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Collective motion over increasing length scales is a signature of the vitrification process of liquids.
We demonstrate how distinct static and dynamic length scales govern the dynamics of vitrifying
films. In contrast to a monotonically growing static correlation length, the dynamic correlation
length that measures the extent of surface-dynamics acceleration into the bulk, displays a striking
non-monotonic temperature evolution that is robust also against changes in detailed interatomic
interaction. This non-monotonic change defines a cross-over temperature T∗ that is distinct from
the critical temperature Tc of mode-coupling theory (MCT). We connect this non-monotonic change
to a cross-over from mean-field like liquid dynamics to glass-like dynamics that is signalled by a
morphological change of cooperative rearrangement regions (CRR) of fast particles, and as the point
where fast-particle motion decouples from structural relaxation. We propose a rigorous definition of
this new cross-over temperature T∗ within a recent extension of MCT, the stochastic β-relaxation
theory (SBR).

Dynamical processes in a liquid close to the glass tran-
sition become cooperative across spatial regions of in-
creasing extent [1], and it is thus natural to seek an in-
trinsic correlation length whose divergence would signal
the transition. But the hallmark of the glass transition is
a dramatic change in the dynamics that is caused by only
weak changes in the statics. Consistently, attempts at
defining static correlation lengths have found only weak
changes in these quantities close to the (computation-
ally or experimentally accesible part) of the transition
[1–4]. Only recently it has become clear that in cer-
tain perturbed systems, dynamic correlation lengths can
be defined that display a much more interesting, non-
monotonic behavior [5–7] with a peak at some cross-over
temperature. Such non-monotonic variations near the
glass transition have since emerged as a signature of var-
ious non-equilibrium glass-forming systems [8, 9].

The prevailing methodology to detect spatial corre-
lations in glassy systems is suggested by the random
first-order theory (RFOT) [10–12]: pinning a subset of
particles in the equilibrium fluid, one examines how the
configuration of the rest of particles is influenced [13–
16]. While this point-to-set (PTS) protocol is designed
to keep the static properties of the system in equilibrium,
it represents a strong perturbation of the dynamics [17]:
The freezing of some particles can be viewed as imposing
a zero-temperature region and hence a strong tempera-
ture gradient, yet the associated linear-response regime
shrinks to zero at the glass transition [18]. We propose
the study of glassy films as a new method to detect such
dynamic correlation lengths by measuring how far the
statics and dynamics into the bulk liquid affected by the
accelerated mobility on the surface.
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We show here that the dynamics in equilibrated films
is similarly governed by a non-monotonically dynamical
correlation length. This opens an interesting link be-
tween the study of such films and our fundamental un-
derstanding of the glass transition in the bulk, in analogy
to the situation that the diverging width of a gas–liquid
interface at its critical point is governed by the same di-
verging correlation length in the bulk [19]. Furthermore
the free-surface dynamics is an important factor in the
preparation of glassy films [20–22], and more specifically
ultra-stable glasses [23–27] and nanostructured materials
[28] that are produced by depositing atoms layer-by-layer
on an amorphous substrate.

We demonstrate that a specific cross-over temperature
T∗ governs both the point of maximal dynamical correla-
tions in the film geometry, and the point where coopera-
tive rearrangement regions (CRR) of fast particles in the
bulk undergo a shape transition. This cross-over point T∗
is significantly above the critical temperature Tc of the
mode-coupling theory (MCT). We rationalize this new
cross-over point in the context of a recent extension of
MCT, the stochastic β-relaxation theory (SBR), as the
point where the effect of long-range fluctuations in the
dynamical order parameter of the theory is most pro-
nounced in decoupling fast-particle dynamics from bulk
relaxation.

We study two exemplary glass formers by molec-
ular dynamics (MD) simulations: the Kob-Andersen
Lennard-Jones binary mixture (LJBM) [29] showing
weak surface layering, and a model of the molten CuZr
alloy with embedded-atom method (EAM) many-body
interactions [30] showing strong layering. Simulations
(using the LAMMPS package [31]) start in the bulk liquid
at high temperature (T = 0.6 for LJBM; T = 2000 K for
CuZr) and zero pressure. A liquid-vacuum interface was
created by an instantaneous increase of the box length
along the z-axis [see the illustration in Fig. 1(a)]. Af-
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ter re-equilibration, the membranes were cooled down to
subsequently lower target temperatures in the canonical
ensemble (NVT); data was collected in the microcanoni-
cal ensemble (NVE) over 16 realizations per state point.
To check that finite-size effects are irrelevant, we com-
pare simulations of two system sizes: small systems (S)
with Lx = Ly ≈ 13σ, Lz ≈ 31σ and at least N = 5000
particles; and large systems (L) with Lz ≈ 40σ and at
least N = 7000 particles (where σ is a typical atomic
size, σ ≈ 2.7 �A for CuZr; precise information is given
as Supplemental Information [32]). Our simulations are
in equilibrium in the sense that all particles are at the
same temperature, and no external field is required to
maintain the state, once prepared, in the microcanonical
ensemble.

The spatially resolved dynamics can be assessed
through the overlap correlation function suggested by
the PTS method [11]: the simulation box is discretized
into small cubic units of size δ (about 0.52σ ≈ 1.4 �A
for CuZr and 0.6σ for the LJBM), and the over-
lap of configurations a time t apart is calculated as:

qc(z, t) = 〈
∑
i ni(t)ni(0)δ (zi − z)〉

/
〈
∑
i ni(0)δ (zi − z)〉,

where ni = 1 if box i at distance zi from the surface
is occupied by an atom and ni = 0 otherwise, and 〈·〉
denotes an average over the simulation ensemble.

The functions qc(z, t) follow a standard two-step re-
laxation pattern of dynamical correlation functions near
the glass transition [Fig. 1(c)]: a short-time relaxation
to an intermediate-time plateau is followed by stretched-
exponential structural relaxation from the plateau. At
long times, qc(z, t) decays to a non-zero z-dependent con-
stant qc(z,∞) that represents frozen-in density fluctua-
tions: the introduction of a free surface induces a static
density profile ρ(z) [Fig. 1(b)], and we find qc(z,∞) ∝
ρ(z) [Fig. 1(d)]. This is the expected behavior for a sta-
tionary ergodic system, and it marks an important dif-
ference of our system to previous PTS analyses where a
non-trivial long-time limit of qc(z, t) signalled a frozen-in
nonergodic component of the dynamics. The static over-
lap evolves smoothly with decreasing temperature, and
it decays exponentially towards the bulk density; thus, a
static correlation length ξstat can be extracted from fits
of the form qc(z,∞) ∝ ρ(z) = A(z) exp(−z/ξstat)+ρ(∞),
where ρ(∞) is the density of the bulk liquid. We use the
function A(z) = A0 sin(2π(z−z0)/dp) to capture the pro-
nounced surface-induced layering effects seen for CuZr.
They are in agreement with experiments on metallic [33]
and nonmetallic liquids [34, 35], and grand-canonical MD
simulations of liquid films [36]. The LJBM does not show
pronounced layering [37], so that there A(z) = A0 is used.
In both cases, the static length scale ξstat increases mono-
tonically and mildly across the temperature range that
we investigate (open symbols in Fig. 2). This monotonic
increase with decreasing temperature is consistent with
the prediction of RFOT and with other computer simu-
lation results [1, 3, 13].

To obtain the dynamical correlation length, we
parametrize the long-time decay of the overlap correla-

tion function by stretched-exponential functions,

qc(z, t) = q0(z) exp[−(t/τov(z))β(z)] + qc(z,∞) , (1)

where τov(z) is a z-dependent relaxation time. Simi-
lar fits have been performed for the collective and self-
intermediate scattering function (SISF), and we only dis-
cuss the features that are robustly displayed by all relax-
ation times, taking that of the SISF as a proxy τ(z); see
Fig. 1(d) and Supplemental Material [32].

In the relative enhancement of the mobility µ(z) =
1/τ(z), given by τ(∞)/τ(z) − 1, there emerge two spa-
tial regimes at low temperature [Fig. 1(e,f)]: close to the
surface (z . 2σ), an initial exponential decay is identi-
fied, whose typical length scale depends only weakly on
temperature. This regime corresponds to distances where
the static density profile has not yet saturated to its bulk
value. An intermediate z-range with a much slower de-
cay opens at lower temperatures (T . 1000 K for CuZr,
T . 0.45 for LJ). This intermediate regime expands as T
is lowered. Here, ρ(z) ≈ ρ(∞), and thus this is the regime
where an intrinsic dynamical correlation length ξdyn can
be extracted from the exponential decay of µ(z), viz.

µ(z) = C exp[−z/ξdyn] + µ(∞) . (2)

One already anticipates from Fig. 1(e–f) that this dy-
namical correlation length shows a non-monotonic tem-
perature dependence: curves for intermediate tempera-
ture (around T = 810 K in the CuZr liquid, and around
T = 0.4 in the LJ binary mixture) extend further into
the bulk than those both at higher and at lower temper-
atures.

The resulting dynamical correlation lengths ξdyn dis-
play clear maxima at a temperature T∗ (Fig. 2). Both
above and below T∗, the dynamic and static (symbols
with dashed lines in Fig. 2) correlation lengths become
similar. In particular, below T∗, ξdyn decreases towards
the smaller static one, ξstat, again. This is not a finite-
size effect: only around the maximum in ξdyn, some slight
effects of system size (in line with those expected from
conventional four-point correlations in supercooled liq-
uids [38–40]) are seen that disappear both at higher and
at lower temperatures, and thus give additional evidence
that the dynamical correlation length peaks at T∗. In
both the CuZr and the LJBM system, we note that the
peak observed in ξdyn over ξstat is at least a factor of
2. It is hence a robust phenomenon across systems with
different microscopic interactions and surface features.

We now demonstrate the intimate link of the maximum
in the dynamic correlation length near the surface with a
cross-over point that governs the bulk dynamics. Such a
link is remarkable, because the point of maximal correla-
tion length, T∗, is clearly above the Tc of MCT, to which
candidates of structural changes impacting the relevant
dynamical regime have so far been linked. One example
is a change in morphology of the CRR as suggested by
RFOT [41].

We identify CRR as nearest-neighbor clusters of fast
particles in simulations of the bulk systems. Following
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FIG. 1. Characterization of dynamic properties near the surface. (a) Illustrative snapshot of the simulation setup (CuZr system,
colors indicating atomic species). (b) Static density profiles ρ(z) as a function of distance z from the surface along the normal
into the bulk, for the CuZr liquid and the Lennard-Jones binary mixture (LJBM) (in units of the average atomic radius σ,
shifted vertically in steps of 0.4/σ3 for clarity). Solid lines are fits to extract the static correlation length. (c) Representative
decay of the overlap correlation function qc(z, t) with the distance z to the surface (CuZr; T = 810 K). Dashed lines in the
inset illustrate stretched-exponential fits of the structural decay, Eq. (1). (d) Static and dynamic parameters characterizing
the overlap correlation function (CuZr; T = 850 K). The normalized static overlap qc(z,∞)/qc(∞,∞) (crosses) follows the
normalized density profile ρ(z)/ρ(∞) (line). The normalized change in the relaxation time τov(z)/τov(0) (squares) is shown in
comparison to the corresponding quantity obtained from the z-resolved SISF (circles). (e) and (f): Position-dependent relative
mobility enhancement τ(∞)/τ(z)− 1 (from the layer-resolved SISF) for CuZr and the LJBM.

[42, 43], fast particles are defined as those that during the
time interval corresponding to the average structural re-
laxation time, have moved significantly farther than what
is expected from the average mean-squared displacement.
Clusters are defined by fast particles closer than the first
minimum position in the pair distribution function. To
quantify the shape and in particular the anisotropy of
these clusters, we consider the ratio of their correlation
length to the expected spherical size: In analogy to perco-
lation theory [44], the average cluster correlation length

is given by

ξ2cl =
∑

s
R2
g,ss

2P (s)/
∑

s
s2P (s) , (3)

where the sums run over the individual clusters of size s,
P (s) is the probability of finding a cluster of size s, and
Rg,s is the radius of gyration of the cluster of size s, de-

fined by R2
g,s = 1

2s2

〈∑
ij∈s(~ri − ~rj)2

〉
s
, where the sum

runs over all particles i, j that are part of the cluster, and
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FIG. 2. Temperature dependent statical ξstat(T ) and dynam-
ical correlation lengths ξdyn(T ) near a free surface for the
CuZr (top panel) and the LJBM liquids (bottom panel). The
static correlation length ξstat is extracted from the exponen-
tial decay of ρ(z). Values from the self- (ξsdyn) and collective-
(ξcdyn) intermediate scattering functions are shown in systems
of two different sizes (S: small systems; L: large systems).
The evolution is non-monotonic around a peak temperature
T∗ indicated by the dashed vertical lines.

〈· · · 〉s denotes the average over all clusters of size s. The
expected linear dimension of a spherical cluster of size Rs
in turn is defined by 〈s〉 = (4π/3)ρnR

3
s, where ρn is the

number density, and 〈s〉 =
∑
s≥2 s

2P (s)/
∑
s≥2 sP (s) is

the average cluster size. The ratio, ξcl/Rs, can then be
used as a simple proxy to measure the anisotropy of the
fast-particle regions.

The aspect ratio of clusters, ξcl/Rs, exhibits a strik-
ing non-monotonic behaviour with temperature change
[Fig. 3(a)], with a maximum at the same temperature
T∗ > Tc where also the dynamical correlations near a
free surface show a maximum. Thus we argue that ξdyn
is intimately related to the shape transition of CRR in
the bulk.

Typical shapes found for the fast-particle clusters in
the bulk are also shown to demonstrate the shape tran-
sition [Fig. 3(b–d)]: at high temperatures, clusters are
small and of a random-walk like fractal structure. As
the temperature is lowered, the clusters increase in size,
and at temperatures below T∗, they are relatively com-
pact objects. Around T = T∗, the anisotropy is largest:
as the clusters grow in average size upon lowering the
temperature, this growth first occurs through a string-
like extension of the clusters; only below T∗, a more
isotropic growth of the clusters is seen. While the string-
like motion of atoms is well known in supercooled liquids
[42, 43, 45, 46], this is the first report for the shape of
CRR transiting back to the compact geometry at low
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FIG. 3. Characterization of the CRR shape in the bulk liq-
uids. (a), Aspect ratio of fast-particle clusters in the bulk sim-
ulations, ξcl/Rs. The positions of the labels, (b), (c), and (d),
correspond to the temperature points at which fast-particle
clusters are exemplified in panel (b), (c), and (d), respectively.
Particles in blue correspond to the core of the cluster, defined
as having more than two fast nearest neighbours, whereas
particles shown in red are those having only one or two fast
particles as their nearest neighbors.

temperatures in atomic glass formers.
The emergence of large CRR signals heterogeneities

in the dynamics that inter alia lead to a breakdown of
the Stokes–Einstein (SE) relation [39, 47–49]: the fast-
particle dominated diffusivity decouples from the bulk
relaxation that is governed by the slow particles [50, 51].
While far above Tc a SE relation for the diffusion coeffi-
cient of a tracer particle, D/T ∼ η−1 holds well, far be-
low Tc a fractional SE relation emerges, D/T ∼ η−x with
some exponent x < 1 (Fig. 4). The maximum anisotropy
of CRR at T∗ suggests that there, the coupling of fast-
particle motion to the bulk dynamics changes, and that
this can be connected to the breakdown of the SE relation
[3].

Crucially, this allows to provide a clear first-principles
definition of T∗. We do so by recalling a recent ex-
tension of the asymptotic laws of MCT, the stochastic
β-relaxation theory (SBR) [52–54]. It rationalizes the
crossover from regular to fractional SE relations as aris-
ing from long-wave length fluctuations in the local dy-
namical order parameter [55]: above Tc the average dy-
namics is mean-field liquid-like, and the SE relation re-
sults from the realization 〈1/µ〉 ∼ 1/〈µ〉. Below Tc, the
relaxation dynamics is dominated by rare fluctuations of
liquid regions inside a glass-like matrix, and the tail of
the order-parameter distribution gives rise to a fractional
SE relation, since 〈1/µ〉 6∼ 1/〈µ〉. SBR describes our data
well (solid line in Fig. 4).

Within SBR, we can rigorously identify the point of
maximal dynamical correlation, T∗, as the point where
the decoupling of fast-particle dominated motion (diffu-
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FIG. 4. Stokes–Einstein plot of diffusivity D versus viscos-
ity η (in LJBM units) for the bulk liquids, compared with
the theoretical prediction from stochastic β-relaxation the-
ory (SBR) (solid line, using the MCT exponent parameter
λ = 0.75). To make data collapse in different systems, D/T
and η are scaled to D∗/T ∗ and η∗ in CuZr. Dotted lines are
the SBR asymptotes for high and low temperatures, i.e., a
regular Stokes–Einstein law, D∗/T ∗ ∼ η∗−1, and a fractional
law D∗/T ∗ ∼ η∗−0.558. Red circles mark the MCT-Tc, and T∗
predicted from SBR; arrows indicate the approximate max-
imum positions T∗ inferred from ξdyn for the two simulated
systems. We determine T∗ within SBR from the point of max-
imum slope in the SE crossover curve d log(D∗/T ∗)/d log η∗

as shown in the inset.

sivity) from the bulk relaxation is most sensitive to fluc-
tuations in the local glassiness of the dynamics. As SBR
predicts the logarithmic derivative of D/T as a function
of η to cross over from −1 in the ordinary SE regime
to −x in the glass, we identify the temperature where
this crossover is most rapid as T∗ (inset of Fig. 4). At
this point, the competition of dynamic fluctuation be-
tween the liquid-like regions and the glass-like ones is
the strongest. This prediction agrees well with the points
where the maximum dynamic correlation and the largest

anisotropiy of the CRR locate (see the marked T∗ point
and arrows in Fig. 4).

In conclusion, we propose supercooled states with a
free surface as a convenient model to interrogate spatial
correlations in fully equilibrated systems. They show a
clear separation of the static and the dynamic correla-
tion lengths. While non-monotonic behavior of a dy-
namical correlation length was first reported in strongly
perturbed systems [5–7], we strikingly find the non-
monotonicity also emerges in the vapour-liquid interface,
a natural system in equilibrium, for the glass formers
of pair-wise or many-body interatomic interaction. The
dynamical correlation length displays a clear maximum
at a temperature T∗ that is associated to the cross-over
from liquid-like dynamics to the spatially heterogeneous
glass-like dynamics.

We demonstrate that the non-monotonic change in dy-
namical correlation as measured near the surface is linked
to a non-monotonic evolution of the aspect ratio of fast-
particle clusters in the bulk, concomittantly signalled by
the breakdown of the Stokes-Einstein relation. Thus
the point of maximum dynamical correlations T∗ can be
identified as the point where the balance of liquid- and
glass-like fluctuations in the system is most sensitive to a
change in control parameter. In particular the stochastic
β-relaxation theory allows to identify T∗ in this way as
a temperature that is strongly relevant for the dynamics
in glass formers – both in bulk and for the formation of
glassy films – and that is genuinely distinct from the Tc
of MCT.
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