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The connections between renormalization in statistical mechanics and information theory are
intuitively evident, but a satisfactory theoretical treatment remains elusive. Recently, Koch-Janusz
and Ringel proposed selecting a real-space renormalization map for classical lattice systems by
minimizing the loss of long-range mutual information [Nat. Phys. 14, 578 (2018)]. The success of this
technique has been related in part to the minimization of long-range couplings in the renormalized
Hamiltonian [Lenggenhager et al., Phys. Rev. X 10, 011037 (2020)]. We show that to minimize
these couplings the renormalization map should, somewhat counterintuitively, instead be chosen to
minimize the loss of short-range mutual information between a block and its boundary. Moreover,
the previous minimization is a relaxation of this approach, which indicates that the aims of preserving
long-range physics and eliminating short-range couplings are related in a nontrivial way.

Despite neither being able to experimentally probe nor
theoretically precisely describe the microscopic details of
the physical systems that surround us, via renormaliza-
tion we are still able to make predictions and verify them
to remarkable degrees of accuracy. A renormalization
process progressively removes degrees of freedom from a
physical system, mapping it to an effective system hav-
ing the same physics at large scales [1, 2]. One may re-
gard the renormalization map as removing unimportant
short-range information while leaving long-range infor-
mation intact, and therefore possible connections to in-
formation theory have been explored in several different
approaches [3–9]. One difficulty in the renormalization
enterprise is finding an appropriate renormalization map.
In real space renormalization [10], for example, there is
no unique way to remove degrees of freedom, and a sev-
eral maps can plausibly be used. Some work noticeably
better than others [11], but there is no clear criterion for
choosing the best map.

Recently, Koch-Janusz and Ringel [12] proposed
choosing real-space renormalization maps based on an
information-theoretic criterion, as follows. Consider a
spin model on a lattice Λ, and divide the lattice into non
overlapping blocks Aj . Let R be a renormalization map
on a single block, specifically a stochastic transforma-
tion on the random variables describing the spins in the
block, and call its output on the jth block A′

j . In the
renormalization procedure R is applied to each Aj , but
here we need only focus on a single block A with output
A′ = R(A). In particular, dividing the lattice into the
block in question A, its neighbors within some distance
B, and the remainder of the spins C, as illustrated in
Figure 1a, Koch-Janusz and Ringel propose choosing

RKJR = argmaxR I(A′ : C)R(P ) , (1)

where P = 1
Z
e−βH is the Gibbs distribution of the spin

system and I(A : C)P is the mutual information of ran-
dom variables A and C under the distribution P .

Due to the data processing inequality, it follows that
I(A : C)P ≥ I(A′ : C)R(P ), and hence RKJR retains
the most mutual information between the block and the
long range parts of the lattice. Koch-Janusz and Ringel
argue that it therefore extracts the relevant degrees of
freedom and that it results in a renormalized Hamil-
tonian with short-range couplings. They also propose
a machine-learning algorithm to determine RKJR on a
parametrized subset of all possible maps. The resulting
Real Space Mutual Information (RSMI) algorithm pro-
duces good results when benchmarked on various physi-
cal models. Lenggenhager et al. [13] further showed that
RKJR does not create any long-range couplings within C
when I(A : C)P = I(A′ : C)R(P ). Their theoretical work
was expanded to field theory [14] and their algorithm
improved by using deep learning techniques [15].

In this Letter we argue that, contrary to the above
intuition, to minimize long-range couplings one should
instead choose the renormalization map to retain short-

range mutual information:

R⋆ = argmaxR I(A′ : B)R(P ) . (2)

As we show in detail below, in fact no map R can result
in long-range couplings within C or from A to C, and R⋆

additionally minimizes coupling within the boundary B.
This approach has several other advantages. For one, the
optimization is considerably simpler, as it only involves
the block in question and its boundary. Moreover, it is
the case that I(A′ : B)R(P ) ≥ I(A′ : C)R(P ) for every
map R, and hence the optimization in (1) is a relax-
ation of the optimization in (2). We emphasize here that
these two optimizations are born out of two different mo-
tivations: (1) identifies the degrees of freedom that are
most relevant to the long range physics, while (2) aims to
control the proliferation of couplings. It is not expected
that these two motivations yield the same optimization
problem, and the relaxation described above relates the
two. Finally, the optimizer of (2) (as well as of (1)) is
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A B C

(a) Block and boundary (b) A Markov network

FIG. 1. a) Division of a 2D lattice system into the block to be
renormalized A, its boundary B, and the rest of the lattice C.
b) The random variables in the black region are conditionally
independent of the those in the white region given the gray
region, as the gray region shields the former from the latter
in the Markov network. The regions need not be connected.

a deterministic map, which makes brute-force optimiza-
tion feasible for small blocks by searching the entire map
space directly on the probability distribution, rather than
by using sampling techniques. We illustrate how the op-
timization can be performed for 2× 2 maps using tensor
network representations for the 2D Ising model.

Gibbs states as Markov networks.— To prove our
claims we make use of the Hammersley-Clifford theorem
of probability theory, which states that every Gibbs state
of a local Hamiltonian is a Markov network. A Markov
network is a (probability distribution on a) collection
of random variables with conditional independence re-
lations that are captured by an undirected graph. Con-
sider a collection of random variables V = (V1, . . . , Vn)
associated to vertices of a graph G and having a joint
probability distribution P (V ). Vertices Vj and Vk con-
nected by an edge in G correspond to dependent random
variables, for which I(Vj : Vk) 6= 0. Given three regions of
the graph A, B, and C, corresponding to disjoint collec-
tions of the random variables, B is said to shield A from
C if all paths connecting A to C pass through B. The
regions themselves need not be connected, as depicted in
Figure 1b.

Then (G, P ) is a Markov network if every two regions
shielded by a third are conditionally independent, i.e. A
and C are independent given the value of B. Put yet
differently, the correlations between A and C are medi-
ated entirely by B. Conditional independence can be
succinctly expressed using the conditional mutual infor-
mation (CMI) as I(A : C|B)P = 0, where

I(A : C|B)P := I(A : BC)P − I(A : B)P . (3)

The Hammersley-Clifford theorem [16, 17] then states
that (G, P ) is a Markov network if and only if P (V ) =
eh(V ) for some local function h, meaning h =

∑
c∈C

hc,
where C is the set of cliques of the graph (the fully-
connected subgraphs) and each hc is a function only of
the variables involved in the clique c.

The renormalization procedure begins with the Gibbs
state of a local Hamiltonian P ∝ eH . Renormalizing

a block A with map R results in a new probability
P ′ = R(P ) = eh

′

, where we define h′ = logP ′. Renor-
malizing all blocks results in some distribution P ′′, and
the corresponding h′′ is just the renormalized Hamilto-
nian, up to the inverse temperature β and normalization
constant factors. By the Hammersley-Clifford theorem,
h′′ will not contain any couplings between random vari-
ables which are conditionally independent, and this prop-
erty can be established by showing that the CMI van-
ishes. And by data processing, it is sufficient to consider
just h′ to determine where new couplings may arise.

Ruling out couplings.— The presence of the boundary
B around the block A ensures that R creates no couplings
within C nor from A′ to C. Consider two parts C1 and C2

of C which are not already coupled. Thus they are con-
ditionally independent given the remainder R of the ran-
dom variables comprising the system. Region A is a part
of R, and the rest we can call D so that R = AD. Since B
bounds A, it must be the case that D shields C1 from C2

and therefore I(C1 : C2|D)P = 0. This does not change
under application of any map R, I(C1 : C2|D)R(P ) = 0,
and therefore C1 and C2 are not coupled in h′. To show
the same thing, the authors of [13] prove instead that
I(C1 : C2|A

′) = 0 by assuming that long range mutual
information is preserved, i.e. I(A : C)P = I(A′ : C)R(P ).
That A′ will not become coupled to anything in C fol-
lows because all the correlations are mediated by B. Us-
ing the positivity of CMI and data processing, we have
0 ≤ I(A′ : C|B)R(P ) ≤ I(A : C|B)P = 0.

Hence, the main concern is couplings between parts
of B which may be induced by R. In one-dimensional
systems, as depicted in Figure 2, it turns out that cou-
pling between BL and BR is related to the change in
mutual information between the block A and the bound-
ary B = BLBR. If the mutual information is unchanged
after R, then BL and BR are uncoupled in h′. This is a
consequence of the following more general statement.

Theorem 1. Consider a one-dimensional lattice model

with nearest-neighbor Hamiltonian H in a Gibbs state,

divided into subregions as in Figure 2. For any renor-

malization map R : A → A′, I(BL : BR|A
′)R(P ) ≤ I(A :

B)P − I(A′ : B)R(P ).

Proof. Start from I(BL : BR|A
′) = I(BL : BRA

′) −
I(BL : A′) and apply data processing to the first term to
obtain I(BL : BR|A

′) ≤ I(BL : BRA) − I(BL : A′).
Now note that A and C can be swapped in (3), i.e.
I(A : C|B) = I(C : AB) − I(C : B), and therefore
I(AB : C) − I(A : BC) = I(B : C) − I(A : B). Us-
ing this property for each term in the expression above
gives I(BL : BR|A

′) ≤ I(A : B) − I(A′ : B) + I(BR :
BLA

′) − I(BR : A). Another application of data pro-
cessing to the third term and the CMI definition gives
I(BL : BR|A

′) ≤ I(A : B) − I(A′ : B) + I(BR : BL|A).
The final term is zero by assumption.
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· · ·· · ·

CRCL A BRBL

FIG. 2. Division of a 1D lattice into block and boundary.

Typically, no nontrivial map R will precisely preserve
the mutual information for reasons we shall explain in a
moment. Nevertheless, minimizing the change in mutual
information, by maximizing I(A′ : B)R(P ) as in (2), min-
imizes the coupling between BL and BR. This is because
the smaller the CMI, the closer the distribution R(P )
is to some P ′ in which BL and BR are conditionally
independent, as measured by the total variational dis-
tance between distributions (see [18, Lemma 1]). Hence
smaller CMI leads to an associated h′ with weaker cou-
plings. Somewhat counterintuitively, then, to minimize
couplings it is more important to preserve mutual infor-
mation between a block and its boundary rather than
between a block and distant spins.

For isotropic systems, we can translate the 1D argu-
ment to multiple dimensions by treating a D dimensional
isotropic lattice as a 1D system in every direction, as pro-
posed by Leggenhager et al. [13]. The lattice can be sep-
arated into disconnected regions by hyperplanes creating
effectively a 1D system (Figure 3) and the argument of
Theorem 1 carries over, so that no couplings will appear
between the spins in the boundary strips BL and BR.
Couplings might still appear inside the central strip, but
if the system is isotropic we can repeat the same argu-
ment with hyperplanes separating the renormalized block
from the rest in a different dimension and expect that if a
map maximized I(A′ : B) in one dimension, it will do so
also in the other dimension. This argument breaks down
for non isotropic systems as the different directions may
have different optimal maps.

Before proceeding to examine the two optimizations in
more detail, let us remark that a renormalization map
which precisely preserves the mutual information can ac-
tually be undone by a suitable stochastic map. This
accords with the idea that no information is lost along
the renormalization flow in this case by assumption, but
one does not typically expect renormalization to be re-
versible. Starting from I(A′ : B)R(P ) = I(A : B)P and
using the fact that I(A : C|B)P = I(A′ : C|B)R(P ) = 0,
it follows that the total mutual information is preserved,
I(A : BC)P = I(A′ : BC)R(P ). Then we can appeal
to Lemma’ 1 of [18], which ensures that the so-called
“transpose” map or Petz recovery map R̂ is such that
R̂ ◦ R(P ) = P [19]. The transpose map depends on R
and the marginal distribution of A under P , but we shall
not go into further details here.

Optimization.— Computing I(A : B) does not require
handling the whole probability distribution, but only the
marginal distribution on the AB subsystem. This simpli-

FIG. 3. The dark and light gray strips indicate the blocks
that are used when treating the system as one dimensional in
each direction, while the square indicates a block to be renor-
malized. If the renormalization map is optimal, the light gray
strips are uncoupled. If the system is isotropic, the optimal
maps for the two directions are the same.

fies the optimization relative to Koch-Janusz and Ringel’s
proposal, where the distribution on the entire spin system
must be treated somehow. As mentioned above, (1) is a
relaxation of (2) in that I(A′ : C)R(P ) ≤ I(A′ : B)R(P ).
This follows directly from the definition of the CMI and
the Markov condition: I(A′ : BC) = I(A′ : B) since
I(A′ : C|B) = 0, but then I(A′ : C) ≤ I(A′ : B) by
data processing. The equality I(A′ : C|B) = 0 reflects
the fact that all correlations between A′ and C are me-
diated through B. Therefore, maximizing the mutual in-
formation of the former sets a lower bound on the mutual
information of the latter.

In both (1) and (2) the optimal map R⋆ is necessarily
deterministic, i.e. all its transition probabilities are either
zero or one. This follows because the objective function,
the mutual information, is a convex function of the opti-
mization variable, the map R, and the extreme points of
stochastic maps are deterministic maps.

Proposition 2. Let C be the space of channels from A to

A′. For a fixed probability distribution PAB the function

C → R+, W 7→ I(A′ : B)W (P ) is convex.

Proof. Consider a collection of channels {Wz}z∈Z in-
dexed by the values of a finite random variable Z with dis-
tribution Q. The average channel WZ is just WZ(PAB) =∑

z∈Z
Q(z)Wz(PAB) for any PAB, leading to mutual in-

formation I(A′ : B)WZ (P ). For simplicity, denote WZ(P )
just by P ′. Meanwhile, the average mutual information
is given by the CMI I(A′ : B|Z)P ′ since
∑

z∈Z

Q(z)I(A′ : B)Wz(P )

=
∑

z∈Z

Q(z)I(A′ : B|Z = z)WZ (P ) = I(A′ : B|Z)P ′ . (4)

But then, since B and Z are uncorrelated, we obtain

I(A′ : B|Z)P ′ = I(A′Z : B)P ′ − I(Z : B)P ′ (5)

= I(A′Z : B)P ′ ≥ I(A′ : B)P ′ , (6)

and therefore the mapping is convex.

When maximizing a convex function over a convex set,
the optimum will occur at one of the extreme points [20,
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Theorem 32.2], which in this case are the deterministic
maps [21, Theorem 1]. This simplifies the optimization
by making the search space finite. While brute force
might still be out of reach for interesting systems, more
sophisticated methods such as machine learning tech-
niques can be informed by this fact.

The Ising model.— Consider renormalization maps on
2× 2 blocks in the 2D square-lattice Ising model. To in-
vestigate which maps are optimal according to (2), we use
the Corner Transfer Matrix algorithm [22] to extract the
marginal distribution of a 4×4 block, and we measure the
change in mutual information between the central 2 × 2
block and its boundary after each of the possible 216 de-
terministic maps mapping this block to a single spin. We
then compute the change in mutual information for each
map over the range of temperatures β ∈ [0.1βc, 1.9βc]
and find the optimal map at each temperature. In Figure
4 we show the change in mutual information compared
with the minimum value for some common maps:

1. Decimation: the value of the renormalized spin is
simply the value of one of the 4 spins in the block.

2. Majority vote: the renormalized spin is assigned a
value +1 if the majority of the spins in the block
are +1, and vice versa. Ties must be broken with
a 2×2 block, we do this in 4 possible ways: using a
predetermined fixed value (i.e. the ties are always
resolved with +1 or −1), using one of the spins in
the block (hence the map becomes decimation in
case of ties), or choosing a value at random.

3. Biased: the all configurations are mapped to +1
except for (−1,−1,−1,−1) or, vice versa, to −1
except for (+1,+1,+1,+1).

Some of these maps are not symmetric under spin flips,
namely the majority vote with fixed value tie breaker
and the biased maps. Which version is optimal depends
on the symmetry breaking low temperature state that
has been selected during the simulation. We call the tie
breaker or the biased map “aligned” (denoted ⇈ in the
figure) if the relevant fixed value for the renormalized
spin is aligned with the magnetization in the symmetry-
breaking state, and “antialigned” ( ⇆ ) otherwise.

At high temperature (β/βc . 0.3554), the optimal map
is decimation, afterwards, for 0.3554 . β/βc . 0.6109,
majority vote with tie breaks decided by decimation.
From that point up to the critical temperature, both ver-
sion of fixed tie breaker majority vote are optimal, the
aligned version remains so up to β/βc ≈ 1.0509, after
which the low temperature symmetry breaking prevails
and the best map is the aligned biased map.

Interestingly, majority vote with random tie breaker is
rather far from optimal (it cannot be optimal as it is not
deterministic) and fares worse of all other tie breakers
except the antialigned one at low temperature. It can
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FIG. 4. Difference of the mutual information change for each
map above the optimal change, as a function of inverse tem-
perature. Each shaded region indicates which map is optimal
in the corresponding interval. Note that while both majority
vote maps which break ties aligned (MV-⇈) and antialigned
(MV- ⇆ ) with the overall magnetization are optimal in the in-
terval (0.6109,1), the random tiebreaker map (MV-rnd) is far
from optimal.

also be seen that decimation performs poorly, especially
around the critical point. This is consistent with the
observations of [11].

Conclusions.— In this Letter, we argued that max-
imizing the short-range mutual information between a
block and its boundary yields a renormalized system with
reduced long-range couplings. In particular, couplings
are never introduced beyond the boundary region of the
renormalization map, and are suppressed when more of
the short-range mutual information is preserved. This
gives an information-theoretic account of some aspects
of renormalization. The optimization suggested by this
approach leads to a simple brute-force algorithm for find-
ing the optimal renormalization map which requires only
the probability distribution of the input region of the map
and its boundary. It is efficient enough for small systems,
as demonstrated in the 2D Ising model. Further work is
required to explore the robustness of this result when in-
formation is only approximately preserved, perhaps by
using an approximate generalization of the Hammersely-
Clifford theorem.

Our approach contrasts with the focus of [12] and [13],
which maximizes the long-range mutual information with
the dual goals of capturing the relevant degrees of free-
dom and reducing long-range couplings. The fact that
their long-range mutual information optimization is a
relaxation of our short-range optimization implies some
connection between these goals: If we view extracting
the relevant information as the primary justification for
the long-range optimization (an intuitively very plausible
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statement), then it will necessarily do this by minimizing
long-range couplings in the renormalized Hamiltonian to
some extent. The open question is how much. It would
therefore be interesting to investigate under what con-
ditions or in which models the optimal renormalization
maps of the two approaches actually coincide. To this
end it would also be interesting to modify the RSMI al-
gorithm to focus on short-range mutual information, as
exact optimization is computationally difficult for more
complicated models. In either scenario one may also be
able to take into account the fact that the optimal renor-
malization map is necessarily deterministic.

Finally, it should be noted that the focus on short-
range versus long-range information here is reminiscent of
the relation between the Tensor Renormalization Group
(TRG) [23] and the Tensor Network Renormalization
(TNR) [24] algorithms. The latter is a refinement of the
former in which the additional steps are meant to re-
move short-range correlations, improving the algorithm
near the critical point. Here the setting is block-spin
renormalization, i.e. maps on the physical degrees of free-
dom and not the tensors in the tensor-network descrip-
tion, but again the focus is on the short-range couplings.
It would be interesting to investigate if information-
theoretic methods can be used to give tensor network
algorithms.
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