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Abstract

We find stationary thin-brane geometries that are dual to far-from-
equilibrium steady states of two-dimensional holographic interfaces.
The flow of heat at the boundary agrees with the result of CFT and
the known energy-transport coefficients of the thin-brane model. We
argue that by entangling outgoing excitations the interface produces
coarse-grained entropy at a maximal rate, and point out similarities
and differences with double-sided black funnels. The non-compact,
non-Killing and far-from-equilibrium event horizon of our solutions
coincides with the local (apparent) horizon on the colder side, but lies
behind it on the hotter side of the interface. We also show that the
thermal conductivity of a pair of interfaces jumps at the Hawking-
Page phase transition from a regime described by classical scatterers
to a quantum regime in which heat flows unobstructed.
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1 Introduction
AdS/CFT or holographic duality [1–3] reduces the study of certain strongly-
coupled quantum systems to (semi)classical equations in gravity. The duality
has been mainly tested and exploited at, or near thermal equilibrium, where
a hydrodynamic description applies. For far-from-equilibrium processes our
understanding is poorer.1 Indeed, although semiclassical gravity seems more
tractable, highly-distorted horizons raise a host of unsolved technical and
conceptual issues. To make progress, simple analytic models can be valuable.
We will study one such model here.

1See [4] for a recent review and references.
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A simple class of real-time processes are the non-equilibrium steady states
(NESS) characterised only by persistent currents. These are particularly
simple in critical (1+1) dimensional ballistic systems thanks to the power
of conformal symmetry, see [5] for a review. On the gravity side the basic
equilibrium states are the Banados-Teitelboim-Zanelli (BTZ) black strings [6,
7]. We deform the system by introducing a thin, but strongly back-reacting,
domain wall anchored at a conformal defect or interface on the boundary.2
Our goal is to compute its stationary states.

Some properties of this thin-brane holographic model which will be useful
later have been derived recently in refs. [10–12]. We rederive in particular
the energy-transmission coefficients obtained from a scattering calculation
in [10]. We also revisit the Hawking-Page, or deconfinement transition for
a theory contained between a pair of interfaces [11, 12], and show that at
the critical temperature the thermal conductivity undergoes a classical-to-
quantum phase transition.

One phenomenon not discussed in these earlier works is the production
of entropy. This is due to scattering at the interface, which entangles the
outgoing excitations thereby mixing the reflected and transmitted fluids. A
counter-intuitive feature of the thin-brane model is that the interfaces are
perfect scramblers – the quantum fluids exit, as we will argue, thermalised.3
Whether this feature survives in top-down solutions with microscopic CFT
duals is a question left for future work.

This scrambling behaviour is reminiscent of flowing black funnels [14–18],
where a non-dynamical black hole acts as a source or sink of heat in the
CFT. There are however important differences between the two setups. The
non-back-reacting 1+1 dimensional black hole is a spacetime boundary that
can absorb or emit arbitrary amounts of energy and entropy. Conformal
interfaces, on the other hand, conserve energy and have a finite-dimensional
Hilbert space. So even though one could mimic their energy and entropy flows
by a two-sided boundary black hole whose (disconnected) horizon consists
of two points with appropriately tuned temperatures, the rational, if any,
behind such tuning is unclear.

The non-Killing event horizon of our solution is distorted far beyond the
hydrodynamic regime.4 It lies behind the apparent horizon which is the union
of the BTZ horizons on the two sides of the brane. At the point where the

2The wall is a Randall-Sundrum-Karch brane [8,9], but crucially it is not an End-of-the
World brane: Since we are interested in heat flowing across the interface, there should be
degrees of freedom on both sides of it.

3A similar phenomenon is the instant thermalisation of a holographic CFT forced out
of its vacuum, as discussed in [13]. We thank E. Kiritsis for pointing this out.

4For a review of the fluid/gravity correspondence see for instance [19].
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brane enters the event horizon this latter has discontinuous generators. Note
that the event horizon is non-compact, thus evading theorems that exclude
stationary non-Killing black holes [20–22]. The apparent horizon is also not
compact, both far from the brane and at the brane-entry point. This prevents
a clash with theorems [23] which show that event horizons always lie outside
apparent (trapped-surface) ones.

The plan of the paper is as follows: In section 2 we review some well-
known facts about the BTZ black string and its holographic interpretation
(savvy readers can skim rapidly through this section). The black string is a
rotating black hole with unwrapped angle variable and spin J equal to twice
the flow of heat in the dual CFT. For non-zero J there is an ergoregion that
plays a crucial role in our analysis.

In section 3 we explain, following ref. [24], why the flow of heat across a 2d
conformal interface is proportional to the energy-transmission coefficient(s)
of the interface. These transport coefficients are universal, independent of the
nature of incident excitations [25]. By contrast, the coarse-grained entropy
of the outgoing fluids depends a priori on details of the interface scattering
matrix. If however the fluids are thermalised, as in our holographic model,
their energy determines their (microcanonical) entropy.

Sections 4 to 7 contain the main results of our paper. In section 4 and in
appendix A we solve the equations for a thin stationary brane between two
arbitrary BTZ backgrounds. This generalizes the results of refs. [11, 12] to
non-vanishing BTZ spin J . In section 5 we show that the brane penetrates
the ergoregion if and only if the heat flow on the boundary agrees with
the prediction from CFT and with the transmission coefficients computed
by a scattering calculation in ref. [10]. We also show that once inside the
ergoregion the brane cannot exit towards the AdS boundary, but crosses
both outer BTZ horizons, hitting eventually either a Cauchy horizon or the
singularity in one of the two regions.

Such a brane is dual to an isolated interface, and its non-Killing horizon
is computed in section 6. We show that it coincides with the (local) BTZ
horizon on the colder side of the interface, and lies behind but approaches it
asymptotically on the hotter side. This is the evidence for perfect scrambling
mentioned above. In section 7 we consider the system of an interface pair
which is known to have an equilibrium Hawking-Page transition [11, 12].
We show that thermal conductivity jumps discontinuously at the transition
point, from a classical regime of stochastic scattering to a deeply quantum
regime in which heat flows unobstructed.

Section 8 contains closing remarks. In order to not interrupt the flow of
the paper we have relegated the proof of some inequalities in appendix B,
and background material on flowing black funnels in appendix C .
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2 The boosted AdS3 black string
The boosted black-string metric of three-dimensional gravity with negative
cosmological constant reads

ds2 = `2dr2

(r2 −M`2 + J2`2/4r2) − (r2 −M`2)dt2 + r2dx2 − J` dxdt , (2.1)

where x ∈ R is non-compact. If x were an angle variable, (2.1) would be the
metric of the rotating BTZ black hole [6,7] with M and J its mass and spin 5

and ` the radius of AdS3.
The metric (2.1) has an outer and an inner horizon located at

r2
± = 1

2M`2 ± 1
2
√
M2`4 − J2`2 . (2.2)

To avoid a naked singularity at r = 0, one must require that r+ be real which
implies M` ≥ |J |. In terms of r± the metric reads

ds2 = `2dr2

h(r) − h(r) dt2 + (r dx− J`

2r dt)
2 ,

with h(r) = 1
r2 (r2 − r2

+)(r2 − r2
−) and |J | = 2r+r−

`
.

(2.3)

Besides r±, another special radius is rergo =
√
M ` ≥ r+. It delimits the

ergoregion inside which no observer (powered by any engine) can stay at a
fixed position x.

Many properties of the metric (2.3) are familiar from the Kerr black hole.
See [26] for a nice review. The outer horizon is a Killing horizon, while the
inner one is a Cauchy horizon. Frame dragging forces ingoing matter to cross
the outer horizon at infinity along the string, x ∼ J` t/2r2

+ → ∞. One can
define ingoing Eddington-Finkelstein (EF) coordinates,

dv = dt+ `dr

h(r) and dy = dx+ J`2dr

2r2h(r) , (2.4)

in which the metric

ds2 = −h(r) dv 2 + 2` dv dr + r2
(
dy − J`

2r2 dv
)2

(2.5)

is non-singular at the (future) horizon. Outgoing coordinates can be defined
similarly by changing (x, t)→ (−x,−t) in (2.4).

5Strictly speaking these are defined with respect to the rescaled time t′ = t`. We will
work throughout in units 8πG = 1.
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2.1 Dual CFT2 State
In the context of AdS/CFT, (2.1) describes a non-equilibrium steady state
(NESS) of the CFT. This has been discussed in many places, see e.g. [27–31].
It can be seen explicitly from the general asymptotically-AdS solution of
the vacuum Einstein equations, whose Fefferman-Graham expansion in three
dimensions terminates [32]

ds2 = `2dz2

z2 + 1
z2

(
dx+ + `z2〈T−−〉dx−

)(
dx− + `z2〈T++〉dx+

)
. (2.6)

Here 〈T±±〉 are the expectation values of the left-moving and right-moving
energy densities in the dual CFT2 state. The two metrics, (2.1) and (2.6),
can be related by the change of coordinates

x± = x± t , r2 = 1
z2

(
1 + `z2〈T−−〉

)(
1 + `z2〈T++〉

)
, (2.7)

and the identification
1
2 J = 〈T−−〉 − 〈T++〉 and 1

2 M` = 〈T−−〉+ 〈T++〉 . (2.8)

It follows that the dual state has constant fluxes of energy in both directions,
with a net flow 〈T tx〉 = J/2. To abide with the standard notation for heat
flow we will sometimes write J/2 = dQ/dt.

Generic NESS are characterised by operators other than Tαβ, for instance
by persistent U(1) currents. To describe them one must switch on non-trivial
matter fields, and the above simple analysis must be modified. The vacuum
solutions (2.1) describe, nevertheless, a universal class of NESS that exist in
all holographic conformal theories.

There are many ways of preparing these universal NESS. One can couple
the endpoints x ∼ ±∞ to heat baths so that left- and right-moving exci-
tations thermalise at different temperatures Θ± .6 An alternative protocol
(which avoids the complications of reservoirs and leads) is the partitioning
protocol. Here one prepares two semi-infinite systems at temperatures Θ±,
and joins them at some initial time t = 0. The steady state will then form
inside a linearly-expanding interval in the middle [5]. In both cases, after
transients have died out one expects

〈T±±〉 = πc

12 Θ2
± = π2`Θ2

± =⇒ 〈T tx〉 = πc

12 (Θ2
− −Θ2

+) , (2.9)

6We use Θ for temperature to avoid confusion with the energy-momentum tensor. In
the gravitational dual the heat baths can be replaced by non-dynamical boundary black
holes, see below.
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where c = 12π` is the central charge of the CFT. Equation (2.9) for the
flow of heat is a (generalized) Stefan-Boltzmann law with Stefan-Boltzmann
constant πc/12. Comparing (2.9) to (2.8) relates the temperatures Θ± to
the parameters M and J of the black string.7 To implement the partitioning
protocol on the gravity side it is sufficient to multiply the constant 〈T±±〉 in
eq. (2.6) by step functions θ(±x±).

x

t

0

s = πc
3 Θ− s = πc

3 Θ+

s = πc
6 (Θ− + Θ+)

hot cold

NESS

Figure 1: When two identical semi-infinite quantum wires at temperatures Θ± are joined
at t = 0, a NESS forms inside an interval that expands at constant speed in both directions
[5]. The entropy density s(t, x) is shown in the three regions of the protocol. The energy
density profile is identical, except for the replacement Θ± → 1

2 Θ2
±.

It is interesting to also consider the flow of entropy. This is illustrated
in figure 1 which shows the entropy density s ≡ 〈st〉 in the three spacetime
regions of the partitioning protocol. Inside the NESS region there is constant
flow of entropy from the hotter towards the colder side

〈s±〉 = ±πc6 Θ± . (2.10)

The passage of the right-moving shock wave increases the local entropy at
a rate πc(Θ− − Θ+)/6, while the left-moving wave reduces it at an equal
rate. Total entropy is therefore conserved, not surprisingly since there are
no interactions in this simple conformal 2D fluid.

7This idealized CFT calculation is, of course, only relevant for systems in which the
transport of energy is predominantly ballistic. Eq. (2.9) implies in particular the existence
of a quantum of thermal conductance, see the review [5] and references therein.
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One can compute the entropy on the gravity side with the help of the
Hubeny-Rangamani-Ryu-Takayanagi formula [33,34]. For a boundary region
of size ∆x the entanglement entropy reads [34]

Sq ent = c

6 log
[β+β−
π2ε2

sinh(π∆x
β+

) sinh(π∆x
β−

)
]
, (2.11)

where β± = Θ−1
± and ε is a short-distance cutoff. From this one computes

the coarse-grained entropy density in the steady state

sNESS = lim
∆x→∞

Sq ent

∆x = πc

6 (Θ− + Θ+) = 2π r+ . (2.12)

The last equality, obtained with the help of eqs. (2.9), (2.8) and (2.2), recasts
sNESS as the Bekenstein-Hawking entropy of the boosted black string (recall
that our units are 8πG = ~ = 1). This agreement was one of the earliest
tests [35] of the AdS/CFT correspondence

3 NESS of interfaces
Although formally out-of-equilibrium, the state of the previous section is a
rather trivial example of a NESS. It can be obtained from the thermal state
by a Lorentz boost, and is therefore a Gibbs state with chemical potential
for the (conserved) momentum in the x direction.

More interesting steady states can be found when left- and right-moving
excitations interact, for instance at impurities [24, 36, 37] or when the CFT
lives in a non-trivial background metric [14, 15, 17]. Such interactions lead
to long-range entanglement and decoherence, giving NESS that are not just
thermal states in disguise.8

The case of a conformal defect, in particular, has been analyzed in ref. [24].
As explained in this reference the heat current is still given by eq. (2.9) but
the Stefan-Boltzmann constant is multiplied by T , the energy-transmission
coefficient of the defect. The relevant setup is shown in figure 2. The fluids
entering the NESS region from opposite directions are thermal at different
temperatures Θ1 6= Θ2. The difference, compared to the discussion of the
previous section, is that the two half wires (j = 1, 2) need not be identical,
or (even when they are) their junction is a scattering impurity.

8 Chiral separation also fails when the CFT is deformed by (ir)relevant interactions. The
special case of the T T̄ deformation was studied, using both integrability and holography,
in refs. [38,39]. Interestingly, the persistent energy current takes again the form (2.9) with
a deformation-dependent Stefan-Boltzmann constant.
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3.1 Energy currents
IfRj and Tj are the reflection and transmission coefficients for energy incident
on the interface from the jth side, then the energy currents in the NESS read 9

〈T (1)
−−〉 = πc1

12 Θ2
1 , 〈T (1)

++〉 = R1
πc1

12 Θ2
1 + T2

πc2

12 Θ2
2 ,

〈T (2)
−−〉 = πc2

12 Θ2
2 , 〈T (2)

++〉 = T1
πc1

12 Θ2
1 +R2

πc2

12 Θ2
2 .

(3.1)

We have used here the key fact that the energy-transport coefficients across
a conformal interface in 2d are universal, i.e independent of the nature of
the incident excitations. The proof [25] assumes that the Virasoro symmetry
is not extended by extra spin-2 generators, which is true in our holographic
model. We have also used that the incoming and outgoing excitations do not
interact away from the interface.

Θ1

Θ2

incident
reflected

transmitted

incident
reflected

transmitted

Figure 2: The energy fluxes given in (3.1). The two half wires are coloured red and green,
and space is folded at the interface (black dot). The incoming excitations are thermal while
the state of the outgoing ones, consisting of both reflected and transmitted fluids, depends
on the nature of the junction as discussed in the main text.

Conservation of energy and the detailed-balance condition (which ensures
that when Θ1 = Θ2 the heat flow stops) imply the following relations among
the reflection and transmission coefficients:

Rj + Tj = 1 and c1T1 = c2T2 . (3.2)
9 The currents are given in the folded picture in which the interface is a boundary of

the tensor-product theory CFT1⊗CFFT2, and both incoming waves depend on x−.
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Hence, only one of the four transport coefficients is independent. Without
loss of generality we assume that c2 ≥ c1, i.e. that CFT2 is the theory
with more degrees of freedom. The average-null-energy condition requires
0 ≤ Rj, Tj ≤ 1, so from (3.2) we conclude

0 ≤ T2 ≤
c1

c2
or equivalently 1 ≥ R2 ≥ 1− c1

c2
. (3.3)

As noticed in [25], reflection positivity of the Euclidean theory gives a weaker
bound [40] than this Lorentzian bound. Note also that in the asymmetric
case (c2 strictly bigger than c1) part of the energy incident from side 2 is
necessarily reflected.

Let dQ/dt = 〈T (1) tx〉 = −〈T (2) tx〉 be the heat current across the interface.
From eqs. (3.1) and (3.2) we find

dQ

dt
= π

12c1T1
(
Θ2

1 −Θ2
2

)
. (3.4)

Since in a unitary theory c1T1 is non-negative, heat flows as expected from
the hotter to the colder side. The heat flow only stops for perfectly-reflecting
interfaces (T1 = T2 = 0), or when the two baths are at equal temperatures.
For small temperature difference, the heat conductance reads

dQ

dt
= πΘ

6 cjTj δΘ . (3.5)

The conductance per degree of freedom, πΘ/6, is thus multiplied by the
transmission coefficient of the defect [24]. Note finally that the interface is
subject to a radiation force given by the discontinuity of pressure,

Frad = 〈T (1)xx〉 − 〈T (2)xx〉 = π

6
(
c1R1Θ2

1 − c2R2Θ2
2

)
, (3.6)

where we used eqs. (3.1) and (3.2). The force is proportional to the reflection
coefficients, as expected.

3.2 Entropy production
There is a crucial difference between the NESS of section 2.1, and the NESS
in the presence of the interface. In both cases the incoming fluids are in a
thermal state. But while for a homogeneous wire they exit the system intact,
in the presence of an interface they interact and become entangled. The state
of the outgoing excitations depends therefore on the nature of these interface
interactions.
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Let us consider the coarse-grained entropy density of the outgoing fluids,
defined as the von Neumann entropy density for an interval [x, x+ ∆x]. We
parametrise it by effective temperatures, so that the entropy currents read

〈s(1)
− 〉 = −πc1

6 Θ1 , 〈s(1)
+ 〉 = πc1

6 Θeff
1 ,

〈s(2)
− 〉 = −πc2

6 Θ2 , 〈s(2)
+ 〉 = πc2

6 Θeff
2 .

(3.7)

We stress that (3.7) is just a parametrisation, the outgoing fluids need not
be in a thermal state. In principle Θeff

j may vary as a function of x, but we
expect them to approach constant values in the limit t � |x| � ∆x → ∞.
Figure 3 is a cartoon of the entropy-density profile 〈st〉 in various spacetime
regions of the partitioning protocol. Entanglement at the interface produces
thermodynamic entropy that is carried away by the two shock waves at a
rate

dStot

dt
= πc1

6 (Θeff
1 −Θ1) + πc2

6 (Θeff
2 −Θ2) + dSdef

dt
(3.8)

where Sdef denotes the entropy of the interface. Since this is bounded by the
logarithm of the g-factor, Sdef cannot grow indefinitely and the last term of
(3.8) can be neglected in a steady state. 10

x

t

0

πc1
3 Θ1 πc2

3 Θ2

hot cold

NESS

πc1
6 (Θ1 + Θeff1 ) πc2

6 (Θ2 + Θeff2 )

Figure 3: The entropy densities in the four regions of the partitioning protocol discussed
in the text (space is here unfolded). The entropies of the outgoing fluids, which depend a
priori on details of the scatterer, have been parametrized by two effective temperatures.

10Defects with an infinite-dimensional Hilbert space may evade this argument. But in
the holographic model studied in this paper, log g ∼ O(cj) [11, 41] and the last term in
(3.8) can be again neglected at leading semiclassical order.
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The entanglement between outgoing excitations is encoded in a scattering
matrix, which we may write schematically as

S(ψin
1 , ψ

in
2 , ψ

in
def |ψout

1 , ψout
2 , ψout

def ) . (3.9)

Here ψin/out
j are the incoming and outgoing excitations, and ψin/out

def is the state
of the defect before/after the scattering. Strictly speaking there is no genuine
S-matrix in conformal field theory. What describes the conformal interface
is a formal operator I, obtained by unfolding the associated boundary state
[9, 42]. The above S is an appropriate Wick rotation of I, as explained in
ref. [24]. 11 The density matrix of the outgoing fluids depends a priori on the
entire S-matrix, not just on the transport coefficients Tj and Rj.

The second law of thermodynamics bounds the effective temperatures
from below since the entropy production (3.8) cannot be negative. The Θeff

j

are also bounded from above because the entropy density cannot exceed the
microcanonical one, s = (πc u/3)1/2 with u the energy density of the chiral
fluid. Using (3.1) and the detailed-balance condition this gives

Θeff
1 ≤

√
R1Θ2

1 + T1Θ2
2 and Θeff

2 ≤
√
R2Θ2

2 + T2Θ2
1 . (3.10)

The bounds are saturated by perfectly-reflecting or transmitting interfaces,
i.e. when either Rj = 1 or Tj = 1. This is trivial, because in such cases there
is no entanglement between the outgoing fluids.

Partially reflecting/transmitting interfaces that saturate the bounds (3.10)
act as perfect scramblers. Their existence at weak coupling seems unlikely,
but strongly-coupled holographic interfaces could be of this kind. We will
later argue that the thin-brane holographic interfaces are perfect scramblers.
This is supported by the fact (shown in section 6.2) that far from the brane
the event horizon approaches the equilibrium BTZ horizons, and hence the
outgoing chiral fluids are thermalised.

Any domain-wall solution interpolating between two BTZ geometries,
with no other non-trivial asymptotic backgrounds should be likewise dual
to a NESS of a perfectly - scrambling interface. We suspect that many top
down solutions of this kind exist, but they are hard to find. Indeed, although
many BPS domain walls are known in the supergravity literature, their finite-
temperature counterparts are rare. The one example that we are aware of is
the Janus AdS3 black brane [43]. But even for this computationally-friendly
example the far-from-equilibrium stationary solutions are not known.

11The (closed-string channel) operator I evolves the system across a quench, whereas S
should be defined in real time in the open-string channel. A careful discussion of ‘collider
experiments’ in CFT2 is also given in ref. [25].
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4 Stationary branes
To simplify the problem we will here resort to the more tractable thin-brane
approximation, hoping that it captures some of the essential physics of the
stationary states. This thin-brane holographic model is also the one studied
in the related papers [10–12].

4.1 General setup
Consider two BTZ metrics (2.1) glued along a thin brane whose worldvolume
is parametrised by τ and σ. Its embedding in the two coordinate patches
(j = 1, 2) is given by six functions {rj(τ, σ), tj(τ, σ), xj(τ, σ)}. The most
general stationary ansatz, such that the induced metric is τ -independent, is
of the form

xj(σ), rj(σ), tj = τ + fj(σ) . (4.1)
In principle one can multiply τ on the right-hand side by constants a−1

j .
But the metric (2.1) is invariant under rescaling of the coordinates r → ar,
(t, x) → a−1(t, x), and of the parameters (M,J) → a2(M,J), so we may
absorb the aj into a redefinition of the parameters Mj, Jj. Hence, without
loss of generality, we set aj = 1.

Following ref. [12] we choose the parameter σ to be the redshift factor
squared 12 for a stationary observer

σ = r2
1 −M1`

2
1 = r2

2 −M2`
2
2 . (4.2)

With this choice ĝττ = −σ is the same on the two sides of the domain
wall, and the functions rj(σ) are determined. Of the remaining embedding
functions, the sum f1 +f2 is pure gauge (it can be absorbed by a redefinition
of τ) whereas the time delay across the wall, ∆t(σ) ≡ f2(σ) − f1(σ), is a
physically quantity. This and the two functions xj(σ) should be determined
by solving the three remaining equations: (i) the continuity of the induced-
metric components ĝτσ and ĝσσ, and (ii) one of the (trace-reversed) Israel-
Lanczos conditions 13

[Kαβ] = −λ ĝαβ . (4.3)
Here Kαβ is the extrinsic curvature (with α, β ∈ {τ, σ}), the brackets denote
the discontinuity across the wall, and λ is the brane tension.

12This is a slight misnomer, since σ becomes negative in the ergoregion.
13Two of the three Israel conditions are automatically satisfied, modulo integration

constants, by virtue of the momentum constraints DαKαβ −DβK = 0. Our conventions
are the same as in ref. [12]: Kαβ is the covariant derivative of the inward-pointing unit
normal vector, and the orientation is chosen so that as σ increases one encircles clockwise
the interior in the (xj , r−1

j ) plane, in both charts.
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4.2 Solution of the equations
The general local solution of the matching equations is derived in appendix A.
The solution is given in the ‘folded setup’ where the interface is a conformal
boundary for the product theory CFT1⊗CFT2. Unfolding side j amounts
to sending xj → −xj and Jj → −Jj.

The results of appendix A can be summarised as follows. First, from (4.2)

rj(σ) =
√
σ +Mj` 2

j . (4.4)

Secondly, consistency of the extrinsic-curvature equations imposes

J1 = −J2 . (4.5)

This ensures conservation of energy in the CFT, as seen from the holographic
dictionary (2.8). Thirdly, matching ĝτσ from the two sides determines the
time delay in terms of the embedding functions xj,

∆t′ ≡ f ′2 − f ′1 = J1

2σ (`1x
′
1 + `2x

′
2) , (4.6)

where primes denote derivatives with respect to σ. What remains is thus to
find the functions xj(σ).

To this end we use the continuity of ĝσσ and the ττ component of (4.3). It
is useful and convenient to first solve these two equations for the determinant
of the induced metric, with the result

−det ĝ = λ2σ

Aσ2 + 2Bσ + C
= λ2σ

A(σ − σ+)(σ − σ−) , (4.7)

where

σ± = −B ±
√
B2 − AC
A

(4.8)

and the coefficients A,B,C read

A = (λ2
max − λ2)(λ2 − λ2

min), B = λ2(M1 +M2)− λ2
0(M1 −M2),

C = −(M1 −M2)2 + λ2J2
1 .

(4.9)

The three critical tensions entering in the above coefficients have been defined
previously in refs. [10, 12],

λmin =
∣∣∣∣∣ 1
`1
− 1
`2

∣∣∣∣∣ , λmax = 1
`1

+ 1
`2
, λ0 =

√
λmaxλmin . (4.10)
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Without loss of generality we assume, as earlier, that `1 ≤ `2, so the absolute
value in λmin is superfluous. Note that the expressions (4.7) to (4.9) are the
same as the ones for static branes [12] except for the extra term λ2J2

1 in the
coefficient C.

The determinant of the induced metric can be expressed in terms of xj
and σ in each chart, j = 1 and j = 2. It does not depend on the time-shift
functions fj, which could be absorbed by a reparametrisation of the metric
with unit Jacobian. Having already extracted det ĝ, one can now invert these
relations to find the x′j,

x′1
`1

= −
sgn(σ)

[
(λ2 + λ2

0)σ2 + (M1 −M2)σ
]

2(σ − σH1
+ )(σ − σH1

− )
√
Aσ(σ − σ+)(σ − σ−)

, (4.11)

x′2
`2

= −
sgn(σ)

[
(λ2 − λ2

0)σ2 − (M1 −M2)σ
]

2(σ − σH2
+ )(σ − σH2

− )
√
Aσ(σ − σ+)(σ − σ−)

, (4.12)

where here

σHj
± = −

Mj`
2
j

2 ± 1
2
√
M2

j `
4
j − J2

j `
2
j (4.13)

are the points where the outer and inner horizons of the jth BTZ metric
intersect the domain wall.

Eqs. (4.4) to (4.13) give the general stationary solution of the thin-brane
equations for any Lagrangian parameters `j and λ, and geometric parameters
Mj and J1 = −J2. The Lagrangian parameters are part of the basic data of
the interface CFT, while the geometric parameters determine the CFT state.
When J1 = J2 = 0, all these expressions reduce to the static solutions found
in ref. [12].

5 Inside the ergoregion
The qualitative behaviour of the domain wall is governed by the singularities
of (4.11, 4.12), as one moves from the AdS boundary at σ ∼ ∞ inwards. In
addition to the BTZ horizons at σHj

± , other potential singularities arise at
σ± and at the entrance of the ergoregion σ = 0. From (4.7) we see that the
brane worldvolume would become spacelike beyond σ = 0, if σ± are both
either negative or complex. To avoid such pathological behaviour one of the
following two conditions must be met:
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• σ+ > 0 : The singularity at σ+ is in this case a turning point, and the
wall does not extend to lower values of σ. Indeed, as seen from (4.11)
and (4.12), drj/dxj|σ+ = 0 and the σ+ singularity is integrable, i.e. the
wall turns around at finite xj =

∫
x′j .

• 0 = σ+ > σ− : In this case the worldvolume remains timelike as the
wall enters the ergoregion. The reader can verify from eqs. (4.7), (4.11)
and (4.12) that the embedding near σ = 0 is smooth.

(ii)(i)

σ+ > 0.
σ+ = 0

?

σ

0

cutoff

Figure 4: The two kinds of stationary-wall geometries: (i) The wall avoids the ergoregion,
turns around and intersects the AdS boundary twice; or (ii) it enters the ergoregion and
does not come out again. The broken line is the ergoplane, the two outer BTZ regions
are coloured in green and pink, and the region behind the horizon in grey. The horizon in
case (ii) will be described in detail in the coming section.

These two possibilities are illustrated in figure 4. Branes entering the
ergoregion are dual, as will become clear, to steady states of an isolated
interface, while those that avoid the ergoregion are dual to steady states of
an interface-antiinterface pair. We will return to the second case in section
7, here we focus on the isolated interface.

The condition σ+ = 0 implies C = 0 and B ≥ 0. Using eqs. (4.8) and
(4.9), and the fact that the coefficient A is positive for tensions in the allowed
range (λmin < λ < λmax) we obtain

M1 −M2 = ±λJ1 = ∓λJ2 and λ2(M1 +M2) ≥ λ 2
0 (M1 −M2) . (5.1)

Furthermore, cosmic censorship requires that `jMj > |Jj| unless the bulk
singularity at rj = 0 is excised (this is the case in the pink region of the
left figure 4). If none of the singularities is excised, the inequality in (5.1) is
automatically satisfied and hence redundant.

With the help of the holographic dictionary (2.8) one can translate the
expression (5.1) for M1 −M2 to the language of ICFT. Since the incoming
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fluxes are thermal, T (j)
−− = π2`jΘ2

j and (2.8) gives

Mj = 4π2Θ2
j −

Jj
`j

=⇒ M1 −M2 = 4π2(Θ2
1 −Θ2

2)− J1( 1
`1

+ 1
`2

) . (5.2)

Combining with eq. (5.1) gives the heat-flow rate

J1 = 2〈T (1) tx〉 = 4π2
[ 1
`1

+ 1
`2
± λ

]−1
(Θ2

1 −Θ2
2) . (5.3)

This agrees with the ICFT expression (3.4) if we identify the transmission
coefficients as follows (recall that cj = 12π`j)

Tj = 2
`j

[ 1
`1

+ 1
`2
± λ

]−1
. (5.4)

It is gratifying to find that, for the choice of plus sign, (5.4) are precisely the
coefficients Tj computed in the linearized approximation in ref. [10]. The
choice of sign will be justified in a minute.

Let us pause here to take stock of the situation. We found that (i) the dual
of an isolated interface must correspond to a brane that enters the ergoregion,
and (ii) that the brane equations determine in this case the flow of heat
as expected from the CFT result of [24] and the transmission coefficients
derived in [10]. To complete the story, we must make sure that once inside
the ergoregion the brane does not come out again. If it did, it would intersect
the AdS boundary at a second point, so the solution would not be dual to
an isolated interface as claimed.

Inserting σ+ = 0 in the embedding functions (4.11, 4.12) we find

x′1
`1

= − (λ2 + λ2
0)σ + (M1 −M2)

2(σ − σH1
+ )(σ − σH1

− )
√
A(σ − σ−)

,

x′2
`2

= − (λ2 − λ2
0)σ − (M1 −M2)

2(σ − σH2
+ )(σ − σH2

− )
√
A(σ − σ−)

,

(5.5)

where the σHj
± are given by eq. (4.13) and

σ− = − 2λ
A

[
λ(M1 +M2)± 2λ2

0J1
]
. (5.6)

As already said, the embedding is regular at σ = 0, i.e. the brane enters
the ergoregion smoothly. What it does next depends on which singularity
it encounters first. If this were the square-root singularity at σ− , the wall
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would turn around (just like it does for positive σ+), exit the ergoregion and
intersect the AdS boundary at another anchor point. This is the possibility
that we want to exclude.

Consider for starters the simpler case `1 = `2 ≡ `. In this case λ0 = 0
and A = λ2(4/`2 − λ2), so (5.6) reduces to

σ− = −2`2 (M1 +M2)
4− λ2`2 ≤ −min(Mj) `2 . (5.7)

In the last step we used the fact that both Mj are positive, otherwise the
conical singularity at rj = 0 ⇐⇒ σ = −Mj`

2 would be naked. What (5.7)
shows is that the putative turning point σ− lies behind the bulk singularity in
at least one of the two BTZ regions, where our solution cannot be extended.
Thus this turning point is never reached.

For general `1 6= `2 a weaker statement is true, namely that σ− is shielded
by an inner horizon for at least one j. The proof requires maximising σ− with
respect to the brane tension λ. We have performed this calculation with
Mathematica, but do not find it useful to reproduce the nitty gritty details
here. The key point for our purposes is that there are no solutions in which
the brane enters the ergoregion, turns around before an inner horizon, and
exits towards the AdS boundary. Since as argued by Penrose [44], Cauchy
(inner) horizons are classically unstable,14 solutions in which the turning
point lies behind one of them cannot be trusted.

One last remark is in order concerning the induced brane metric ĝαβ. By
redefining the worldvolume time, τ̃ = τ + J`1

∫
x′1(σ)dσ/2σ, we can bring

this metric to the diagonal form

dŝ2 = −σdτ̃ 2 + |det ĝ| dσ
2

σ
with det ĝ = λ2

A(σ− − σ) . (5.8)

The worldvolume is timelike for all σ > σ−, as already advertised. More
interestingly, the metric (felt by signals that propagate on the brane) is that
of a two-dimensional black-hole with horizon at the ergoplane σ = 0. This
lies outside the bulk horizons σHj

+ , in agreement with arguments showing that
the causal structure is always set by the Einstein metric [50]. Similar remarks
in a closely-related context were made before in ref. [51]. The brane-horizon
(bH) temperature,

4πΘbH =
(
− det ĝ|σ=0

)−1/2
, (5.9)

is intermediate between Θ1 and Θ2 as can be easily checked. For `1 = `2 for
example one finds 2 Θ2

bH = Θ2
1 + Θ2

2.
14For recent discussions of strong cosmic censorship in the BTZ black hole see [45–49].
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6 The non-Killing horizon
Since σ− lies behind an inner horizon, the first singularities of the embedding
functions (5.5) are at σHj

+ . A key feature of the non-static solutions is that
these outer BTZ horizons, which are apparent horizons as will become clear,
do not meet at the same point on the brane. For Jj 6= 0 the following strict
inequalities indeed hold

σH1
+ > σH2

+ if M1 > M2 ; σH2
+ < σH1

+ if M1 < M2 . (6.1)

For small Jj these inequalities are manifest by Taylor expanding (4.13),

σHj
+ = −

J2
j

Mj

+O(J 4
j ) . (6.2)

We show that they hold for all Jj in appendix B.
The meaning of these inequalities becomes clear if we use the holographic

dictionary (2.8), the energy currents (3.1) and the detailed-balance condition
(3.2) to write the Mj as follows

M1 = 2π2
[
Θ2

1(1 +R1) + Θ2
2(1−R1)

]
;

M2 = 2π2
[
Θ2

1(1−R2) + Θ2
2(1 +R2)

]
.

(6.3)

Assuming 0 ≤ Rj ≤ 1, we see that the hotter side of the interface has the
larger Mj. What (6.1) therefore says is that the brane hits the BTZ horizon
of the hotter side first.

6.1 The arrow of time
Assume for concreteness M1 > M2, the case M2 > M1 being similar.15 From
eq.(5.1) we have M1 = M2 + λ|J1|. We do not commit yet on the sign of J1,
nor on the sign in eq. (5.1), but the product of the two should be positive.
Figure 5 shows the behaviour of the brane past the ergoplane. The vertical
axis is parameterised by σ (increasing downwards), and the horizontal axes by
the ingoing Eddington-Finkelstein coordinates yj defined in eq. (2.4). These
coordinates are regular at the future horizons, and reduce to the flat ICFT
coordinates xj at the AdS boundary.

15Strictly speaking we also ask that the brane hits both outer horizons before the inner
(Cauchy) horizons, since we cannot trust our classical solutions beyond the latter. As
explained in appendix B, this condition is automatic when M2 > M1, but not when
M1 > M2, where it is possible for some range of parameters to have σH2

+ < σH1
− .
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σ

σH1+

σH2+

0

E1 E1

E2 E2

ergoplane

horizon 1

horizon 2

y2

J1 J2

y1

Figure 5: A brane (thick black curve) entering the local outer horizons H1 and H2 (the
boundaries of the grey regions in the figure) at two different points E1 and E2. The piece
[E1,E2] of the wall is behind the horizon of slice 1 but outside the horizon of slice 2. The
thick orange arrows show the direction of heat flow. The white curve is the worldline of
an observer entering H1, crossing the brane and emerging outside H2.

Let us take a closer look at the wall embedding in Eddington-Finkelstein
(EF) coordinates. From eqs. (5.5) and the identities r′j = 1/2rj we get

y′1 = `1

2(σ − σH1
+ )(σ − σH1

− )

 J1`1

2
√
σ +M1`2

1

− (λ2 + λ2
0)σ + λ|J1|√

A(σ − σ−)

 ,

y′2 = `2

2(σ − σH2
+ )(σ − σH2

− )

 J2`2

2
√
σ +M2`2

2

− (λ2 − λ2
0)σ − λ|J2|√

A(σ − σ−)

 .

(6.4)

A little algebra shows that the square brackets in the above expression vanish
at the corresponding horizons σ = σHj

+ if J1 = −J2 > 0. The functions yj
are in this case analytic at the horizons. By contrast, if J1 = −J2 < 0 these
functions are singular: y1 → +∞ at σH1

+ , and y2 → −∞ at σH2
+ . We interpret

this as evidence that J1 must be positive, as expected from the arrow of heat
flow in the boundary ICFT. This means that M1 = M2 +λJ1, and hence the
sign in the expression (5.4) for the transmission coefficients is also plus, in
agreement with the result of ref. [10].

Note that time reversal flips the sign of the Jj and leaves Mj unchanged.
Since time reversal is a symmetry of the equations, both signs of J1 give
therefore solutions – one diverging in the past and the other in the future
horizons. One can check for consistency that choosing the minus sign in the
expressions (5.4) interchanges the incoming and outgoing energy currents in
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(3.1). Similarly to a white hole, which solves Einstein’s equations but cannot
be produced by gravitational collapse, we expect that no physical protocol
can prepare the J1 < 0 solution.

6.2 Event versus apparent horizon
Denote by H1 and H2 the horizons of the two BTZ regions of the stationary
geometry, and by E1 and E2 their intersections with the brane worldvolume.
We can foliate spacetime by Cauchy slices vj = v̄ + εj(rj, xj), where v̄ is a
uniform foliation parameter.16 We use the same symbols for the projections
of Hj and Ej on a Cauchy slice. Since simultaneous translations of vj are
Killing isometries, the projections do not depend on v̄.

Both H1 and H2 are local (or apparent) horizons, i.e. future-directed
light rays can only traverse them in one direction. But it is clear from figure
5 that H1 cannot be part of the event horizon of global spacetime. Indeed,
after entering H1 an observer moving to the right can traverse the [E1, E2]
part of the wall, emerge outside H2 in region 2, and from there continue her
journey to the boundary. Such journeys are only forbidden if E1= E2, i.e. for
the static equilibrium solutions.

In order to analyse the problem systematically, we define an everywhere-
timelike unit vector field that distinguishes the past from future,

tµ∂µ = ∂

∂vj
+ hj(rj)− 1

2`j
∂

∂rj
+ Jj`j

2r2
j

∂

∂yj
in the jth region . (6.5)

Using the metric (2.5) the reader can check that tµtµ = −1. To avoid charging
the formulae we drop temporarily the index j. A future-directed null curve
has tangent vector

ẋµ = (v̇, ṙ, ẏ) where ẋµẋµ = 0 and ẋµtµ < 0 . (6.6)

The dots denote derivatives with respect to a parameter on the curve. Solving
the conditions (6.6) gives

ṙ = h

2` v̇ −
r2

2`v̇
(
ẏ − J`

2r2 v̇
)2

and v̇ > 0 . (6.7)

We see that the arrow of time is defined by increasing v, and that behind the
horizon, where h(r) is negative, r is monotone decreasing with time. This
suffices to show that H2 is part of the event horizon – an observer crossing
it will never make it out to the boundary again.

16The non-trivial radial dependence in the definition of the Cauchy slice is necessary
because constant vj curves are lightlike behind the jth horizon.
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As explained above, the story differs in region 1. Here the event horizon
consists of a lightlike surface H̃1 such that no future-directed causal curve
starting from a point behind it can reach the [E1,E2] part of the wall. Clearly,
the global event horizon

Hevent = H̃1 ∪ H2 (6.8)

must be continuous and lie behind the apparent horizon H1 in region 1. This
is illustrated in figure 6. General theorems [23] actually show that a local
horizon which is part of a trapped compact surface cannot lie outside the
event horizon. But there is no clash with these theorems here because H1
fails to be compact, both at infinity and at E1.

E1 E1

E2 E2

ℋ1

ℋ2

ℋ̃ 1

Figure 6: The event and apparent horizons, H̃1 ∪ H2 and H1 ∪ H2, as described in the
text. The event horizon is connected but it is not Killing. Projections of the local light-
cone on a Cauchy slice are shown in yellow. The light grey region behind H1 is outside
the event horizon because signals can escape towards the right.

To compute the projection of H̃1 on a Cauchy slice, note that it is a curve
through the point E2 that is everywhere tangent to the projection of the local
light cone, as shown in the figure. Put differently, at every point on the curve
we must minimise the angle between (the projection of) light-like vectors and
the positive-y1 axis. This will guarantee that an observer starting behind H̃1
will not be able to move fast enough towards the right in order to hit the
wall before the point E2.

Parametrising the curve by y1, using eq. (6.7) and dropping again for
simplicity the j = 1 index we find

−dy
dr

∣∣∣∣∣
H̃1

= max vy>0

[
r2

2`vy

(
1− J`

2r2vy
)2
− h

2`vy
]−1

, (6.9)
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where vy ≡ dv/dy. The extrema of this expression are vy = ±r/
√
M`2 − r2.

Recall that we are interested in the region behind the BTZ horizon and in
future-directed light rays for which v is monotone increasing (whereas r is
monotone decreasing). For null rays moving to the right we should thus pick
the positive vy extremum. Inserting in (6.9) gives the differential equation
obeyed by H̃1,

dy

dr

∣∣∣∣∣
H̃1

= 2`
J`− 2r

√
M`2 − r2

. (6.10)

The (projected) event horizon in region j = 1 is the integral of (6.10) with
the constant of integration fixed so that the curve passes through E2.

Here now comes the important point. The reader can check that near the
BTZ horizon, r = rH1

+ (1 + ε) with ε� 1, the denominator in (6.10) vanishes
like 1/ε. This is a non-integrable singularity, so y(r) diverges at rH1

+ and
hence H̃1 approaches asymptotically H1 as announced in section 3.2. The
holographic coarse-grained entropy will therefore asymptote to that of the
equilibrium BTZ horizon, given by eqs. (2.11) and (2.12). This shows that
the chiral outgoing fluid is thermal, not only in the cold region 2 but also in
the hotter region 1.

6.3 Remark on flowing funnels
The fact that outgoing fluxes are thermalised means that, in what concerns
the entropy and energy flows, the interface behaves like a black cavity. This
latter can be modelled by a non-dynamical, two-sided boundary black hole
whose (disconnected) horizon consists of two points. To mimic the behaviour
of the interface, the two horizon temperatures should be equal to the Θeff

j

that saturate the bounds (3.10). This is illustrated in figure 7.
The precise shape of the flowing horizon(s) depends on the boundary

black hole(s) and is not important for our purposes here. For completeness,
following ref. [15], we outline how to derive it in appendix C. Like the thin-
brane horizon of figure 6, it approaches the BTZ horizons at infinity but
differs in the central region (notably with a delta-function peak in the entropy
density at x = 0, see appendix C).

The key difference is however elsewhere. The two halves of the flowing
funnel of figure 7 are a priori separate solutions, with the temperatures Θj

and Θeff
j chosen at will. But to mimic the conformal interface one must

impose continuity of the heat flow,

dQ1

dt
= πc1

12 (Θ2
1 − (Θeff

1 )2) = πc2

12 ((Θeff
2 )2 −Θ2

2) = dQ2

dt
. (6.11)
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BTZ horizon 1

Θ1 Θeff1 Θeff2 Θ2

BTZ horizon 2

?

dQ1
dt

00 dQ2
dt

Figure 7: A two-sided flowing funnel that can mimic the energy and entropy flows of the
holographic interface. Tuning the horizon temperatures so that the boundary black hole
does not absorb any energy is, however, an adhoc condition.

This relates the horizon temperatures to each other and to those of the
distant heat baths. It is however unclear whether any local condition behind
the event horizons can impose the condition (6.11) .

7 Pair of interfaces
In this last section we consider a pair of identical interfaces between two
theories, CFT1 and CFT2.17 The interface separation is ∆x. Let the theory
that lives in the finite interval be CFT2 and the theory outside be CFT1
(recall that we are assuming `2 ≥ `1). At thermal equilibrium the system
undergoes a first-order phase transition at a critical temperature Θcr = b/∆x
where b depends on the classical Lagrangian parameters λ`j [11, 12]. Below
Θcr the brane avoids the horizon and is connected, while above Θcr it breaks
into two disjoint pieces that hit separately the singularity of the black hole.
This is a variant of the Hawking-Page phase transition [52] that can be
interpreted [53] as a deconfinement transition of CFT2.

We would like to understand what happens when this system is coupled
to reservoirs with slightly different temperatures Θ± = Θ± dΘ at x = ±∞.
Because of the temperature gradient the branes are now stationary, but they
conserve the topology of their static ancestors. In the low-Θ phase the brane
avoids the ergoregion (which is displaced from the horizon infinitesimally) and

17Our branes are not oriented, so there is no difference between an interface and anti-
interface. More general setups could include several different CFTs and triple junctions of
branes, but such systems are beyond the scope of the present work.
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stays connected, while in the high-Θ phase it splits in two disjoint branes that
enter the ergoregion and hit separately a Cauchy horizon or a bulk singularity.
The two phases are illustrated in figure 8.

M1 M1
M2

M M − λJ M − 2λJ

Θ− Θ−Θ+ Θ+Δx Δx

Figure 8: The two types of NESS for an interface pair. In the ’quantum phase’ (left) heat
conducts as if there was no scatterer, while in the ’classical phase’ (right) the conductance
is the same as for an isolated CFT1 defect dual to a brane of tension 2λ. Also given in the
figure is the BTZ mass parameter in different regions of the geometry. The yellow arrows
show the direction of heat flow.

Consider the high-Θ phase first. The isolated-brane solution of sections 5
and 6 is here juxtaposed to a solution in which the roles of CFT1 and CFT2
are inverted. The mass parameter of the three BTZ regions decreases in the
direction of heat flow, jumping by λJ across each brane. This is indeed the
‘ticket of entry’ to the ergoregion, as explained in eq. (5.1) and section 6.1.
The total change of BTZ mass across the pair is the same as if the two branes
had merged into a single one with twice the tension. Using the holographic
dictionary (2.8) and the fact that incoming fluxes at x = ±∞ are thermal
with temperatures Θ± one indeed computes

high Θ : dQ

dt
= π2`1

1 + λ`1
(Θ2
− −Θ2

+) ≡ π2`1Tpair(Θ2
− −Θ2

+) . (7.1)

where the effective transmission coefficient Tpair is that of a CFT1 defect
whose dual brane has tension 2λ. Note in passing that this effective brane
tension can exceed the upper bound (4.10) above which an individual brane
inflates, and that an array of widely-spaced branes can make the transmission
coefficient arbitrarily small.

25



The heat flow (7.1) is what one would obtain from classical scatterers.18

To understand why, think of Tj andRj as classical transmission and reflection
probabilities for quasi-particles incident on the interface from the side j. The
probability of passing through both interfaces is the sum of probabilities of
trajectories with any number of double reflections in between,

Tpair = T1 (1 +R2
2 +R4

2 + · · · ) T2 = T1T2

1−R2
2

= 1
1 + `1λ

, (7.2)

where in the last step we used the holographic relations (5.4). This gives
precisely the result (7.1) as advertised.

The low-Θ case is drastically different. The solution is now obtained by
gluing a brane with a turning point (i.e. σ+ > 0, see section 4.2) to its mirror
image, so that the brane has reflection symmetry. The bulk metric, however,
is not Z2 symmetric because in the mirror image we do not flip the sign of the
BTZ ‘spin’ J . This is required for continuity of the dxdt component of the
bulk metric, and it is allowed because when the brane avoids the ergoregion
there is no regularity condition to fix the sign of J , as in section 6.2. The
BTZ mass is thus the same at x = ±∞, while its value in the CFT2 region
depends on the interface separation ∆x. It follows from the holographic
dictionary (2.8) that the heat flow is in this case unobstructed,

low Θ : dQ

dt
= π2`1(Θ2

− −Θ2
+) , (7.3)

i.e. the effective transmission coefficient is Tpair = 1. Superficially, it looks as
if two branes with equal and opposite tensions have merged into a tensionless
one.

In reality, however, the above phenomenon is deeply quantum. What the
calculation says is that when a characteristic thermal wavelength becomes
larger than the interface separation, coherent scattering results in all incident
energy being transmitted. This is all the more surprising since CFT2 is in the
confined phase, and one could have expected that fewer degrees of freedom are
available to conduct heat. The microscopic mechanism behind this surprising
phenomenon deserves to be studied further.

The above discussion stays valid for finite temperature difference Θ+−Θ−,
but the dominant phase cannot in this case be found by comparing free
energies. Nevertheless, as ∆x → 0 we expect from the dual ICFT that
the interface-antiinterface pair fuses into the trivial (identity) defect [42],
whereas at very large ∆x the connected solution ceases to exist. A transition
is therefore bound to occur between these extreme separations.

18The argument grew out of a conversation with Giuseppe Policastro who noticed that
the tensions of two juxtaposed branes effectively add up in the calculation of ref. [10].

26



Let us comment finally on what happens if the interval theory is CFT1,
the theory with fewer degrees of freedom, and the outside theory is CFT2.
Here the low-temperature phase only exists for sufficiently-large tension if
c1 < c2 < 3c1, and does not exist if c2 > 3c1 [11, 12]. The (sparse) degrees
of freedom of the interval theory in this latter case are always in the high-
temperature phase, and there can be no quantum-coherent conduction of
heat. Reassuringly, this includes the limit c2/c1 → 0 in which the CFT1
interval is effectively void.

Note also that in the low-temperature phase the wire can be compactified
to a circle and the heat current can be sustained without external reservoirs.
This is not possible in the high-temperature phase.

8 Closing remarks
The study of far-from-equilibrium quantum systems is an exciting frontier
both in condensed-matter physics and in quantum gravity. Holography is a
bridge between these two areas of research, and has led to many new insights.
Much remains however to be understood, and simple tractable models can
help as testing grounds for new ideas. The holographic NESS of this paper
are tractable thanks to several simplifying factors: 2d conformal symmetry,
isolated impurities and the assumption of a thin brane. If the first two can
be justified in (very) pure ballistic systems, the thin-brane approximation
is an adhoc assumption of convenience. Extending our results to top-down
dual pairs is one urgent open question.

Another obvious question concerns the structure of entanglement and
the Hubeny-Rangamani-Ryu-Takayanagi curves [33, 34] in the above steady
states. While it is known that geodesics cannot probe the region behind
equilibrium horizons [54], they can reach behind both apparent and event
horizons in time-dependent backgrounds, see e.g. [55–57]. In the framework
of the fluid/gravity correspondence the entropy current associated to the
event horizon is a local functional of the boundary data [58]. It would be
interesting to examine this question in the present far-from-equilibrium con-
text. Note also that the particularly simple form of matter in our problem
(a thin fluctuating brane) may allow analytic calculations of the quantum-
corrected extremal surfaces [59,60].

Another interesting question is how the deconfinement transition of the
interval CFT in section 7 relates to the sudden jump in thermal conductivity
of the system. Last but not least, it would be nice to relate the production
of coarse-grained entropy to the scattering matrix of microscopic interfaces,
e.g. for the simplest free-field interfaces of [9, 42,61].
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We hope to return to some of these questions in the near future.
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A Solving the thin-brane equations
From the form (2.1) of the bulk metric and the embedding ansatz (4.1) of a
stationary brane, we derive the following continuity equations for the induced
metric

ĝττ = M1`
2
1 − r2

1 = M2`
2
2 − r2

2 , (A.1)

ĝτσ = (M1`
2
1 − r2

1)f ′1 −
J1`1

2 x′1 = (M2`
2
2 − r2

2)f ′2 −
J2`2

2 x′2 , (A.2)

ĝσσ = `2
1 r
′2
1

h1(r1) + r2
1x
′2
1 − J1`1x

′
1f
′
1 + (M1`

2
1 − r2

1)f ′21

= `2
2 r
′2
2

h2(r2) + r2
2x
′2
2 − J2`2x

′
2f
′
2 + (M2`

2
2 − r2

2)f ′22 .

(A.3)

The primes denote derivatives with respect to σ, and the function h(r) has
been defined in eq.(2.3),

h(r) = r2 −M`2 + J2`2

4r2 = 1
r2 (r2 − r2

+)(r2 − r2
−) . (A.4)

Following ref. [12] we choose the convenient parametrization σ = −ĝττ ,
so that r2

j = σ+Mj`
2
j and r′j = 1/2rj. This parametrization need not be one-

to-one, it actually only covers half of the wall when this latter has a turning
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point. With this choice the ergoplane is located at r2
j = Mj`

2
j =⇒ σ = 0,

and the functions hj can be written as

hj(σ) =
σ2 + σMj`

2
j + J2

j `
2
j/4

σ +Mj`2
j

= (σ − σHj
+ )(σ − σHj

− )
σ +Mj`2

j

, (A.5)

where

σHj
± = −

Mj`
2
j

2 ± 1
2
√
M2

j `
4
j − J2

j `
2
j (A.6)

are the locations of the horizons in the jth chart.
From (A.1) - (A.3) one computes the determinant of the induced metric

− det(ĝ) =
σ`2

j

4r2
jhj

+ hjr
2
jx
′ 2
j . (A.7)

Note that it does not depend on the time-delay functions fj(σ), because these
can be absorbed by the unit-Jacobian reparametrization

τ̃ = τ + fj(σ), σ̃ = σ .

Eq. (A.7) can be used to express the x′j (up to a sign) in terms of det ĝ. A
combination of eqs. (A.1) and (A.2) expresses, in turn, the time delay across
the wall in terms of the x′j,

σ(f ′2 − f ′1) = 1
2(J1`1x

′
1 − J2`2x

′
2) . (A.8)

To complete the calculation we need therefore to find det ĝ and then solve
the equations (A.7) for x′j.

The Israel-Lanczos conditions
This is done with the help of the Israel-Lanczos conditions [65, 66] (see also
[67]) which express the discontinuity of the extrinsic curvature across the
wall, eqs.(4.3). We follow the conventions of ref. [12]: Kαβ is the covariant
derivative of the inward-pointing unit normal vector, and the orientation is
such that for inceasing σ the wall encircles clockwise the interior of both
charts in the (xj, r−1) planes.19

19In these conventions the boundary ICFT is folded, with both CFT1 and CFT2 living
on the same side of the interface.
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A somewhat tedious but straightforward calculation gives

Kττ = −hr
2x′

`
√
|ĝ|

and Kτσ = hr2x′

σ`
√
|ĝ|

ĝτσ +
J
√
|ĝ|

2σ , (A.9)

where ĝ is a shorthand notation for det(ĝ). The Israel-Lanczos equations
(4.3) thus read

1√
|ĝ|

(
h1r

2
1x
′
1

`1
+ h2r

2
2x
′
2

`2

)
= −λσ , (A.10)

1√
|ĝ|

(
h1r

2
1x
′
1

`1
+ h2r

2
2x
′
2

`2

)
ĝτσ +

√
|ĝ|
2 (J1 + J2) = −λσ ĝτσ . (A.11)

These are compatible if and only if

J1 + J2 = 0 , (A.12)

which translates to energy conservation in the boundary CFT. We have
checked that the third equation, [Kσσ] = −λĝσσ , is automatically obeyed
and thus redundant. As expected, by virtue of the momentum constraints
the three Israel-Lanczos equations (4.3) reduce to a single independent one
plus the “constant-of-integration” condition (A.12).

The general solution
Squaring twice (A.10) and using (A.7) to eliminate the x′ 2j leads to a quadratic
equation for the determinant. This has a singular solution det(ĝ) = 0, and a
non-pathological one

− det(ĝ) = λ2σ3
[

4h1h2r
2
1r

2
2

`2
1`

2
2
−
(h1r

2
1

`2
1

+ h2r
2
2

`2
2
− λ2σ2

)2
]−1

. (A.13)

Inserting the expressions for rj(σ) and hj(σ) leads after some algebra to

− det(ĝ) = λ2σ

Aσ2 + 2Bσ + C
(A.14)

with coefficients

A = (λ2
max − λ2)(λ2 − λ2

min) ,

B = λ2(M1 +M2)− λ2
0(M1 −M2) ,

C = −(M1 −M2)2 + λ2J2
1 .

(A.15)
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The critical tensions in these expressions are

λmin =
∣∣∣ 1
`1
− 1
`2

∣∣∣ , λmax = 1
`1

+ 1
`2
, λ0 =

√
λmaxλmin . (A.16)

For a static wall, i.e. when J1 = J2 = 0, the above formulae reduce, as they
should, to the ones obtained in ref. [12]. 20 The only effect of the non-zero Jj
is actually to shift the coefficient C in (A.15).

The roots of the quadratic polynomial in the denominator of (A.14),

σ± = −B ±
√
B2 − AC
A

, (A.17)

determine the behaviour of the solution. If σ+ is either complex or negative
(part of) the brane worldvolume has det ĝ > 0 in the ergoregion, so it is
spacelike and physically unacceptable. Acceptable solutions have σ+ > 0 or
σ+ = 0, and describe walls that avoid, respectively enter the ergoregion as
explained in the main text, see section 5.

The actual shape of the wall is found by inserting (A.14) in (A.7) and
solving for x′ 2j . After some rearrangements this gives

ε1
x′1
`1

= (λ2 + λ2
0)σ + (M1 −M2)

2(σ +M1`2
1 + J2`2

1/4σ)
√
Aσ(σ − σ+)(σ − σ−)

, (A.18)

ε2
x′2
`2

= (λ2 − λ2
0)σ − (M1 −M2)

2(σ +M2`2
2 + J2`2

2/4σ)
√
Aσ(σ − σ+)(σ − σ−)

, (A.19)

where εj = ± are signs. They are fixed by the linear equation (A.10) with
the result

εj(σ) = − σ

|σ|
. (A.20)

These signs agree with the known universal solution [12, 68] near the AdS
boundary, at σ → ∞, and they ensure that walls entering the ergoregion
have no kink. Expressing the denominators in terms of the horizon locations
(A.6) gives the equations (4.11) and (4.12) of the main text.

It is worth noting that the tensionless (λ → 0) limit of our solution is
singular. Indeed, on one hand extremising the brane action and ignoring its
back-reaction gives a geodesic worldvolume, but on the other hand for λ = 0
fluctuations of the string are unsuppressed. In fact, when λ is small the wall
starts as a geodesic near the AdS boundary but always departs significantly
in the interior. In particular, a geodesic never enters the equilibrium horizon,
whereas a tensile string can, even if it is very light.

20 When comparing with this reference beware that it uses the (slightly confusing) no-
tation ĝσσ ≡ g(σ) so that, since the metric is diagonal in the static case, det ĝ = −σg(σ).
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B Horizon inequalities
In section 6 we asserted that BTZ geometries whose ergoregions can be glued
together by a thin brane obey the inequalities

σH1
+ > σH2

+ if M1 > M2 ; σH2
+ < σH1

+ if M1 < M2 , (B.1)

where the horizon locations are

σHj
± = −

Mj`
2
j

2 ± 1
2
√
M2

j `
4
j − J2`2

j (B.2)

and J ≡ |J1| = |J2| > 0. This ordering of the outer horizons is manifest if
one expands at the leading order for small J . We want to show that it is
valid for all values of J .

If as J is cranked up the ordering was at some point reversed, then at
this point we would have σH1

+ = σH2
+ , or equivalently

M2`
2
2 −M1`

2
1 =

√
M2

2 `
4
2 − J2`2

2 −
√
M2

1 `
4
1 − J2`2

1 . (B.3)

Squaring twice to eliminate the square roots gives

J 2 = 4`2
1`

2
2(M1 −M2)(M2`

2
2 −M1`

2
1)

(`2
2 − `2

1)2 . (B.4)

Without loss of generality we assume, as elsewhere in the text, that `1 ≤ `2.
If M2 > M1, then automatically M2`

2
2 > M1`

2
1 and (B.4) has no solution for

real J . In this case the ordering (B.1) cannot be reversed.
If on the other hand M1 > M2 and M2`

2
2 −M1`

2
1 > 0 we need to work

harder. Inserting J2 from (B.4) back in the original equation (B.3) gives
after rearrangements

(`2
2 − `2

1)(M2`
2
2 −M1`

2
1) = `2

2

∣∣∣(M2`
2
2 −M1`

2
1)− `2

1(M1 −M2)
∣∣∣

− `2
1

∣∣∣(M2`
2
2 −M1`

2
1)− `2

2(M1 −M2)
∣∣∣ , (B.5)

where the absolute values come from the square roots. This equation is not
automatically obeyed whenever its doubly-squared version is. A solution only
exists if

M1 −M2 ≤
`2

2M2 − `2
1M1

`2
2

⇔ M1

M2
≤ 2`2

2
`2

2 + `2
1
. (B.6)

Remember now that we only care about solutions with walls in the ergoregion,
for which M1 −M2 = λJ , see eq.(5.1). Plugging in (B.4) this gives

M2 =
[
1− 4λ2

0 λ
2

λ 4
0 + 4λ2/`2

1

]
M1 (B.7)
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with λ2
0 = (`2

2 − `2
1)/`2

1`
2
2 , see eq.(4.10). Consistency with the bound (B.6)

for a brane tension in the allowed range then requires

λmin < λ ≤ `1λ
2
0

2 , (B.8)

where λmin = (`2 − `1)/`1`2. As one can easily check, this implies `1 > `2
which contradicits our initial assumption. We conclude that (B.3) has no
solutiion, and the ordering (B.1) holds for all J , QED.

For completeness, let us also consider the ordering of the inner horizons.
Clearly σHj

+ > σHj
− always, and for small J also σH1

+ > σH2
− and σH2

+ > σH1
− .

To violate these last inequalities we need σH1
+ = σH2

− or σH2
+ = σH1

− for some
finite J , or equivalently

M2`
2
2 −M1`

2
1 = ∓

(√
M2

2 `
4
2 − J2`2

2 +
√
M2

1 `
4
1 − J2`2

1

)
. (B.9)

Squaring twice gives back eq.(B.4) which has no solution if M2 > M1. But
if M1 > M2 and M2`

2
2 −M1`

2
1 > 0, solutions to σH2

+ = σH1
− cannot be ruled

out. Indeed, inserting J from (B.4) in (B.9) with the + sign gives

(`2
2 − `2

1)(M2`
2
2 −M1`

2
1) = `2

2

∣∣∣(M2`
2
2 −M1`

2
1)− `2

1(M1 −M2)
∣∣∣

+ `2
1

∣∣∣(M2`
2
2 −M1`

2
1)− `2

2(M1 −M2)
∣∣∣ , (B.10)

which requires that

`2
2M2 − `2

1M1

`2
2

≤ M1 −M2 ≤
`2

2M2 − `2
1M1

`2
1

. (B.11)

These conditions are compatible with M1 −M2 = λJ and λ in the allowed
range, so the outer horizon of slice 2 need not always come before the Cauchy
horizon of slice 1.

Finally one may ask if the inner (Cauchy) horizons can join continuously,
i.e. if σH1

− = σH2
− is allowed. A simple calculation shows that this is indeed

possible for `2/`1 < 3, a critical ratio of central charges that also arose in
references [11, 12]. We don’t know if this is a coincidence, or if some deeper
reason lurks behind.

C Background on flowing funnels
In this appendix we collect some formulae on the flowing funnels discussed in
section 6.3. We start with the most general asymptotically-locally-AdS3 solu-
tion in Fefferman-Graham coordinates, generalising the Banados geometries
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(2.6) to arbitrary boundary metric [69]

ds2 = `2dz2

z2 + 1
z2 gαβ(x, z) dxαdxβ , (C.1)

where gαβ is a quartic polynomial in z (written here as a matrix)

g(x, z) = g(0) + z2g(2) + z4

4 g(2) g
−1
(0) g(2) . (C.2)

In this equation g(0) is the boundary metric and g(2) is given by

g(2)αβ = −`
2

2 R(0) g(0)αβ + ` 〈Tαβ〉 , (C.3)

where R(0) is the Ricci scalar of g(0), and 〈Tαβ〉 the expectation value of
the energy-momentum tensor. This must be conserved, ∇a

(0)〈Tab〉 = 0 , and
should obey the trace equation gab(0)〈Tab〉 = (c/24π)R(0).

We may take the boundary metric to be that of the Schwarzschild black
hole (this differs from the metric in [15], but since it is not dynamical we are
free to choose our preferred boundary metric),

ds2
(0) = −f(x) dt2 + dx2

f(x) with f(x) = x

x+ a
. (C.4)

The horizon at x = 0 has temperature ΘS = (4πa)−1. Using the familiar
tortoise coordinates we can write

ds2
(0) = f(x)(−dt2 + dx2

∗) where x∗ = x+ a log x . (C.5)

Let w± = x∗ ± t. The expectation value of the energy-momentum tensor in
the black-hole metric can be expressed in terms of φ = log f(x) as follows

〈T±±〉 = `

2
[
∂2
±φ−

1
2(∂±φ)2

]
+ k±(w±) , 〈T+−〉 = − `2 ∂+∂−φ , (C.6)

with k± arbitrary functions of w± that depend on the choice of state. At
x � a where the metric is flat, k± determine the incoming and outgoing
fluxes of energy. In a stationary solution these must be constant. If a heat
bath at temperature Θ+ is placed at infinity, k+ = π2`Θ2

+ . The function k−,
on the other hand, is fixed by requiring that there is no outgoing flux at the
Schwarzschild horizon. From

`

2
[
∂2
±φ−

1
2(∂±φ)2

]
= −` (a2 + 4ax)

16(x+ a)4 (C.7)
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we deduce 〈T−−〉|x=0 = 0 =⇒ k− = `/16a2 = π2`Θ2
S . The outgoing flux at

infinity is thermalised at the black hole temperature, as expected.
Inserting the expressions (C.3 - C.7) in eqs. (C.1) and (C.2) gives the

flowing-funnel metric in Fefferman-Graham coordinates. These are however
singular coordinates, not well adapted for calculating the event horizon as
shown in [15]. Following this reference, one can compute the horizon by
going to BTZ coordinates – this is possible because all solutions are locally
equivalent in three dimensions. The change from any metric (C.1) - (C.2) to
local BTZ coordinates has been worked out in ref. [70] (see also [71]) and can
be used to compute the black-funnel shapes. A noteworthy feature is that
the funnels start vertically inwards at x = 0 [15] making a delta-function
contribution to the area density. Note that figure 7 shows two independent
flowing funnels with Schwarzschild temperatures ΘS = Θeff

1 and Θeff
2 .
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