
Anticipation in a velocity-based model for pedestrian dynamics

Qiancheng Xua,∗, Mohcine Chraibia, Armin Seyfrieda,b

aInstitute for Advanced Simulation,
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Abstract

Lane formation in bidirectional pedestrian streams is based on a stimulus-response mech-
anism and strategies of navigation in a fast-changing environment. Although microscopic
models that only guarantee volume exclusion can qualitatively reproduce this phenomenon,
they are not sufficient for a quantitative description. To quantitatively describe this phe-
nomenon, a minimal anticipatory collision-free velocity model is introduced. Compared to
the original velocity model, the new model reduces the occurrence of gridlocks and repro-
duces the movement of pedestrians more realistically. For a quantitative description of the
phenomenon, the definition of an order parameter is used to describe the formation of lanes
at transient states and to show that the proposed model compares relatively well with ex-
perimental data. Furthermore, the model is validated by the experimental fundamental
diagrams of bidirectional flows.
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1. Introduction

In bidirectional flow situations, pedestrians self-organize into dynamically varying and
separated lanes [1, 2, 3, 4, 5, 6]. Although the mechanisms behind this apparently organized
separation of the crowd are not known for certain and in many cases may seem random, we
observe that this formation leads to a reduction in collisions and thus increases the speed.
Unlike with car traffic, where stable lanes are predetermined by the restrictions established
by the infrastructure, in pedestrian dynamics, lanes are formed dynamically and naturally
with neither external synchronization nor any prior agreement between pedestrians.

We also see lane formation in systems of inanimate particles [7, 8, 9], where models
ensuring volume exclusion are sufficient to reproduce the phenomenon. Therefore, with
a simple social force model considering the repulsion between particles, Helbing et al. [10]
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qualitatively reproduced the lane formation in a corridor with periodic boundary conditions.
They attributed two reasons to this phenomenon, the sideways movement, which separates
agents moving in opposite directions, and the weak interaction between agents moving in
the same lane, which maintains the lanes that have been formed [2]. However, pedestrians
usually avoid collisions by using a stimulus-response mechanism to anticipate changes in the
environment. Therefore, it is clear that a model based solely on volume exclusion is over-
simplified and not suitable for quantitatively reproducing the lane formation in pedestrian
systems.

Pedestrians anticipate the changes in their environment by predicting the movement of
neighboring pedestrians and they take this information into account in their steering to
avoid imminent collisions. The effect of anticipation on the movement of pedestrians in
bidirectional flows has been discussed and addressed in several works to date. For instance,
Suma et al. [11] conducted a bidirectional flow experiment where participants are asked to
use cell phones (weak anticipation) or move cautiously (excessive anticipation), to study
how anticipation affects the movement of pedestrians. They found anticipation significantly
affects the time it takes for pedestrians to pass through the corridor, and there is an optimal
degree of anticipation to realize the minimum passing time. However, since the scale of the
experiment was small, the lane formation was not analyzed quantitatively. Consequently,
the authors proposed an anticipation floor field cellular automata model, which considers
the area occupied by agents in the future, to give a more realistic picture of the behavior
of agents in the bidirectional flow simulation. The model was further analyzed in [12] by
using an order parameter, which is originally used to detect lanes in a colloidal suspen-
sion [13]. A quantitative analysis showed that the model with anticipation can reproduce
lane formation in higher density situations than the model without anticipation. Bailo et
al. [14] also proposed a microscopic model with anticipation, which takes into consideration
the time to collision between agents. Murakami et al. [15] performed the bidirectional ex-
periment in a corridor with open boundary conditions, and they observed that the sideways
movement of pedestrians before lane formation can be described in terms of the Lévy walk
process. Therefore, the authors suggested that this sideways movement is strongly related
to lane formation. Moreover, they assumed the most likely action underlying the sideways
movement is anticipation. Then, the relationship between anticipation and lane formation
is further studied in [16] through a larger scale bidirectional flow experiment, where pedes-
trians distracted by cell phones are located at different positions to represent situations with
different degrees of anticipation. They found anticipation favors the formation of lanes in
bidirectional flow situations.

An additional strategy to avoid collisions is preferring to follow pedestrians moving in
the same direction. This strategy is part of the anticipation process to reduce collisions
but it reduces the probability of conflicts in a larger time scale than the strategy that only
avoids collisions with neighboring pedestrians. A model that supports this statement was
published by Isobe et al. [17] who using a bidirectional flow experiment with open boundary
conditions, measured the mean time for pedestrians to pass through the corridor and the
mean speed of pedestrians during the process. The authors proposed a lattice gas model
taking into account the strategy of following others. The front area of an agent is divided
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into three parts and the agent tends to move into the area that contains the highest number
of agents moving in the same direction. This model reproduces lane formation and the
measured experimental data very well.

In addition, the effect of various factors such as flow ratio and heterogeneity of agents
on lane formation were studied in several works. Mossaid et al. [18] performed a bidirec-
tional flow experiment in a ring-shaped corridor to realize periodic boundary conditions.
The authors discovered the dynamic and transient nature of lane formation is due to the
heterogeneity of pedestrians’ walking speed, and the lane is stable when all pedestrians move
at the same speed. This conclusion was validated using computer simulations. Feliciani et
al. [19] conducted a bidirectional flow experiment in a corridor with open boundary condi-
tions, where various flow ratios of pedestrians in two directions were adopted. Their result
shows that, once lanes are formed, a balanced bidirectional flow, i.e., when the number of
pedestrians moving in both directions is equal, is the most stable situation.

Another phenomenon related to bidirectional flow is the jamming transition, also called
gridlock, appearing at a critical density. Muramatsu et al. [20] used a lattice gas model
without backstepping to study the jamming transition in bidirectional pedestrian flow with
open boundary conditions. They found the jamming transition does not depend on the
corridor size but it is affected by the strength of the drift (the preference to move in the
desired direction) and the traffic rule adopted (such as keep to the right). Fang et al. [21]
adopted a cellular automata model with backstepping and the right-hand side rule. They
observed the critical density of jamming transition increases with a higher probability of
backstepping. Nowak et al. [12] studied the phenomenon with the anticipation floor field
cellular automata model proposed in [11]. They discovered the anticipation mechanism in
the model suppresses the formation of jamming (facilitating the formation of lanes), which
leads to an increase in the critical density of the jamming transition. However, the jamming
transition is only observed in computer simulations.

Furthermore, the fundamental diagram is used to analyze bidirectional streams. In some
early studies summarized in [22], it is believed that there is no clear or only a small differ-
ence between uni- and bidirectional flows. Helbing et al. [23] concluded that bidirectional
flows are more efficient than unidirectional flows. The possible reason behind this is better
coordination between people in bidirectional situations (lane formation). Kretz et al. [24]
also found that pedestrians use space more efficiently in bidirectional situations. Subse-
quently, Zhang et al. [22] carried out both uni- and bidirectional flow experiments under
laboratory conditions. A clear difference between the fundamental diagrams of uni- and
bidirectional flows is observed when the density is higher than 1.0 m−2. The specific flow
reaches a peak with increasing density in the unidirectional flow, whereas a plateau is formed
in the bidirectional flow. However, there are no experimental data for densities higher than
4.5 m−2.

In order to reproduce bidirectional flow quantitatively, the anticipation velocity model
(AVM) for pedestrian dynamics is proposed. The action anticipating changes of neighboring
pedestrians’ positions and the strategy of following others are covered in this model. The
new model is compared to two similar models from the literature, the collision-free speed
model and generalized collision-free velocity model, and we highlight the reasons behind the
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difference. Moreover, we use the AVM to study the jamming transition, lane formation, and
fundamental diagrams in bidirectional flow scenarios. In the following section, the AVM is
described.

2. Definition of the anticipation velocity model

In this model, an agent is represented as a disk with a constant radius r. The position and
velocity of pedestrian i are denoted by ~xi and ~vi, respectively, where ~vi = ~̇xi. Furthermore,
~vi = ~ei · vi, where ~ei and vi denote the direction of movement and the speed of agent i,
respectively. Both variables are modeled differently as explained in the following subsections.

2.1. Submodel for operational navigation

The direction of movement of agent i is determined by its desired direction which is a unit
vector denoted by ~e 0

i pointing towards its target. The determination of the target follows
various tactical strategies, which is not the subject of the present study. For operational
navigation to avoid collisions and obstructions, in the presence of other agents, the direction
of i will deviate from its desired direction ~e 0

i . To consider anticipation, the process can be
divided into the following parts: a. perception of the actual situation, b. prediction of a
future situation, and c. selection of a strategy leading to an action.

a. Perception of the actual situation: To consider restrictions using visual perception, it
is assumed that only agents located in the union of two half-planes, where i is moving or
intends to move, affect its direction. The set containing all agents who have an impact on
i’s direction of movement is

Ni(t) =

{
j, ~ei(t) · ~ei,j(t) > 0 or ~e 0

i (t) · ~ei,j(t) > 0

}
, (1)

where ~ei,j denotes the unit vector from i to j.
b. Prediction of a future situation: To consider the prediction, it is assumed that the

strength of j’s impact on i is a function of the predicted distance between these two agents at
a particular time point. Given a time constant ta, which can be interpreted as the prediction
time, the predicted distance is defined as

sa
i,j(t+ ta) = max

{
2r,

(
~x a
j (t+ ta)− ~x a

i (t+ ta)
)
· ~ei,j(t)

}
, (2)

where ~x a
i (t+ ta) = ~xi(t) + ~vi(t) · ta. See Figure 1.
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Figure 1: An example of sai,j(t+ ta), the predicted distance between agents i (~xi, ~vi) and j (~xj , ~vj). When
pedestrians move towards each other their predicted distance is smaller than the actual distance.

c. Selection of a strategy leading to an action: After the introduction of the predicted
distance in Eq. 2, the strength of the impact from agent j on the direction of movement of
agent i is defined as

Ri,j(t) = αi,j(t) · exp

(
2r − sa

i,j(t+ ta)

D

)
, (3)

whereD > 0 is a constant parameter used to calibrate the range of the impact from neighbors
and αi,j is a directional dependency used to vary the strength of impact from different
neighbors (see Eq. 4).

αi,j(t) = k
(

1 +
1− ~e 0

i (t) · ~ej(t)
2

)
, k > 0, (4)

where αi,j is minimal (k) when both vectors ~e 0
i and ~ej are aligned and is maximum (2k)

when they are anti-aligned, which means that agents influence each other’s direction strongly
in bidirectional scenarios. Here, αi,j means agents have a high tendency to follow the agents
who move in the same direction. When this strategy is used, the probability of further
conflicts is reduced.

The direction of the impact from agent j on i’s direction of the movement is defined as

~ni,j(t) = − sign

(
~e a
i,j(t+ ta) · ~e 0⊥

i (t)

)
· ~e 0⊥

i (t), (5)

where ~e a
i,j(t+ ta) = ~x a

j (t+ ta)−~xi(t). The direction of ~ni,j depends on the predicted position
of agent j after a period of time ta. Note that when this predicted position is aligned with
the desired direction of i, the direction of ~ni,j(t) in Eq. 5 is chosen randomly as ~e 0⊥

i or
−~e 0⊥

i . See Figure 2. This rule prevents agents from moving in the opposite direction to the
desired direction.

5



Figure 2: The direction of the impact from j on the direction of movement of i (~ni,j) according to Eq. 5.

Finally, Eq. 3 and Eq. 5 yield the optimal direction of agent i as

~e d
i (t) = u

(
~e 0
i (t) +

∑
j∈Ni(t)

Rj,i(t) · ~nj,i(t)

)
, (6)

where u is a normalization constant such that ‖~e d
i ‖ = 1. Then, the direction of movement

of agent i is updated as
d~ei(t)

dt
=
~e d
i (t)− ~ei(t)

τ
, (7)

where τ is a relaxation parameter adjusting the rate of the turning process from the current
direction ~ei to the optimal direction ~e d

i .

2.2. Submodel for the speed
After obtaining the new direction of the movement according to Eq. 7, the set of neighbors

that are imminently colliding with i is defined as

Ji =
{
j, ~ei · ~ei,j ≥ 0 and

∣∣~e ⊥i · ~ei,j∣∣ ≤ 2r

si,j

}
, (8)

where si,j is the current distance between i and j. Therefore, the maximum distance that
agent i can move in the direction without overlapping other agents is

si = min
j∈Ji

si,j − 2r. (9)

Finally, the speed of agent i in the new direction is

vi = min
{
v0
i , max

{
0,
si
T

}}
, (10)

where v0
i is the free speed of agent i, and T > 0 is the slope of the speed-headway relationship.

The speed submodel used here is the same as in the generalized collision-free velocity model.
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3. Test with two interacting agents

Binary interaction scenarios with the collision-free speed model (CSM), the generalized
collision-free velocity model (GCVM), and the AVM, respectively, are studied to assess the
models’ ability. The three models adopt the same speed submodel but different submodels
for operational navigation. In both the CSM and the GCVM, the strength of the effect from
agent j on agent i’s direction of movement is a function of the distance between the two
agents. As for the direction of this effect, in the CSM it is from j to i, while in the GCVM
it is obtained with Eq. 5 (ta = 0 s). A detailed introduction to the CSM can be found in [25]
and to the GCVM in [26]. The parameters of these models are summarized in Table 1.

r [m] k Eq. 4 D [m] Eq. 3 T [s] Eq.10 ∆t [s] τ [s] Eq. 7 ta [s]
CSM

0.18 3 0.1 1.06 0.05
\ \

GCVM
0.3

\
AVM 1

Table 1: The parameters of the models in binary interaction simulations. Here, r is the radius of agents, ∆t
is the time step size, and ta is the prediction time. The simulation in the present study is conducted using
the Euler scheme. Parameter values of the CSM and the GCVM are obtained from [26].

(a)

1

0

1 AVM i
AVM j

1

0

1

y 
[m

] CSM i
CSM j

2 0 2 4 6 8 10
x [m]

1

0

1 GCVM i
GCVM j

(b)

Figure 3: (a): Scenario 1, agent i walks behind agent j. The two agents have the same desired direction but
the free speed of agent i is higher than that of agent j. (b): The trajectory of agents. The position of agents
at different times is represented by the disk, and the transparency of these disks increases with increasing
time. When the AVM is used, overtaking starts earlier.
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The first scenario is that agent i walks behind agent j, which is shown in Figure 3(a).
The agents have the same desired direction, but the free speed of agent i is higher than
that of agent j. The trajectory of the agents in the first scenario is shown in Figure 3(b).
In the simulation using the GCVM and the AVM, agent i overtakes agent j by adjusting
the direction of movement. In the CSM, however, no overtaking is observed. Moreover,
compared to the GCVM, the overtaking in the AVM occurs earlier.

The second scenario, more relevant to bidirectional flow, depicts two agents having the
same free speed with opposite desired directions (see Figure 4(a)). The trajectory of the
agents in the second scenario is shown in Figure 4(b). Here again, it is observed that with
the GCVM and the AVM, agents i and j both change their paths to avoid the imminent
conflict, although this maneuver occurs earlier in the AVM than in the GCVM. In the CSM,
the two agents are unable to pass each other.

(a)

1

0

1 AVM i
AVM j

1

0

1

y 
[m

] CSM i
CSM j

6 4 2 0 2 4 6
x [m]

1

0

1 GCVM i
GCVM j

(b)

Figure 4: (a): Scenario 2, agent i and agent j move toward each other. The two agents have the same free
speed but opposite desired directions. (b): The trajectory of agents. The position of agents at different
times is represented by the disk, and the transparency of these disks increases with increasing time. Evasive
movement starts earlier when the AVM is used.

In the last scenario (see Figure 5(a)), the paths cross at right angles. The free speeds
of the two agents are very similar but not quite equal to avoid the symmetric movement of
the two agents. The trajectory of the agents in the last scenario is shown in Figure 5(b).
When the AVM is used, the agents deviate slightly from the desired direction to the target
and avoid collision.
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(a)

4 2 0 2 44

2

0

2

4

y 
[m

]

AVM i
AVM j

4 2 0 2 4
x [m]

CSM i
CSM j

4 2 0 2 4

GCVM i
GCVM j

(b)

Figure 5: (a): Scenario 3, agent i and agent j move across each other’s path. The free speeds of the two
agents are very close but not equal and their desired directions are perpendicular to each other. (b): The
trajectory of agents. The position of agents at different times is represented by the disk, and the transparency
of these disks increases with increasing time.

In all cases, it can be concluded that, without introducing noise terms into the models,
the movement of agents in the simulation using the AVM is closer to reality than using the
CSM and the GCVM, where agents have difficulty overtaking or performing realistic evasive
movements.

4. Bidirectional flow simulations with periodic boundary conditions

4.1. States of bidirectional flow

The bidirectional flow simulation is performed for a corridor shown in Figure 6. For the
initial conditions of a simulation, the agents are randomly distributed in the gray waiting
areas. The same number of agents were placed at the left and the right sides of the corridor.
After the simulation starts, agents in the left waiting area move toward the right, and vice
versa. Different initial conditions of agents’ desired direction ~e 0 were compared before
performing the simulations in this section. Since no significant difference could be observed
between the simulation results of ordered and unordered initial conditions, agents’ desired
direction ~e 0 were set parallel to the horizontal walls of the corridor. The free speeds of
agents are normally distributed N ∼ (1.55, 0.182) m s−1 according to [22]. All simulations
presented in this section are performed with periodic boundary conditions in the walking
direction of the agents. Each simulation lasts 400 s.

Figure 6: The corridor for bidirectional flow simulations.
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Based on the approach used in [12], the patterns emerging in our simulations are classified
into four different states, which are local jamming, global jamming, lane formation, and
disorder (see Figure 7). Local jamming and global jamming are both categorized as jamming
states, whereas lane formation and disorder are grouped into the moving states. If the
average speed of an agent over 10 s is less than v0/100, it is indicated as a static agent.
Using this definition, a simulation is considered to be in the jamming state when the number
of static agents in the simulation is equal to or greater than 2 (Nstatic ≥ 2); otherwise, the
simulation is considered to be in a moving state. Note, although 400 s is usually long enough
to reach the steady state of the simulation, the jamming or moving state of a simulation
still has a certain probability of being transient. The number of static agents in the four
simulations in Figure 7 are 29 (local jamming), 80 (global jamming), 0 (lane formation),
and 0 (disorder), respectively.

(a)

(b)

(c)

(d)

Figure 7: Different states of bidirectional flow simulations with periodic boundary conditions. (a): Local
jamming. (b): Global jamming. (c): Lane formation. (d): Disorder.

In this section (Figures 8, 9, and 10(a)), each simulation is performed for M = 30 times
with different distributions of agents in the waiting areas, then the jamming probability Pjam
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is calculated as
Pjam = Sjam/M, (11)

where Sjam is the number of simulations leading to a jamming state.
To further distinguish between the states of lane formation and disorder, the quantity Φ

defined in [27] is introduced as

Φ =
1

N

N∑
i=1

φi, (12)

with

φi =
(N same

i −Ndiff
i )2

(N same
i +Ndiff

i )2
∈ [0, 1], (13)

where N same
i is the set of all agents initially in the same waiting area as agent i and currently

moving in i’s lane and Ndiff
i is the set of all agents initially in a different waiting area to

agent i and currently moving in i’s lane. The expressions of N same
i and Ndiff

i are

N same
i =

{
j, |yj − yi| < 3r/2 and ~e 0

i · ~e 0
j > 0

}
, (14)

Ndiff
i =

{
j, |yj − yi| < 3r/2 and ~e 0

i · ~e 0
j < 0

}
, (15)

where yi is the vertical position of agent i.
Φ is an indicator of how pronounced lanes are formed in a simulation. Knowing that an

order parameter is only measured at steady states, Φ is used here to compare models with
respect to their performance of describing the transient state of lane formation. The values
of Φ in the four simulations in Figure 7 are 0.66 (local jamming), 0.18 (global jamming),
1.00 (lane formation), and 0.31 (disorder), respectively. Nevertheless, there is no specific
boundary to clearly distinguish between the states of lane formation and disorder.

4.2. Jamming transition

To study the jamming transition in bidirectional flow, simulations are performed with
the AVM, the CSM, and the GCVM, respectively. The parameters of models are shown in
Table 1. For each model, simulations are performed with different numbers of agents ranging
from 20 to 200 (10 to 100 in each waiting area).

The relationship between Pjam and ρglobal, the global density of agents in the corridor, for
different models is shown in Figure 8. The value of ρglobal is equal to the number of agents
divided by the area of the corridor. With an increase in ρglobal, a transition from moving
states (Pjam = 0) to jamming states (Pjam = 1) is observed in the simulation of all three
models. However, with the AVM, the transition occurs at a higher value of ρglobal compared
to the other two models, which indicates the model’s ability to reproduce lane formation
even at higher density values.
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AVM

Figure 8: The relationship between Pjam and ρglobal for different models.

4.3. Parametric study

Parameters k and D are used to calibrate the strength and range of the impact from
neighbors to the direction of movement in all three models (the CSM, the GCVM, and the
AVM). Although the definitions vary slightly between the three models, higher values of
k and larger D always led to agents being more stimulated to deviate from their desired
directions. In this section, the effect of k and D on the jamming probability Pjam is studied
for each of the three models.

For each model, simulations are performed with different values of k (1, 2, 3, 4, 5, and
6) and different values of D (0.01, 0.02, 0.05, 0.10, 0.20 m). To ensure simulations with
jamming and moving states, the global density of agents ρglobal is set close to the critical
density between the moving state and the jamming state (see Figure 8). The number of
agents is 100 (ρglobal ≈ 0.96 m−2) for the simulations using the CSM, 60 (ρglobal ≈ 0.58 m−2)
for the simulations using the GCVM, and 140 (ρglobal ≈ 1.35 m−2) for the simulations using
the AVM. Other parameters of the three models are given in Table 1.

The jamming probability of the simulation using the CSM and the GCVM is shown in
Figures 9(a) and 9(b), respectively. Generally speaking, the value of Pjam in the simulation
using the CSM and the GCVM decreases with increasing k and D, which means that the
jamming probability decreases with increasing impact from neighbors on the direction of
movement. However, the value of Pjam in the simulation using the AVM shows a different
trend (see Figure 9(c)). When the value of D is small (0.01, 0.02, and 0.05 m), the value
of Pjam changes slightly. With a larger value of D (0.1 m), the value of Pjam increases with
increasing k. Note that when the value of D is large enough (0.2 m), the value of Pjam is
close to 1 and the effect of k is marginal again. Generally, in the AVM, with increasing
impact from neighbors on the direction of movement, the jamming probability increases.
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Figure 9: The relationship between Pjam and k for different values of D. The mean value of D can be read
in the legend. (a): CSM. (b): GCVM. (c): AVM.

On the basis of all combinations of k and D in Figure 9, the set of parameters that leads
to the minimal Pjam is identified for each model and shown in Table 2.

CSM GCVM AVM
k 6 4 6
D [m] 0.2 0.2 0.01

Table 2: The set of k and D that leads to the minimal Pjam in Figure 9.

4.4. Lane formation

The values of k and D from Table 2, together with other parameter values from Table 1,
are used for a comparative study of lane formation in the three models. For each model,
simulations are performed with different numbers of agents from 20 to 300 (ρglobal from
0.19 to 2.8 m−2). The relationship between Pjam and ρglobal for different models is shown in
Figure 10(a). Compared to Figure 8, the jamming probability Pjam is significantly reduced
in the simulation using the CSM and the AVM by adopting the optimal values of k and D.
The GCVM, however, does not show any improvement.

Furthermore, to gain a better insights into the lane formation phenomenon, the average
value of Φ in the last 10 s of each simulation is calculated. First, simulations are classified
as “jamming” or “moving” according to their states. Then, the mean value and standard
deviation of Φ in the simulations with the moving state are calculated for each model and
each density. The variations in Φ with respect to the global densities are shown in Fig-
ure 10(b). For all the three models, when ρglobal < 1.0 m−2, the values of Φ in the moving
states are always close to 1, which indicates that, in this case, lanes are always formed.
When ρglobal > 1.0 m−2, for the moving states, the value of Φ is unavailable in the GCVM,
and the values in the AVM are significantly higher than in the CSM. This indicates that,
although both are in the moving states, the AVM reproduces lane formation much better.
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Figure 10: Using the values of k and D from Table 2. (a): The relationship between Pjam and ρ for different
models. (b): The mean value and standard deviation of Φ in the simulations with the moving state, for
each model and each density.

The quantity Φ is a reliable indicator of the formation of lanes in a simulation. Since
it changes in time, an artificial threshold of 0.8 for Φ is introduced to describe how fast
lanes are developed. The time when the value of Φ first exceeds the threshold is denoted by
tlane. The mean value and standard deviation of tlane in simulations with the moving state
are calculated for each model and each density. See Figure 11(a). For all three models, the
mean value of tlane increases with increasing ρglobal, which is to be expected. Moreover, lanes
form much faster in the simulation using the AVM than with the other models.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
global [m 2]

0

50

100

150

200
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300

tla
ne

 [s
]
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GCVM
AVM

(a)
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t [s]
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CSM
GCVM
AVM
Experiment

(b)

Figure 11: (a) The mean value and standard deviation of tlane in the simulations with the moving state, for
each model and each density. (b):The relationship between the value of Φ and the simulation time t of three
simulations using different models (ρglobal=1.92 m−2) and an experiment [22].

Three single simulations using different models are further compared with bidirectional
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flow experiment [22]. Figure 11(b) shows the time series of Φ in the first 200 s. Here, Φ
continues to increase to 1 and then remains stable in the simulation using the AVM, while it
keeps fluctuating below 0.7 for the CSM. For the GCVM, the quantity Φ is stable at a low
value, indicating a lack of any lane formation. The possible reason for the difference between
the AVM and the CSM here is that the moving state of the AVM can be attributed to the
strategy of following, while the moving state of the CSM is due to agents pushing each other
aside. This behavior is also reflected in the snapshots of the three simulations at different
times, shown in Figure 12. The experiment compared in Figure 11(b) is performed in a
3.6 m corridor under open boundary conditions and it records the trajectories of pedestrians
in the 8 m length measurement area. The steady density of pedestrians in the measurement
area is around 2 m−2. The value Φ for pedestrians in the measurement area is calculated
and the lane formation occurs even earlier in the experiment than in the simulation. It
could not be excluded that, in the experiment, the formation of lanes starts even outside of
the measurement area. Thus, the comparability of experiments and simulations is limited.
However, a comparison of the time series of Φ, in particular, the increase in Φ over time,
provides a rough estimate whether the time in which the system switches from an unordered
state without lanes to an ordered state with lanes has the same order of magnitude.

t = 0 s

t = 5 s

t = 10 s

t = 20 s

t = 40 s

GCVM

AVM

t = 100 s

CSM GCVM

AVM

t = 200 s

CSM GCVM

Figure 12: The snapshot of the simulations using the AVM, the CSM, and the GCVM (from left to right).
From top to bottom: t = 0, 5, 10, 20, 40, 100, and 200 s.

5. Validation of the AVM using the fundamental diagram

After the AVM was compared to two other models and showed its ability to produce
lane formation reasonably, the model was then validated with respect to the fundamental
diagram. For this purpose, the fundamental diagram (FD) obtained from bidirectional flow
experiments in [22, 28] was used to calibrate the parameters of the AVM. Bidirectional flow
simulations with open boundary conditions were performed in a corridor shown in Figure 6.
The same number of agents were placed at the left and the right side of the corridor. The
number of agents is varied in different simulations to realize different local densities in
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the corridor. Agents in the left waiting area move toward the right, and vice versa. The
simulation ends when all agents leave the corridor. The calibration was performed manually
and resulted in the set of parameters listed in Table 3.

Flow types v0 [m s−1] r [m] k D [m] T [s] τ [s] ta [s]
Bidirectional

N ∼ (1.55, 0.182) 0.18 6 0.01
0.6

0.3 0.75
Unidirectional 0.5

Table 3: Validated parameters of the AVM.

The FD obtained by simulations and experiments are compared in Figure 13. The speed
v, the local density ρlocal, and the specific flow Js = ρlocal · v in both the simulation and the
experiment are measured from trajectories of pedestrians or agents using the same method.
The measurement method is proposed in [28], where the local density is measured using the
Voronoi method and the measured speed is the projection of the real speed in the horizontal
direction. The FD obtained from the simulation is consistent with the FD obtained from
the experiment.

0 1 2 3 4 5 6 7
local [m 2]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

v
[m

s
1 ]

Simulation
Experiment

(a)

0 1 2 3 4 5 6 7
local [m 2]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

J s
[m

1
s

1 ]

Simulation
Experiment

(b)

Figure 13: The fundamental diagram of bidirectional flow from the experiment and the simulation. (a)
Density-velocity. (b) Density-specific flow.

As well as the quantitative comparison of the FD, the process of lane formation in the
simulation is qualitatively compared to the experiment (see Figure 14). The trajectory
snapshots of a simulation and a bidirectional flow experiment in a 4 m wide corridor are
compared. Note that the trajectories of the experiment are superimposed by the swaying
of the head movement due to the bipedal movement in steps, which is not covered by the
model. Moreover, the course of lane formation in the simulation is similar in time to the
experiment.
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t = 1 s
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t = 5 s

Simulation

Experiment

t = 10 s

Simulation

Experiment

t = 15 s

Simulation

Figure 14: The trajectory snapshots of an experiment (left) and a simulation (right). Top to bottom: t =
1, 3, 5, 10, and 15 s.

The first 50 s trajectories of agents in the simulation and pedestrians in the experiment are
shown in Figure 15. Four lanes can be observed in both the experiment and the simulation.
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Figure 15: The trajectories of pedestrians (agents) in the first 50 s. (a) Experiment. (b) Simulation.

The fundamental diagram of the unidirectional flow was then reproduced with the cal-
ibrated parameters listed in Table 3. The FD of uni- and bidirectional flow obtained by
simulations with the AVM are shown in Figure 16(a). The specific flow reaches a peak
with increasing local density ρlocal in the unidirectional flow simulation, where a plateau is
formed in the bidirectional flow simulation. The difference is in line with the observation in
the experiment [22]. See Figure 16(b). Note that the experimental data for higher densities
than 4.5 m−2 cannot be reached. Data from simulations and experiments show different
scatter. The larger scatter at the congested regime indicates that real pedestrians steer
more smoothly at high densities than the agents modeled by the AVM. One possible reason
for this discrepancy is that the agents in the model always jostle to move further and are
apparently unaware of the strategy of simply standing still.
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Figure 16: The fundamental diagram of uni- and bidirectional flow. (a) The relation between the local
density and the specific flow in the simulation. (b) The relation between the local density and the specific
flow in the experiment.

6. Conclusion

A new velocity model is proposed to take into consideration anticipation of pedestrians.
For this, the process of anticipation is divided into three parts: perception of the actual
situation, prediction of a future situation and selection of a strategy leading to an action.

First, the AVM is compared to the two other velocity-based models (the generalized
collision-free velocity model (GCVM), and the collision-free speed model (CSM)) in binary
interaction scenarios. Even in these simplified situations, the simulated trajectories of agents
show that the AVM can reproduce the movement of pedestrians more realistically than the
other two models.

In a second step, these models are compared in the bidirectional flow scenario with
periodic boundary conditions. Simulations are classified as jamming state or moving state,
according to the number of static, or blocked, agents in the simulation. Compared to the
other two models, the critical density between the moving states and jamming states is
shifted to higher values using the AVM. This indicates that the AVM prevents imminent
collisions better than the other models.

The influence of the parameters describing the effect from neighbors in the three models is
studied in bidirectional flow scenarios. Only for the AVM does an increase in the impact from
neighbors in the direction of movement lead to an increase in the jamming probability. The
opposite occurs when the CSM and the GCVM are used. The bidirectional flow simulation
with periodic boundary conditions is then performed using the set of parameters that leads
to the minimum jamming probability. The jamming probability is significantly reduced in
the simulation using the CSM and the AVM by adopting the new parameters but there is
little change in the simulation using the GCVM.
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After this, the quantity Φ, describing the degree of order given by lanes, is adopted to
analyze the formation of lanes quantitatively. In line with experimental results of high-
density situations, the AVM leads to the formation of lanes much faster than the CSM. One
possible reason for this difference here is that the moving state of the AVM can be attributed
to the strategy of following, while the moving state of the CSM could be associated with
agents pushing each other aside.

Finally, the AVM is validated using the fundamental diagram (FD). After calibration
based on the bidirectional FD, the FD for unidirectional flow is correctly reproduced by
simulation using the AVM. The difference between the FD of uni- and bidirectional flow is
also well reproduced. Moreover, the course of lane formation in time and the shape of the
formed lanes in the simulations with the AVM are similar to those in the experiments.

Additional analyses using the AVM in the bidirectional flow simulation with periodic
boundary conditions are conducted. In Appendix A, the decisive factors leading to im-
proved performance in the simulation using the AVM are studied. The result shows that
the prediction of the future situation and the strategy of following are both significant for
reducing the jamming probability, and there is an optimal prediction time to realize the
minimum jamming probability. In Appendix B, simulations are performed in corridors
with different widths. When the corridor is wider than 2 m, the effect of the corridor width
on the jamming probability is insignificant. In addition, the heterogeneity of agents’ free
speed is studied in Appendix C, where the jamming probability decreases with increasing
heterogeneity of the free speed of agents.
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Appendix A. Decisive factors in the anticipation velocity model

Using the AVM reduces the jamming probability and favors the formation of lanes in
bidirectional flow simulations. The possible causes for the improvement are the prediction
time ta, and the dynamic αi,j reflecting pedestrians’ preference to follow others moving in
the same direction. To identify the decisive factor of this improvement, simulations are
performed in periodic boundary conditions with dynamic αi,j and constant αi,j (αi,j = k),
respectively. For each case, different values of ta (0, 0.2, 0.5, 1.0, 1.5, and 2 s) are adopted.
The simulation scenario is the corridor shown in Figure 6. The free speeds of agents are
normally distributed N ∼ (1.55, 0.182) m s−1. The number of agents in each simulation
is 140 (ρ ≈ 1.35 m−2). This corresponds to the global density where the transition from
moving states (Pjam = 0) to jamming states (Pjam = 1) occurs in the simulation using the
AVM. The other parameters of the AVM are shown in Table 1.
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Figure A.17: (a): The relationship between the jamming probability Pjam and the prediction time ta for
dynamic and constant αi,j . (b): Mean value and standard deviation of Φ in the simulation with jamming
(J) and moving (M) states for each value of ta and each αi,j (dynamic and constant).

The relationship between the jamming probability Pjam and the prediction time ta for
dynamic and constant αi,j is shown in Figure 17(a). The same tendency of Pjam is observed
in the simulation with dynamic and constant αi,j. As ta increases, Pjam decreases until ta

reaches a specific value, then it increases. Moreover, the effect of the prediction time ta on
the jamming probability Pjam is more significant in the simulation with dynamic αi,j than
with constant αi,j.

The mean value and standard deviation of Φ in the simulation with jamming and moving
states are calculated for each ta and each αi,j (dynamic and constant). See Figure 17(b).
The values of Φ are close to 1 in the moving state and less than 0.3 in the jamming state.
Neither the prediction time ta nor the coefficient αi,j affects the formation of lanes in the
simulation with the moving state.

In conclusion, the prediction time ta and the dynamic αi,j both contribute to reducing
the jamming probability in the bidirectional flow simulation. Moreover, a longer prediction
time does not mean a lower jamming probability. An appropriate prediction time ta can
reduce the jamming probability. A similar conclusion also drawn from [11] is that there is
an optimal strength of anticipation to realize the smoothest counterflow.

Appendix B. Width of the corridor

A transition from moving states (Pjam = 0) to jamming states (Pjam = 1) occurs with an
increase of ρglobal (the global density of agents) in the bidirectional flow simulations. In this
appendix, the effect of the corridor width on this transition is studied. Six corridors with
different widths (1, 2, 3, 4, 5, and 6 m) are simulated. Apart from the width, these corridors
are identical to the corridor shown in Figure 6. For each corridor, simulations are performed
in periodic boundary conditions with different values of ρglobal (0.31, 0.62, 0.92, 1,23, 1.54,
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or 1.85 m−2). The simulation is performed with the AVM using the parameters in Table 1.
The free speeds of agents are normally distributed N ∼ (1.55, 0.182) m s−1.
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Figure B.18: The numbers in the legend give the width of the corridor. (a): Relationship between the
jamming probability Pjam and the global density ρglobal for corridors with different widths. (b): Mean value
and standard deviation of Φ in the simulation with the moving state (M), for each corridor and each global
density ρglobal.

The relationship between the jamming probability Pjam and the global density ρglobal for
corridors with different widths is shown in Figure 18(a). The transition from moving states
to jamming states is observed in the simulation with all corridors except for the corridor of
1 m width. When the width of the corridor is 1 m, the value of Pjam is close to 1 even if the
global density is very low. One possible reason for this is that the effect of walls prevents
agents from using the full width of the corridor.

The mean value and standard deviation of Φ in the simulation with the moving state are
calculated for each corridor and each value of ρglobal. See Figure 18(b). When the width of
the corridor is 1 m and ρglobal = 0.31 m−2, the value of Φ is lower than in other situations. In
addition to this, there is no significant difference between the value of Φ in other simulations
with the moving state, which is always close to 1.

Appendix C. Heterogeneity of the free speed of the agents

To analyze the influence of the heterogeneity of agents, the free speed is chosen according
to a normal distribution. A larger standard deviation of the distribution corresponds to a
higher heterogeneity in the free speed of agents. In other sections, the normal distribution
N ∼ (1.55, 0.182) m s−1 obtained from the experiment in [22] is used. In this subsection,
normal distributions with the same mean value (1.55 m s−1) but different standard devia-
tions (0, 0.09, 0.18, 0.36, or 0.54 m s−1), which is denoted by σ, are adopted in this analysis.
Simulations are performed with periodic boundary conditions in the corridor shown in Fig-
ure 6. The number of agents is 140 in each simulation (ρ ≈ 1.35 m−2). It corresponds to
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the global density, where the transition from moving states (Pjam = 0) to jamming states
(Pjam = 1) occurs in the simulation using the AVM. Other parameters of AVM are shown
in Table 1.
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Figure C.19: (a): The relationship between the jamming probability Pjam and the standard deviation σ.
(b): The mean value and standard deviation of Φ in the simulation with jamming and moving states, for
each value of σ.

The relationship between the jamming probability Pjam and the standard deviation σ is
shown in Figure 19(a). The value of Pjam decreases as σ increases. The mean value and
standard deviation of Φ in the simulation with jamming and moving states are calculated
for each value of σ. See Figure 19(b). The value of Φ in the moving state is higher than
in the jamming state. Moreover, there is no significant difference between the value of Φ
in the simulation with the moving state, which is always all close to 1. In conclusion, with
increasing heterogeneity of the free speed of agents, the jamming probability decreases, but
the formation of lanes in the simulation with the moving state is not affected.
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