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Higher Order Topological Systems: A New Paradigm

Arijit Saha and Arun M. Jayannavar

Higher order topological insulators are a new class of topo-
logical insulators in dimensions d > 1. These higher-order”
topological insulators possess (d — 1)-dimensional boundaries
that, unlike those of conventional topological insulators, do
not conduct via gapless states but instead are themselves topo-
logical insulators. Precisely, an n"-order topological insula-
tor in m dimensions hosts d. = (m — n)-dimensional bound-
ary modes (n < m). For instance, a three-dimensional second
(third) order topological insulator hosts gapless modes on the
hinges (corners), characterized by d. = 1(0). Similarly, a sec-
ond order topological insulator in two dimensions only has
gapless corner states (d. = 0) localized at the boundary. These
higher order phases are protected by various crystalline sym-
metries. Moreover, in presence of proximity induced super-
conductivity and appropriate symmetry breaking perturba-
tions, the above mentioned bulk-boundary correspondence
can be extended to higher order topological superconductors
hosting Majorana hinge or corner modes. Such higher-order
systems constitute a distinctive new family of topological phases
of matter which has been experimentally observed in acoustic
systems, multilayer WTe, and BiyBr4 chains. In this general
article, the basic phenomenology of higher order topological
insulators and higher order topological superconductors are
presented along with some of their experimental realization.

1. Introduction

The advent of topological insulators (TIs) has emerged as a new
field of research in modern condensed-matter physics both from
theoretical and experimental point of view [1}12}3}14,15,16} [7]]. The
realization of topological insulating phases is based on the spin-
orbit coupling present in a given material 8,19, 10,11} 12} [13[16].
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Time reversal symmetry is the discrete
symmetry of physical laws under the
transformation of time reversal, i.e. t —
—t. In quantum mechanics TRS is repre-
sented by an anti-unitary operator which
commutes with the Hamiltonian if the
system possesses that symmetry. For in-
stance, in case of spin % system, TRS
operator can be written as T' = —ino, K
where 7 stands for an arbitrary phase, o,
is the Pauli matrix and K is the complex
conjugation operator.

Precisely, a topological insulator (TI), like an ordinary band insu-
lator, has a bulk energy gap separating the filled valence elec-
tronic band from the empty conduction band. However, the two
dimensional (2D) surface or one-dimensional (1D) edge of a TI,
necessarily has gapless conducting states that are protected by
time-reversal symmetry (TRS). This constitutes the topological
bulk—boundary correspondence. These gapless boundary modes
cannot be removed by local boundary perturbations without break-
ing the underlying symmetry, thus the system is called TI. In ad-
dition to their fundamental interest, these states are predicted to
have special properties that could be useful for applications rang-
ing from spintronics to quantum computation [14}21]]. Soon after
the discovery of TIs, the above mentioned bulk-boundary corre-
spondense has been generalized to topological superconductors
(TSCs) hosting Majorana zero-modes (MZMs) at their bound-
aries [16} 17, [18] [19] 20} 22].

Very recently, a new class of topological phases has been intro-
duced to which the usual concept of the bulk-boundary corre-
spondence does not apply [28} 29/ 130, 31]]. Here, the topology
of the bulk protects gapless states on the hinges (corners), while
the surfaces (edges) are gapped. Both systems, with gapless cor-
ner and hinge states, respectively, can be identified under the no-
tion of higher-order TIs (HOTI) [28]. To be precise, an n™ or-
der TI in d-dimension has gapless states that dwell on (d — n)-
dimensional boundaries. For instance, in three dimensions (3D),
a second-order TI (SOTI) exhibits gapless states that are located
on one-dimensional (1D) “hinges” between distinct gapped sur-
faces, whereas a third-order TI (TOTI) has gapless states on its
zero-dimensional (0D) “corners”. Similarly, a SOTI in two di-
mensions (2D) also exhibits gapless OD corner states while the
edges remain gapped. The topological character of these HOTI
is protected by various bulk crytalline symmetries [34} [35] for
e.g., product of rotational symmetry and TRS (C47) [28], in-
version symmetry [33] etc. Moreover, the intriguing concept of
HOTI can be generalized to higher-order topological supercon-
ductors (HOTSC) hosting 0D Majorana corner modes (MCMs)
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and 1D Majorana hinge modes (MHMs) protected by particle-
hole (PH) symmetry [34}36}[37,38]]. These distinct, recently pre-
dicted HOTI phases have been experimentally realized in acoustic
systems [39], Bi [40], multilayer WTe, [45] and Bismuth-halide
(BigBry) chains [46].

2. First Order Topological Systems

During the last decade, the phenomena of TIs emerge in certain
materials with strong spin-orbit coupling (SOC) that preserves
TRS. A 2D TT or quantum spin Hall (QSH) state is invariant under
time reversal, has a charge excitation gap in the bulk, but has
topologically protected 1D edge states at the boundary [[1] (see

Fig. [I).

Such edge states are called helical as the spin is correlated with
the direction of motion. In Fig.[I] the upper edge contains a for-
ward (right) mover with T spin and a backward (left) mover with
| spin. The spin and momentum directions are reversed for the
lower edge. These edge states appear as Kramers doublets due to

SOC arises in a material due to bro-
ken inversion symmetry as well as
crystal symmetry. It is a relativistic
effect and acts like an internal mag-
netic field without violating the TRS.

Figure 1. (Color online)
Cartoon of a 2D TI in which
the bulk is gapped and both
the 1D egdes are spinful
and spin-momentum locked
i.e. of helical nature. The
upper edge contains a for-
ward mover with T spin and
a backward mover with |
spin. The spin and momen-
tum direction is reversed for
the lower edge.
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Graphene is a 2D hexagonal lattice
made of Carbon atoms. The low en-
ergy dispesion relation of graphene
can be described by the massless
Dirac spectrum ¢ = hvgplk|l. Here
v ~ 3 x 10° ms™! is the Fermi ve-

locity and k| = [k + k7.

MFs are zero energy state having the
remarkable property of being their
own antiparticles. In nanoscience
and condensed-matter physics, be-
ing its own antiparticle means that
a MF must be an equal superposi-
tion of an electron and a hole state.
For a spinless p-wave superconduc-
tor, the quasi-particle creation and an-
nihilation operator at zero-energy sat-
isfies the mathematical relation y =
y" ie. particle being it’s own anti-
particle.

TRS and are robust against local perturbations like non-magnetic
impurity. The basic mechanism behind the appearance of such
edge states is band inversion, in which the usual ordering of con-
duction band and valence band is inverted by SOC. This phe-
nomena was first theoretically predicted in graphene (Kane-Mele
model) [12]] and then in Mercury-Telluride (HgTe) (Bernevig-
Huges-Zhang model) [13]]. The signature of 2D TI was experi-
mentally observed in HgTe quantum well where in the topologi-
cal phase, conductance appears to be quantized (2¢?/h) as the two
edge states of TI act as two conducting 1D channels contributing
e?/h each [8]. Extending this bulk-boundary correspondence for
3D TI, one obtains spin-momentum locked 2D surface states at
the boundary. These surface states consist of 2D massless Dirac
fermions and the corresponding dispersion forms a single mass-
less (zero band gap) Dirac cone. The latter was experimentally
observed in bismuth selenide (Bi>Ses3) using angle resolved photo
emission spectroscopy (ARPES) technique [9]].

The study of TI was generalized to topological superconductors
(TSC) hosting Majorana fermions (MFs) [}, (17, [18]]. The latter
is believed to be the basic building block of future topological
quantum computer, which would be exceptionally well protected
from errors or decoherence [21]]. Fu and Kane first showed the
appearence of MF at the vortex core of a TSC which can be en-
gineed in a 3D TI, kept in close proximity to a s-wave super-
conductor and ferromagnetic insulator [16]]. However, the recent
interest in MF has turned into 1D systems [22] due to their realiz-
ibility in semiconducting heterostructures [24] and 1D semicon-
ducting nanowires (NW) with strong SOC [23]. Under suitable
circumstances, such NW becomes a TSC and a pair of MZMs
appear at the two ends of the NW. In very recent transport mea-
surements [25} 26, [27], zero-bias tunneling conductance exhibits
a quantized conductance plateau at 2¢?/h [27] when the Majorana
mode is present, and no peak when it is absent. Such zero-bias
conductance can be interpreted as an indirect experimental evi-
dence for the Majorana zero mode.

Note that, so far we discuss about systems which are insulators in

-
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their d-dimensional interior (bulk) but allow metallic conduction
on their (d — 1)-dimensional boundaries. Hence, they are known
as “First order topological systems”.

3. 2D Higher Order Topological Insulator

Before we begin discussing about the basic phenomenology of
HOTI, here we present a basic picture of zero-energy Jackiw-
Rebbi (JR) modes [47] that will be necessary to understand the
emergence of higher-order topological modes in these systems.

3.1 A primer on Jackiw-Rebbi zero modes
Let us consider a massive 1D Dirac Hamiltonian of the form
H = —ihvpo, 0, — mv%ax , (D

where o ; for j € {x,y,z} are Pauli matrices acting on the spin
space, v is the Fermi velocity and m is the mass term. The bulk
spectrum of this system is given by E.(k) = ++/(hvgk)? + m?
which is gapped (alike an ordinary insulator) as m # 0. We now
allow the mass term to become spatial-dependent, i.e. m = m(x).

[%(0)[?
x <0 rz=0 x>0

—>x

At first, let us consider a particular example where the mass term
has a step-function profile as m(x) = m sgn(x) with m > 0. This
means m(x < 0) = —m and m(x > 0) = +m. In this case, there
exists a solution at zero energy £ = 0, and the corresponding

Figure 2.

In 1D, a Dirac Hamiltonian

(Color online)

with spatially varying mass
term hosts a zero-energy
bound states (JR modes)
localized at the boundary
(x = 0) where the mass
term changes its sign. One
particular example of such
mass term can be m(x) =
mtanh(x/&) where, £ is the
localization length of the
mode.

-
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wave-function can be written as

Y(x) = n;_‘;iF (1] e Imvexl/h , )
where (1, )7 is called the spinor. This solution is known as “Jackiw-
Rebbi” mode and was first obtained by Jackiw and Rebbi in Ref. [47].
The corresponding probability of this mode dominates near the
interface at x = 0 and decays exponentially away from that as
shown in Fig. 2] The spatial distribution or localization length of
JR zero-mode can be determined by the characteristic length scale

&. = h/|mvp| which indicates that this mode is sharply peaked
when m — oo.

While we present a particular example of position-dependent mass
term for illustrative purpose, one can find a general solution of JR
zero-energy mode for a distribution of mass m(x) changing from
negative to positive at the two ends as illustrated in Fig. [2| One
such example of mass term can be m(x) = mtanh(x/£). The gen-
eral solution of the zero-energy mode can be written of the form

1

O(x) oce” o m(x"dx’ [hvp (1) ' N

This indicates that the above zero-energy solution is robust and
exists independent of the exact mass profile function and hence
topological in nature.

3.2 2D HOTI and Corner Modes

A schematic diagram of 2D HOTTI (SOTTI in 2D) is demonstrated
in Fig. 3] in which both the bulk and edges are gapped and 0D
topological zero-energy modes (denoted by red dots) appear at
the corners of the sample. To realize this phase, we begin with
a 2D TI, modeled in a square lattice with hopping elements 7, ,
spin-orbit coupling A, (x,y represent the two spatial directions),
chemical potential 4 and mass term mg. Such mass term mg can
appear in a material due to crystal-field splitting. This system
preserves TRS and topological phase appear when [m% - (2t +
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2ty)2][m% — (2t - 2ty)2] < 0, hosting gapless propagating helical

edge modes as shown in Fig.[I}

/.

Corner Modes

2D HOTI

In this system we now introduce a mass term of the form H,, =
A[cosk, — cosk,] where, ky, k, are the wave-vectors along x,
y directions respectively and A is the strength of the mass per-
turbation. Here, H,, breaks both C4 rotational symmetry and
TRS T. However, it preserves the combined symmetry opera-
tion C47" which preserves the symmetry of the bulk. In presence
of this mass perturbation, the 1D edge modes become gapped and
one can find effective 1D Dirac equation with mass term for the
edges. For example, the Dirac masses on edges I and II carry op-
posite signs (proportional to A and —A respectively as shown in

Fig.[d{a)), leading to

V
\/\A—-/\/\I

RESONANCE | June 2021

—

Y

—8

= > <

()

-

Figure 3. (Color on-
line) Cartoon of a 2D HOTI
(SOTI) in which both the
bulk and edges are gapped
and OD corner modes (de-
noted by red bullets) appear
at zero-energy located at the
four corners of the system.

Figure 4.
(a) The Dirac mass terms (o<

(Color online)

A and —AQ), that change sign

Y
A

h

/1

>

accross the corners lead—7
ing to appearence of cor-
ner modes, are schemati-
cally shown. (b) The mass
terms (x A and —A) are de-
picted for the Dirac surface

electrons on the (xz and yz)
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This 3D HOTI is called “chiral” due
to uni-directional (along z) propagat-
ing hinge modes present in this phase.
In this case, the reason for obtaining
chiral hinge state is the broken TRS
in the bulk.

Figure 5. (Color online)
Schematic of a 3D HOTI
in which both bulk and sur-

localized zero-energy modes (ensured by JR theory discussed be-
fore) at the intersection of two perpendicular edges (see Fig.[d|(a)).
The probability of the zero-energy modes is localized at the cor-
ners and decay exponentially along edges I (II) (see Fig. fa))
with spatial extent ~ hvpA,/At, (~ hvpAd,/At,). The appearence
of other corner modes can also be explained by the same mecha-
nism. Although, the bulk of the system remains gapped. Thus, a
2D HOTI accomodating in-gap 0D corner modes at four corners
can be realized in this square lattice system.

4. 3D Higher Order Topological Insulator

Cartoon of a 3D HOTI is depicted in Fig. [5] where both the bulk
and surfaces are gapped hosting topological 1D propagating modes
(SOTI in 3D) at the hinges or 0D localized modes (TOTI) at the
corners of the sample. To realize these aspects, one can start with
a cubic lattice of 3D TI. Similar to 2D TI, this lattice system also
consists of hopping amplitude ¢, SOC strength A; (for simplic-
ity we assume ¢t and A; to be isotropic along the there spatial
directions x, y, z) and mass term M. This system preserves 3D
topological phase if 1 < |M/tf] < 3. In presence of C4 and T
breaking mass term of strength A (see previous section for de-
tails), the system becomes a chiral 3D HOTI for 1 < [M/t] < 3
and A, 4 # 0 [28]]. Thus, this phase represents a SOTI in 3D host-
ing z-directed 1D propagating chiral hinge modes as illustrated in

Fig.[5

Corner Modes

fg’lCCS are gapped and (a)
1D chiral propagating hinge
modes (denoted by blue ar-
rows) appear in the SOTI
phase and (b) 0D corner lo-
calized modes (represented
by red spheres) indicate the

S
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Physically, the main effect of mass perturbation A is to open band
gaps with alternatiing signs for the surface Dirac electrons of the
3D TI on the xz and yz surfaces (1 and —A respectively as shown in
Fig. [A(b)). The four hinge states are then domain walls at which
the Dirac mass changes sign. It is evident from JR theory that
such a domain wall on the surface of a 3D TI binds a gapless
chiral mode, which, in this case can be interpreted as the hinge
mode of the 3D SOTI [28]]. The wave-function of the z-directed
propagating hinge mode decays exponentially to the bulk along x
and y directions. Note that, the hinge modes can also be of helical
nature in some other context [28]].

The mechanism for the realization of TOTI phase hosting OD cor-
ner modes (see Fig.[3), is rather a complex subject and beyond the
scope of the present general article.

5. Higher Order Topological Superconductor

The bulk-boundary correspondence of HOTI can also be general-
ized for HOTSC hosting 0D MCMs and 1D MHMs. A schematic
set-up for 2D HOTSC is demonstrated in Fig. [6]in which we start
from a 2D TI in close proximity to a bulk s-wave superconductor.

o
L J
IV
I 7 111

y I
r 2D TI ./
4 x
s-wave Superconductor

Here, the parent 2D TI system is not a superconductor by itself.
However, superconductivity can be induced in it via the proxim-
ity effect. In presence of the proximity induced superconducting
pairing gap A, the edge (I, II, III, IV) spectrum of the sample
becomes gapped and the system behaves as a trivial supercon-
ductor. The in-plane Zeeman field A, exhibits different effects on

If a system is non-superconducting by
itself, then superconductivity can be
induced in it by placing it very close
to or on top of a bulk superconduc-
tor. Here, the mechanism for induc-
ing superconductivity is tunneling of
Cooper pairs from the bulk supercon-
ductor to the parent material. This
process is known as “proximity ef-
fect”.

Figure 6. (Color online)
[lustration of a heterostruc-
ture comprising of a 2D TI
placed on top of an s-wave
superconductor and subject
to an in-plane Zeeman field.
The four edges of the sample
are denoted by I, II, IIT and
IV. The red spheres at four
corners of the system repre-
sent four localized MCMs.
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A—h;

MCM >

Figure 7.
(a) The Dirac mass terms,
A — h, and A on edge-I and
IT respectively, change sign

(Color online)

when i, > A leading to the
appearence of MCMs. (b)
For A > A, mass terms of
the surface Dirac electrons
carry opposite signs which
gives rise to chiral MHMs
between the neighboring xz
and yz surfaces.

II

the single particle edge spectra (i.e. A = 0) along x and y direc-
tions. In particular, £, can (cannot) open up the gap along edge-II
(edge-I). Although, the Zeeman field breaks TRS, but the system
is protected by the PH symmetry. Such anisotropic effect of A,
leads to very different gapped spectrum when A # 0. Along edge-
II, the effective gap becomes A — &, which means it can change
sign at the critical value i, = A. On the other hand, the Dirac
mass along edge-I remains A and does not change sign. This is
schematically depicted in Fig.[7(a). Therefore, for i, > A, Dirac
masses on edges-I and II carry opposite signs, leading to local-
ized 0D MCMs at the intersection of two perpendicular edges (see
Fig.[7(a)). In that sense, the emerging zero-energy MCMs can be
interpreted as a special variant of the Jackiw-Rebbi zero mode
protected by PH symmetry. The localization length of the MCM
can be different along x and y directions as hvgp/|A —hy| # hve/A.
Thus one can realize a second order topological superconductor
(SOTSC) hosting MCM s in this 2D system.

In a similar fashion, 3D HOTSC can be realized in a set-up de-
picted in Fig. [8] where a 3D TI is placed in close proximity to a
s-wave superconductor. In presence of the superconducting pair-
ing A, the boundary 2D surface states become gapped. Incorpo-
rating the Cy4 rotational symmetry and TRS T broken mass term
H,, = Alcos ky — cos k], the mass gap for the surface Dirac elec-
trons can change sign between the two neighboring surfaces as
depicted in Fig.[7(b). Here, for A > A, the mass gap on the xz and

10
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— MCM

3D TI
MHM

VA
y
T
s-wave Superconductor
Figure 8. (Color on-

yz surfaces carry opposite sign and this results in 3D SOTSC host-
ing 1D chiral MHMs propagating along the z direction. The same
can also be achieved by applying a Zeeman field (not necessarily
in-plane) in the sample.

Similar to TOTI, the discussion on emergence of third order topo-
logical superconductor (TOTSC) phase (see Fig. |§[) accommo-
dating 0D MCM:s, is beyond the scope of the present article.

6. Realization of Higher Order Topological Systems

As far as experimental progress of higher-order topological (HOT)
systems are concerned, these phases was first experimentally real-
ized in a classical gigahertz-frequency reconfigurable microwave
circuit [41]], electrical circuit [42]] and in a mechanical metama-
terial (a material with tunable mechanical properties) [43]. Then
2D SOTT is experimentally realized in acoustic system, based on
a “breathing Kagome lattice” [39] and dimensional hierarchy of
higher-order topology (1D hinge states and OD corner modes)
is experimentally discovered in single 3D simple-cubic acous-
tic sonic crystals [44]. However, the search for the HOT phases

line) Demonstration of a
schematic set-up for the re-
alization of 3D HOTSC in
which a cubic 3D TI is
placed in close proximity
to a bulk s-wave supercon-
ductor. Chiral MHMs are
present in the SOTSC phase,
as marked by the green lines.
MCMs appear in the TOTSC
phase, as depicted by the red
spheres.

-
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in solid state materials is still in its infancy. In recent times, F.
Schindler et al. in Ref. [40]] have established that Bismuth (Bi)
is in fact a HOTI. Their claim is supported by both theoretical
analysis and complimentary experimental techniques. Very re-
cently, Td—WTe; is experimentally predicted to host HOT phases
with topologically protected, helical 1D hinge states [45]]. More-
over, experimental evidence of HOTI, in a real 3D material, has
been found in Bismuth-Bromide (BisBrs) via ARPES measure-
ments [46]. However, note that the set-ups that we discuss in the
context of HOTI and HOTSC in this present article, are still to be
realized from the experimental point of view in real materials.

7. Conclusions and Outlook

In this general article, we have provided a pedagogical introduc-
tion to the new emerging field of HOTI and HOTSC in quantum
condensed matter physics. In these intriguing HOT phases, gap-
less boundary modes dwell on (d — n)-dimensional boundaries
of a d-dimensional system, unlike (d — 1)-dimensional boundary
of a first order TIs. We discuss different set-ups and possible
symmetry breaking perturbations which can give rise to 2D and
3D SOTI hosting zero-energy corner localized modes and prop-
agating hinge modes respectively. Furthermore, we emphasize
various set-ups that in presence of proximity induced supercon-
ductivity and magnetic field, can host HOTSC (we mainly dis-
cuss SOTSC in 2D and 3D) phase anchoring 0D MCMs and 1D
MHMs. Finally, we briefly present the experimental development
in this field based on classical systems and solid-state material
perspective. However, we have not discussed some challenging
issues such as the classification of HOT systems [34, 135] and
determination of the appropriate topological invariants that dis-
tinguish them from conventional first order TIs [29, 30, 32]; we
direct the reader to the original articles for details.

In HOT systems, one of the prime interests is to generate such
phases via external periodic driving (for e.g. laser) starting from a
trivial (non-topological) system. Another interesting direction is

12
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to generalize these ideas from the current setting of non-interacting
fermionic systems to strongly correlated fermions or bosons. The
effects of strong disorder and possible realization of HOT An-
derson insulator or superconductor is also a prime area of in-
terest. On the experimental side, fabricating different set-ups of
fermionic systems to realize HOT phases still remains a challeng-
ing task. Also, distinguishing hinge modes from the edge states
via transport signal is woth exploring. From the application point
of view, 0D MCMs in 2D and 3D HOT systems can be more ben-
eficial in fault-tolerant topological quantum computation, com-
pared to their 1D NW MZMs counterpart, as far as tunability and
braiding statistics are concerned. Also, the topological propagat-
ing hinge modes can be potential candidate towards future spin-
tronics applications. All in all, there are still surprises in store as
we probe deeper into the realm of topological quantum matter.
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