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Abstract: Fermion dark matter particles can aggregate to form extended dark mat-

ter structures via a first-order phase transition in which the particles get trapped in

the false vacuum. We study Fermi balls created in a phase transition induced by a

generic quartic thermal effective potential. We show that for Fermi balls of mass, 3 ×
10−12M� <∼MFB <∼ 10−5M�, correlated observations of gravitational waves produced dur-

ing the phase transition (at SKA/THEIA/µAres), and gravitational microlensing caused

by Fermi balls (at Subaru-HSC), can be made.
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1 Introduction

The identity of dark matter (DM) is a long-standing puzzle in particle physics, astrophysics

and cosmology. Weakly interacting massive particles are popular DM candidates that

attain the measured DM relic density through thermal freeze-out, and typically have masses

of O(10 − 103) GeV and weak scale annihilation cross sections. However, no convincing

evidence of these particles has been found over several decades of experimentation.

Recently, a paradigm-altering connection between DM and first-order phase transitions

(FOPTs) in early universe has garnered attention. In the Standard Model (SM), both the

electroweak and quantum chromodynamics phase transitions are smooth crossovers, so the

FOPT must occur in a dark sector. In this work, we consider a scenario in which a quartic

thermal effective potential gives rise to a FOPT, and a Yukawa interaction with fermion

DM generates a nonzero DM mass in the true vacuum, whereas the DM particle remains

massless in the false vacuum. If the DM mass in the true vacuum is larger than the critical

temperature of the FOPT, then, four-momentum conservation causes the DM to be trapped

in the false vacuum. If a DM-antiDM asymmetry exists, then as the false vacuum shrinks,

the DM particles are compressed to form macroscopic objects called Fermi balls (FBs),

which become the DM relic [1]. Similar ideas have been proposed in Refs. [2, 3].

In this paper, we study FBs produced in a FOPT generated by a general quartic

thermal potential. Our focus is the mass range of FBs for which gravitational wave and

microlensing signals can be correlated. The Subaru Hyper Suprime-Cam (HSC) sky survey

has observed about 100 million stars in the M31 galaxy in an observation time of 7 hours,

and plans for a 70 hour observation period are underway [4]. As a FB passes between a star

in M31 and the Earth, the transient brightening of the star by gravitational micolensing can
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be detected by Subaru-HSC. Also, future telescopes like SKA [5], THEIA [6] and µAres [7]

will have the ability to detect gravitational waves from the FOPT that produced the FBs.

This paper is organized as follows. We investigate the formation and properties of FBs

in section 2. In section 3, we compute the microlensing event rate for several benchmark

points, and the sensitivity of the Subaru-HSC survey for the case of extended sources and

lenses. In section 4, we calculate the gravitational wave spectra expected from the FOPT

for our benchmark points. Finally, we summarize in section 5.

2 Fermi ball formation

We consider a scenario in which the dark sector only couples to the SM sector gravitation-

ally. The model is composed of a dark Dirac fermion χ, a dark scalar φ, and their Yukawa

interaction:

L ⊃ χ̄i/∂χ− gχφχ̄χ− Veff(φ, T ) , (2.1)

where the last term is the finite-temperature effective potential of φ that induces the

FOPT in the early universe. When the temperature drops below the critical temperature

Tc, the universe starts to traverse from the false vacuum (〈φ〉 = 0) to the true vacuum

(〈φ〉 = vφ). The interaction term φχ̄χ in the Lagrangian implies the χ is massless in the

false vacuum, and obtains mass mχ ' gχvφ in the true vacuum. For χ to acquire mass

in the true vacuum, energy conservation dictates that χ in the false vacuum have enough

kinetic energy to penetrate the bubble wall during the FOPT. Conversely, if

mχ ' gφvφ � Tc , (2.2)

the χ’s will be trapped inside the false vacuum. As the true vacuum expands and the false

vacuum shrinks, the χ’s aggregate and form a macroscopic FB. For this to occur, there

must be a nonzero asymmetry ηχ ≡ (nχ−nχ̄)/s in the number densities in the false vacuum

(where s is the entropy density) during the phase transition so that an excess remains after

pair annihilation χ̄χ → φφ, and χ must carry a conserved global U(1)Q so that the FB

attains stability by accumulating Q-charge [1]. Mechanisms that produce ηχ are discussed

in the appendix of Ref. [1].

2.1 Effective potential

We consider the finite-temperature quartic effective potential [8, 9],

Veff(φ, T ) = D(T 2 − T 2
0 )φ2 − (AT + C)φ3 +

λ

4
φ4 , (2.3)

where T0 is the destabilization temperature, C contributes a zero-temperature cubic term,

and D, A, and λ are dimensionless parameters. Potentials of this form are commonly

found in particle physics including inert singlet, inert doublet, minimal supersymmetry,
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Figure 1. Left-panel: the effective potential Veff(φ, T ) for BP-2: λ = 0.16, A = 0.1, B =

(43.5 keV)4, C = 6.23 keV, D = 0.45. In this case, Tc = 0.93B1/4 and T? = 0.79B1/4. Right-panel:

S3/T for benchmark points BP-1 and BP-2 in Table 1.

and Majoron models. At zero temperature, the potential has its global minimum at φ̃± =

(3C ±
√

9C2 + 8λDT 2
0 )/(2λ) with vacuum energy density,

Veff(φ̃+, 0) = −
(
DT 2

0

2
+
C

4
φ̃+

)
φ̃2

+ ≡ −B . (2.4)

Therefore, B is the difference in vacuum energy density between the φ = 0 and φ̃+ phases,

and will make an important contribution to the latent heat released during the FOPT. In

terms of the input parameters,

λ, A, B, C, D ,

T0 is a derived quantity. We show an example of the finite-temperature potential in the left

panel of Fig. 1, where the critical temperature is defined by Veff(0, Tc) = Veff(vφ(Tc), Tc).

The Euclidean action S3(T )/T that determines the bubble nucleation rate per unit

volume is given by

S3(T ) = 4π

∫ ∞
0

r2dr

[
1

2

(
dφ

dr

)2

+ Veff(φ, T )

]
, (2.5)

where φ satisfies the equation of motion,

d2φ

dr2
+

2

r

dφ

dr
=
∂Veff(φ, T )

dφ
, (2.6)

with boundary conditions,

dφ

dr
|r=0 = 0 and φ(r →∞) = 0 . (2.7)

An analytical approximation for S3 is available for quartic potentials of the form,

Veff(φ, T ) ' λ̄φ4 − aφ3 + bφ2 , (2.8)
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where the coefficients are temperature dependent. Reference [9] finds

S3(T ) =
πa

λ̄3/2

8
√

2

81
(2− δ)−2

√
δ/2(β1δ + β2δ

2 + β3δ
3) , (2.9)

where δ ≡ 8λ̄b/a2, β1 = 8.2938, β2 = −5.5330, and β3 = 0.8180. For illustration, S3/T for

benchmark points BP-1 and BP-2 in Table 1 are shown in the right-panel of Fig. 1.

In terms of the bubble nucleation rate per unit volume,

Γ(T ) = T 4

(
S3

2πT

)3/2

e−
S3
T , (2.10)

the fraction of space in the false vacuum (〈φ〉 = 0) is

F (t) = exp

[
−4π

3
v3
w

∫ t

tc

dt′(t− t′)3Γ(t′)

]
, (2.11)

where vw is the bubble wall velocity and tc is the time corresponding to the critical tem-

perature. Note that t and T are related by the Hubble parameter H:

dt = − dT

TH(T )
, H2(T ) =

ρ(T )

3M2
Pl

, (2.12)

where the radiation energy density, ρ(T ) = π2

30 g∗T
4
SM, with g∗ = gSM

∗ + gD
∗ (T/TSM)4 the

total number of relativistic degrees of freedom when the dark sector is at temperature T

and corresponding temperature of the SM sector is TSM. Note that gD
∗ = 4.5 at all relevant

times.

The latent heat converted to dark radiation during the phase transition at T = T? is

ε(T?) =

(
1− T ∂

∂T

)
∆V |T? , (2.13)

where ∆V = Veff(0, T )− Veff(vφ(T ), T ). This injection of energy changes the temperature

of the dark sector from T? to Tf (after the phase transition), which is given by

π2gD
∗

30
T 4
f =

π2gD
∗

30
T 4
? + ε(T?) . (2.14)

The effective number of extra neutrino species contributed by the dark sector after the

phase transition, ∆Neff , depends sensitively on Tf/TSM?. For example, for temperatures

below 60 keV, gSM
∗ ' 3.36, and ∆Neff ' 9.9(Tf/TSM?)

4. The 95% C.L. upper bound

from a combination of cosmic microwave background, baryon acoustic oscillations and Big

Bang Nucleosynthesis (BBN) measurements that uses the primordial helium abundance of

Ref. [10] is ∆Neff < 0.55 [11]. Also, the Hubble tension suggests that at recombination

∆Neff is in the range 0.4 − 1 [12]. A robust 95% C.L. upper bound from BBN alone

is ∆Neff < 1 [13]. Absent knowledge of the reheating process after inflation, we select

benchmark points with values of Tf/TSM? that give ∆Neff ≤ 0.5.
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We identify T? with the temperature of percolation, i.e., the temperature at which the

fraction of space remaining in the false vacuum is 1/e. Then T? and the corresponding

time t? are given by the condition,

F (t?) = 1/e ' 0.37 . (2.15)

We also take t? to be the time when FBs form.

For phase transitions much shorter than the Hubble time, the inverse duration of the

phase transition is

β ≡ Γ̇

Γ
' −d(S3/T )

dt

∣∣∣∣
t=t?

, (2.16)

which is often expressed as
β

H?
' T?

d(S3/T )

dT

∣∣∣∣
T?

. (2.17)

In addition to this parameter, the GW spectrum depends on the strength of the phase

transition,

α ≡ ε(T?)

ρ(T?)
. (2.18)

Because the fraction of latent heat converted to GWs is determined by the dynamics in

the dark sector (and is not related to α) [14], we can assume it is unity.

2.2 Number density and density profile of Fermi balls

FBs start to form at T? in the false vacuum, as it shrinks and separates into smaller volumes.

Below a critical volume of the false vacuum bubble, V? = 4πR3
?/3, bubble nucleation of the

true vacuum stops and the formation of FBs takes over. Since the timescale on which

the false vacuum bubble shrinks is ∆t = R?/vw, V? is given by Γ(T?)V?∆t ∼ 1. Then,

with one FB per critical volume, the number density of FBs nFB|T? is determined by

nFB|T?V? = F (t?), i.e., [1]:

nFB|T? =

(
3

4π

)1/4(Γ(T?)

vw

)3/4

F (t?) . (2.19)

The net Q-charge trapped in a FB is given by [1]

QFB = ηχ

(
s

nFB

)
T?

, (2.20)

which is equivalent to the total number of χ that form a FB. We assume all the χ’s are

trapped in the false vacuum and cannot penetrate the bubble wall due to its large mass in

the true vacuum. The χ-asymmetry ηχ is a free parameter that must be tuned to produce

the measured DM relic density. Because the universe evolves adiabatically, nFB/s and QFB

remain unchanged, and today,

nFB|0 = s0

(nFB

s

)
T?
, (2.21)
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where the temperature of the universe today is TSM0 = 0.235 meV (' 0 for our purposes),

and the total entropy density of the universe today is

s0 =
2π2

45

[
gSM
∗s (TSM0) + gD

∗s
gSM
∗s (TSM0)

gSM
∗s (TSM?)

( Tf
TSM?

)3]
T 3

SM0 . (2.22)

Here, g∗s is the number of relativistic degrees of freedom for the entropy density, and

gD
∗s = 4.5 at all relevant times. The dark sector contribution to the entropy density is

significantly suppressed compared to that of the SM sector.

To find the density profile of FBs we need to solve the Tolman-Oppenheimer-Volkoff

(TOV) equation [15]. The energy of a FB is [1]

E =
3π

4

(
3

2π

)2/3 Q
4/3
FB

R
+ 4πσ0R

2 +
4π

3
BR3 , (2.23)

where the first term is the Fermi-gas pressure of χ in a FB, σ0 is the surface tension, and

B = Veff(0, 0)− Veff(vφ, 0). Thus the energy density becomes

ρFB(nχ) =

(
9π

8

)2/3

n4/3
χ +B , (2.24)

with nχ the number density of χ in a FB.

The pressure as a function of nχ is derived from

P = n2
χ

d (ρFB/nχ)

dnχ
=

1

3

(
9π

8

)2/3

n4/3
χ −B . (2.25)

Using this relation, we obtain the density profile of the FB by solving the TOV equation

with a boundary condition for the pressure at the center of the FB, P |R=0. The result

is shown in Fig. 2 for three values of P |R=0. (In comparison, the pressure at the center

of the sun is 1.27 × 10−21 GeV4.) From the bottom-right panel, we see that the FB has

a uniform density profile. This is because the constant B-dependent term in Eq. (2.23)

dominates the total energy. The correlation between MFB and RFB obtained by varying

P |R=0 is displayed in Fig. 3.

The mass MFB and radius RFB of a FB are obtained by minimizing the FB energy

with respect to its radius [1]:

MFB = QFB(12π2B)1/4 ,

RFB = Q
1/3
FB

[
3

16

(
3

2π

)2/3 1

B

]1/4

. (2.26)

The FB relic abundance in the present universe is given by [1]

ΩFBh
2 =

MFB nFB|0
3M2

Pl(H0/h)2
, (2.27)

where the Hubble constant, H0 = 2.13h × 10−42 GeV. We can determine MFB by fixing

the value of ΩFBh
2.
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Figure 2. The pressure P (upper-left), Q-charge within radius R (upper-right), and energy

density profile (bottom) of a FB with B1/4 = 10 keV for three boundary conditions, P |R=0 =

1.27×10−27 GeV4, P |R=0 = 1.27×10−29 GeV4, and P |R=0 = 1.27×10−31 GeV4. Correspondingly,

(MFB/M�, RFB/R�) = (6.5079× 10−2, 2.149), (6.4911× 10−5, 0.2149), and (6.5079× 10−8, 2.149×
10−2).
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Figure 3. Correlation between MFB and RFB obtained by varying P |R=0 and solving the Tolman-

Oppenheimer-Volkoff equation for several values of B1/4.

In Table 1, we list benchmark points that satisfy ΩFBh
2 ≤ 0.12. Note that as B1/4 gets
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Table 1. Benchmark points with A = 0.1. Nevents is the number of microlensing events expected

in 70 hours of observation of M31 by Subaru-HSC.
BP-1 BP-2 BP-3 BP-4 BP-5 BP-6 BP-7 BP-8

λ 0.134 0.158 0.193 0.078 0.062 0.072 0.053 0.060

B1/4/keV 2.42 43.5 34.9 64.2 63.6 73.2 284 1390

C/keV 0.059 6.234 4.988 3.080 0.315 0.586 0.342 7.713

D 5.807 0.451 0.720 0.445 0.257 0.293 0.584 0.706

ηχ 7.34× 10−6 1.37× 10−7 3.51× 10−6 4.55× 10−8 6.98× 10−9 3.64× 10−9 8.54× 10−9 2.40× 10−8

TSM?/keV 1.41 100.0 64.5 128.1 164.8 169.5 427.8 1601

T?/keV 0.57 34.2 21.6 52.3 84.8 86.9 201.0 879.0

Tf/keV 0.63 41.4 25.9 64.4 92.9 92.5 233.2 1005

S3(T?)/T? 189 188 187 186 187 184 177 171

MFB/M� 3.37× 10−6 1.11× 10−6 9.66× 10−6 1.01× 10−7 1.08× 10−8 1.08× 10−9 9.66× 10−11 1.09× 10−11

RFB/R� 0.529 7.77× 10−3 2.15× 10−2 2.09× 10−3 1.00× 10−3 3.86× 10−4 2.83× 10−5 1.64× 10−6

QFB 4.70× 1056 8.62× 1054 9.38× 1055 5.34× 1053 5.74× 1052 5.00× 1051 1.15× 1050 2.65× 1048

α 1.63× 10−2 1.56× 10−2 1.70× 10−2 2.83× 10−2 2.00× 10−2 1.24× 10−2 1.79× 10−2 2.62× 10−2

β/H? 3.43× 104 1.57× 103 3.01× 103 2.04× 103 1.86× 103 2.80× 103 4.44× 103 5.59× 103

vφ/T? 3.554 4.175 3.958 4.889 3.987 3.501 4.724 4.469

vw 0.890 0.940 0.937 0.946 0.886 0.854 0.923 0.916

ΩFBh
2 1.79× 10−2 5.81× 10−3 0.12 2.94× 10−3 4.56× 10−4 2.70× 10−4 2.39× 10−3 3.38× 10−2

Nevents 19.5 20.4 29.3 38.9 17.5 19.3 46.1 29.1

∆Neff 0.391 0.226 0.248 0.394 0.497 0.425 0.261 0.408

larger, MFB gets smaller, in apparent contradiction with Eq. (2.26). The reason for this is

as follows. Using the saddle point approximation to perform the integral in Eq. (2.11), the

percolation condition, F (t?) = 1/e, is [16]

8πv3
wΓ(T?)β

−4 ' 1 . (2.28)

Because β/H? is roughly constant for fixed values of λ, A, and D (see Table 1), we find

β ∝ H? ∝ T 2
? . Combining with Eq. (2.28), we obtain

T−4
? e−S3(T?)/T? ' B−1 e−S3(T?)/T? ' constant , i.e., e−S3(T?)/T? ∝ B , (2.29)

which is not surprising since the bubble nucleation rate per unit volume should grow with

the available vacuum energy density. From Eq. (2.19), nFB|0 ∝ e−3/4·(S3(T?)/T?), so for a

fixed value of ΩFBh
2, we see that MFB ∝ 1/nFB|0 ∝ e3/4·(S3(T?)/T?) ∝ B−3/4.

3 Gravitational microlensing

If a gravitational lens, i.e., FB, passes along the line of sight of a background source star,

the star will appear to brighten and subsequently dim, thereby providing the characteristic

signature of microlensing. Microlensing surveys put strong constraints on macroscopic

dark matter candidates including FBs. Subaru-HSC [4] has surveyed over 8.7 × 107 stars

in the M31 galaxy, which is 770 kpc away from our galactic center [4]. In the seven hours

of observation, only one event of transient brightening was detected. Other surveys like

EROS/MACHO [17] and OGLE [18], are sensitive to gravitational lenses with masses and

radii larger than relevant to us.
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3.1 Microlensing by Fermi balls

The Einstein radius of a point-like lens is given by

RE =

√
4GMFB

c2

DLDLS

DS
=

√
4GMFBDS

c2
x(1− x) , (3.1)

and the Einstein angle is θE = RE/DL. Here, G is the gravitational constant, MFB is

the mass of the lens, DS is the distance from the Earth to the source, DL is the distance

from the Earth to the lens, DLS = DS − DL, and x ≡ DL/DS . Equation. (3.1) often

gives RE ' O(R�) (e.g., for benchmark point BP-1), which is comparable to RFB and

the source sizes in M31. Therefore, we need to account for the finite size of the lenses and

sources.

We briefly outline the procedure of Ref. [19] which models microlensing signals from

spherically symmetric extended sources by spherically symmetric extended lenses. Assum-

ing DS , DL � RE , lensing takes place in the transverse plane containing the lens, so it is

convenient to describe the geometry in this plane. With distances in units of RE , the finite

source of radius RS has a projected radius rS ≡ xRS/RE , and the distance between the

lens center and a point on the limb of the source is

ū(ϕ) =
√
u2 + r2

S + 2urS cosϕ , (3.2)

where u is the distance between the lens and source centers, and ϕ is the angular position

of the point on the limb measured from the center of the source. For the uniform density

profile of a FB,

ρFB(R) =
MFB

4πR3
FB/3

Θ(R−RFB) , (3.3)

the angular position of the image tϕ (in units of θE) of the point labelled by ϕ is determined

by solving the lensing equation [19, 20],

ū(ϕ) =

 tϕ − 1
tϕ

[1− (1− t2ϕ
r2FB

)3/2] , |tϕ| < rFB ,

tϕ − 1
tϕ
, |tϕ| ≥ rFB ,

(3.4)

where rFB ≡ RFB/RE .

For each ϕ corresponding to a point on the limb, Eq. (3.4) yields the positions of the

(usually one to two) images at tϕ,i. Neglecting limb darkening, the magnification of each

image is the ratio of the area of the image to the area of the source in the lens plane [19, 21]:

µi = η
1

πr2
S

∫ π

0
t2ϕ,i(ψ)dψ , (3.5)

where

ψ = tan−1 rS sinϕ

u+ rS cosϕ
, 0 ≤ ψ ≤ π [22] ,
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Figure 4. Values of u1.34 for lensing by FBs. The y-axis is the source radius projected on the lens
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is the angular position of the point on the limb measured from the center of the lens, and

η ≡ sign
dt2ϕ,i
dū2

∣∣∣∣∣
ϕ=π

is the parity of the image i. The total magnification is obtained by summing over the

magnification of each image,

µtot(u) =
∑
i

µi(u) , (3.6)

where we have emphasized the dependence on u. Note that the magnifications of images

with opposite parities cancel. By convention, transient brightening is defined as a mi-

crolensing event if µtot ≥ 1.34. This threshold corresponds to magnification by a point-like

lens of a point-like source separated by RE , i.e, u = 1.

The threshold impact parameter u1.34 is defined as

µtot(u ≤ u1.34) ≥ 1.34 , (3.7)

so that the magnification is above threshold for all smaller impact parameters. Clearly, for

a point-like lens and point-like source, u1.34 = 1. For the FB density profile, u1.34 is shown

in Fig. 4, where R90 ≡ (0.9)1/3RFB is the radius within which 90% of the total mass of the

FB is enclosed.

3.2 Events at Subaru

If the lenses have a universal mass MFB, with velocities from a Maxwell-Boltzmann distri-

bution, then the differential event rate per source star is given by [23]

d2Γ

dxdtE
= DS

fDM

MFB

[
ρDM

MW(rMW)
v4
E(x)

v2
MW

e−v
2
E(x)/v2MW + ρDM

M31(rM31)
v4
E(x)

v2
M31

e−v
2
E(x)/v2M31

]
,(3.8)
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Figure 5. Left-panel: current 95% C.L. upper limits on the FB fraction of dark matter from the

Subaru-HSC survey of M31. The benchmark points in Table 1 are marked with stars. Right-panel:

expected sensitivity of Subaru-HSC with 10 times the observation period.

where tE is the amount of time for which the magnification is above threshold, vE(x) =

2u1.34(x)RE(x)/tE , fDM is the fraction of DM constituted by FBs, and the most probable

speed in M31 (MW) is vM31 = 250 km/s (vMW = 220 km/s). We assume the detection

efficiency to be independent of tE and RS and set it to 50% [4]. The DM halo profiles of

M31 and the Milky Way (MW) are taken to be NFW,

ρDM
MW,M31(r) =

ρ′s
(r/r′s)(1 + r/r′s)

2
, with

rMW ≡
√
R2

sol − 2xRsolDS cos ` cos b+ x2D2
s ,

rM31 ≡ DS(1− x) . (3.9)

For the MW, ρ′s = 0.184 GeV/cm3 and the scale radius r′s = 21.5 kpc, and for M31,

ρ′s = 0.19 GeV/cm3 and the scale radius r′s = 25 kpc [24]. Rsol = 8.5 kpc is the distance

from center of the MW to the Sun. The distance between M31 and MW is DS = 770 kpc

and (`, b) = (121.2◦,−21.6◦) are the galactic coordinates of M31.

Taking the stellar radius distribution dn/dRS in M31 into account [25], the total

number of microlensing events expected at Subaru-HSC is

Nevents = NSTobs

∫
dtE

∫
dRS

∫ 1

0
dx

d2Γ

dxdtE

dn

dRS
, (3.10)

where NS = 8.7 × 107 is the number of stars in the survey and Tobs = 7 hrs is the total

period of observation. The left-panel of Fig. 5 shows the 95% C.L. upper limit on fDM by

requiring Nevents ≤ 4.74, corresponding to the one observed event at Subaru. According to

the left-panel of Fig. 5, in the point-like lens limit R90 � R�, current Subaru-HSC data

constrain FBs with 10−11M� .MFB . 10−5M�.

Subaru-HSC plans to monitor M31 for 10 times the current observation period: Tobs =

10× 7 hrs [4]. Assuming that the observed number of events is proportional to the period

of observation, i.e., that 10 events are observed, and the detection efficiency is 50%, we

estimate the 95% C.L. sensitivity by requiring Nevents ≤ 16.96; see the right-panel of Fig. 5.
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Figure 6. The gravitational wave power spectra for the benchmark points in Table 1 labeled in

order of increasing peak frequency.

4 Gravitational waves

These benchmark points also provide gravitational wave signals because of the FOPT.

Other than our assumption that the conversion of latent heat to GWs is fully efficient,

we follow the procedure used in Ref. [26], which relies on the semi-analytic treatment in

Refs. [27–29]. The GW power spectra are shown in Fig. 6. THEIA is sensitive to all

benchmarks points except BP-8, which can be detected by µAres.

To study the complementarity and correlation between microlensing and GW signals,

we perform a parameter scan in the ranges, 0.05 ≤ λ ≤ 0.2, 1 ≤ B1/4/keV ≤ 2 × 103,

0.01 ≤ C/keV ≤ 10, 0.01 ≤ D ≤ 10, and 0.3 ≤ T?/TSM? ≤ 0.6. We fix A = 0.1, which

avoids supercooling and gives values of S3/T for which a FOPT occurs. For B1/4 < 1 keV,

the GW spectra have peak frequencies below the sensitivity of SKA/THEIA; see Fig. 6.

For B1/4 > 103 keV, microlensing cannot be observed because MFB/M� . O(10−13); see

Fig. 5. The parameters must satisfy the condition that Tc be real: λD ≥ A2−(C/T0)2 [30].

Note that the benchmark points in Table 1 are selected from this scan.

In Fig. 7, the green regions of the parameter space are only probed by GW experiments

because the FBs are too heavy to produce sufficiently many lensing events. In the yellow

regions GW signals go undetected for frequencies with reduced THEIA and µAres sensi-

tivity, but microlensing observations provide a complementary probe. In the red regions,

both GW and microlensing signatures of FBs are detectable with existing and planned

experiments. The vertical edges of the red region in the lower left panel correspond to the

values of MFB/M� in the right panel of Fig. 5 at which all sensitivity to microlensing is

lost. As confirmed by Fig. 7, to obtain large GW signals with α >∼ 0.1, ∆Neff needs to be

larger than about unity, which conflicts with constraints from BBN.

– 12 –



Figure 7. The regions of parameter space that yield a microlensing signal at Subaru-HSC

and a gravitational wave signal at SKA/THEIA/µAres. In the red regions correlated GW and

microlensing signals can be detected.

5 Summary

We investigated macroscopic dark matter in the form of Fermi balls produced in a first-

order phase transition in the early universe. We considered a generic model in which a dark

fermion couples to a dark scalar, whose thermal effective potential causes a FOPT. We find

that FBs can be produced with a wide range of masses, 10−13M� .MFB . 10−3M�, and

radii 10−6R� . RFB . 10R� for a vacuum energy scale O(1) . B1/4/keV . O(103) .

FBs behave as gravitational lenses and induce microlensing signals. Current data from

the Subaru-HSC survey of M31 constrain the fraction of dark matter composed of FBs,

and future data from 10 nights of observation will improve the sensitivity considerably; see

Fig. 5.

Gravitational waves created during the FOPT that produced FBs are also detectable.

Under the assumption that the temperature of the dark sector after the FOPT is such that

∆Neff ∼ 0.1, a correlation in the GW signal and the microlensing event rate can be found

using SKA, THEIA, µAres and Subaru-HSC data for 3×10−12M� <∼MFB <∼ 10−5M�; see

Fig. 7. For FBs heavier than 10−5M�, the number of microlensing events above threshold

magnification is too low, and gravitational waves provide a complementary signal.
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