder problem (e.g. F (x) =

√
x) the

decimation procedures can reduce the number of itera-
tion steps needed for generating a valid routing solution.

IV. SIMULATION RESULTS

A. Linear cost

We first examine the NDP, WS and EDP scenarios
with linear cost F (x) = x to explore the behavior and
performance of communication networks, such as capac-
ity and average length, with impact on latency and num-
ber of wavelength channels required.

1. Dependence on the number of wavelength channels

We performed numerical experiments using the three
algorithms on three different types of generated random
networks including random regular graphs, Erdős-Rényi
and scale-free networks with 100 nodes and an average
node degree of 3, as well as on two real optical commu-
nication networks — CONUS60, which has 60 nodes and
79 edges [43] and BT-Core, 22 nodes and 35 edges [56] as
shown in Fig. 4. Specifically, for the scale-free networks
studied, the degree distribution is p(d) ∼ d−2.63.

(a) CONUS (b) BT-Core

Figure 4. Real optical communication networks studied,
namely (a) CONUS60 in the United States, and (b) BT-core
in the United Kingdom.

We define the capacity to be the maximum number
of transmissions, which we denote as Mmax, that can be
transmitted by an optical communication network withQ
wavelength channels. We remark that capacity depends
on network topologies and the set of origin-destination
pairs, so in Fig. 5 we report the dependence of the average
value of Mmax with standard deviation as error-bars on
Q, showing the average behavior of capacities for different
Q values.
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Figure 5. The capacity per wavelength channel, i.e. Mmax/Q, as a function of Q, in the NDP, wavelength-switching and EDP
scenarios with linear cost, on random regular (RR), Erdős-Rényi (ER) and scale-free (SF) networks, as well as a real optical
communication networks known as CONUS and BT [43, 56]. All three types of generated networks have 100 nodes and an
average degree of 3, while the CONUS network has 60 node and 79 edges, and BT 22 nodes and 35 edges. All the results are
obtained by averaging 36 realizations.

Fig. 5 shows the simulation results for the five types of
networks — in the three different routing scenarios. For
the three types of random networks and BT-Core, the
average capacity per wavelength channel Mmax/Q keeps
increasing at the beginning and become saturated as the
number of wavelength channels Q increases.As for the
networks CONUS and BT-Core in Fig. 5, we see that the
average capacities also increase with Q but the increases
are not as fast as that in the three generated networks.

The average path length of the corresponding networks
are shown in Fig. 6 and 7. In Fig. 6, we see that as
more wavelengths are available the shorter the average
path length L/M decreases; for instance, in NDP sce-
narios shown in Fig. 6(a)–6(c), the average path length
with Q = 1 is higher than that with Q = 4, which is
higher than that of Q = 9 as the average load per wave-
length channel (M/Q) increases. Moreover, with the
same values of Q and M , it is clear that the wavelength-
switching model would provide us with shorter paths and
a higher capacity on Erdős-Rényi and scale-free networks
as shown in Fig. 6.

In comparison with NDP, the advantages of EDP with
multiple transmissions using the same wavelength avail-
ability is clearer on random regular graphs as shown in
Fig. 7(a), and less so on other graph types, presumably
due to the graph heterogeneity and finite size effects. We
observe that EDP routing increases the network capacity,
i.e. average transmission load per wavelength channel,
and provides shorter valid paths.

2. Dependence on the number of transmissions

In practice, one may wish to minimize the total num-
ber of active wavelength channels for given demand. We
define the smallest number of wavelength channels which
accommodate a set of transmission to be Qmin; to find
Qmin from for a specific instance, we gradually increase Q
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Figure 6. The dependence of the path length L/M on the
number of transmissions per wavelength M/Q for different Q
values, in the NDP and wavelength-switching (WS) scenarios
with a linear cost, and for the four types of graphs studied.
The results are obtained by averaging no less than 20 samples.
The WS scenario does not show a significant advantage over
the original node-disjoint scenario for Erdős-Rényi networks
based on the limited simulation results.

from 1 until a valid solution is found by the algorithms.
Here we compare the results of Qmin obtained by our pro-
posed multi-wavelength routing (MWR) algorithms to
those obtained by a multi-trial greedy assignment (MGA)
algorithm in the node-disjoint or edge-disjoint scenarios
following the process outlined below:

1. initialize the values of ∆M , M , Q and M∗, where
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Figure 7. The dependence of the path length L/M on the
number of transmissions per wavelength M/Q for different
values of Q, in EDP scenarios with a linear cost, and for the
four types of graphs studied. The results are obtained by
averaging no less than 20 samples per point.

M to M∗ represent the range of transmission num-
ber values we want to explore and ∆M the step
size increase in the experiment;

2. read the first M elements of the random origin-
destination pair list, set Q = max(1, Q − 4) to
increase the probability of finding a solution in the
case of small Q;

3. randomly assign the M transmissions into Q wave-
length channels, and solve the routing problem
for each transmission on the individually assigned
wavelength channel separately;

4. repeat step 3 up to a maximum number of trials
(e.g. 10) until a valid configuration is found;

5. if step 4 fails, set Q := Q + 1 and repeat until a
valid configuration is obtained, then the value of
Q is the smallest number of wavelengths Qmin that
accommodates the M transmissions;

6. increase M := M+∆M and repeat step 2 – 5 until
M ≥M∗.

We compare the values of Qmin/M obtained by our
algorithms and by the MGA algorithm on random reg-
ular networks, the CONUS and BT-Core networks, in
both NDP and EDP scenarios. The numerical results
on random regular networks presented in Fig. 8(a) and
8(c) show that our algorithms offer significant advantages
over the MGA algorithm in reducing the number of wave-
length channels required for specific random transmission

pairs in. The improved performance is also observed on
the CONUS and BT-Core networks in Fig. 9 and 10 re-
spectively. The underlying reason for the improvement is
the low success rate of random greedy assignments. The
numerical results demonstrate that our MWR algorithms
lead to a better use of resource. The additional flexibil-
ity provided by the wavelength-switching on transceivers
leads to an even smaller value of Qmin as M increases in
Fig. 8(a) and 9(a), whereas the experiments on the BT-
Core network do not show a significant improvement of
WS over the ordinary NDP in Fig. 10(a), which may de-
pend on the topology of the graph or our range of values
tested.

Comparing the average path length found for both
NDP and EDP routing on random regular graphs, we
see in Fig. 8(b) that the average path lengths obtained
by the MGA and MWR for NDP routing are similar but
that shorter paths are found by MWR in the EDP sce-
nario (Fig. 8(d)). A significant reduction in average route
length is not expected since typical route lengths on ran-
dom graphss is O(logN) with little variability. However,
a significant reduction in the number of wavelength chan-
nels used Qmin, is shown in Fig. 8(d) and a similar trend
is shown for EDP scenarios in Fig. 9(a,c) and 10(a,c) for
the two real networks.
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Figure 8. The average smallest number of wavelength chan-
nels Qmin/M with (a) NDP and (c) EDP routing, and the
average path length with (b) NDP and (d) EDP routing, as
a function of the number of transmissions M , on random reg-
ular networks with 100 nodes and degree 3, obtained by our
multi-wavelength routing algorithm with NDP/EDP (MWR,
orange) and WS (green), in comparison with the multi-trial
greedy assignment algorithm (MGA, blue). The results are
obtained by averaging 36 samples.
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Figure 9. The average smallest number of wavelength chan-
nels Qmin/M with (a) NDP and (c) EDP routing, and the
total path length with (b) NDP and (d) EDP routing, as a
function of the number of transmissions M , on the CONUS
network, obtained by our MWR algorithm with NDP/EDP
(orange) and WS (green), in comparison with MGA algorithm
(blue). The results are obtained by averaging 36 samples.
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Figure 10. The average smallest number of wavelength chan-
nels Qmin/M with (a) NDP and (c) EDP routing, and the
total path length with (b) NDP and (d) EDP routing, as a
function of the number of transmissions M , on the BT-core
network, obtained by our MWR algorithm with NDP/EDP
(orange) and WS (green), in comparison with MGA algorithm
(blue). The results are obtained by averaging 36 samples.

B. Computational complexity

Next, we discuss the computational complexity of our
multi-wavelength routing algorithms with a linear cost
function Fi,j(x) = x. In this case, if we use the nor-
malization φai→j(s) := φai→j(s)−φai→j(0) in the min-sum
equations (13)(15)(20), the computational complexities
would decrease.

Under NDP routing, the complexity in computing
Eq. (13) is approximately O(〈k〉2M), where 〈k〉 is the
average node degree, and there are 〈k〉NQ such mes-
sages. The complexity in computing the messages from
origin/destination nodes in (10) is O(Q), and there are
2MQ such messages. Therefore, the total complexity of
one round of update for all messages is O(〈k〉3MNQ +
MQ2); if the graph is sparse, i.e. 〈k〉 � N , the complex-
ity becomes O(MNQ+MQ2). For large graphs and rela-
tively smallQ� N , the complexity is roughlyO(MNQ),
which linearly scales with Q as shown in Fig. 11(a).

For EDP routing, the complexity of matching a pair
of incoming and outgoing transmissions with the same
wavelength in Eq.(23) is O(〈k〉3 log〈k〉) [9]. There-
fore, the total complexity of one round of update for all
messages is O(2M〈k〉4 log〈k〉 × 〈k〉NQ + MQ2), and if
the graph is sparse the complexity becomes O(MNQ +
MQ2). For relatively small Q, the complexity scales with
Q as in NDP routing as shown in Fig. 11(b).

However, when M/N 6� N , the effective degree be-
comes quite different from the average degree 〈k〉 ⇒
〈k〉 + 2M

N (see in Fig. 2, the degree of node i increases
from 3 to 4 after introducing the auxiliary node µ). When
M is very large, for instance M ∼ O(N2) as is used in
many optical communication network applications, the
effect of effective degree cannot be omitted. To make the
algorithm scale better we divide the messages into three
types:

1. messages from auxiliary nodes to ordinary nodes,
e.g. µ → i in Fig. 2 — there are 2MQ such mes-
sages;

2. messages from ordinary nodes to ordinary nodes,
e.g. i → j in Fig. 2 — there are 〈k〉NQ messages
of this type;

3. messages from ordinary nodes to auxiliary nodes,
e.g. i → µ in Fig. 2 — there are also 2MQ such
entities.

The messages of type 1 obeys Eq. (10) and the resulting
total complexity is O(MQ2).

Noticing that the messages from auxiliary nodes are
sparse, only φµ→a(0) and φµ→a(µ) are non-trivial in
Eq. (10), and only φb→µ(−µ) is needed to generate new
messages, which simplifies the calculations of Eq. (13).
Under NDP routing, by separating messages of type 1
and 2, the computational complexity of generating one
message of type 2 or 3 by Eq. (13) is O(〈k〉2M). Then,
the total complexity of the three types of messages is
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Figure 11. The dependence of one round of computational time costs from our multi-wavelength routing algorithms on the
number of wavelengths Q. For relatively small Q � N and M � N2, data obtained on random regular networks with 1000
nodes and degree 3 in (a) NDP and (b) EDP scenarios. With the same number of transmissions M , the time costs scale roughly
linearly with Q for both scenarios. For large M , when allocate all the M = N(N − 1)/2 transmissions on Q = N wavelengths,
the log-log plots of one round computation time and node size N are presented in (c). It is easy to draw straight lines to fit
the data points and the fitting slops are around 3.92 and 5.14 for EDP and NDP scenarios respectively. The simulations are
implemented on random regular networks of degree 3 and node size N .

O(MQ2+〈k〉2M(〈k〉NQ+MQ)) = O(MQ(M+N+Q)).
Considering all possible pairs M = N(N − 1)/2 and set
Q ∼ O(N), the overall complexity becomes O(N5). In
Fig. 11(c), we present the one-iteration computing time
on random regular graphs with degree k = 3 and N
nodes, the one-iteration computing time scales approxi-
mately as N5.14, which fits our analysis of N5. If M/N �
N , the complexity reduces to O(MQ(N + Q)), which is
equivalent to the previous estimate of O(MNQ+MQ2).

Under EDP routing, the computational complexity of
type 2 and 3 messages depends on the complexity of
the maximum weighted matching algorithm (approxi-
mately O((〈k〉 + 2M

N )α)) with α being a coefficient to
be determined. Using the sparse properties of type 1
and 3 messages, the total complexity of the three types
is O(MQ(N + Q + (M/N)α)). Recalling the mapping
to matching problems — the matching network has ap-

proximately 〈k〉+ 2M
N nodes and 〈k〉( 〈k〉−12 + 2M

N ) edges,
and the average node degree is approximately 〈k〉 when
2M
N � 〈k〉, therefore it is a sparse network. By using

the algorithm in [9], the complexity should be approxi-
mately O((〈k〉+ 2M

N )2)). However, due to resulting topol-
ogy and the special network structure our tests result in
complexity scaling close to O(〈k〉 + 2M

N ) when tested.
In other words, α = 1 and therefore the resulting to-
tal complexity is O(MQ(N +Q+M/N)). Experiments
on random regular graphs presented in Fig. 11(c), when
M = N(N − 1)/2 and Q = N show that the complex-
ity is approximately O(N3.92) which agrees well with the
analysis of O(N4) ∼ O(MNQ).

C. Non-linear cost

In this section, we show the simulation results where a
more general form of the cost function Fi,j(xi,j) = xγi,j ,

where the argument is the wavelength occupancy qi,j on
edge (i, j), given by

xi,j =

Q∑
a=1

(1− δ0sai,j ) . (24)

When γ > 1, the utility increases faster on heavily loaded
edges, biasing solutions towards paths with uniform load,
balancing the loads on edges. On the other hand, when
0 < γ < 1, the cost on edges increases slower with the
load, leading to configurations which consolidate trans-
missions on used edges, leaving more edges and wave-
length channels idle. Such configurations would be rel-
evant for identifying less important transceiver nodes
which can be switched off in hours of low usage.

In Figure 12 we show the distribution p(x) of wave-
length occupancy on edges of random regular graphs and
the two real network CONUS and BT-Core for differ-
ent values of γ. For all three networks and both NDP
and EDP scenarios, we observe that when γ = 0.5 more
edges were unused, i.e. a higher value at p(x = 0)
in Fig. 12, and as γ increases the distribution become
more evenly distributed and peaked at some values of x,
which corresponds to the balancing of edge loads. We
show in the insets the relative difference between p(x)
obtained by γ = 1 and those obtained by γ = 0.5 or 2,

i.e. δ(x; γ) ≡ p(x;γ)−p(x;γ=1)
p(x;γ=1) , where the evidence for load

consolidation or balancing, for γ = 0.5 or 2 respectively,
become obvious.

D. Comparison with linear programming

Linear programming is a commonly used method for
optimized throughput of optical networks [57]. Here, we
compare the results of our proposed algorithm with those
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Figure 12. The distribution p(x) of wavelength occupancy on
edges for power γ = 0.5, 1, 2 in the objective function; (a), (c),
(e) represent NDP scenarios and (b), (d), (f) EDP scenarios
for different graphs: (a), (b) random regular networks with
100 nodes, degree 3, M = 60 and Q = 8; (c), (d) the real
network CONUS with M = 14 and Q = 4, and (e), (f) the
BT-Core network with M = 12 and Q = 4. Insets: the
relative difference δ(x; γ) between γ = 0.5 and 1, as well as
between γ = 2 and 1. The results are obtained by averaging
22 ∼ 36 realizations.

obtained by linear programming with a linear cost func-
tion γ = 1.

To solve the routing problem using linear program-
ming, we find n shortest paths for each of the M trans-
missions, denoted by the variables {~sµk} with superscript
µ = 1, . . . ,M representing transmissions and subscript
k = 1, . . . , n representing the kth candidate path for
transmission µ. By carrying either a subscript for nodes
or edges, the variables ~sµk can represent a configuration
of node states or edge states, and the NDP or EDP con-
straints can both be expressed in terms of ~sµk . In this
case, we introduce a variable σa,µk = 1 to denote that

transmission µ chooses its kth path with wavelength a,
σa,µk = 0 otherwise. The disjoint constraint can be ex-

pressed as follows,

∀a, j : vaj ≤ 1, where ~va =
∑
k,µ

σa,µk ~sµk . (25)

In Eq. (25), if the path ~sµk represents a configuration of
node states, then each element of ~va represents the load of
ath wavelength channel on that node, and node-disjoint
constraint restricts the value of the load to be no more
than 1; if the path ~sµk represents a configuration of edges,
then the edge-disjoint constraints can be defined in a sim-
ilar manner.

For each transmission, we choose one wavelength to
accommodate one candidate path, which is given by∑

a,k

σa,µk = 1, ∀µ = 1, . . . ,M. (26)

The objective function for the problem with linear cost
is given by

Minimize
∑
a,j

vaj . (27)

The problem can be solved by linear programming with
the objective function of Eq. (27) subject to the con-
straints in Eq. (25)–(26) where all the expressions are
linear.

For the WS scenario, the variables σµk are introduced
instead of the previous σa,µk , and the capacity constraint
for each node is given by

∀j : vj ≤ Q, where ~v =
∑
µ

σµk~s
µ
k , (28)

where ~sµk is a configuration of node states. The constraint
for all the transmissions is given by∑

k

σµk = 1, ∀µ = 1, . . . ,M. (29)

The objective function to be minimized is
∑
j vj .

We conducted numerical experiments on four real net-
works [56, 57] and compared the results obtained by
our algorithms and linear programming in the NDP,
wavelength-switching and EDP scenarios. We show the
smallest numbers of wavelength channels, i.e. Qmin,
needed to complete all possible transmissions, and the
corresponding total path length L in Tab. I. As we can
see, our message-passing algorithms and linear program-
ming yield almost identical performance in finding opti-
mized path solutions. For relatively small network, linear
programming is efficient, but it quickly becomes imprac-
tical when the size of networks increases, whereas we
show in Sec. IV B that our message-passing algorithms
have more practical scaling properties.
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Table I. The smallest number of wavelength channels Qmin

required to transmit all M = |V |(|V | − 1)/2(= N(N − 1)/2)
transmissions on four small real optical communication net-
works including NSF-Net, Google-B4, DTAG/T-systems and
BT-Core, obtained by our multi-wavelength routing algo-
rithm (MP) compared to that obtained by linear program-
ming (LP), in edge-disjoint (ED), node-disjoint (ND) and
node-disjoint wavelength-switching (WS) scenarios. The cor-
responding total path lengths are also shown.

Network NSF-Net Google-B4 DTAG/T-systems BT-Core
|V | 14 12 14 22
|E| 21 19 23 35
M 91 66 91 231

MP-ED
Qmin 13 16 14 39
L 195 153 218 697

LP-ED
Qmin 13 16 14 39
L 195 153 218 697

MP-ND
Qmin 25 23 29 52
L 202 154 221 707

LP-ND
Qmin 25 23 29 52
L 201 154 221 709

MP-WS
Qmin 25 23 29 51
L 201 154 221 715

LP-WS
Qmin 25 23 29 51
L 201 154 221 715

V. GENERALIZATION TO HETEROGENEOUS
EDGE WEIGHT AND WAVELENGTH

AVAILABILITY

In real optical networks, the number of wavelength
channels in different optical fibers may vary; their
lengths, signal-to-noise ratios, or type of fibers used may
influence the quality of communication. To make our
model more general and realistic, we consider the case of
optical networks with weight wi,j and number of wave-
lengths Qi,j defined for any individual link (i, j) (or Qi
defined for node i in node-disjoint wavelength-switching
scenarios). With simple modifications, our proposed al-
gorithm can be generalized to accommodate wi,j , Qi,j or
Qi.

In cases with heterogeneous Qi,j on edges, we denote
the largest number of wavelength channels among all
edges to be Q∗, i.e. Q∗ = max(i,j)Qi,j , then for an edge
(i, j), one can introduce Q∗−Qi,j additional wavelength
channels with state 0, such that all edges on the network
would have virtually Q∗ wavelengths.

As for heterogeneous weights on edges with linear cost,

the objective function becomes L =
∑

(i,j) wi,j
∑Q
a=1(1−

δ0sai,j ) and the partition function in (2) becomes

Z(β) =
∑
~~s

Ω(~~s)
∏
(i,j)

e−βwi,jFi,j(~si,j). (30)

A. Heterogeneous wavelength availability on edges

In the message-passing equations (13) describing NDP
scenario, the first equation φai→j(0) considers the condi-
tion for wavelength a of edge (i, j) to be in state 0 in the
absence of node j, and the contribution to the objective
function L is 0; this equation is the same in cases with
heterogeneous edge weights. Nevertheless, weights wi,j
should be introduced in the second equation as

φai→j(s) ∼ wi,j+ min
k∈∂i\j

[
φak→i(s)+

∑
l∈∂i\j,k

φal→i(0)
]
. (31)

The same applies for the EDP scenarios and the second
message-passing equation in Eq. (23) should be modified
as follows

φai→j(s) ∼ wi,j+ min
k∈∂i\j

[
φak→i(s)+

min
matched

pairs: ~s∂i\j,k

∑
l∈∂i\j,k

φal→i(sl)
]
.

(32)

The marginal messages on edges, Eq. (14), should be
modified as

φai,j(s) = φai→j(s) + φaj→i(−s) + wi,j(δ
0
s − 1). (33)

The same algorithmic procedure described in Sec. III C
can be applied in the present cases with heterogeneous
edge weights.

For an even more general scenarios, our model can
be modified to accommodate heterogeneous weights for
different wavelength channels on the same edge, i.e.
wai,j 6= wbi,j for a 6= b, asymmetric directed weights such
as wi,j 6= wj,i on directed graphs. In these cases, one only
needs to replace wi,j in the above modified equations by
wai,j or directed weights.

B. Heterogeneous wavelength availability on nodes
with wavelength-switching

For the NDP scenarios with heterogeneous wavelength
availability on nodes, we do not have to introduce addi-
tional wavelengths and keep unavailable channels in state
0 if Qi are non-uniform; this is because the equation of
node capacity constraint Eq. (16) has already considered
the case of different Qi values. Only the second equation
of Eq. (15) needs to be modified, which reads

φµi→j(±1) ∼ wi,j + τµi (1)+

min
k∈∂i\j

[
φµk→i(±1) +

∑
l∈∂i\j,k

φµl→i(0)
]
. (34)

VI. CONCLUSION

Multi-wavelength NDP/EDP routing lies at the heart
of the efficient running and design of optical communi-
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cation networks, that act as the backbone of the Inter-
net. One of the key questions in running optical com-
munication networks more efficiently is in the ability to
carry out these routing tasks effectively for large systems.
This serves for both day-to-day running of the network
as well as for the design of new networks and the modi-
fication of existing infrastructure. While principled sin-
gle wavelength NDP and EDP routing algorithms based
on message passing have been developed already, they
could not be employed in real optical networks due to
the difficulty in extending the algorithms from the single
wavelength to the multi-wavelength case. This essential
and pivotal aspect of routing in optical communication
networks makes the existing single-wavelength methods
intractable and requires computational cost that grows
exponentially with the system size.

To accommodate a large number of wavelengths and
transmissions in large systems, we have developed algo-
rithmic solutions that include multi-layer graphs, where
each layer represents a different wavelength, and mes-
sages are passed within layer (routing assignment) and
between layers (wavelength allocation). The scalable al-
gorithm we have devised shows very good performance
in manageable time scales.

We expect the algorithm to be implemented in realis-
tic scenarios, where specific aspects of real network rout-
ing, such as heterogeneous wavelength availability and
signal-to-noise ratios will have to be added in the man-

ner outlined in Sec. V. We also expect the algorithm to be
utilized for network design and see several possible exten-
sions for both localized and global message passing-based
implementation. Utilization of the algorithms developed
here in ad-hoc network communication, multilayer VLSI
design and multilayer networks will require further study
of the specific requirements for the different applications.
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