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We investigate the emergence of quantum scars in a general ensemble of random Hamiltonians
(of which the PXP is a particular realization), that we refer to as quantum local random networks.
We find a class of scars, that we call “statistical”, and we identify specific signatures of the localized
nature of these eigenstates by analyzing a combination of indicators of quantum ergodicity and
properties related to the network structure of the model. Within this parallelism, we associate the
emergence of statistical scars to the presence of “motifs” in the network, that reflects how these are
associated to links with anomalously small connectivity. Most remarkably, statistical scars appear
at well-defined values of energy, predicted solely on the base of network theory. We study the scaling
of the number of statistical scars with system size: by continuously changing the connectivity of
the system we find that there is a transition from a regime where the constraints are too weak
for scars to exist for large systems to a regime where constraints are stronger and the number of
statistical scars increases with system size. We estimate the location of this transition and we find
that our estimate agrees with numerical data. This allows to the define the concept of “statistical
robustness” of quantum scars.

Recently a great deal of research has focused on the
fundamental concepts of thermalization and ergodicity
shifting the focus from many-body spectra [1, 2] to the
dynamics of observables [3]. A cornerstone of this pro-
gram has been the formulation of the eigenstate ther-
malization hypothesis (ETH) [4, 5], which identifies the
statistical properties of matrix elements of observables
with the observation of thermal behaviour in their expec-
tation values and correlation functions. More recently,
the conditions of quantum chaos in many body systems
have been further refined with the introduction of out-of-
time-order correlations (OTOC) [6] and adiabatic gauge
potentials [6, 7].

While two broad classes of systems have been intro-
duced, nonergodic/localized [8, 9] vs. thermalizing [3],
several systems have been shown to display intermedi-
ate behavior, where ETH is satisfied only at sufficiently
high energies or for portions of the spectrum (weak ETH
[10]). A prominent example in this class are quantum
scars [11], that are non-ergodic eingestates embedded
within the ergodic continuum. While those states are ir-
relevant for thermodynamics, they can still lead to very
specific, intrinsically many-body phenomena in quantum
quench experiments, provided the initial state has a sig-
nificant overlap with them [12]. These states, which
are qualitatively similar to localized states rarely occur-
ring in the delocalized continuum of Anderson-type mod-
els [13], have been predicted in a variety of specific mod-
els [14–22], starting with constrained ones such as the
PXP model [23–33].

As for localized states in the delocalized continuum,
it was recently found that quantum scars of the PXP
model are unstable against perturbations, suggesting
that their occurrence might need fine tuning [34, 35]. It is
thus presently unclear whether scarring is a robust phe-

nomenon (and if so, in which sense), or if it generically
requires parameter tuning to survive the thermodynamic
limit.

While the approach to quantum scarring typically piv-
ots around the analysis of spectral properties of ’deter-
ministic’ models, here, we pursue a different approach,
and analyze the robustness of scar manifolds statistically.
It was already noticed that the analysis of the network
representation of the Hamiltonian is particularly conve-
nient to understand many properties of constrained mod-
els displaying scars [23] (or even shattering of the Hilbert
space [36, 37]): these models are geometrically equivalent
to networks with a number of nodes exponentially large
in system size N , but an average degree per node only lin-
ear in N as a result of the locality of the Hamiltonian [24].
We build upon this analogy to define a general ensemble
of Hamiltonians, called quantum local random network
models, which includes the PXP model as a particular
realization. Hamiltonians belonging to this ensemble are
the adjacency matrices of networks whose nodes are in-
dexed by a string of quantum numbers (e.g., {01001 . . . })
while edges are drawn randomly with probability p only
among vertices differing by local moves (spin flips): in
this way, the constraints are statistically encoded in the
dynamics. The probability p represents a continuous pa-
rameter that quantifies the strength of the constraints (a
small p indicates strong constraints, and vice versa).

We study in detail the spectra and the correspond-
ing eigenfunctions and prove that generic Hamiltoni-
ans in this class can display statistical scars, a class
of eigenstates that are localized on the network. Sta-
tistical scars occur always at specific energies ε∗ =
0,±1,±

√
2,±
√

3,±(
√

5±1)/2, . . . , whose values are gov-
erned by spectral graph theory [38, 39]. A study of the
scaling of the average degeneracy of statistical scars as a
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function of system size shows the occurrence of a series
of eigenstate phase transitions as a function of p between
phases in which scars at a given energy ε∗ proliferate and
phases in which their number decreases.

Quantum local random networks – The first model
in which quantum scars were discovered is the PXP
model [23] which, on a chain of N sites with open bound-
ary conditions, is defined by

HPXP =

N−2∑
i=1

PiXi+1Pi+2 +X1P2 + PN−1XN , (1)

where Pi = (1−Zi)/2 and Xi, Zi are local Pauli matrices.
The dynamics of the PXP model is highly constrained
(reflecting the microscopic mechanism of Rydberg block-
ade [12, 40]): it is impossible to flip a spin from down to
up, if one of its nearest neighbours is up. Interestingly,
the model in the subspace containing the spin-down state
| ◦ ◦ ◦ . . . 〉 can be represented as a tight-binding Hamilto-
nian on a specific network (Fibonacci or Lucas cube) [24].

While the majority of scars, identified through their
overlap with the Z2 state | ◦ • ◦ • . . . 〉 and their low
entanglement entropy, feature size-dependent effects, it
was recently shown [29] that this model possesses also a
few exact scar states (of the form of exact matrix product
states) in the thermodynamic limit at the special energies
ε = 0,±

√
2. Individual scars are unstable with respect to

perturbations: perturbations respecting the symmetries
of the PXP model make them evaporate in the continuum
of ergodic states. The instability of individual scars does
not imply however that deformations of the PXP model
cannot possess a scar manifold, i.e., a set of non-ergodic,
low-entangled states immersed in the ergodic continuum,
which are not continuous deformations of PXP scars. In
this case, the existence of a scar manifold as a whole
could be described as statistically robust.

In order to address such statistical robustness we notice
that a common tract of constrained models is their repre-
sentability as hopping Hamiltonians on networks whose
nodes are indexed in the computational basis (| {σ}〉 with
σ = ◦, • for the PXP model). It is therefore appealing to
embed the PXP in a much broader ensemble of Hamil-
tonians, which we call Quantum Local Random Networks
(QLRN) sharing the common ingredients of locality (in a
way we specify below) and constrained dynamics.

Let us illustrate the construction of a QLRN in the sim-
plest case (see Fig. 5-(a)): consider the network whose
vertices are the sequences of N elements {σi}, where
σi = 0, 1 and i = 1, . . . , N , representing the computa-
tional basis of the Hilbert space of a spin system. Each
pair of vertices is connected by an edge with probability
0 ≤ p ≤ 1 provided they differ by a single flip of a boolean
variable. The adjacency matrix of the resulting network
is then the Hamiltonian whose spectrum and eigenfunc-
tions will be the subject of our study. We note that, in
this context, locality is intended in the sense that states

connected by the Hamiltonian only differ by the prop-
erties of a single site. Evidently, the PXP model is a
particular realization of a QLRN with p = 0.25, since in
this model only one in four configurations of the nearest
neighbours of a spin allows it to be flipped.

Note that, similarly to the PXP model, each Hamil-
tonian of the QLRN ensemble has matrix elements only
between states with opposite Z parity, and hence anti-
commutes with the operator C =

∏
i Zi. As a conse-

quence, the spectrum is symmetric around ε = 0 and has
a degeneracy in ε = 0 that scales exponentially with N
[41]. Another consequence is that, from the point of view
of network theory, in a QLRN the clustering coefficient
of each node (which is proportional to the number of tri-
angles through the node [42]) is always zero, because the
nearest neighbours of a vertex have the same parity, so
they cannot be joined by an edge.

Localized eigenstates – The use of the language of
network theory in condensed matter physics has a long
history, starting from studies of Anderson-type localiza-
tion in generic networks [43], disorder-free localization
on random trees [38] or as a function of clustering co-
efficient [44, 45]. The possibility to generate localized
states without disorder by taking advantage of geomet-
rical constraints suggests that models of this type could
be of interest for numerous problems, as was recently
recognized in the context of the physics of many-body
localization [46] and thermalization [47, 48].

When analyzing finite size QLRN, the physics of lo-
calization emerges immediately when one considers the
density of states vs. ε for fixed system size N at differ-
ent p [49]: while for p = 1 the spectrum is obviously
the sequence of peaks associated to a spin of size N
in unit magnetic field, as p diminishes the peaks first
broaden, merging in a bell shaped DOS with a clear delta-
function peak at ε = 0. This peak, also observed in the
DOS of tight-binding models defined on random Erdös-
Rényi networks [44], is typically associated with localized
states.

In our case, the peak is a consequence of the proper-
ties of the Hamiltonian under parity symmetry, as com-
mented above. In the case of QLRN one has to pay
attention to a trivial type of localization associated to
disconnected vertices which get isolated as p diminishes
(a phenomenon similar to the fragmentation of Hilbert
spaces observed in Ref. 36 and 50). Since in this work
we will be interested in non-trivial localized states on
QLRN and their connection to the physics of scars, in
the following we will always identify the giant connected
component of a QLRN and study localized states in this
subspace. As expected a peak at ε = 0 in its spectrum is
present also under this restriction. We find that within
this degenerate subspace it is possible to find non-trivial
eigenstates localized on the periphery of the network as
depicted in Fig. 5-(b).

The localized states at ε = 0 are just the simplest
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FIG. 1. (a) Illustrative example of a QLRN: states differing by a single spin flip have probability p of being connected by an
edge. (b) Graphical representation of an eigenstate with ε = 0 localized in the periphery of the network for N = 13, p = 0.15.
The color indicates the weight of the eigenstate on each node. The weight is concentrated on few nodes that are loosely
connected with the rest of the network. (c) Bipartite entanglement entropy and (d) betweenness centrality of the eigenstates
vs their energy for p = 0.15, N = 14. The different colors refer to different realizations. Dashed grey lines indicate the special
energies (ε∗ = ±1,±2,±(

√
5±1)/2,±

√
3) associated with statistical scars. At these energies, degenerate eigenstates are found,

whose entanglement entropy and betweenness centrality are anomalously small with respect to the other eigenstates belonging
to the thermal cloud.

of a class of nontrivial localized states on the QLRN
emerging at sufficiently small p. In order to character-
ize the localization properties of these and other eigen-
states one may write them in the computational basis
|Ψn〉 =

∑
{σ} cn({σ})|{σ}〉 and study the participation

ratio Pn =
∑
{σ} |cn({σ})|4. In addition, the structure

of wave functions on the QLRN can be studied using
standard measures of the character of nodes: i) the de-
gree k({σ}); ii) the centrality C({σ}) = 1/

∑
σ′ 6=σ lσ′σ,

where lσ′σ is the distance between two sites on the lat-
tice; and iii) the betweenness centrality B({σ}) defined
as the number of shortest paths among different vertices
passing through {σ}. One can easily use these quanti-
ties to study eigenstates by defining their averages over
a generic eigenstate |Ψn〉, e.g., for the betweenness

〈B〉n =
∑
{σ}

| cn({σ}) |2 B({σ}). (2)

Finally, since these eigenstates can be interpreted as
many-body states of a spin system of size N one may
compute the half-system entanglement entropy Sn to
connect localization on QLRN to the physics of scars.

As seen in Fig. 5-(c) by plotting the half-chain en-
tanglement entropy Sn for a QLRN at p = 0.15 as a
function of eigenstate energy ε one can easily identify
a number of eigenstates whose Sn is significantly lower
than the typical value at that energy, therefore behav-
ing as quantum scars. Most of these eigenstates share
the feature of having significant (and untypical) partic-
ipation ratio (see Fig. 6), and are therefore localized on

the network. However, the way they are localized is
not always the same, as shown by plotting the eigen-
state average betweenness 〈B〉n vs. ε (Fig. 5-(c), lower
panel). Localized scars at specific energies (vertical lines
at ε? = 0,±1,±

√
2,±(

√
5± 1)/2,±

√
3, . . . ) tend to have

a lower betweenness than the rest, indicating that they
are not just localized, but localized on the periphery of
the network: those are the key features that define sta-
tistical scars. Oppositely, we find other eigenstates with
low entanglement entropy that occur at system size and
realization dependent energies, and are not necessarily
localized at the edges of the network or have low between-
ness. As shown in Fig. 6, both types of scars proliferate
as p is lowered below a certain threshold p ' 0.2.

Statistical scars – We now further investigate the
presence of statistical scars at specific energies. The spe-
cial energies ε? are well known to be the eigenvalues of
the adjacency matrices of small trees [38, 39]. The fact
that various figures of merit, including the centrality and
degree [49], suggest that statistical scars are localized on
the periphery of the network, indicates that small ele-
mentary subgraphs (motifs) might be the basic elements
associated to statistical scars. This is indeed the case as
shown in Fig. 3: the eigenfunction of subgraphs of two
vertices (eigenvalues ±1) or three vertices (eigenvalues
±
√

2, 0) can be easily incorporated into eigenfunctions of
the whole QLRN whenever geometrical structures of the
type of Fig. 3-a or Fig. 3-b occur on its periphery. These
motifs are then responsible for the presence of statistical
scars: this claim is corroborated by the numerical ob-
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FIG. 2. Participation ratio Pn of the eigenstates for different
values of p for system size N = 14. The colors indicate dif-
ferent realizations of the network. Statistical scars have large
value of Pn: they are localized in the computational basis.
For large p their number goes to zero.
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FIG. 3. Graphical representation of examples of localized
eigenstates with energy (a) ε∗ = 1 and (b) ε∗ =

√
2. The num-

ber next to each node is the coefficient cn({σ}) of the eigen-
state |Ψn〉 in the computational basis. Each state is localized
in the grey rectangles: all other nodes have cn({σ}) = 0. In
both examples, the eigenstate of the full graph is constructed
using as building block an eigenstate of a small motif (of two
sites in (a) and three sites in (b)): the graph contains two
copies of the motif; the coefficient of the motif eigenstate are
assigned with opposite signs on the two copies. More gen-
eral networks with the same eigenstates can be constructed
by adding edges to the graphs depicted here, provided that,
for each node not belonging to the grey subgraph, the sum of
the coefficients of its neighbours is 0. The construction can
be generalized to all the energies ε∗ that are eigenvalues of
small motifs [49]

servation that the degeneracy of statistical scars almost
coincides with the number of occurrences of the (dupli-
cated) motifs for accessible system sizes [51] (see Fig. 4
and [49]).

The occurrence of network motifs associated to statis-
tical scars depends both on the overall system size N and,
most crucially, on p. In order to investigate how many
scars are to be expected as a function of system size, we
studied how the degeneracy of statistical scars (Nscars)
with a given value of ε? and the number of occurrences of
the associated motifs (Nmotifs), averaged over realizations
of the QLRN, scale with N for a fixed p. This is shown
in Fig. 4 for ε? = 1: while for p = 0.25 both Nmotifs and
Nscars decrease with N , a completely different behavior,
characterized by a continuous growth, is seen for smaller
p. This fact seems to suggest the presence of an eigen-
state transition as a function of p. The transition is the
result of the competition between two effects: when the
system size grows, motifs are less dense (the probability
of having m nodes disconnected from the rest of the net-
work decreases as (1−p)mN ) but the number of nodes in
the network grows (∼ 2N ). With this argument, we can
estimate the number of motifs [49]

Nth(ε∗ = 1) = 2N (1− p)4N−6p4N(N − 1)

2
(N − 1)2. (3)

We hence obtain the transition point pc, pc(ε
∗ = 1) '

0.1591 (see [49]), in agreement with the numerical data
of Fig. 4. A similar behaviour is observed for other val-
ues of ε? [49]. We note that, differently from eigenstate
phase transitions in the context of many-body localiza-
tion, in the present case the transition occurs at exactly
known values of the energy only, and not in a continuous
part of the spectrum. This may facilitate future studies,
targeting, e.g., exact energy manifolds.

As a last comment, we note that some of the char-
acteristic energies of statistical scars correspond to the
energies of the exact scars found in the PXP [29] and in
the generalized PXP models [35]. This is not a coinci-
dence: those scars, of the form of matrix product states
(MPS), realize an effective “decoupling” of the system in
small blocks; the eigenenergies are then originated from
the diagonalization of the small blocks, akin to the mo-
tifs of statistical scars. Moreover, the participation ratio
of exact PXP scars is larger than the typical value of
thermal eigenstates [49]. Despite these similarities, we
do not find a direct connection between the two types
of scars. In contrast with statistical scars, the number
of MPS scars does not grow with the size of the system;
moreover, the structure of MPS scars is specific of the
low dimensionality of the model. We leave the question
of a deeper connection between the two types of scars to
future works.
Conclusions and outlook – We studied the statistical

robustness of a scar manifold by introducing a class of
Hamiltonians, Quantum Local Random Networks, that
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FIG. 4. Average degeneracy Nscars of the eigenspace with
ε∗ = 1, average number of occurrences (Nmotifs) of the motif
in Fig. 3(a) and expected number of occurrences (Nth, from
Eq. (10) in [49]) as a function of system size N . For p < pc '
0.1591 the degeneracy increases with N , while it decays for
p > pc.

combine locality and constrained dynamics, and that in-
clude PXP as a particular instance. Focusing on the
giant connected component of a QLRN we have shown
that for sufficiently small p it is expected to display
statistical scars, which occur at special energies ε? =
0,±1,±

√
2,±(

√
5± 1)/2,±

√
3, . . . . The latter are solely

dictated by random graph theory, and are associated to
localized states on certain geometrical motifs on the pe-
riphery of the QLRN. A study of the degeneracy of sta-
tistical scars for various p as a function of systems size
indicates the presence of a quantum phase transition for
each special energy ε∗ between a phase in which scars
proliferate and one in which their number goes to zero
for increasing N . These states appear in a variety of spe-
cific realizations, from (generalized) PXP [29, 35] to Hub-
bard models [52]. Studying in detail this phenomenon,
together with potential generalizations to other QLRN,
is an intriguing perspective, that we leave to future in-
vestigations.
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Supplemental material

In this Supplemental Material, we provide additional
information on the definition and spectra of QLRN dis-
cussed in the main text.

Generalized Quantum Local Random Networks

The notion of QLRN can be generalized to encompass
situations in which either the elementary degrees of free-

FIG. 5. Histograms of the density of states ν vs. energy ε
of the eigenstates for a QLRN with N = 12 and p = 1 (panel
a), p = 0.75 (panel b), and p = 0.15 (panel c).

dom are not spin 1/2 or the number of spins flipped lo-
cally is larger than one, as in Ref. 36 and 50, maintaining
locality and constrained dynamics.

For concreteness, let us consider the set of sequences
{σi}, where i = 1, . . . , N and σi = {0, . . . , q}, (q is a
positive integer). Two nodes {σi} and {σ′i} are connected
with probability 0 ≤ p ≤ 1 if: i) - the string {σi−σ′i} has
nonzero entries only locally, i.e. in a compact interval of
finite size L0 ≤ N and ii) - the distance

∑
i |σi−σ′i| ≤ S0.

The random local Hamiltonian associated to this network
is then its adjacency matrix and the resulting ensemble of
Hamiltonians will be denoted as Hp(L0, S0). Note that if
S0 ≥ 2 in general the Hamiltonian does not anticommute
with the total parity. It is evident that if q = 1, L0 = 1
and S0 = 1 we have the special case discussed in the
main text and that the PXP Hamiltonian is just one of
the realizations in Hp(1, 1). Networks with larger local
Hilbert space q, S0 > 1 and more complex spin flips L0 >
1 are naturally related for example to spin-1 models [36]
or fermionic models [50], whose analysis is left for future
work.

Spectra of QLRN

Let us now consider the spectra of QLRN as a func-
tion of p as shown in Fig. (5) for N = 12. When p = 1
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FIG. 6. (a) Histogram representation of the spectrum of the giant connected component for a QLRN with N = 12 and p = 0.25.
The peak at ε = 0 is still visible and is associated to wavefunctions mainly localized on the periphery of the network as shown
in panel (b).

all states that can be connected by a single spin flip are
connected and the Hamiltonian is H =

∑
i σ

x
i : the re-

sulting spectrum is therefore trivial, highly degenerate
with eigenvalues εi = N − 2i, with i = 0, . . . , N , and de-
generacy Di =

(
N
i

)
(see Fig. (5-a)). Introducing a slight

stochasticity in the selection of edges splits the degenera-
cies leading to a characteristic spectrum similar to that
shown in Fig. (5-b) for p = 0.75. A further reduction of
p leads to a fragmentation of the Hilbert space: in the
network representation one observes a giant connected
component and a few disconnected nodes associated to a
peak at ε = 0 as well as, for sufficiently small p (Fig. (5-c)
for p = 0.15), pairs of nodes connected by an edge (peaks
at ±1 in Fig. (5-c) in the histogram of the eigenvalues).

Localization is expected to occur when p is sufficiently
small. Of course there is a trivial localization related
to wave functions completely localized in small discon-
nected components which will contribute to the peaks at
ε = 0 and ε = ±1 in Fig. (5-c). A much more interest-
ing type of localization is however happening in the giant
connected component of the network that contains most
of the nodes: as shown in Fig. (6) the peak at ε = 0 per-
sists also in this case. A visualization of the weights of
the corresponding wave functions in the network, shows
that these localized states are associated to wave func-
tions with large amplitudes on nodes at the boundaries
of the network. Qualitatively similar results are obtained
for different N .

Participation ratio and system size

In Fig. (7) we plot the participation ratio of the eigen-
states for different values of the system size N . We note
that, as N is increased, the majority of the eigenstates
get closer to a smooth dependence of P on the energy
ε (the thermal cloud). Statistical scars, instead, remain

FIG. 7. Participation ratio Pn of the eigenstates for p = 0.2
and different system sizes N .

well isolated, with strongly non-thermal values.

Participation ratio in the PXP model

We now compute the participation ratio of the exact
scars reported in Ref. [29] and compare it with the value
of thermal eigenstates.

For an unnormalized state |ψ〉 the participation ratio
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can be computed as

P|ψ〉 =
I4(|ψ〉)

[I2(|ψ〉)]2 , (4)

where we defined

Iq(|ψ〉) =
∑
{σ}

| 〈{σ}|ψ〉 |q. (5)

Using the same notation as in Ref. [29] to label the scars,
we find

Iq(|Φ1〉) = Iq(|Φ2〉) = (2q/2 + 1)Lb + (2q/2 − 1)Lb

+ (2q − 1)[1 + (−1)Lb ], (6)

Iq(|Γαβ〉) = (2q/2 + 1)Lb − 2 + [1− (−1)α+β+Lb ]q, (7)

for Lb = L/2 and L (even) is the system size. We obtain
that, in the limit of large L, the participation ratio decays
as Pscars ∝ (

√
5/3)L ∼ (0.745)L for all the exact scars,

while it decays as Prandom ∝ D−1L ∼ φ−L ∼ (0.618)L

for a random state in a Hilbert space of the same di-
mension DL. This proves that the participation ratio of
scars decays much slower than the one of random states.
Moreover, as shown in Fig. 8, the participation ratio of
the exact scars in the PXP model is significantly larger
than the typical value of thermal eigenstates.

FIG. 8. Participation ratio of the eigenstates in the PXP
model with L sites and open boundary conditions. Red cir-
cles indicate the exact scars |Γ12〉, |Γ21〉 with energies ±

√
2.

The dashed red line indicates the participation ratio of a com-
pletely random state in a Hilbert space with same dimension.

Centrality and degree of statistical scars

The characterization of the localization of stochastic
and statistical scars done in the main text with the par-
ticipation ratio Pn and the betweenness Bn can be done
using other figures of merit such as the degree and the
centrality of the eigenstates, defined as

〈k〉n =
∑
i

| cn({σ}) |2 k({σ}), (8)

〈C〉n =
∑
i

| cn({σ}) |2 C({σ}). (9)

As shown in Fig. (9), statistical scars are characterized
by anomalously small values of both quantities.

FIG. 9. Degree 〈k〉n and centrality 〈C〉n of the eigenstates as
a function of their energy εn. Different colors refer to different
realizations of the network. Statistical scars are chacterized
by small values of both 〈k〉n and 〈C〉n.

Eigenstate phase transitions

In the main text, we discussed for the presence of an
eigenstate phase transition based on the degeneracy of
statistical scars at ε? = 1. It is possible to extend this
picture to all network-predicted values of quantized en-
ergies.

In Fig. 10, we show the degeneracy scaling (Nscars,
marked by squares) versus system size for three addi-
tional values of ε?. For small p we consistently observe
that degeneracy is increasing with system size. To better
analyze the critical value of p for the different energies,
we count the occurrences of the motifs associated with
statistical scars (Nmotifs, marked by circles in Fig. 10):
the number of these motifs represents a lower bound on
the number of scars; we expect that, close to the transi-
tion, the number of scars coincides with the number of
motifs in the thermodynamic limit. We observe that –
with the exception of the case ε∗ =

√
3 – the number of

occurrences of the motifs is in good agreement with the
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FIG. 10. Degeneracy of statistical scars (squares) and occur-
rences of motifs Nmotifs (circles) vs. system size N for differ-
ent p for 100 realizations of the QLRN. The motifs that are
counted for each eigenvalue ε∗ are shown in the right panel.
The ”root node” (marked by a yellow square) is the only one
in the motif that is connected with the rest of the network.

total degeneracy of the scars, confirming our expectation
that statistical scars are associated with the presence of
these motifs.

From this observation, we can give an analytical esti-

mate of the transition by counting the expected number
of occurrences of a certain motif. Let us first consider
the single motif associated with ε∗ = 1 in Fig. 3-(a): the
expected number of occurrences has the form

Nth(ε∗ = 1) = 2N (1−p)4N−6p4N(N − 1)

2
(N−1)2 (10)

where the the factor 2N counts the possible choices of
the “root” node C, the factor p4 comes from the 4 edges,
the factor (1−p)4N−6 is the probability that every other
edge that can come out of the nodes A,B,D,E is ab-
sent, and the last terms are combinatorial factors that
count the possible choices of the nodes B,D, and A,E.
As shown in Fig. 4, The scaling of Eq. (10) is in perfect
agreement with the numerics. From Eq. (10) we find
that the transition occurs at pc = 1 − 2−1/4 ' 0.1591.
To generalize this argument to the other values of ε∗, we
note that the number of occurrences is in general propor-
tional to Nth ∝ 2N (1− p)mNNm where m is the number
of nodes (excluding the root node, marked by a yellow
square in the right panels of Fig. 10) in the motifs and
terms subleading in N are neglected. We hence obtain
the transition probability pc = 1 − 2−1/m. As can be
seen in Fig. 10, the number of occurrences of the motifs
increases also for values of p > pc for the accessible sys-
tem sizes. This happens because, for values of p not too
far from pc, the scaling of Nth may be dominated by the
power-law term at these system sizes. In fact, for p > pc,
Nth has a maximum at system size

Nmax = −
[
log

(
1− p
1− pc

)]−1
. (11)

Since our largest system size is N = 24, we expect to
observe a decaying trend only for p > 1− (1− pc)−1/24,
i.e., p > 0.193 for ε∗ = 1, p > 0.145 for ε∗ =

√
2, p >

0.120 for ε∗ =
√

3 and ε∗ = (
√

5 ± 1)/2. For all these
values, we observe perfect agreement with our numerical
data in Fig. 10.
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