
Quantum spin solver near saturation: QS3

Hiroshi Uedaa,b,c,∗, Seiji Yunokic,d,e,f, Tokuro Shimokawag

aCenter for Quantum Information and Quantum Biology, Osaka University, Toyonaka, 560-0043, Japan.
bJST, PRESTO, Kawaguchi, 332-0012, Japan

cComputational Materials Science Research Team, RIKEN Center for Computational Science (R-CCS), Kobe, 650-0047, Japan
dComputational Condensed Matter Physics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Wako, 351-0198, Japan
eComputational Quantum Matter Research Team, RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan

fQuantum Computational Science Research Team, RIKEN Center for Quantum Computing (RQC), Wako, 351-0198, Japan
gTheory of Quantum Matter Unit, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495, Japan

Abstract

We develop a program package named QS3 [kjú:-és-kjú:b] based on the (thick-restart) Lanczos method for analyzing spin-1/2
XXZ-type quantum spin models on spatially uniform/non-uniform lattices near fully polarized states, which can be mapped to
dilute hardcore Bose systems. All calculations in QS3, including eigenvalue problems, expectation values for one/two-point spin
operators, and static/dynamical spin structure factors, are performed in the symmetry-adapted bases specified by the number N↓ of
down spins and the wave number k associated with the translational symmetry without using the bit representation for specifying
spin configurations. Because of these treatments, QS3 can support large-scale quantum systems containing more than 1000 sites
with dilute N↓. We show the benchmark results of QS3 for the low-energy excitation dispersion of the isotropic Heisenberg model
on the 10 × 10 × 10 cubic lattice, the static and dynamical spin structure factors of the isotropic Heisenberg model on the 10 × 10
square lattice, and the open-MP parallelization efficiency on the supercomputer (Ohtaka) based on AMD Epyc 7702 installed at the
Institute for the Solid State Physics (ISSP). Theoretical backgrounds and the user interface of QS3 are also described.

Keywords: Exact diagonalization, Lanczos method, Quantum spin system, Dilute hardcore Bose system, Magnetism, Dynamical
structure factor

PROGRAM SUMMARY/NEW VERSION PROGRAM
SUMMARY

Program Title: QS3

CPC Library link to program files: (to be added by Technical Editor)
Developer’s respository link: (if available)
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: MIT
Programming language: Fortran90
External routines/libraries: BLAS, LAPACK
Nature of problem: Physical properties (such as total energy, magnetic
moment, two-point spin correlation function, and dynamical structure
factor)
Solution method: Application software based on the full diagonaliza-
tion method and the exact diagonalization method using the Lanczos
and thick-restart Lanczos techniques for quantum spin S = 1/2
models such as the XXZ model.
Restrictions: Spin S = 1/2 systems with U(1) symmetry.
Unusual features: Massively large quantum spin systems with U(1)
symmetry near the saturation field can be solved with or without
considering transnational symmetry, which is difficult to treat using
standard exact diagonalization libraries with the bit representation for
specifying spin configurations.

∗Corresponding author.
E-mail address: h ueda@qiqb.osaka-u.ac.jp

1. Introduction

The exact diagonalization (ED) method [1] is a traditional
approach and indeed one of the most powerful numerical meth-
ods to correctly understand the nature of quantum many-body
systems from finite-size cluster calculations. This method en-
ables us to obtain directly our target eigenvectors and the cor-
responding eigenvalues of Hamiltonian Ĥ and to evaluate all of
the static, dynamical, and thermal properties without any bias
by storing in physical memory of computers several vectors of
the size as large as the dimension of the Hamiltonian matrix.
Moreover, in contrast to a quantum Monte Carlo method, which
in general suffers from the so-called negative sign problem for
fermion and quantum frustrated spin systems, the ED method
does not have such kind of difficulty. Therefore, the ED method
has been used at the forefront in the research field of quantum
many-body systems.

The only disadvantage of the ED method is that the accessi-
ble system size is severely limited to small clusters. A direct
way to alleviate this disadvantage is to introduce the message-
passing-interface (MPI) parallelization [2] and adapt the Hamil-
tonian symmetry [3]. For examples, sophisticated ED program
packages such as SpinPack [4], Rokko [5], and HΦ [6] are
designed with MPI techniques for high performance on large-
scale supercomputers and use U(1) and/or lattice symmetry to
blockdiagonalize the Hamiltonian matrix. Indeed, these large-
scale computations with ingenious ways have led to new find-
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ings and many discoveries in the long history of studies in the
quantum many-body systems, some of which can be found, e.g.,
in Refs. [7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Nonetheless, the accessible system sizes are still small be-
cause the required computational resources increase exponen-
tially with the system size. For example, for a spin S =1/2
Heisenberg model without magnetic field, the conventional
Lanczos algorithm [17] can treat up to 50 spins by fully us-
ing the power of a large modern supercomputer [18]. In some
particular cases, the system size limitation to small clusters may
not be an issue, e.g., in strong random systems [19, 20, 21, 22,
23, 24] and in the high-temperature limit, where the typical cor-
relation lengths are usually small. However, the accessible sys-
tem size becomes crucial when, for example, gapless or incom-
mensurate phases are discussed in various intriguing quantum
many-body systems.

Let us now remind a distinct advantage of the U(1) symmetry
adaption for a quantum many-body system that can be mapped
to a dilute particle system with a conserved number of particles,
e.g., an S = 1/2 XXZ model near the saturation field. In such a
system, the ED method can treat much larger system sizes with
103 sites and more, in principle, because the required matrix di-
mension is scaled as O(NN

↓ ), instead of O(exp(N)), where N is
the system size and N

↓
is the number of particles. A protocol

in previous ED program packages [4, 6, 25, 26, 27] is to use
a bitwise operation and thus the power of the U(1) symmetry
is not fully exploited. While the bitwise operation is essential
to speedup higher-level arithmetic operations, it requires that
all basis states for expressing the Hamiltonian matrix are rep-
resented as binary numbers. Therefore, we cannot express the
basis for more than 63 sites [28] in a single binary number, e.g.,
when an S = 1/2 spin model is treated on 64-bit processors.

In this paper, we develop an ED program package named
QS3 (Quantum Spin Solver near Saturation). This package can
treat S =1/2 XXZ spin models near the saturation field where
the U(1) symmetry is preserved with small N

↓
= O(1). This

is the first symmetry adapted open source ED package devel-
oped without using the bit representation. QS3 also adapts the
lattice symmetry of the Hamiltonian and thus it is able to treat
O(103) sites near the saturation field. A prototype of QS3 has
been already used for analyzing the ground state phase diagram
of S =1/2 XXZ spin models on the triangular lattice near the
saturation field with system sizes up to 1296 sites [29].

The QS3 code is based on the Lanczos and thick-restart Lanc-
zos methods [30, 31] to calculate the low-energy eigenvalues
and the corresponding eigenvectors of the Hamiltonian ma-
trix, and is supported by the external libraries BLAS and LA-
PACK [32]. Available physical quantities are the local magneti-
zation, two-point correlation functions, static spin structure fac-
tors, and dynamical spin structure factors. For the calculation of
the dynamical spin structure factors, the continuous fractional
expansion is employed with the Lanczos method [1, 33, 34].

The QS3 code is specialized to the analysis for quantum mag-
nets under a high magnetic field, dilute hard-core Bose gases,
and low-energy properties of ferromagnets. Thus, it is particu-
larly beneficial, for example, to the study of a field-induced spin
nematic state [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45], which

often emerges in a high magnetic field. The QS3 code can also
be used to estimate magnetic couplings of effective spin Hamil-
tonians for some materials by directly comparing the spin ex-
citations calculated numerically and measured experimentally
by inelastic neutron scattering in a sufficiently high magnetic
field. Therefore, the QS3 package is useful for both theoretical
and experimental researchers. The QS3 package is designed to
be executed on generally available computing resources such
as laptops and small workstations, and therefore only OpenMP
is used for parallelizations. The QS3 package provides sev-
eral samples for demonstration calculating physical quantities
of S =1/2 XXZ models on three different lattices, the square,
triangular, and cubic lattices, which preserve the translational
symmetry. The QS3 package also supports the analysis for sys-
tems without the translational symmetry.

The rest of this paper is organized as follows. The basic us-
age of the QS3 package is first described in Sec. 2. The algo-
rithms implemented in QS3 are then explained in Sec. 3. In
Sec. 4, benchmark results on the square and cubic lattices are
provided, and the bottlenecks and characteristics of the QS3

calculations are discussed. Finally, the paper is summarized
with brief discussion of future extension of the QS3 package in
Sec. 5.

2. Basic usage of QS3

2.1. How to download and build QS3

The QS3 package, containing the Fortran source
codes, samples, and manual, is available on GitHub
(https://github.com/QS-Cube/ED). For building QS3, For-
tran compiler with BLAS/LAPACK library [32] is prerequisite.

For those who have their own Git accounts, simply clone the
repository on their local computers:

$ git clone https://github.com/QS-Cube/ED.git

Otherwise, go to the web page and click the “Code” button and
“Download ZIP” to get “ED-main.zip”. The zip file is unpacked
as

$ unzip ED-main.zip
$ cd ED-main

A simple Makefile is provided to build the executable files
“QS3.exe” for systems preserving the translational symmetry
and “QS3 only u1.exe” for systems without the translational
symmetry. The following procedures after the cloning or down-
loading will generate the executable file and execute sample
programs

$ cd script
$ ./make.sh

After executing samples, each result is stored in the separate
directory, ”output ex1”, ”output ex2”, · · · , and ”output ex5”.
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2.2. Model
The QS3 package can treat the following S =1/2 XXZ-type

spin Hamiltonian:

Ĥ =
∑
r<r′
{Jxy

r,r′ (ŝx
r ŝx

r′ + ŝy
r ŝy

r′ ) + Jz
r,r′ ŝ

z
r ŝz

r′ } − hz
N∑

r=1

ŝz
r, (1)

where ŝr = (ŝx
r , ŝ

y
r , ŝz

r) is a spin S = 1/2 operator at site r on
an N-site cluster, Jz (xy)

r,r′ is the z (xy) component of the two-body
exchange interaction between the rth and r′th spins, and hz is
the uniform magnetic field applied along the z direction. Since
the Hamiltonian Ĥ commutes with the z component of the total
spin, i.e., [Ĥ ,

∑
r ŝz

r] = 0, the U(1) symmetry is preserved. We
also assume that the Hamiltonian Ĥ is translationally invariant
under periodic boundary conditions. In the QS3 package, the
lattice structures and the range of the exchange interactions can
be varied as long as the U(1) and translational symmetries are
preserved. The details will be described below.

2.3. How to use QS3

Here we explain in detail how to use QS3 by providing a con-
crete and simple example of the S = 1/2 isotropic Heisenberg
model, i.e., Jxy

r,r′ = Jz
r,r′ = J1 when sites r and r′ are nearest

neighbored and Jxy
r,r′ = Jz

r,r′ = 0 otherwise, on the 6×6 square
lattice shown in Fig. 1(a). We calculate the 10 lowest eigen-
values and the corresponding eigenvectors in the subspace of
〈
∑

r ŝz
r〉 = 15 and momentum k = (kx, ky) = (0, 0) by using the

thick-restart Lanczos algorithm. Here, 〈
∑

r ŝz
r〉 is the expecta-

tion value of the z component of the total spin with respect to
an eigenvector. We also calculate the local magnetization and
the two-point correlation function from the obtained eigenvec-
tors, and the dynamical spin structure factor S +(q, ω) at wave
vector q = (qx, qy) = (0, 0) by means of the continued fraction
method.

2.3.1. Set a main input file
One should first create several input files in the “input ex1”

directory. A concrete example of the main input file, input.dat,
for the S =1/2 isotropic Heisenberg model on the 6×6 square
lattice is shown below.

&input parameters
NOS = 36,
NOD = 3,
LX = 6,
LY = 6,
LZ = 1,
KX = 0,
KY = 0,
KZ = 0,
NOxxz = 72,
ALG = 2,
cal lm = 1,
cal cf = 1,
cal dsf = 1,
wr wf = 1,
re wf = 0,

FILExxz = “input ex1/list xxz term 36.dat”,
FILEwf = “work/”,
OUTDIR = “output ex1/”,

&end
&input static

NOV = 2,
NOLM = 36,
NOCF = 1296,
FILElm = “input ex1/list local mag.dat”,
FILECF = “input ex1/list cf ss.dat”,

&end
&input dynamic

spsmsz = 1,
itr dsf = 200,
QX = 0.0d0,
QY = 0.0d0,
QZ = 0.0d0,
rfield = 0.495d0,
FILEpos = “input ex1/list site position 36 type1.dat”,

&end
&input lancz

lnc ene conv0 = 1.0d-14,
minitr = 20,
maxitr = 10000,
itrint = 5,

&end
&input TRLan

NOE = 10,
NOK = 15,
NOM = 30,
maxitr = 10000,
lnc ene conv = 1.0d-14,
i vec min = 1,
i vec max = 1,

&end

The main input file given above consists of five parts,
input parameters, input static, input dynamic, input lancz, and
input TRLan. The meaning of each part and the variables used
there are explained below.

input parameters

This part requires the users to set fundamental conditions,
number of spins, number of down spins, linear dimensions
of the cluster, momentum sector, location of the input file
specifying the lattice structure and the exchange interac-
tions, locations of outputs for the results, and an algorithm
for the calculation of eigenvalues/eigenvectors. The details
of the variables are explained below.

NOS (INTEGER): Number N of spins.
NOD (INTEGER): Number N

↓
of down spins. The

users can select the z component of the total spin,
M = (N/2 − N

↓
), by adjusting this valuable.

LX, LY, LZ (INTEGER): Linear dimensions Lx, Ly, and
Lz of the cluster in the x, y, and z directions.
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Figure 1: Examples of lattice structures and the corresponding momentum spaces. (a, b) The 6 × 6 square lattice cluster and (c, d) the 6 × 6 triangular lattice cluster.
The numbers in each circle in (a) and (c) denote site numbers used in the input file. ax and ay represent the primitive translational vectors, where the lattice constant
is set to be one. Lx (Ly) is the linear dimension of the lattice along the ax (ay) direction (in these examples, Lx = Ly = 6). In (b) and (d), the red lines indicate the
first Brillouin Zone, and the green squares represent the allowed momentum points, k = (kx, ky), for the clusters in (a) and (c), respectively, under periodic boundary
conditions. The QS3 package can compute eigenvalues and eigenvectors of the Hamiltonian matrix at each momentum sector, separately. These momentum points
correspond to wave vector points, q = (qx, qy), which can be chosen for computing the dynamical spin structure factor S(q, ω).

KX, KY, KZ (INTEGER): Momentum sector Kx, Ky,
and Kz. The users should set a allowed momentum
value that is compatible with the cluster size and shape,
k · aα = 2πKα/Lα with α ∈ {x, y, z}, where k is the
momentum and aα is the α component of the primitive
translation vectors.
NOxxz (INTEGER): Number Nxxz of the two-body
exchange interactions.
ALG (INTEGER): The users can choose algorithms
by setting 1: Conventional Lanczos, 2: Thick-restart
Lanczos, 3: Full diagonalization.
cal lm, cal cf, cal dsf (INTEGER): The local magneti-
zation (lm), spin correlation function (cf), and dynamical
structure factor (dsf) are calculated by setting the corre-
sponding variables to 1. Otherwise, these variables should
be 0.
wr wf (INTEGER): If wr wf = 1, the computed eigen-
vectors are output in the directory specified by FILEwf.
re wf (INTEGER): If re wf = 0, the whole diagonal-
ization calculation starts from a random initial vector.
If re wf = 1, only the expectation values of physical
quantities are computed after reading the eigenvectors
already prepared in the directory specified by FILEwf.
FILExxz (CHARACTER): The location of the file that
defines the lattice structure and the two-body exchange
interactions Jz

r,r′ and Jxy
r,r′ . The lattice structure is specified

in terms of pairs of sites connected by the nonzero
interactions. The details are described below.
FILEwf (CHARACTER): The location of output for the
computed eigenvectors. The number of eigenvectors is
specified by NOE (the number of the lowest eigenval-
ues/eigenvectors calculated by an eigensolver specified by
ALG).
OUTDIR (CHARACTER): The location of output for the
computed expectation values such as the local magneti-

zation, spin correlation function, and dynamical structure
factor.

input static

This part requires the users to set the conditions for
the calculation of the static physical quantities, i.e., the
local magnetization and two-point correlation function.
The users should prepare separately the two files that
specify the sites and the pairs of sites for the calculation
of the local magnetization and the two-point correlation
function, respectively.

NOV (INTEGER): Number of the lowest eigenvectors
used for computing static physical quantities.
NOLM (INTEGER): Number of sites for which the
local magnetization is computed. If NOLM=0, the local
magnetization is not computed.
NOCF (INTEGER): Number of pairs of sites for which
the two-point correlation function is computed. If
NOCF=0, the correlation function is not computed.
FILElm (CHARACTER): The location of the file speci-
fying the site definition of the cluster for the calculation
of the local magnetization. The details of the file are
explained below.
FILECF (CHARACTER): The location of the file speci-
fying the pairs of sites for the calculation of the two-point
correlation function. The details of the file are explained
below.

input dynamic

This part requires the users to set the conditions for the
calculation of the dynamical spin structure factor. The
user should prepare the file specifying the sites of the
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cluster, separately.

spsmsz (INTEGER): S +(q, ω), S −(q, ω), and S z(q, ω)
are computed by setting the value spsmsz = 1, 2, and 3,
respectively. If spsmsz = 0, the dynamical spin structure
factor is not computed.
itr dsf (INTEGER): Number of iterations for the contin-
ued fraction method. See Sec. 3.9 for the details.
QX,QY,QZ (REAL8): Wave vector point q at which the
dynamical spin structure factor is computed, q · aα = Qα.
rfield (REAL8): Magnetic field value hz.
FILEpos (CHARACTER): The location of the file
specifying the site positions. The details of the file are
explained below.

input lancz

This part requires the users to set the conditions for
the conventional Lanczos algorithm when the users set
ALG = 1. The users must set NOE = 1 below because
only the lowest eigenvalue with the corresponding eigen-
vector is computed here.

lnc ene conv0 (REAL8): Convergence condition for the
Lanczos iteration.
min(max)itr (INTEGER): The minimum/maximum
number of iterations for the Lanczos method.
itrint (INTEGER): Every itrint iterations, the convergence
of the Lanczos iteration is checked.

input TRLan

This part requires the users to set the conditions for
the thick-restart Lanczos algorithm when the users set
ALG = 2.

NOE (INTEGER): Number of the lowest eigenval-
ues/eigenvectors computed by the thick-restart Lanczos
method.
NOK (INTEGER): NK value. See Algorithm 10.
NOM (INTEGER): NM value. See Algorithm 10.
maxitr (INTEGER): IM value. See Algorithm 10. The
maximum number of iterations for the thick-restart
Lanczos method.
lnc ene conv (REAL8): Convergence condition for the
thick-restart Lanczos iteration.
i vec min/max (INTEGER): Store the i vec min-th
to i vec max-th lowest eigenvectors computed by the
thick-restart Lanczos method in the location specified by
FILEwf.

2.3.2. Set a file specifying the model
The users are required to specify the lattice structure and

the exchange interactions in an input file. We provide in the
input directory an example, list xxz term 36.dat, for the S =1/2

isotropic Heisenberg model on the 6×6 square lattice. The file
location should be specified in the main input file using the
FILExxz variable. The first part of list xxz term 36.dat are
shown below.

1 2 −1.0E+00 −1.0E+00
2 3 −1.0E+00 −1.0E+00
3 4 −1.0E+00 −1.0E+00
4 5 −1.0E+00 −1.0E+00

....

In this data statement, the first and second columns denote the
pair of sites (r and r′), and the third and fourth columns rep-
resent the corresponding exchange interactions, Jxy

r,r′ and Jz
r,r′ ,

respectively [see Fig. 1].

2.3.3. Set files for computing physical quantities
The users are required to set several input files for the calcu-

lation of physical quantities. For the local magnetization 〈ŝz
r〉,

the users have to specify the site r for which the local mag-
netization is computed. For the two-point correlation func-
tion 〈ŝ+

r ŝ−r′〉 and 〈ŝz
r ŝz

r′〉, the users have to specify the pair of
sites (r, r′) for which the correlation function is computed. As
concrete examples, we provide two files in the input directory,
list local mag.dat and list cf ss.dat, for the local magnetization
and the two-point correlation function, respectively.

For the dynamical spin structure factor, the users are required
to specify the site positions in the cluster. We also provide an
example input file, list site position 36 type1.dat. Note that the
lattice constant is set to be one [see Fig. 1(a)]. The location of
these files is specified using FILExxz, FILElm, and FILECF
variables in the main input file.

2.3.4. Run and results
After preparing all these files described above, the users can

perform the calculation as follows:

$ ./QS3.exe < input ex1/input.dat >> output ex1/output.dat
2>&1

Here, output.dat is the result file for the calculation, from which
the users can check the status of the calculation. The com-
puted results of the physical quantities are output in the direc-
tory specified by the OUTDIR variable in the main input file.
The eigenvectors are output in the directory specified by the
FILEwf variable in the main input file.

3. Implemented algorithms

3.1. Representation of states with the U(1) symmetry

The QS3 package diagonalizes the Hamiltonian matrix for
Ĥ given in Eq. (1), consisting of N spins that can be as large
as O(103), with a small number N

↓
= O(1) � N of down

spins or equivalently with a large total magnetization value
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M ≡ 〈φ|
∑

r ŝz
r |φ〉 = N/2 − N

↓
, where |φ〉 is an eigenstate of

Ĥ .
A standard way to construct the spin basis states, and accord-

ingly represent the Hamiltonian matrix, is to use the bit repre-
sentation, where up (↑) and down (↓) spins are expressed as 0-
and 1-bit values, respectively. However, this is not a practical
way for our purpose because a single four-byte (eight-byte) in-
teger can only represent spin basis states up to N=31 (63) [28]
in a standard 32 (64)-bit operating system. Furthermore, the
definition and operation of arbitrary-byte integers are not sup-
ported in standard numerical programming languages.

Let us now explain how to construct the spin basis states in
the QS3 package. We first introduce the following fully polar-
ized state as a vacuum state:

|v〉 ≡ |

N spins︷   ︸︸   ︷
↑↑ · · · ↑〉. (2)

Each spin basis state |a〉 is then constructed by acting the S =

1/2 descending operator ŝ−r on the vacuum state, i.e.,

|a〉 =

N
↓∏

m=1

ŝ−rm
|v〉, (3)

where rm is the position of the mth down spin in real space. In
the QS3 package, a set of {rm}1≤m≤N

↓

is stored in N
↓
-dimensional

integer vector (array) n ≡ (n1, n2, ..., nN
↓
) = (r1, r2, ..., rN

↓
) in

ascending order, 1 ≤ r1 < r2 < · · · < rN
↓
≤ N, implying that

rm ≥ m.
We now focus on a subspace of the entire Hilbert space of

Ĥ by setting the number N
↓

of down spins. The dimension of
the subspace is NCN

↓

and the spin basis states |a〉 in this sub-
space are numerated as a = 1, 2, · · · , NCN

↓

. For a given set of
{rm}1≤m≤N

↓

, we can define an integer index a through the fol-
lowing bijective function F:

a = F(n); F(n) = 1 +

N
↓∑

m=1
rm−1Cm. (4)

This one-to-one correspondence between a and {rm}1≤m≤N
↓

can
be understood as follows: When the N

↓
th down spin is located

at rN
↓

th site, the target spin configuration |a〉 should be listed
after rN

↓
−1CN

↓

patterns for arranging N
↓

spins stored within sites

from the first site to the (rN
↓

−1)-th site. We can apply the same
procedure for m = N

↓
−1 down to m = 1, recursively, assuming

that kCm = 0 if k < m.
The inverse bijective function n = F̄(a) is given in Algo-

rithm 1 with the binary search algorithm (Algorithm 2). It is
highly instructive to first consider a concrete example. For ex-
ample, let us consider the case of N = 8, N

↓
= 4, and n =

(2, 4, 6, 8), which corresponds to a = 7C4 +5C3 +3C2 +1C1 +1 =

50, according to Eq. (4). Now, giving s = a = 50 as the
input, we explain how Algorithm 1 outputs n = (2, 4, 6, 8).
The algorithm first searches for n4 = r4 = 8 that satisfies

7C4 = 35 < s = 50 ≤ 8C4 = 70 and updates s := s − 35 = 15.

Second, the algorithm searches for n3 = r3 = 6 that satisfies

5C3 = 10 < s = 15 ≤ 6C3 = 20 and updates s := s − 10 = 5.
Third, the algorithm searches for n2 = r2 = 4 that satisfies

3C2 = 3 < s = 5 ≤ 4C2 = 6 and updates s := s − 3 = 2. Finally,
the algorithm assigns n1 = r1 = s = 2.

More generally, Algorithm 1 first searches for nN
↓

= rN
↓

that satisfies rrN
↓

−1CN
↓

< a ≤ rN
↓

CN
↓

, followed by a research

for nN
↓
−1 = rN

↓
−1 that satisfies rN

↓
−1−1CN

↓
−1 < a − rN

↓
−1CN

↓

≤

rN
↓
−1

CN
↓
−1, until a search for n2 = r2 that satisfies r2−1C2 <

a −
∑N

↓

m=3 rm−1Cm ≤ r2
C2. Finally, it uses Eq. (4) to determine

n1 = r1 = a −
∑N

↓

m=2 rm−1Cm and returns n. Note that the mem-
ory cost with O(N

↓NCN
↓

) bytes for keeping the basis sets {n} in
a computer, which may become a memory bottleneck for the
Lanczos method, can be reduced to O(1) by representing the
spin basis states with |a〉 at the expense of additional numerical
cost of O(N

↓
ln(N − N

↓
)) for the use of the function F̄.

Algorithm 1 Generate n for given a.
Input: integers N

↓
, N, and a with 1 ≤ a ≤ NCN

↓

.
Output: N

↓
-dimensional integer vector n with 1 ≤ n1 < n2 <

· · · < nN
↓

≤ N.
1: function f bar(a, N

↓
, N)

2: s := a
3: j := N
4: for m = N

↓
to 2 with m := m − 1 do

5: ( j0, f ) =binary search(s − 1, {kCm}1≤k≤ j,m, j)
. A logical parameter f is not used in this function.

. Note that kCm = 0 if k < m.
6: j := j0
7: nm := j0 + 1
8: s := s − jCm
9: end for

10: n1 := s
11: return (n)
12: end function

Algorithm 2 Check whether s0 is in s.
Input: integer s0, ls, and le (≥ ls), and le-dimensional integer

vector s.
Output: integer p and logical f .

1: function binary search(s0, s, ls, le)
2: Search integer p in {sk}ls≤k≤le

satisfying sp ≤ s0 < sp+1
with ls ≤ p ≤ le by the binary search where sle+1 = ∞.

3: f :=
{

True sp = s0
False otherwise

4: return (p, f )
5: end function
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3.2. Generation of the Hamiltonian matrix

The Hamiltonian matrix is block diagonal with respect to
the number N

↓
of down spins and the dimension of the block-

diagonal matrix specified with (N,N
↓
) is NCN

↓

. There is a
nonzero diagonal contribution of 〈a|ŝz

r ŝz
r′ |a〉 = ±1/4 to the

Hamiltonian matrix, where the sign of the value is minus when
either r or r′ is in n and otherwise it is plus. For this check,
the QS3 package uses Algorithm 2 of the binary search. On
the other hand, the off-diagonal operator (ŝ+

r ŝ−r′ + ŝ−r ŝ+
r′ ) acting

on a state |a〉 can generate a different basis state |a′〉 and the
corresponding array n′ = F̄(a′). We can also use the binary
search to determine whether a new state is generated. Namely,
the new state |a′〉 is generated when two logical variables fr
and fr′ , which are given by (pt , ft ) :=binary search(t, n, 1,N

↓
)

with t ∈ {r, r′}, are different. If this is the case, the QS3 package
uses Algorithm 3 to make the new array n′ and we can obtain
the off-diagonal matrix element 〈a′|ŝ+

r ŝ−r′ + ŝ−r ŝ+
r′ |a〉 = 1. To con-

struct the full matrix elements, we have to consider all sets of
{r, r′} compatible with the nonzero exchange interactions in Ĥ
given in Eq. (1). For this purpose, the QS3 package uses Algo-
rithm 4, where the Nxxz variable is the number of the exchange
interactions, i.e., the number of pairs {r, r′} connected via the
nonzero exchange interactions, and should be equal to NOxxz
in the input file. Note that the contribution of the Zeeman term
in Eq. (1) is excluded in Algorithm 4 because it is simply con-
stant within the subspace of a fixed N

↓
.

Algorithm 3 Spin exchange interaction between sites r and r′.
Input: integer r, p, r′ (> r), and p′ (≥ p), N

↓
-dimensional

integer vector n, and logical f , where p, p′, and
f are given by (p, f ) :=binary search(r, n, 1,N

↓
) and

(p′, f ′) :=binary search(r′, n, 1,N
↓
), assuming that f ′ , f .

Output: N
↓
-dimensional integer vector n′ with 1 ≤ n′1 < n′2 <

· · · < n′N
↓

≤ N.
1: function spin exchange(r, p, f , r′, p′, n)
2: if f = False then
3: n′ := (n1, · · · , np, r, np+1, · · · , np′−1, np′+1 · · · , nN

↓
)

4: else
5: n′ := (n1, · · · , np−1, np+1, · · · , np′ , r, np′+1 · · · , nN

↓
)

6: end if
7: return (n′)
8: end function

3.3. Representative states and Hamiltonian matrix elements in
symmetry-adapted basis sets

Not only the U(1) symmetry in spin space, but also lattice
symmetry such as translational symmetry and point group sym-
metry can be used to reduce the dimension of the Hamilto-
nian matrix to be diagonalized and thus the computational cost.
Here, we describe how to block-diagonalize the Hamiltonian Ĥ
based on the symmetry-adapted basis sets.

Algorithm 4 Generation of full Hamiltonian matrix.
Input: Nxxz-dimensional integer vectors r and r′, and Nxxz-

dimensional real vectors J xy and Jz.
Output: NCN

↓

-dimensional real matrix H = {ha,a′ }.
1: function gen full ham(r, r′, J xy, Jz)
2: H := 0
3: for a = 1 to NCN

↓

do
4: n :=f bar(a,N

↓
,N)

5: for n = 1 to Nxxz do
6: (p, f ) :=binary search(rn, n, 1,N↓)
7: (p′, f ′) :=binary search(r′n, n, 1,N↓)
8: if f = f ′ then
9: ha,a := ha,a + Jz

n/4
10: else
11: ha,a := ha,a − Jz

n/4
12: n′ :=spin exchange(r, p, f , r′, p′, n)
13: a′ := F(n′)
14: ha,a′ := Jxy

n /2
15: end if
16: end for
17: end for
18: return (H)
19: end function

First, we briefly explain how to construct the symmetry-
adapted basis sets that are the eigenstates of the lattice transla-
tional operator T̂ . A pedagogical introduction for the construc-
tion of the symmetry-adapted basis sets can be found in Ref. [3].
For simplicity, we consider a periodic chain with N spins,
namely (Lx, Ly, Lz) = (N, 1, 1), in which the translational opera-
tor T̂ is defined by shifting the position of the spin one site right,
T̂ |a〉 =

∏N
↓

m=1 ŝ−rm+1|v〉, with ŝL+1 = ŝ1 under periodic bound-
ary conditions. Note that the translational operator T̂ is com-
mutable with the Hamiltonian, i.e., [T̂ , Ĥ] = 0, and the accessi-
ble eigenvalues of T̂ are given as {eik | k = 2πK/N, 0 ≤ K < N}
with momentum k or momentum sector K.

The symmetry-adapted basis states with a given momentum
k is given as

|a, k〉 =
1√
Na,k

N∑
j=1

e−ik jT̂ j|a〉, (5)

where |a〉 is a single reference state with a fixed number N
↓

of
down spins and it is defined in Eq. (3). One can easily confirm
that |a, k〉 in Eq. (5) is an eigenstate of the translational operator,
i.e., T̂ |a, k〉 = eik |a, k〉. If the reference state |a〉 is not compat-
ible with the momentum k, the state |a, k〉 generated in Eq. (5)
vanishes. The compatibility of the chosen reference state |a〉
and the normalization factor Na,k can be determined as

Na,k =
N

∣∣∣〈a|∑N
j=1 e−ik jT̂ j|a〉

∣∣∣2
〈a|

∑N
j=1 T̂ j|a〉

. (6)
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If this quantity is zero, it implies that the chosen reference state
|a〉 is not compatible with the momentum k. Otherwise, this
quantity gives the normalization factor of the state |a, k〉.

Considering the cyclicity of the translated states, {|a j〉 ≡

T̂ j|a〉}1≤ j≤N , we can simply choose only one state as a repre-
sentative among {|a j〉}1≤ j≤N . The QS3 package chooses one
state with the smallest integer a, i.e., |a〉 ≡ |min j a j〉, which
is used to generate |a, k〉 in Eq. (5). We have to check all pos-
sible NCN

↓

-states, {|a〉}, in this way, and determine which states
and how many states are representatives in the target subspace
specified with (k, N

↓
). The QS3 package uses Algorithm 5

to check whether or not a state is representative and evaluate
the corresponding normalization factor, and uses Algorithm 6
to make a list of the representative states {|a〉} and a list of
the corresponding normalization factors {Na,k}, representing the
symmetry-adapted basis sets {|a, k〉}.

Algorithm 5 Check whether a state |a〉 is representative, and
evaluate the corresponding normalization factor.
Input: integer a with 1 ≤ a ≤ NCN

↓

, and real k ∈

{2πK/N}0≤K<N
Output: real Na,k ≥ 0.

1: function check state(a, k)
2: n =f bar(a,N

↓
,N)

3: Na,k := 0; c∗ := 0; nc := 0
4: for j = 1 to N do
5: n :=shift func(n)

. The function shift func(n) gives a N
↓
-dimensional

vector corresponding to a translated state, T̂ |a〉.
6: n :=insertion sort(n)

. The
function insertion sort(n) sorts the vector elements in as-
cending order by using the insertion sort algorithm. When
N
↓

is O(1), we confirm that the insertion sort algorithm is
generally faster than the quick sort algorithm.

7: a′ := F(n)
8: if a′ < a then
9: return (Na,k = 0)

10: else
11: if a′ = a then
12: c∗ := c∗ + eik j; nc := nc + 1
13: end if
14: end if
15: end for
16: Na,k = |c∗|2N/nc
17: return (Na,k)
18: end function

We are now ready to construct the Hamiltonian matrix based
on the symmetry-adapted basis sets {|a, k〉}. A state obtained
after operating the Hamiltonian Ĥ to each basis state |a, k〉 is

Algorithm 6 Making lists of representative states and the cor-
responding normalization factors.
Input: real k
Output: integer d with 0 ≤ d ≤ NCN

↓

, d-dimensional integer
vector σ, and d-dimensional non-negative real vector R

1: function mk list(k)
2: d := 0
3: for a = 1 to NCN

↓

do
4: Na,k :=check state(a, k)
5: if Na,k > 0 then
6: d := d + 1
7: σd := a

8: Rd :=
√

Na,k

9: end if
10: end for
11: return (d,σ, R)
12: end function

given by

Ĥ|a, k〉 =
1√
N
a,k

∑
n

N∑
j=1

e−ik jT̂ jĥn|a〉, (7)

where

ĥn|a〉 =
Jxy

n

2
(ŝ+

rn
ŝ−r′n + ŝ−rn

ŝ+
r′n

)|a〉 + Jz
n ŝz

rn
ŝz

r′n
|a〉. (8)

Note that the Zeeman term in Eq. (1) can be treated sepa-
rately because the U(1) symmetry is adapted in the basis sets.
We should also note that the off-diagonal term in Eq. (8) flips
a spin in the representative state |a〉 and the generated state,
|a(n)〉 = (ŝ+

rn
ŝ−r′n + ŝ−rn

ŝ+
r′n

)|a〉, is not necessarily a representative
state. Therefore, we have to check if the flipped state |a(n)〉 is
compatible with the momentum k. If it is the case, we have
to seek the representative state |a(n)〉 ≡ |min j a(n)

j 〉 by applying

translational operations onto |a(n)〉, i.e., |a(n)
j 〉 ≡ T̂ j|a(n)〉.

Consequently, we can write Eq. (7) as

Ĥ|a, k〉 =
∑

n

Jxy
n

2
e−ik`n

√
N
a(n),k

N
a,k

(
1 − δ fn,a, f ′n,a

)
|a(n), k〉

+
∑

n

〈a|Jz
n ŝz

rn
ŝz

r′n
|a〉 |a, k〉 , (9)

where `n is obtained from the relationship |a(n)〉 = T `n |a(n)〉 with
1 ≤ `n ≤ N. The two variables fn,a and f ′n,a are logical ones
given by (pn,a, fn,a) :=binary search(rn,f bar(a,N↓,N), 1,N

↓
)

and (p′n,a, f ′n,a) :=binary search(r′n,f bar(a,N↓,N), 1,N
↓
), re-

spectively. These variables are used to judge if each off-
diagonal term in the Hamiltonian contributes. In the QS3 pack-
age, Algorithm 7 is used to search the representative state |a(n)〉

for the off-diagonal matrix elements and to obtain the corre-
sponding `n value, and Algorithm 8 is to construct the Hamilto-
nian matrix. Note the order of two for-loops associated with a
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and n in Algorithm 8 that is chosen to enhance the performance
of open MP parallelization applying to a.

Algorithm 7 Seeking the representative state a(n) and the `n
value for operations in Eq. (9)
Input: integer a(n) and N

↓

Output: integer a(n) and `n.
1: function representative(a(n),N

↓
)

2: a(n) := a(n)

3: n :=f bar(a(n),N
↓
,N)

4: for j = 1 to N do
5: n :=shift func(n)
6: n :=insertion sort(n)
7: a := F(n)
8: if a ≤ a(n) then
9: a(n) := a; `n := j

10: end if
11: end for
12: return (a(n), `n)
13: end function

3.4. Full diagonalization
One can full diagonalize the whole Hamiltonian to obtain all

eigenvalues {Eν} and the corresponding eigenvectors {|ν〉} by
separately diagonalizing block diagonalized Hamiltonian ma-
trices constructed via Algorithm 4 or Algorithm 8 with different
symmetry sectors. Accordingly, one can for example compute
the temperature dependence of any physical quantity Â based
on the thermal average,

〈Â〉ens
β,N =

∑
ν

e−βEν

Z(β)
〈ν|Â|ν〉, (10)

where β is the inverse temperature, Z(β) =
∑
ν e−βEν is the par-

tition function, and the summation of ν runs over all symmetry
sectors with different values of N

↓
and/or k. However, note that

the accessible matrix dimension is very limited in the full di-
agonalization calculation, typically up to O(104) on a currently
available standard computer. Therefore, one may not be able to
treat all subspaces of the Hamiltonian even when the Hamilto-
nian matrix is block diagonalized with different symmetry sec-
tors.

The QS3 package is specialized for the system under a high
magnet field, in which one can treat much larger system sizes
near the saturation field. This implies that one may access the
finite temperature physics of large systems but at sufficiently
low temperature where the low-energy eigenvalues are reason-
ably separated from those for the symmetry sectors with larger
N
↓

and thus the latter contribution to the thermal average 〈Â〉ens
β,N

can be simply discarded.
The QS3 package uses DHEEVR/ZHEEVR routine in LA-

PACK [32] for the full diagonalization to obtain all eigenvalues
and eigenvectors of the Hamiltonian matrix constructed with
the symmetry-adapted basis sets.

Algorithm 8 Generation of Hamiltonian matrix with the
symmetry-adapted basis sets.
Input: Nxxz-dimensional integer vectors r and r′, Nxxz-

dimensional real vectors J xy and Jz, d-dimensional integer
vector σ and real vector R for the lists of the representative
states and their normalization factors, respectively, and real
k

Output: d-dimensional complex matrix H = {ha,a′ }.
1: function gen full ham sym adapt(r, r′, J xy, Jz,σ, R, k)
2: H := 0
3: for a = 1 to d do
4: n =f bar(σa,N↓,N)
5: for n = 1 to Nxxz do
6: (p, f ) :=binary search(rn, n, 1,N↓)
7: (p′, f ′) :=binary search(r′n, n, 1,N↓)
8: if f = f ′ then
9: ha,a := ha,a + Jz

n/4
10: else
11: ha,a := ha,a − Jz

n/4
12: a′ := F(spin exchange(r, p, f , r′, p′, n))
13: (a′, `) :=representative(a′,N

↓
)

14: (a′, f ) :=binary search(a′,σ, 1, d)
15: if f = True then
16: ha,a′ := ha,a′ +

Jxy
n
2 eik` √Ra′/Ra

17: end if
18: end if
19: end for
20: end for
21: return (H)
22: end function

3.5. Multiplying Hamiltonian to state vectors (matrix-vector
product)

In order to calculate the lowest eigenvalue (and also the
several lowest eigenvalues) and the corresponding eigenvec-
tor(s) of the Hamiltonian matrix, one can also employ the con-
ventional Lanczos method, instead of the full diagonalization,
which allows us to treat larger system sizes. The main and most
time-consuming part in the Lanczos method is a matrix-vector
product, and the QS3 package does this operation based on the
symmetry-adapted basis sets. Assuming that both the U(1) and
translational symmetries are adapted, the resulting vector after
the matrix-vector product operation Ĥ|φ〉 is expressed with the
basis sets {|a, k〉} and each element ψ

a,k can be obtained as

ψa,k = 〈a, k|ψ〉 = 〈a, k|Ĥ|φ〉

=
∑

n

Jxy
n

2
eik`n

√√
N
a(n),k

N
a,k

(
1 − δ fn,a, f ′n,a

)
φ
a(n),k

+
∑

n

〈a|Jz
n ŝz

rn
ŝz

r′n
|a〉 φa,k , (11)

where a state vector |φ〉 =
∑
a φa,k |a, k〉 is an input vector. The

QS3 package uses Algorithm 9 to do this procedure. Note that
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the calculation of each element is done on the fly and hence the
accessible vector dimension can be enlarged up to O(108).

Algorithm 9 Perform ψ := Hφ
Input: integer vectors σ, r, and r′, real k, real vectors R, J xy,

and Jz as in Algorithm 8, and d-dimensional complex vec-
tor φ.

Output: d-dimensional complex vector ψ.
1: function ham to vec(r, r′, J xy, Jz,σ, k, R,φ)
2: ψ := 0
3: for a = 1 to d do
4: n =f bar(σa,N↓,N)
5: for n = 1 to Nxxz do
6: (p, f ) :=binary search(rn, n, 1,N↓)
7: (p′, f ′) :=binary search(r′n, n, 1,N↓)
8: if f = f ′ then
9: ψa := ψa +

Jz
n

4 φa
10: else
11: ψa := ψa −

Jz
n

4 φa
12: a′ := F(spin exchange(r, p, f , r′, p′, n))
13: (a′, `) :=representative(a′,N

↓
)

14: (a′, f ) :=binary search(a′,σ, 1, d)
15: if f = True then
16: ψa := ψa +

Jxy
n
2 eik` √Ra′/Raφa′

17: end if
18: end if
19: end for
20: end for
21: return (ψ)
22: end function

3.6. Calculating expectation values
The QS3 package can evaluate the local magneitzation

〈φ|ŝz
r |φ〉 and the two-point spin correlation function 〈φ|ŝαr ŝβr′ |φ〉

where (α, β) ∈ {(z, z), (±,∓)} after computing eigenvectors
|φ〉 of the Hamiltonian matrix. When the eigenvector |φ〉 =∑
a φa,k |a, k〉 respects the translational symmetry with the mo-

mentum k, the expectation value of a operator preserving the
translational symmetry can be evaluated simply by reusing Al-
gorithm 8, where the matrix elements of the Hamiltonian matrix
are evaluated in the symmetry-adapted basis sets. Therefore,
in the QS3 package, the translationally-symmetrized operators
1
N

∑N
j=1 T̂ jÔT̂− j with Ô = ŝz

r and ŝαr ŝβr′ are used, instead of di-
rectly treating the local operators Ô, for the expectation values:
〈φ|Ô|φ〉 = 1

N 〈φ|
(∑N

j=1 T̂ jÔT̂− j
)
|φ〉.

3.7. Thick-restart Lanczos method
The QS3 package employs the thick-restart Lanczos

method [30, 31] to compute the multiple lowest eigenvalues
and the corresponding eigenvectors of the Hamiltonian matrix,
i.e., the ground state and the several lowest-excited states of the
Hamiltonian Ĥ. The algorithm is provided in Algorithm 10. In
the first part of this algorithm, exactly the same procedure of the

conventional Lanczos method is employed to generate NM + 1
Lanczos vectors, Ψ = {ψx}1≤x≤NM

and ψNM+1, and construct the
tridiagonal matrix

T = Ψ†HΨ :=



α1 β1
β∗1 α2 β2

. . .
. . .

. . .

β∗NM−2 αNM−1 βNM−1

β∗NM−1 αNM


, (12)

where αx = ψ†xHψx, βx = ψ†xHψx+1, and other elements are
zero. Then, this tridiagonal matrix T is diagonalized to obtain
the eigenvalues e = {ex} in ascending order and the unitary ma-
trix C = {cx,x′ } such that T = C

(
diag[e]

)
C†.

The thick-restart Lanczos method focuses on the low-
est NK (< NM) eigenvalues and the corresponding eigenvec-
tors by the keeping NK + 1 vectors, {{ψy}1≤y≤NK

,ψNK+1} :=
{Ψ{cx,y}1≤y≤NK

,ψNM+1}, and generates the NM−NK Lanczos vec-
tors {ψNK+2, · · · ,ψNM+1}, according to the procedures in the con-
ventional Lanczos method with the initial vector ψNM+1, and
also the matrix T as

T :=



e1 β1
. . .

...
eNK

βNK

β∗1 . . . β∗NK
αNK+1 βNK+1
. . .

. . .
. . .

β∗NM−2 αNM−1 βNM−1

β∗NM−1 αNM


, (13)

where {βy}1≤y≤NK
:= {βNM

cNM,y
} and only elements not generally

zero are shown. This matrix T is then diagonalized to obtain
the eigenvalues e = {ex} in ascending order and the correspond-
ing unitary matrix C = {cx,x′ }. This procedure is repeated until
the lowest NK eigenvalues are converged within the specified
convergence ratio ε or the total number of iterations exceeds a
given integer IM. This is the second part of the algorithm de-
scribed in Algorithm 10. Therefore, the thick-restart Lanczos
method requires maximally the NM(> NK) dimensional Krylov
subspace. The integer numbers NM and IM and the real num-
ber ε are input parameters, which determine the quality of the
calculation.

3.8. Multiplying an operator to state vectors represented with
the symmetry-adapted basis sets

The QS3 package computes the static and dynamical spin
structure factors after obtaining a target eigenvector |φ〉 of the
Hamiltonian matrix. Considering a periodic chain with N spins,
as an example, the Fourier transform of the spin operator at
wave number q with α = ±, z is given as

Ŝ α
q =

1
√

N

N∑
j=1

e−iq jT̂ j ŝα1
(
T̂ j

)†
. (14)
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One can easily show that the operator Ŝ α
q satisfies the following

relation:

Ŝ α
q T̂ j = e−iq jT̂ jŜ α

q . (15)

Using this relation, one of the basic operations, Ŝ α
q |φ〉, neces-

sary for computing the static and dynamical spin structure fac-
tors can be rewritten as

Ŝ α
q |φ〉 =

∑
a

φa,kŜ α
q |a, k〉 (16)

with

Ŝ α
q |a, k〉 =

1√
N
a,k

∑
j

e−ik jŜ α
q T̂ j|a〉

=
1√
N
a,k

∑
j

e−i(k+q) jT̂ jŜ α
q |a〉

=
1√

N
a,kN

∑
j, j′

e−i(k+q) jT̂ je−iq j′ T̂ j′ ŝα1
(
T̂ j′

)†
|a〉,

(17)

where |φ〉 =
∑
a φa,k |a, k〉 is an eigenvector of the Hamiltonian

matrix and it is in the subspace specified with momentum k
and the number N

↓
of down spins. Note that in computing the

transverse components of the spin structure factors with α = ±

in Eq. (17), we have to consider a transition between states with
different U(1) symmetry sectors, i.e., from a state |a〉 with N

↓

down spins to a state Ŝ α=±
q |a〉 with N

↓
∓ 1 down spins.

Let us now introduce the spin state |b〉 defined as

T̂ j′ ŝα1
(
T̂ j′

)†
|a〉 = c|b〉 (18)

with c = 〈b|T̂ j′ ŝα1
(
T̂ j′

)†
|a〉. Note that |b〉 as well as c depends

on α, j′, and a. In general, the state |b〉 is not the representative
state |b〉 ≡ |min j b j〉 for states

{
|b j〉 ≡ T̂ j|b〉

}
1≤ j≤N

, and |b〉 can
be translated to |b〉 by repeatedly applying the translational op-
erator T̂ , i.e., |b〉 = T̂ ` |b〉 with 1 ≤ ` ≤ N, where ` depends on
|b〉. Therefore, we can rewrite Eq. (17) using the representative
state |b〉 as

Ŝ α
q |a, k〉 =

1√
N
a,kN

∑
j, j′

e−i(k+q) jT̂ je−iq j′cT̂−` |b〉.

=
1√

N
a,kN

∑
j, j′

e−i(q j′+(k+q)`)ce−i(k+q)( j−`)T̂ j−` |b〉.

=
1√

N
a,kN

∑
j′

√
N
b,k+qe−i(q j′+(k+q)`)c|b, k + q〉.

(19)

A concrete procedure for performing Ŝ −q |φ〉 is shown in Algo-
rithm 11. In the same manner, we can perform Ŝ +

q |φ〉 and Ŝ z
q|φ〉.

3.9. Continued fraction expansion based on the Lanczos algo-
rithm

Using the continued fraction expansion based on the Lanczos
algorithm [1, 33, 34], the QS3 package computes the dynamical
spin structure factor

S α
q (ω) = −

1
π

Im〈φ|Ŝ α†
q

1
ω − Ĥ + E0 + iη

Ŝ α
q |φ〉, (20)

where E0 is the ground state energy (i.e., lowest eigenvalue)
with the corresponding ground state |φ〉 of the Hamiltonian Ĥ
and positive real number η is the broadening factor. We can
rewrite the above equation as

S α
q (ω) = −

1
π

Im
〈φ|Ŝ α†

q Ŝ α
q |φ〉

z − α1 −
β2

1

z − α2 −
β2

2

z − α3 − · · ·

(21)

with z = ω − E0 + iη. α and β in Eq. (21) are obtained by the
tridiagonalization procedure of the Hamiltonian matrix in the
Lanczos iteration shown in lines 3-11 of Algorithm 10 with the
initial state |ψ〉1 = Ŝ α

q |φ〉 that can be prepared by the procedure
shown in Algorithm 11.

4. Benchmark results

4.1. Parallelization efficiency with openMP
Here we show a benchmark result of the QS3 package

for the numerical diagonalization. The most time consum-
ing part in the Lanczos algorithm is the Hamiltonian-vector
multiplication in Algorithm 9 with computational complexity
O(NCN

↓

NxxzN
↓

ln N
↓
). The QS3 package adopts OpenMP to

parallelize this procedure. For a typical benchmark, we con-
sider an S = 1/2 isotropic antiferromagnetic Heisenberg model
on a simple cubic lattice of 216 sites (Lx = Ly = Lz = 6)
and calculate the ground state in the subspace with momen-
tum k = (0, 0, 0) and N

↓
= 5, by setting the parameters

(Kx,Ky,Kz) = (0, 0, 0), using the conventional Lanczos algo-
rithm. The dimension of the Hilbert space (i.,e, the Hamilto-
nian matrix) is 216C5 (=3,739,729,608) with only adapting the
U(1) symmetry and can be reduced 1/N times smaller down
to 17,313,563 when the translational symmetry is also adapted.
Figure 2 shows the efficiency of the parallelization of the QS3

package executed using the supercomputer (Ohtaka) in ISSP
with AMD Epyc 7702 2.0 GHz. We confirm almost linear ac-
celeration with increasing the number of threads up to 128, al-
though the slope becomes somewhat smaller when the number
of threads exceeds around 20.

4.2. Energy-dispersion relation
One of the essential physical quantities to understand the

low-energy physics of a quantum spin model is the energy-
dispersion relation E0(k), the ground state energy at each mo-
mentum k. Most of the currently available exact diagonaliza-
tion libraries compute this quantity but are sufficient for practi-
cal use only in one-dimensional systems because of the severe
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Algorithm 10 Thick-restart Lanczos method
Input: integer NK (> 0), NM (> NK), d, and IM (> 0), and real

ε � 1
Output: real e = {ex}1≤x≤NM and complex Ψ = {ψax}

1≤a≤d
1≤x≤NM

.
1: function thick restart lanczos(NK,NM, IM, ε)
2: ψx = {ψax}1≤a≤d; ψ1 :=random vec(d)

. The function random vec(d) returns d-dimensional
complex random vector.

3: β0 :=
√
|ψ1|

2

4: for x = 1 to NM do
5: ψx := ψx/βx−1
6: v :=ham to vec(r, r′, J xy, Jz,σ, k,ψx)
7: αx := ψ†x · v

8: ψx+1 :=
{

v − αxψx (x = 1)
v − αxψx − βx−1ψx−1 (x > 1)

9: ψx+1 :=reorthogonalization(Ψ, x + 1)
. The function reorthogonalization(Ψ, x) performs

reorthogonalization, for example, with the modified Gram-
Schmidt procedure, to numerically keep the orthogonality
ψ†x′<x · ψx = 0.

10: βx :=
√
|ψx+1|

2

11: end for
12: ψNM+1

:= ψNM+1
/βNM

13: (e,C = {cx,x′ }) :=diag tri({αx}, {βx})
. The function diag tri({αx}, {βx}) returns eigenvalues e

(ascending order) and the corresponding eigenvectors C of
a real symmetric tridiagonal matrix with diagonal elements
{αx} and sub-diagonal elements {βx}.

14: for I = 1 to IM do
15: {ψy}1≤y≤NK

:= Ψ{cx,y}

16: if I = 1 then
17: e′ = {ey}1≤y≤NK

18: else
19: if max1≤y≤NK

|e′y/ey − 1| < ε then
20: Exit
21: else
22: e′ = {ey}1≤y≤NK

23: end if
24: end if
25: {αy}1≤y≤NK

:= {ey}

26: ψNK+1 := ψNM+1
27: {βy}1≤y≤NK

:= {βNM
cNM,y

}

28: lines 6 and 7 with x = NK + 1.
29: v := v −

∑
y βyψy

30: ψNK+2 := v − αNK+1ψNK+1
31: ψNK+2 :=reorthogonalization(Ψ,NK + 2)

32: βNK+1 :=
√
|ψNK+2|

2

33: lines 4-12 with the starting value of x = NK + 2.
34: T := 0
35: {txx}1≤x≤NM

= {αx}

36: {ty,NK+1}1≤y≤NK
= {t∗NK+1,y} := {βy}

37: {tz,z+1}NK+1≤z≤NM−1 = {t∗z+1,z} := {βz}

38: (e,C) :=diag(T)
. The

function diag(T) returns eigenvalues (ascending order) and
the corresponding eigenvectors of Hermitian matrix T.

39: end for
40: return (e,Ψ)
41: end function

Algorithm 11 Perform |ψ′〉 := Ŝ −q |φ〉

Input: real k and q ∈ {2πK/N}0≤K<N , d-dimensional integer
vector σ and real vector R for the lists of representative
states specified with N

↓
down spins and their normaliza-

tion factors, respectively, d-dimensional complex vector φ,
and d′-dimensional integer vector σ′ and real vector R′ for
the lists of representative states specified with N

↓
+ 1 down

spins and their normalization factors, respectively.
Output: d′-dimensional complex vector ψ′.

1: function smq to vec(σ, R, k,φ,σ′, R′, q)
2: ψ′ := 0
3: for r = 1 to N do
4: for a = 1 to d do
5: n =f bar(σa,N↓,N)
6: (p, f ) :=binary search(r, n, 1,N

↓
)

7: if f = False then
8: n′ := (n1, · · · , np, r, np+1, · · · , nN

↓
)

9: b := F(n′)
10: (b, `) :=representative(b,N′

↓
)

11: (b, f ) :=binary search(b,σ′, 1, d′)
12: if f = True then
13: ψ′b := ψ′b +

√
R′b

RaN e−i(qr+(k+q)`)φa

14: end if
15: end if
16: end for
17: end for
18: return (ψ′)
19: end function
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Figure 2: Parallelization efficiency of the QS3 package. The conventional Lanc-
zos algorithm is used to calculated the ground state of an S = 1/2 isotropic
antiferromagnetic Heisenberg model on a simple cubic lattice of 216 sites with
(Kx,Ky,Kz) = (0, 0, 0) and N

↓
= 5.
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limitations of the accessible system sizes. The QS3 package
can evaluate the energy-dispersion relation around the satura-
tion field even in three-dimensional systems.

For demonstration, we show the energy-dispersion relation
for an S = 1/2 isotropic antiferromagnetic Heisenberg model
on a simple cubic lattice of 1000 sites (Lx = Lr = Lz = 10) in
Fig. 3. When only the U(1) symmetry is used, the dimension of
the Hilbert space with N

↓
= 3 is 1000C3 = 166, 167, 000 and ap-

proximately 2.5 GByte of physical memory is required to store
a state vector with the double-complex precision. This implies
that the total physical memory up to about 8 GByte is required
to obtain the ground state by means of the conventional Lanc-
zos method. This is rather expensive to perform on a standard
laptop computer. However, by incorporating the translational
symmetry, the required storage per a state vector is reduced
down to around 2.5 MByte, and thus the computation can be
executed easily with a laptop computer.
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Figure 3: Energy-dispersion relation E0(k) of an S = 1/2 isotropic antifer-
romagnetic Heisenberg model on a simple cubic lattice of 1000 sites (Lx =

Ly = Lz = 10) with N
↓

down spins along the high symmetric momentum k line
indicated in the inset. The lowest eigenenergies E0(k) with N

↓
= 1, 2, and 3

near the saturation field are plotted relative to the ground state energy E0 of the
fully polarized state with N

↓
= 0. The high symmetric momentum points are

indicated by Γ: (0, 0, 0), M: (0, π, π), R: (π, π, π), and X: (0, 0, π). Solid lines are
the cubic-spline interpolation in each path, i.e., Γ → M, M → R, R → X, and
X→ Γ.

4.3. Static and dynamical structure factors

In Fig. 4, we also demonstrate the calculation of the static
and dynamical spin structure factors for an S = 1/2 isotropic
antiferromagnetic Heisenberg model on a square lattice of 100
sites (Lx = Ly = 10) with N

↓
= 2. The static spin structure

factor S α
q is defined as

S α
q = 〈φ|Ŝ α†

q Ŝ α
q |φ〉 (22)

with |φ〉 being the ground state and it is related to the dynamical
spin structure factor S α

q(ω) via

S α
q =

∫
S α

q(ω) dω. (23)

A nearly fully polarized state always displays a trivial but dom-
inant sharp peak in the longitudinal structure factor at the Γ

point and the symmetrically equivalent momenta. For ease of
visibility, this trivial component is subtracted form the calcu-
lated static and dynamical longitudinal spin structure factors,
denoted respectively as S̃ z

q and S̃ z
q(ω) in Fig. 4. Here, the dy-

namical spin structure factor S̃ z
q(ω) at q = 0 is given as

S̃ z
q=0(ω) ≡ S z

q=0(ω) −
η

π(ω2 + η2)
M2

N
(24)

and S̃ z
q(ω) at q , 0 is exactly the same as S z

q(ω).

(a)

(b)

Γ
X

M

S̃z
q

S̃z
q(ω)

Figure 4: (a) The z-component of the static spin structure factor S̃ z
q and (b)

the z-component of the dynamical spin structure factor S̃ z
q(ω) along the high

symmetric momentum line for an S =1/2 isotropic antiferromagnetic Heisen-
berg model on a square lattice of 100 sites (Lx = Ly = 10) with N

↓
= 2 near the

saturation field. Note that the trivial component in the structure factors is sub-
tracted for visibility (see the text). The high symmetric momenta are indicated
by Γ: (0, 0), X: (π, 0), and M: (π, π).

5. Summary

We have developed the exact diagonalization package QS3

for analyzing spin-1/2 quantum lattice models with XXZ inter-
actions near the saturation field. The QS3 package employs the
symmetry-adapted basis sets with respect to the translational
symmetry as well as the U(1) symmetry. In order to access
large system sizes up to O(1000), the QS3 package does not
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use the traditional bit representation for spin configurations. In-
troducing OpenMP parallelization, the bottleneck of the cal-
culation, i.e., large dimension matrix-vector multiplication, is
efficiently accelerated by the parallelization. The QS3 pack-
age computes fundamental physical quantities such as the local
magnetization, two-point spin correlation function, and the dy-
namical spin structure factor. These quantities are essential and
observable in experiments. As demonstrated in the benchmark,
the QS3 package can treat three-dimensional systems to under-
stand the ground state as well as the low-energy excitations with
potentially interesting properties.

For the future development, the QS3 package will be ex-
tended to treat the point-group symmetry in addition to the
translational symmetry. We will also introduce the multiple
degrees of freedom per unit cell, i.e., multiple spins per unit
cell, to treat more general lattice geometries such as the kagome
and pyrochlore lattices. In addition, we will extend the ap-
plication of the QS3 packages to dilute fermionis, soft-core
bosons, and higher-spin systems. These extensions are straight-
forward in terms of the coding employed in the QS3 package
and most likely increase a value of the QS3 package as a re-
search tool not only in condensed matter physics but also in
quantum chemistry. For example, the QS3 package will be able
to handle the full configuration interaction (full CI) calculation
for molecules with a small number of electrons occupying many
orbitals, which are difficult to treat by an available open-source
package, e.g., given in Ref. [46].

Furthermore, we can implement a function to simulate quan-
tum circuits with symmetry constraints. This direction of de-
velopment is important to provide reference data for benchmark
results of future large-scale universal quantum computers and to
investigate quantum accelerated algorithms for quantum many-
body systems. These extensions are in part under progress and
will be reported in the near future.
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