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Observation of a many-body-localized discrete time crystal
with a programmable spin-based quantum simulator
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The discrete time crystal (DTC) is a recently discovered phase of matter that spontaneously
breaks time-translation symmetry. Disorder-induced many-body-localization is required to stabilize
a DTC to arbitrary times, yet an experimental investigation of this localized regime has proven
elusive. Here, we observe the hallmark signatures of a many-body-localized DTC using a novel
quantum simulation platform based on individually controllable **C nuclear spins in diamond. We
demonstrate the characteristic long-lived spatiotemporal order and confirm that it is robust for
generic initial states. Our results are consistent with the realization of an out-of-equilibrium Floquet
phase of matter and establish a programmable quantum simulator based on solid-state spins for

exploring many-body physics.

A time crystal spontaneously breaks time-translation
symmetry [1]. While time crystals cannot exist for time-
independent Hamiltonians [2], it is predicted that period-
ically driven ‘Floquet’ quantum many-body systems can
break discrete time-translation symmetry [3-7]. Such a
discrete time crystal (DTC) spontaneously locks onto a
period that is a multiple of that of the drive and is sta-
ble against perturbations. It represents a novel phase of
matter that only exists out of equilibrium and exhibits
long-range spatial and temporal order. Stabilizing the
DTC phase to arbitrary times requires disorder-induced
many-body-localization (MBL), which prevents heating
from the periodic drive and induces a breakdown of er-
godicity [3-9].

Pioneering experiments have revealed signatures of
time-crystalline order in a range of systems including
trapped ions [10, 11], spin ensembles [12-15], ultracold
atoms [16, 17] and superconducting qubits [18]. How-
ever, none of these experiments satisfy the theoretical re-
quirements for MBL under periodic driving [6, 19]. The
observed responses have instead been attributed to a va-
riety of fascinating critical and prethermal mechanisms
that lead to slow, but finite, thermalization [6, 7, 11, 19—
22]. Experimentally investigating the DTC phase, sta-
bilized by MBL, has remained an outstanding challenge
[6, 19].

Here, we present an observation of the hallmark sig-
natures of the many-body-localized DTC phase. We de-
velop a quantum simulator based on individually control-
lable and detectable '3C nuclear spins in diamond, which
can be used to realize a range of many-body Hamiltonians
with tunable parameters and dimensionalities. We show
that this simulator can be programmed to satisfy all re-

quirements for a DTC, including stabilizing MBL under
periodic driving. We implement a periodic Floquet se-
quence in a one-dimensional (1D) chain of L = 9 spins,
and observe the characteristic long-lived DTC response
with twice the driving period. By combining the ability
to prepare arbitrary initial states with site-resolved mea-
surements, we confirm the DTC response for a variety
of initial states up to N = 800 Floquet cycles. This ro-
bustness for generic initial states provides a key signature
to distinguish the many-body-localized DTC phase from
prethermal mechanisms, which only show a long-lived re-
sponse for selected states [6, 11, 19].

Our experiments are performed on a system of 13C nu-
clear spins in diamond close to a nitrogen-vacancy (NV)
center at 4 K (Fig. 1A). The nuclear spins are well-
isolated qubits with coherence times up to tens of sec-
onds [26]. They are coupled via dipole-dipole interactions
and are accessed through the optically addressable NV
electronic spin [23, 26]. With the electronic spin in the
mgs = —1 state, the electron-nuclear hyperfine interaction
induces a frequency shift h; for each nuclear spin, which
— combined with an applied magnetic field B, in the z-
direction — reduces the dipolar interactions to Ising form
[25]. We additionally apply a radio-frequency (rf) driving
field to implement nuclear-spin rotations. The nuclear-
spin Hamiltonian is then given by H = Hiy + H,¢, where
Hi,t and H.¢ describe the interaction and rf driving terms
respectively:

Hiw = Y _(B+hj)oi + > Jjxoiof
i<k

J
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FIG. 1. Programmable spin-based quantum simulator. (A) We program an effective 1D chain of 9 spins in an interacting
cluster of 27 '3C nuclear spins (orange) close to a single NV center. Connections indicate nuclear-nuclear couplings |J;x| >
1.5Hz, and blue (red) lines represent negative (positive) nearest-neighbor couplings within the chain [23]. Magnetic field: B, ~
403 G. (B) Experimental sequence: The spins are initialized by applying the PulsePol sequence [24], followed by rotations of the
form R(¥,p) = exp[—i2(sin(p)o” + cos(p)o?)]. After evolution under the Floquet sequence Up = [Uint(7) - Uz (8) - Une (7)™,
the spins are sequentially read out through the NV electronic spin using electron-nuclear and nuclear-nuclear two-qubit gates
(see text). Colored boxes with ‘I’ denote re-initialization into the given state. (C) Coupling matrix for the 9-spin chain. (D)
Average coupling magnitude as a function of site distance across the chain. Orange line: least-squares fit to a power-law
function Jo/|j — k|®, giving Jo = 6.7(1) Hz and a = 2.5(1). (E) Measured expectation values (o) after initializing the state
[TT1111111). The data is corrected for measurement errors [25].
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Here af, B8 = x,y,z are the Pauli matrices for spin j,

B = ~.B./2 is the magnetic field splitting, . is the
13C gyromagnetic ratio, Jji is the zz component of the
dipole-dipole interaction between spins j and k, Q(t) is
the applied time-dependent rf field and we set & = 1. The
system has previously been characterized in detail [23,
25); for 27 13C spins the hyperfine shifts h;, the spatial
coordinates, and the 351 interaction terms J;; are known.

U.(0) = exp(—iO ZJL of/2). To realize the global rota-
tions, we develop multi-frequency rf pulses that simulta-
neously rotate a chosen subset of spins (Hys in Eq. 1)
[25]. We symmetrize the Floquet sequence such that
Ur = [Uint(7) - Ug(0) - Uine ()], where N is the number
of Floquet cycles (Fig. 1B). For 6 ~ m, this decouples the
targeted spins from their environment, while preserving
the internal interactions [25].

To stabilize MBL under periodic driving, the Hamil-

To investigate the DTC phase, we apply a periodic
Floquet sequence consisting of free evolution Uiy (1) =
exp(—iHin:7), interleaved with global spin rotations

tonian must satisfy two requirements [5, 6, 19]. First,
the spin-spin interactions Jj; must be sufficiently short-
ranged. For power-law interactions that fall off as 1/r%,



A B
1 . oy °
S
5 0 .
-1+ r T T r
1 ° ° o
g“ 0 ©o o
-1+ : : : :
1 - e @
€ o 2
=14 T T T T
1 e 8 (3
¥ o . s
2 ]
* )
-1+ T T T T
0 50 100 150 200
t (ms)

FIG. 2. Isolating spin chains. (A) We test the program-
ming of interacting spin chains for the first 4 spins of the
9-spin chain (Figs. 1A,C,D). For 6 ~ 7, the Floquet sequence
Ur decouples the spin chain from its environment, but pre-
serves the internal interactions. (B) Measured expectation
values (o7) after initializing the state |++++) and applying
Ur with 6 = 7. Here t = 27N is varied by fixing 7 = 3.5 ms
and varying N. The blue (orange) points show the evolution
with (without) spin-spin interactions [25]. Blue lines: numer-
ical simulations of only the 4-spin system [25]. Measurements
in this figure and hereafter are corrected for state preparation
and measurement errors.

it is believed that MBL requires a > 2d, where d is the
dimension of the system [19, 27-29]. For dipole-dipole
interactions, a = 3. Because the nuclear spins are ran-
domly positioned in d = 3 dimensions, the short-ranged
requirement is not naturally met. To resolve this, we
program an effective 1D spin chain using a subset of 9
spins (Figs. 1A,C [25]). As a function of site distance
across the chain, a fit to the averaged couplings falls of as
1/|5 — k[>*M (Fig. 1D), confirming that the finite-sized
chain maps onto an approximately 1D system whose in-
teractions fall off sufficiently fast to be compatible with
MBL. Second, since the periodic rotations in Up approx-
imately cancel the on-site disorder terms h;, the system
must exhibit Ising-even disorder to stabilize MBL in the
Floquet setting [5, 6, 19]. This corresponds to disorder in
the couplings Jjx, which is naturally satisfied here (Fig.
10).

To reveal the signature spatiotemporal order of the
DTC phase, one must prepare a variety of initial states
and perform site-resolved measurements [19]. We use a
combination of new and existing methods to realize the
required initialization, single-spin control, and individual
single-shot measurement for all spins in the chain (Fig.
1B).

First, we initialize the spins through a recently in-
troduced dynamical-nuclear-polarization sequence called

PulsePol [24]. This sequence polarizes nuclear spins in
the vicinity of the NV center and prepares the 1D chain
in the state [MTTT11111). We analyze and optimize the
polarization transfer in the supplementary materials [25].
Subsequently, each spin can be independently rotated to
an arbitrary state by selective rf pulses [25].

Second, after Floquet evolution, we read out the spins
by sequentially mapping their <Jj> expectation values to
the NV electronic spin [25], and measuring the electronic-
spin state via resonant optical excitation [26]. Spins
7=2,5.6,8 can be directly accessed using previously de-
veloped electron-nuclear two-qubit gates [26]. To access
the other spins (j=1,3,4,7,9), which couple weakly to the
NV, we develop a protocol based on nuclear-nuclear two-
qubit gates through spin-echo double resonance [25]. We
use these gates to map the spin states to other, directly
accessible, spins in the chain. Fig. 1E shows the mea-
sured (0%) expectation values after preparing the state
AT

We verify that we can isolate the dynamics of a subset
of spins by studying the first 4 spins of the 9-spin chain
(Fig. 2A). We prepare the superposition state |[++-++),
where |[+) = (|1)+[4))/v/2, and apply Ur with § = 7. We
first verify that the state is preserved when each spin is
individually decoupled to remove interactions (Fig. 2B)
[25]. In contrast, with internal interactions, the four spins
entangle and undergo complex dynamics. The measured
evolution matches a numerical simulation containing only
the 4 spins, indicating that the system is strongly inter-
acting and protected from external decoherence.

With this capability confirmed, we turn to the 9-spin
chain and the DTC phase. The expectation for the DTC
phase is a long-lived period-doubled response that is sta-
bilized against perturbations of Ur through many-body
interactions. To illustrate this, we set 8 = 0.957, a per-
turbation from the ideal value of w, and tune the system
through the DTC phase transition by changing 7, which
effectively sets the interaction strength (see Figs. 3A-C).

We first investigate the state |MM1T11) and con-
sider the averaged two-point correlation function ¥ =
L35 1 (0(N))(02(0)), where (0%(N)) is the expecta-
tion value at Floquet cycle N for spin j. Without inter-
actions, the deliberate under-rotations (6 < ), in combi-
nation with naturally present noise in the applied control
fields, lead to a rapid decay (Figs. 3B,C). By introducing
moderate interactions (7 = 1.55 ms), the system is on the
edge of the phase transition, and the interactions begin to
stabilize the subharmonic response (Figs. 3B,C,D). Fi-
nally, for strong interactions (7 = 5 ms), the subharmonic
response is stabilized despite the perturbations of 6 (Figs.
3B,C,E). The individual spin measurements confirm that
the spins are synchronized and the signature long-lived
spatiotemporal response is observed (Fig. 3E).

To rule out trivial non-interacting explanations,
we prepare the superposition state [cos(m/8)|1) +
sin(7/8) [4)]®Y and perform full single-qubit tomography
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FIG. 3. Discrete time crystal in the 9-spin chain. (A) Sketch of the phase diagram as a function of 7 and 6 when applying
Ur (Fig. 1B) [6]. The yellow region indicates the many-body-localized DTC phase. The colored points mark three combinations
of {6,7} that illustrate the DTC phase transition. Additional data for other values are given in the supplementary materials
[25]. (B) Averaged two-point correlation X as a function of the number of Floquet cycles N, for = 0.957 and initial state
[T 111711). Without interactions (purple [25]), X decays quickly. With small interactions (7 = 1.55 ms, green), the system is
on the edge of the transition to the DTC phase. With strong interactions (7 = 5ms, blue), the subharmonic response is stable
and persists over all 100 Floquet cycles. (C) The corresponding Fourier transforms show a sharp peak at f = 0.5 emerging as
the system enters the DTC phase. (D and E) Individual spin expectation values (o;) for interaction times 7 = 1.565ms (D) and
7 =5ms (E). (F and G) Averaged two-point correlation ¥ (F) and coherence C' (G) after preparing the superposition state
[cos(/8) |1) + sin(/8) |)]®° and applying Ur with 7 = 5ms. The subharmonic response in X is preserved, while C' quickly
decays due to interaction-induced local dephasing. The dashed line in (G) indicates a reference value for C' measured after
preparing the state [1)®? [25].

for each spin for different values of N [3]. The two-point ®JL Im;), m; € {1,}}, starting with the Néel state
correlation y, shows a persistent subharmonic response [T (Fig.  4A). Like the polarized state, the

similar to the initial state |T11111111) (Fig. 3F). In con-  Néel state shows a stable, period-doubled response (Figs.

trast, the coherence C = L 322 /(57)2 4 (6¥)2 shows 4B,C). Fig. 4D shows the decay of the DTC response for
’ L £45=1 J J 4 .
. . . the Néel state, the polarized state, and a further 9 ran-
a quick decay on a timescale of approximately 10 Flo-

quet cycles, indicating rapid local dephasing due to inter- domly chosen initial states. To illustrate that a variety of

. . states with different properties are considered, we evalu-
nal many-body interactions that generate entanglement ate their energy density & — (Hog)/JoL (Fig. 4E), where
across the system (Fig. 3G). &y V&= \Heff)/Jo & ’

Jo is the average nearest-neighbor coupling strength (Fig.

While the results shown in Fig. 3 are consistent with
a DTC, these measurements alone do not distinguish
the many-body-localized DTC phase from prethermal
responses [6, 11, 19]. In particular, the hallmark of
the MBL DTC phase is robust spatiotemporal order for
generic initial states. Conversely, prethermal responses
only exhibit long-lived oscillations for a particular range
of initial states [6, 19].

We study a range of generic initial states of the form

1D) and Heg is the leading order term in the Floquet-
Magnus expansion of Up [25]. The selected initial states
cover a range of energy densities. The response shows no
significant dependence on the initial state up to N = 800,
consistent with a DTC stabilized by MBL.

To highlight the importance of disorder, we perform a
numerical investigation with and without disorder [25].
For the parameters of the disordered 9-spin chain with-
out decoherence, we find a stable period-doubled re-
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FIG. 4. Observation of the DTC response for generic initial states. (A) Individual spin expectation values (0}) as
a function of N after initializing the spins in the Néel state [T} 141) and applying Ur for 6 = 0.957 and 7 = 5ms. (B)
Averaged two-point correlation function ¥, corresponding to the data in (A). The DTC response persists to similar high N as
for the polarized state (Fig. 3B). (C) Fourier transform of the data in (B), showing the period-doubled response. (D) Average
correlation for even (upper curve) and odd (lower curve) N for 9 randomly chosen initial states, plus the polarized state and
the Néel state (indicated in (E)) with # = 0.957 and 7 = 5ms. Each data point is the average over even/odd integers in the
range N to N + 10. Three of the states are measured up to N = 800, the others to N = 300. The dashed black line is a
fit of |x|, averaged over the three states measured to N = 800, using a phenomenological function f(N) = Ae N/N1/e giving
A =0.76(1) and Ny,. = 472(17). (E) Calculated energy density £ for all possible states of the form ®JL |m;), m; € {11}
(black lines). The initial states measured in (D) are indicated by the corresponding colors.

sponse up to N ~ 106 for all initial states. For a hy-
pothetical 9-spin chain without disorder, but with the
same average couplings, there is no MBL and the time-
crystalline response is state-dependent and fully decays
within 300 Floquet cycles for some states. These simula-
tions show that robust spatiotemporal order associated
with the many-body-localized DTC phase can be distin-
guished from disorder-free prethermal responses within
the experimentally accessible timescales.

While the DTC phase in an ideal isolated system is

predicted to persist to arbitrary times, environmental
decoherence inevitably causes decay in any experimen-
tal implementation. We observe a 1/e decay value of
Ny = 472(17) — corresponding to a time ~ 4.7s —
highlighting that our platform is highly isolated. How-
ever, understanding how the DTC response is affected
by different decoherence mechanisms is an outstanding
challenge. While the dominant decoherence mechanism
for the spins is dephasing with a timescale on the order
of seconds [26], the DTC phase is expected to be partic-



ularly robust to such effects [19]. This suggests that the
observed decay arises from a more subtle interplay be-
tween the Floquet sequence and the environment, which
might be suppressed using future optimized decoupling
sequences. Crucially, the numerical calculations without
decoherence show that the finite size of the spin chain
does not limit the observed DTC response.

In conclusion, we present an observation of the hall-
mark signatures of the many-body-localized DTC phase.
Unlike previous experiments, our quantum simulator op-
erates in a regime consistent with MBL and the DTC re-
sponse is observed to be stable for generic initial states.
This result highlights the importance of both many-body
interactions and disorder for stabilizing time-crystalline
order. The developed methods provide new opportuni-
ties to investigate Floquet phases of matter, including
topologically protected phases [6], and time-crystalline
order in a variety of settings complementary to MBL,
such as open systems where the interplay between dissi-
pation and interactions leads to distinct DT'C phenomena
[30-32].

From a broader perspective, this work introduces a
programmable quantum simulator based on solid-state
spins. By connecting different subsets of spins, larger
one-dimensional chains and two- and three-dimensional
systems can be realized. The combination of excellent
coherence, individual control and site-selective measure-
ment enables the programming of a wide variety of many-
body Hamiltonians. Future scalability beyond tens of
spins might be achieved by exploiting spins external to
the diamond [33, 34], by linking multiple electronic-spin
defects through dipolar coupling [35], by photonic remote
entanglement [36], or by combinations of these methods.
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