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Cavity optomechanical systems have become a popular playground for studies of controllable
nonlinear interactions between light and motion. Owing to the large speed of light, realizing cavity
optomechanics in the microwave frequency range requires cavities up to several mm in size, hence
making it hard to embed several of them on the same chip. An alternative scheme with much smaller
footprint is provided by magnomechanics, where the electromagnetic cavity is replaced by a magnet
undergoing ferromagnetic resonance, and the optomechanical coupling originates from magnetic
shape anisotropy. Here, we consider the magnomechanical interaction occurring in a suspended
magnetic beam – a scheme in which both magnetic and mechanical modes physically overlap and
can also be driven individually. We show that a sizable interaction can be produced if the beam
has some initial static deformation, as is often the case due to unequal strains in the constituent
materials. We also show how the magnetism affects the magnetomotive detection of the vibrations,
and how the magnomechanics interaction can be used in microwave signal amplification. Finally,
we discuss experimental progress towards realizing the scheme.

I. INTRODUCTION

In cavity optomechanical devices, the radiation pres-
sure force mediates an interaction between mechanical
modes and photons [1]. This has led to several develop-
ments, both fundamental and applied: ground state cool-
ing [2, 3] and entanglement [4, 5] of mechanical modes,
quantum information storage in the mechanical excita-
tion and interface, e.g. between superconducting qubits
and flying optical photons [6], sensitive measurements
with precision limits given by quantum mechanics; clas-
sical signal processing with tunable nonlinearities [7–11].

Several implementations of cavity optomechanics have
been considered: mirrors on cantilevers and beams [12,
13]; membranes in cavities [14, 15]; atomic clouds [16];
beams and plate capacitors in microwave resonators [2, 7,
8, 11, 17, 18]; photonic crystals patterned into beams [3].

Recently, the coupling between magnons and phonons
has been considered to obtain an interaction similar to
that in cavity optomechanics, but with the role of pho-
tons now played by magnons [19–22]. The interaction
between magnons and phonons is mediated by the combi-
nation of the magnetic shape anisotropy and the magne-
toelastic effect which make the frequency of the magnon,
i.e., the ferromagnetic resonance (FMR), dependent on
the strain. One interesting feature is that the speed of
spin waves is substantially lower than that of electromag-
netic waves, which can offer a much denser integration
of similar functionalities. Moreover, enhanced tunability
and richer interaction suggest additional possibilities for
devices for fundamental studies and applications.

We propose and theoretically describe a scheme for
magnomechanics that is a direct analog of a basic mi-
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a)

b)

FIG. 1. Schematic drawings of a doubly clamped mag-
netic beam with a static deformation. a) A three dimensional
perspective drawing of a static suspended beam with several
useful definitions (see main text). b) A simplified view of the
deformation of the beam axis from y direction. The gray dot-
ted line represents the static deformation u0(z) and the blue
solid line the total displacement u = u0 + u1 that includes
the time-dependent vibrations u1. Here, t̂ and n̂ are tangent
and normal vectors of the beam, corresponding to the local
direction of the current Id and the force f , respectively.

crowave optomechanical system where a suspended con-
ducting beam is capacitively coupled to a microwave res-
onator. We consider a suspended ferromagnetic beam
that is subjected to an external in-plane magnetic field.
This generates the FMR or magnon mode which is af-
fected by the vibrations of the beam. However, as shown
below, a simple doubly clamped beam does not give
rise to the desired magnomechanical coupling. Since the
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FMR frequency changes as much to upward as to down-
ward displacements of the beam, the analog of the ra-
diation pressure force vanishes. Such symmetry may be
broken by a static deformation as in Fig. 1a.

Following Fig. 1a, we consider a ferromagnetic beam,
magnetized as a single domain and having a rectangular
cross section with width w and height h. We assume that
the coordinate system may be oriented so that the beam
displacement is in the x direction and the beam axis is in
the z direction. The clamps fix the ends of the beam to
be in the xy plane parallel to one another with distance
L in the z direction. The external and static magnetic
field H0 is assumed to lay in the yz plane. The external
field H0 fixes the static magnetization M0 around which
magnons are generated.

The setup with a doubly clamped beam allows for sep-
arate driving of mechanical and ferromagnetic resonance
modes. The measurement scheme is conceptually similar
to microwave optomechanics. The mechanical mode can
be driven by driving a current Id through the beam –
assuming that the beam is conducting – which generates
a Lorentz force f on the beam due to the external field
H0. Similarly, the magnon mode can be driven by a time-
dependent magnetic field h, for instance, generated by a
microwave antenna. These schemes are commensurate
with the typical reflection and transmittance measure-
ments performed with vector network analyzers. More-
over, the separate control over mechanics and magnons
opens a perspective to signal transduction.

In contrast to recent experiments [19, 22], this setup
does not require a cavity to hybridize with the magnon
mode, lessening the physical size of the magnomechani-
cal system. Also, it does not require any magnetic field
gradients as in a few recent theoretical works [20, 21]; the
fields H0 and h are here considered to be homogeneous
in space.

Magnomechanics is in many ways similar to optome-
chanics but there are several points of distinction. In the
setup of Fig. 1, it is possible to modulate the optome-
chanical coupling by tuning either the strength or the
direction of the external magnetic field H0. This in turn
changes the response of the system to driving. We also
focus on a feature unique to magnetic systems: mag-
netic hysteresis and its effect on the magnomechanical
coupling.

The layout of the paper is as follows. In Sec. II we
derive the magnomechanical Hamiltonian for a statically
deformed beam. In Sec. III we describe the driving of the
mechanical and ferromagnetic resonances which is used in
Sec. IV to describe possible experiments for the system.
Section V discusses the first steps towards implement-
ing a doubly clamped magnetic beam as a platform for
magnomechanics.

II. MAGNOMECHANICAL HAMILTONIAN

To motivate the upcoming discussion, let us discuss
the optomechanical Hamiltonian in detail. The simplest
derivation of optomechanics follows from the assumption
of a cavity, described by a bosonic mode ĉ, whose eigen-
frequency ωc depends on the position x̂b of some mechan-

ical mode b̂ (e.g. a mirror connected to a spring). The
typical optomechanical Hamiltonian is then obtained by
an expansion of the cavity frequency to first order in the
position x̂b

Ĥoptm= ~ωmb̂
†b̂+ ~ωc(x̂b)ĉ†ĉ

' ~ωmb̂†b̂+ ~ωcĉ†ĉ+ ~g0ĉ
†ĉ(b̂† + b̂), (1)

where ωm is the eigenfrequency of the mechanical mode.
The constant g0 is called the optomechanical coupling
and the corresponding term describes the radiation pres-
sure force.

A similar mechanism can be found in ferromagnetic
systems. Then, the cavity is replaced by a ferromagnetic
resonance (FMR) and ĉ corresponds to a magnon mode.
There are at least two distinct physical mechanisms that
allow the FMR frequency to depend on a mechanical
mode: On one hand, it is well known that the shape of the
ferromagnet affects its FMR frequency [23]. On the other
hand, the magnetoelasticity directly changes the ferro-
magnetic dynamics, providing an extraneous anisotropy

field [24]. Therefore, the relevant mechanical mode b̂ is
the vibration of the ferromagnet itself.

In this section, we start by describing the mechanical
and ferromagnetic dynamics of a deformed beam from
which we derive the magnomechanical coupling that cor-
responds to g0 in Eq. (1).

A. Mechanical dynamics

We describe the deformations of the beam in Fig. 1
within the Euler-Bernoulli beam theory that is typically
used to describe beam dynamics, even in the nanometer
scale [25]. In order to describe the large static deforma-
tion (h < maxu0(z) in Fig. 1b) and vibrations around
it, we include in the Euler-Bernoulli equation nonlinear
terms that are typically neglected [26, 27]. We assume
that the beam material is homogeneous and isotropic.
Then, vibrations in different directions do not generally
couple, and the following analysis can be done separately
for vibrations in the x and y directions. However, it turns
out that the static deformation is needed for a finite mag-
nomechanical coupling. In the following, we thus neglect
the beam dynamics in the y direction. We also neglect
shear modes, that is, modes where the displacement in
the x direction depends on y, assuming that the width
w is appreciably smaller than the length L. These as-
sumptions are consistent with the actuation scheme of
Lorentz force in Fig. 1. Without any external force, the
beam displacement u(z, t) in the x direction obeys the
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equation [27, 28]

ρA
∂2u

∂t2
+ EIx

∂4u

∂z4
=

[
T0 +

EA

2L

∫ L

0

dz

(
∂u

∂z

)2
]
∂2u

∂z2
,

(2)
where T0 is the initial tension, ρ is the mass density, E
the Young modulus, A = wh the area of the beam with
a rectangular cross section, and Ix = wh3/12 the cor-
responding bending modulus. Here, the terms on the
right provide the nonlinear corrections related to ten-
sion whereas the usual Euler-Bernoulli kinetic and stress
terms are on the left.

In order to describe the initially buckled beam and
the flexural vibrations around it, we choose an approach
similar to Ref. 28 and discuss it briefly here. Further
details can be found in Appendix A.

A static deformation of the beam can be caused by
a compressive stress that is, for instance, due to an ex-
ternal force on the clamping mechanism or due to the
fabrication method of the beam. Here, we assume that
this compression may be described by a negative tension
T0 < 0 in Eq. (2). We then divide the total mechani-
cal deformation u into a static and dynamical part (u0

and u1, respectively) as in Fig. 1b and assume that the
dynamical deformation is small, that is,

u(z, t) = u0(z) + u1(z, t), u1 � u0. (3)

This allows for an expansion of the non-linear Euler-
Bernoulli equation (2) in the powers of u1. Together with
the boundary conditions of a doubly clamped beam for
both the static and dynamic deformations (∂z denotes z
derivative)

u0/1(0) = u0/1(L) = ∂zu0/1(0) = ∂zu0/1(L) = 0, (4)

the mechanical system is now fully described.
The static deformation u0 is solved from the zeroth

order equation in u1. We find a particularly simple ex-
pression

u0(z) = um
1− cos(2πz/L)

2
, (5)

where the parameter um gives the displacement at the
mid-point of the beam as u0(L/2) = um. This is also the
point of the largest displacement. There is a one-to-one
correspondence between um and the negative tension T0,
which is why they can be used interchangeably.

From the first order equation for the dynamic defor-
mation u1 – neglecting the terms that are of second or-
der in u1 – we can then find the flexural eigenmodes
χn and the corresponding eigenfrequencies ωn. These
do not admit to simple expressions but a numerical so-
lution is readily available [29]. We find that the di-

mensionless eigenfrequencies ω̄n = L2

h

√
12ρ
E ωn are deter-

mined by the ratio of the largest static deformation to
the height of the beam um/h. Especially, the eigenfre-
quencies of symmetric eigenmodes (n = 1, 3 . . . ) increase

with um/h while the eigenfrequencies of antisymmetric
modes (n = 2, 4 . . . ) are constant (see Fig. 7 in App. A).

With the assumption of small dynamical deformation,
the general solution can be expressed as a superposition

u1(z, t) =
∑
n

xn(t)χn(z) (6)

with the dynamical amplitudes xn and eigenmodes χn
normalized as

∫ L
0
χnχmdz = Lδij . This in turn gives the

mechanical energy

Hmc =
∑
n

[
p2
n

2m
+

1

2
ω2
nx

2
n

]
, (7)

where the mass is given by m = ρLA and the momen-
tum by pn = mẋn. Then, we can quantize the harmonic
oscillators as usual:

x̂n = xZPM
n (b̂†n + b̂n), (8a)

b̂†n = (xZPM
n )−1

(
x̂n −

i

mωn
p̂n

)
, (8b)

where xZPM
n =

√
~

2mωn
is the zero-point motion ampli-

tude and b̂†n, b̂n are boson operators for each mode n.

B. Ferromagnetic resonance

We describe the magnetization M and the magnon
mode of the beam in Fig. 1 assuming that it is magne-
tized as a single domain, similar to the Stoner-Wohlfarth
model [30]. The magnetization is driven by an effective
field Heff that takes into account the external magnetic
field H, the demagnetizing field Hdm, the magnetoelas-
tic field Hme, and intrinsic anisotropy field Han [31]. We
consider the magnetization almost uniform, adiabatically
following the beam geometry, and that the magnet is
in the Landau-Lifshitz-Gilbert regime where |M | = MS

with MS being the saturation magnetization. For the
external magnetic field H, we consider a strong static
component H0 and a perturbation h oscillating at a fre-
quency close to the ferromagnetic resonance (FMR) fre-
quency ωK , although the latter plays a role only in the
following section. Equivalently, the magnetization dy-
namics can be obtained from the magnetic free energy
density within the beam

F = −µ0H ·M + Fdm + Fme + Fan (9a)

µ0Heff = − δ

δM

∫
dx3 F [M ]. (9b)

To obtain the total magnetic energy, the free energy den-
sity F must be integrated over the beam. Next, we de-
scribe the terms in the free energy density in detail for
the deformed beam. We first discuss the results arising
from the assumption that there are no vibrations in y
direction (meaning that the displacement u is only in x
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direction and it is a function of z). Then, we return to
assess this assumption.

We calculate the demagnetizing field Hdm in the thin
plate limit, h � w . L, which allows us to neglect the
size-dependent terms in the demagnetizing field. It is
obtained by requiring the continuity of the H-field com-
ponents parallel to the beam, that is, Hy and the tan-

gent field Ht = [Hx∂zu(z) + Hz]/
√

1 + (∂zu(z))2, and
the continuity of the B-field component normal to the
beam, that is Bn = [−Bx + Bz∂zu(z)]/

√
1 + (∂zu(z))2

(see Fig. 1), where B = µ0 H
out outside the beam and

B = µ0 (H in +M) inside. The demagnetizing field Hdm

is within the beam and, thus, we set Hout = H and
H in = H + Hdm. Then, up to the second order in ∂zu,
we find its components

Hdm
x = −Mx[1− (∂zu(z))2] +Mz∂zu(z), (10a)

Hdm
y = 0, (10b)

Hdm
z = Mx∂zu(z)−Mz(∂zu(z))2 (10c)

from the continuity conditions. The corresponding free
energy density is given by

Fdm

µ0
=
M2
x

2
−MxMz∂zu(z) +

1

2

(
M2
z −M2

x

)
(∂zu(z))2.

(11)
It describes a hard axis parallel to n̂, the (position-
dependent) surface normal to the beam. Since we have
to integrate the free energy density due to the demagne-
tizing field over the beam volume, the component pro-
portional to ∂zu(z) disappears in the case of a doubly
clamped beam due to the boundary conditions u(0) =
u(L) = 0 [32]. Moreover, for a small deformation the av-
eraged surface normal aligns with the x direction, which
is why x axis is a hard axis for a uniform magnetization.
This means that for an in-plane magnetic field considered
below, the magnetization also lies in the yz plane. On
the other hand, deformations provide a position depen-
dent correction to this hard axis. These corrections are
sensitive to vibrations and thus provide one contribution
to the magnomechanical coupling.

In general, the magnetoelastic free energy density is
given by [24, 33]

Fme =
B1

M2
S

(M2
xεxx +M2

y εyy +M2
z εzz)

+
2B2

M2
S

(MxMyεxy +MxMzεxz +MyMzεyz),

(12)

where B1 and B2 are the magnetoelastic coupling con-
stants, and the strains εij are given in the non-linear
Euler-Bernoulli theory by [26, 34]

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∑
k

∂uk
∂xi

∂uk
∂xj

)
. (13)

Here, ui are the components of the general displacement
vector at a given point. The last term in εij is neglected
in the linear elasticity theory but is here of importance.

Let us then consider, for convenience, the average of
Fme over the beam volume and denote it by F̄me. Since
ux ≡ u and uy = uz = 0, only the derivatives ∂zu and ∂yu
are finite. Moreover, setting ∂yu = 0 for now, only εzz
and εxz are finite. However, in the process of averaging
over the beam volume, we encounter the same situation
as in the demagnetizing energy: first order terms ∂zu
average out due to boundary conditions. Thus, we find

F̄me =

∫
dx3

LA
Fme =

B1

M2
S

M2
z ε̄zz (14)

with the definition of averaged strain

ε̄zz =
1

L

∫
dzεzz =

1

2L

∫
dz(∂zu)2. (15)

Note that the total demagnetizing energy is also propor-
tional to ε̄zz due to the last term in Eq. (11). Moreover,
by using the expansion (3) of the displacement u into a
static deformation and dynamical vibrations, the average

strain can be expanded to first order by ε̄zz ' ε̄(0)
zz + ε̄

(1)
zz

with

ε̄(0)
zz =

1

2L

∫ L

0

dz (∂zu0)2, (16a)

ε̄(1)
zz =

1

L

∫ L

0

dz (∂zu0)(∂zu1). (16b)

Using the solution of the static deformation in Eq. (5), we

obtain ε̄
(0)
zz = π2

4 (um/L)2. Here, we expect that um � L

meaning that ε̄
(0)
zz � 1.

Finally, we assume that the magnetoelastic and de-
magnetizing fields dominate over the intrinsic (crystal)
anisotropies, that is, the total free energy of the intrin-
sic anisotropies is small compared to the described free
energies and may be neglected. At least, such an assump-
tion is valid in the case of a polycrystalline magnet. This
assumption may be lifted straightforwardly in favor of
a specific crystal anisotropy model; however, difficulties
may arise when trying to take into account the possible
direct effect of elasticity on the intrinsic anisotropies.

The average magnetic free energy density, with the as-
sumption of the displacements only in the x direction,
is

F̄ = −µ0H ·M +
B1

M2
S

M2
z ε̄zz

+µ0M
2
x/2 + µ0

(
M2
z −M2

x

)
ε̄zz. (17)

The addition of beam vibrations in the y direction only
provides an additional term to ε̄zz that is proportional
to (∂zuy)2. However, such term does not provide the
correct form of optomechanical coupling as in Eq. (1):
it is second order in the position operator. In contrast,
the contribution of vibrations in the x direction around
the static deformation u0 is linear in position because

of the expansion in Eq. (16) and ε̄
(1)
zz . Finally, we note
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that if ∂yu 6= 0, both εyz and εyy are also finite. With-
out a static deformation in the y direction, ε̄yy does not
provide magnomechanical coupling but ε̄yz will via the
nonlinear term (∂yu)(∂zu0). Similar terms would appear
from the demagnetizing field. Typically, such shear terms
are neglected in optomechanics: this is justified if the
beam width is much smaller than its length, or that only
modes without shear are actuated. We follow the same
assumption in this work.

We treat both cases of the metallic and insulator fer-
romagnets (e.g. a two-layer beam with a ferromagnetic
insulating layer and a metal layer). To do so, we can
observe that the current induced by a static field H0 and
the flexural dynamics gives rise to a negligible screening
effect for a thin film. Furthermore, the wavelength of
the driving field h, corresponding to a frequency close
to the ferromagnetic resonance c/ω ∼ 10−1 m, is much
larger than the characteristic dimension of the typical
micrometer-scale beam and, since we do no make par-
ticular assumptions on h, we can write the quasi-static
approximation:

∇×H0 ∼ 0 ∼ ∇× h, (18)

provided that we consider the screened h in the conduct-
ing case.

Next, we derive the quantum mechanical Hamilto-
nian for the magnon mode assuming a static deforma-
tion of the beam. We express the magnetization as
M = M0 + m, where M0 provides the direction of the
static magnetization in the presence of a static external
magnetic field H0 and m is the deviation to be quantized.
By using the assumptions of a single domain magnet and
the external field in yz plane, we have the situation de-
picted in Fig. 1

H0 = H0(cosφ ẑ + sinφ ŷ), M0 = MS(cos θ ẑ + sin θ ŷ).
(19)

That is, the magnetization M0 is also in the yz plane,
meaning that the static deformation of the beam does
not remove the hard axis in x direction. The magne-
tization angle θ depends on the direction and size of
the field H0. This dependence results from the com-
petition between the external, the magnetoelastic, and
the demagnetizing fields, as the angle θ is determined by
the free energy minimum from Eq. (17). Aside from the
global free energy minimum, there can exist a local min-
imum corresponding to a metastable magnetization con-
figuration. This describes magnetic hysteresis. Further-
more, the ferromagnetic resonance frequency depends on
the effective field and, then, on ε̄zz, giving rise to an
optomechanics-like coupling. The magnetic anisotropy
related with the strain also provides a coercive field which
in the case of a magnetic field perpendicular to the beam

is Hc = 2|B1/(µ0M
2
S)+1|ε̄(0)

zzMS . For further details, see
Appendix B 1.

We assume a Kittel-type magnon mode m that is spa-
tially uniform in the ferromagnetic beam and neglect
the dynamics of finite momentum magnons. This fol-
lows from the magnon driving setup: we assume that the

magnetic field h is homogeneous in space and, thus, the
spatially uniform mode is dominantly excited. In prac-
tice, however, the finite momentum magnons provide an
effective thermal bath for the vibrations and the spa-
tially uniform magnon mode. The spectrum of such a
bath would then depend on the external magnetic field.

The quantum magnetization Hamiltonian can be ob-
tained by substituting the Holstein-Primakoff relations
in the total magnetic energy Hmg =

∫
dx3F = LAF̄ (see

Appendix B 2). Choosing the reference direction ẑ′ along
the static magnetization M0 (ẑ′ = cos θ ẑ + sin θ ŷ), we
can expand and get

Mz′ = MS −
~γ
LA

m̂†m̂, (20a)

M+′ = mZPQm̂, M−′ = mZPQm̂
†,

(20b)

where mZPQ =
√

2~γMS

LA and γ is the gyromagnetic ra-

tio. The quantized magnetization components Mz′ and
My′ = 1

2i (M+′ −M−′) are related to those in the free

energy density F̄ in Eq. (17) by a rotation of the angle θ
about the x axis which leaves the x component invariant,
Mx = Mx′ = 1

2 (M+′ +M−′).
Without considering the driving terms h and the

coupling with the flexural dynamics ε
(1)
zz , the magnetic

Hamiltonian reads to the leading order in 1/MS

Ĥm

~
= ω1m̂

†m̂+
ω2

2
[m̂2 + (m̂†)2] + ω3 i

m̂† − m̂√
2

, (21)

where

ω1 = γµ0

[
H0 cos(φ− θ) +

MS

2

]
−3ε̄(0)

zz γµ0MS cos2 θ,

−ε̄(0)
zz

γB1

MS

(
3 cos2 θ − 1

)
(22a)

ω2 = γµ0
MS

2
− ε̄(0)

zz

γB1

MS
sin2 θ

−ε̄(0)
zz γµ0MS

(
sin2 θ + 1

)
, (22b)

ω3 = −
√

2γMS

mZPQ

[
ε̄(0)
zz

(
B1

MS
+ µ0MS

)
sin 2θ

+µ0H0 sin(φ− θ)
]
. (22c)

The term proportional to m̂† m̂ is the sum of four com-
ponents: one coming from the external magnetic field
H0, the second and third from the hard axis and the last
from the magnetoelastic coupling. On the other hand,
ω2 does not depend on the external magnetic field. This
is a consequence of the assumption that H0 is parallel to
the yz plane. Finally, the linear term ω3 does not depend
on the x-hard axis strength which is quadratic in Mx in
Eq. (17).
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Ĥm is a highly tunable quadratic Hamiltonian which
could be relevant in the continuous-variable quantum in-
formation processing [35]: the hard and easy axes pro-
duce a controlled squeezing. This leads to entanglement
between the spins in the magnetic material [36]. Re-
cently, it has been suggested that by tuning the frequency
ω1 close to ω2 and coupling the magnon system to a mi-
crowave cavity, a magnon Schrödinger cat state (super-
position of two coherent states) could be observed [37].
The fact that the magnon Hamiltonian is often not di-
agonal (i.e. Ĥm = ~ωKm̂†m̂) should also have other sig-
natures, e.g., in the shot noise of ferromagnet-conductor
systems [38].

Let us diagonalize the Hamiltonian (21). For this task,
it is useful to introduce dimensionless quadrature opera-
tors x̂m = (m̂† + m̂)/

√
2 and p̂m = i(m̂† − m̂)/

√
2 (the

subscript indicates the corresponding bosonic mode).
The Hamiltonian (21) may be expressed as

Ĥm

~
=
ω1 + ω2

2
x̂2
m +

ω1 − ω2

2
p̂2
m + ω3p̂m. (23)

The diagonalization is achieved by first displacing p̂m and
then scaling both x̂m and p̂m properly. That is, we de-

fine a new bosonic operator l̂ so that it has the quadra-
ture operators p̂l =

√
c(p̂m + d) and x̂l = x̂m/

√
c where

c =
√

(ω1 − ω2)/(ω1 + ω2) and d = ω3/(ω1−ω2). In the

validity range of the Euler-Bernoulli theory ε̄
(0)
zz � 1, we

generally find that c < 1. Thus, we call c the squeezing
factor. The variance of p̂l is smaller than the variance of
p̂m by a factor of c; the corresponding factor is 1/c > 1
for the variances of x̂l and x̂m. The diagonalized Hamil-

tonian is then given by Ĥm = ~ωK l̂† l̂ where the FMR
frequency ωK =

√
ω2

1 − ω2
2 may be expressed as

ωK = γµ0 [H0 cos(θ − φ) +Mε cos(2θ)]
1
2 (24)

×
[
H0 cos(θ − φ) + (1− 2ε̄(0)

zz )MS +Mε cos2(θ)
]1
2

.

Here,Mε = −2ε̄
(0)
zz

(
B1

µ0M2
S

+ 1
)
MS = ±Hc describes the

anisotropy energy due to magnetoelastic and demagne-
tizing field terms. The sign of this term depends on the
relative magnitude of the two effects in the typical situ-
ation with B1 < 0. The corresponding bosonic transfor-
mation is given by

l̂= ζ+ m̂+ ζ− m̂
† + i

(ζ+ + ζ−)ω3√
2ωK

, (25a)

ζ±=

√
1

2

(
ω1

ωK
± 1

)
. (25b)

Note that without strain, i.e., ε̄
(0)
zz = 0, we obtain

ωK = γµ0

√
H0(H0 +MS) as expected while c =√

H0/(H0 +MS) and d = 0. Therefore, the squeezing
is inherent to the magnon system and produced by the
out-of-plane hard axis while the displacement is due to
the static deformation.

FIG. 2. The mechanical mode parameter β̄n as a function of
the static bending parameter um divided by the height h of
the beam for the three first n = odd modes.

C. Magnomechanical coupling

By introducing the flexural component of the strain

ε̄
(1)
zz via Eqs. (6) and (16) and replacing ε̄

(0)
zz in Eq. (22)

by the full ε̄zz, we have both a magnomechanical and
linear coupling.

The magnomechanical interaction Hamiltonian reads

Ĥmm= ~
∑
n

(gme
n − gdm

n )(b̂†n + b̂n)
[
m̂†m̂(3 cos2 θ − 1)

+
(m̂†)2 + m̂2

2
sin2 θ − MSLA

~γ
cos2 θ − sin2 θ

2

]
(26a)

−~
∑
n

gdm
n (b̂†n + b̂n)

[
m̂†m̂+

(m̂†)2 + m̂2

2
+ 1
]
,

gme
n = −β̄n

hxZPM
n

L2

γB1

MS
, (26b)

gdm
n = β̄n

hxZPM
n

L2
γµ0MS , (26c)

β̄n=
L

h

∫ L

0

dz(∂zu0)(∂zχn), (26d)

where gme
n and gdm

n refer to magnetoelastic and demag-
netizing coupling respectively. From the dimensionless
mode parameters β̄n we get a selection rule: only the
modes with odd n = 1, 3, . . . corresponding to even mode
functions give rise to a coupling. In Fig. 2, we plot β̄n for
the three lowest even modes as a function of the static
bending parameter um. We note that the change in the
eigenmode shape χn is as a function of um so drastic that,
at certain points, χn becomes orthogonal to the static
deformation u0 (for further details, see Appendix A).
At these points, the magnomechanical coupling vanishes.
Also, rather surprisingly, there is no clear hierarchy of
the parameters β̄n but rather, they depend strongly on
the static deformation. It may hence be that a higher-
frequency mode couples stronger to the magnetization
dynamics.
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There is also a linear coupling,

Ĥl = ~
∑
n

g(l)
n i

m̂† − m̂√
2

b̂†n + b̂n√
2

sin 2θ, (27a)

g(l)
n = β̄n

hxZPQ√
12L2

MS

mZPQ
γµ0Mε. (27b)

It also depends on the mechanical mode parameter β̄n
and is directly proportional to the coercive field Hc =
|Mε| measured perpendicular to the beam. In this work,
however, we concentrate on a situation in which the FMR
and mechanical frequencies are strongly detuned and the
linear coupling will therefore play no further role.

Note that the interaction terms in Eqs. (26) and (27)
are written in the original non-diagonalized basis, and
therefore are not yet the relevant ones for magnomechan-
ical measurements. Using the transformation (25) allows
us to write this in the diagonal basis. Neglecting dou-
bly rotating terms, the result for the magnomechanical

coupling Hamiltonian is Ĥmm = ~
∑
n gm,n(b̂†n + b̂n)l̂† l̂

with

gm,n = 2(gme
n −gdm

n )

(
c cos2 θ +

1

c
cos 2θ

)
−2cgdm

n . (28)

The squeezing factor

c =

√
H0 cos(θ − φ) +Mε cos(2θ)

H0 cos(θ − φ) + (1− 2ε̄
(0)
zz )MS +Mε cos2(θ)

depends on the direction of the magnetic field in a non-
trivial way which is why the magnomechanical coupling
depends not only on the direction of the field but also
its precise magnitude setting the direction of the mag-
netization. Moreover, the magnitude is different for the
stable and metastable magnetizations for fields below the
coercive field.

We illustrate the dependence of the magnomechanical
coupling on the magnetic field direction in Fig. 3, as-
suming that z-axis is a hard axis (|B1| < µ0M

2
S). We

observe that, in general, as the magnitude of the exter-
nal field H0 is increased, the magnomechanical coupling
decreases. Focusing on the angle φ = 90◦, the magnome-
chanical coupling changes sign as a function of the exter-
nal magnetic field strength H0 and approaches the value
gm,n → −2gme

n as MS/H0 → 0. Lastly, we find that
H0 = Hc/2 represents the point where the metastable
magnetization ceases to exist for some values of φ. For ex-
ternal fields H0 that are between Hc/2 and Hc this shows
up in the magnomechanical coupling as divergences; it
should be noted, however, that the free energy barrier is
very small at these points.

An interesting consequence of our choices for the mag-
netization free energy is that there are always two val-
ues of B1 that correspond to a given coercive field Hc.
This changes the magnomechanical coupling constant as
shown in Fig. 4. There, the magnetoelastic energy is neg-
ative (B1 < 0) and dominates, that is, |B1| > µ0M

2
S . At

FIG. 3. Magnomechanical coupling constant gm,n as a func-
tion of the external field direction φ. The different curves
represent different magnetic field strengths H0, characterized
by the coercive field Hc at φ = 90◦: the dotted lines cor-
respond to the metastable magnetization configuration when
H0 < Hc. Note that this metastable state does not necessarily
exist for all φ. Here, we set um/L = 0.1 and B1 = −0.6µ0M

2
S

so that 50Hc ≈ MS . The inset shows the corresponding hys-
teresis curve for φ = 90◦.

FIG. 4. Magnomechanical coupling constant gm,n as a func-
tion of the external field direction φ that is otherwise identical
to Fig. 3 except we set B1 = −1.4µ0M

2
S . With this value, the

coercive field at 90◦ remains the same but z-axis becomes an
easy axis, changing both the hysteresis curve as well as the
magnomechanical coupling.

the same time, the z-axis becomes an easy axis. Thus,
a hysteresis measurement separates these two situations
with the same coercive field; see the insets of both Figs. 3
and 4 which describe the hysteresis curves obtained for
an external magnetic field pointing perpendicular to the
beam at φ = 90◦.

Finally, we note that interesting physics remains even
if the magnomechanical coupling vanishes, gm,n = 0. In
such a case, a second order cross-Kerr-type term, i.e., a
term quadratic in the deformation, may remain finite.
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The situation is analogous to the ”membrane in the mid-
dle” optomechanics setup with a vibrating semitranspar-
ent mirror in the center of the cavity which is proposed as
a way of measuring the phonon number in the mechanical
mode [14]. In the doubly clamped magnetic beam, such
terms are always present as discussed below Eq. (17).
Interestingly, they can be finite without (u0 = 0) and
with the static deformation. The strength of the cross-
Kerr terms may also depend on the external field H0.
Especially in the beam with a static deformation, there
are multiple values for H0 and φ which give gm,n = 0
as shown in Figs. 3 and 4 However, the analysis of the
cross-Kerr terms is beyond the scope of this work.

III. DRIVING INDIVIDUAL RESONANCES

In order to experimentally see the magnomechanical
coupling and its effects, it is necessary to consider the
ways the magnomechanical system may be driven. At
the same time, dissipation to the environment is still to
be taken into account. Here, we discuss some general
features of the driving while showing an example of a
possible scheme together with a model for its description
using the input-output formalism [39]. For brevity, we
focus only on reflection measurements.

The driving of the magnon mode m̂ is achieved by ap-
plying an alternating magnetic field h that is perpendicu-
lar to the static field H0. Here, it is convenient to choose
h in the direction of the displacement u, i.e., in the x-
direction. Then, h is independent of the direction φ of
the static field H0. This produces an extra term in the
Hamiltonian, proportional to µ0|h|Mx or |h|(m̂ + m̂†).
The coupling rate of a similar drive is described and mea-
sured in Ref. [40]; importantly, it is directly proportional
to the spatial overlap of the magnon mode and the driv-
ing field.

Within the input-output formalism, we do not include
such driving to the closed system Hamiltonian, but rather
assume that there exists a bath of free electromagnetic
modes to which the magnon mode m̂ is coupled. Inte-
grating out these free modes gives rise to dissipation and
the possibility of the bath exciting the system, either via
thermal noise or an external drive. In the diagonalized
frame, the squeezing factor c is introduced to the cou-
pling between the bath and the magnon which modifies
the dissipation rate.

Since the alternating magnetic field can be produced
by an alternating current, we can readily associate the
input and output fields of the magnon mode to in- and
outgoing voltage signals on a transmission line. If we now

denote the driving field by l̂in, we have the input-output

relation l̂out − l̂in =
√
κe l̂ in the diagonalized frame. The

dynamics is then determined by

˙̂
l =

i

~
[ĤS , l̂]−

κ

2
l̂ −
√
κe l̂in, (29)

where ĤS = Ĥm + Ĥmm + Ĥmc is the system Hamil-

tonian, κ the total effective magnon linewidth, and κe
the dissipation rate related to external driving. In the
proposed setup, we expect that κe/κ � 1 due to only a
small proportion of the external field residing within the
beam.

Similar to traditional optomechanics, the mechanical
mode does not necessarily need to be actuated. How-
ever, it may still be driven and characterized, for in-
stance, within the magnetomotive scheme [41–43] by uti-
lizing the static field H0. If an alternating current Id
goes through the beam, a Lorentz force of magnitude
f = Idµ0(H0 sinφ + MS sin θ) per unit length acts on
the beam to the direction n̂(z) that is locally perpen-
dicular to the beam as in Fig. 1b. We may neglect the
dynamical magnetization in this force as we assume its
characteristic frequency to be much larger than those of
the vibrational eigenmodes. Likewise, the flexural (dy-
namic vibrational) modes should have a negligible effect
on the direction n̂(z) and, thus, we can consider only the
normal of the static deformation u0 here. It is possible to
find the x-component of the force, fx(z), which in turn
must be projected to the eigenmodes χn to determine its
effect on the amplitude xn. The effective force per unit
length on xn is

feff =

∫ L

0

dz

L
χnfx = f

∫ L

0

dz

L

χn√
1 + (∂zu0)2

. (30)

It is possible redefine the mass m in Eq. (7) to contain the
integral term; this gives the so-called effective mass [1].
Due to the mirror symmetry of the static beam, only the
symmetric vibrational eigenmodes couple to this force.
Note that a similar analysis holds for the force in the z
direction: such force fz is negligible when ∂zu0 � 1 and
it only couples to the antisymmetric vibrational eigen-
modes. By changing the frequency of the drive Id, we
may then drive individual flexural modes on resonance if
the vibrations are of high quality.

What is then observed is the induced voltage, as the
beam vibrates and thus changes a magnetic flux through
a circuit in the xz-plane. This induced voltage is

Vemf = µ0H0 sin(φ)

∫ L

0

dz
∂u(z)

∂t
= µ0H0 sin(φ)L

∑
n

ẋn.

(31)
That is, all flexural modes contribute to the voltage. The
static magnetization M0 may be neglected as it does not
provide a change in the magnetic flux in the first or-
der while the dynamical magnetization changes at much
higher frequency than the vibrations.

The modeling of the magnetomotive scheme can be
done within the input-output formalism. First, we define
formally the input and output fields for each vibration

mode b̂n by the usual relation b̂n,out − b̂n,in =
√
γn,eb̂n

where γn refers to the total dissipation rate of the vibra-
tion mode n whereas γn,e refers to external losses. One
may then transform this formal input-output relation to
match the induced voltage in Eq. (31) by multiplying by



9

H0L sinφ, using x̂n ∝ (b̂n + b̂†n), and taking the time
derivative. These transformations also define new input
and output fields. However, in the Fourier space, these
are linear transformations so we may equally well con-
sider the original input-output relation, as long as we
remember that all the fields are in fact proportional to
sinφ and that γn,e depends on the force projection on
the eigenmodes. The dynamics of the flexural modes are
obtained by

˙̂
bn =

i

~
[ĤS , b̂n]− γn

2
b̂n −

√
γn,eb̂n,in (32)

from which it is straightforward to obtain the output

b̂n,out.
Lastly, it should be noted that there is ”cross-driving”,

i.e., the different drives exemplified here interact if they
are applied simultaneously. The alternating current Id
through the beam causes a force proportional to µ0|h|Id
to the beam. Likewise, it causes an extraneous magnetic
flux which generates induced voltage proportional to the
magnitude of current Id. These effects are negligible in
most cases with a frequency mismatch of the magnon and
flexural modes.

IV. MAGNOMECHANICS

With the magnomechanical Hamiltonian and the
scheme to drive and observe such a system, we may
describe an example magnomechanics experiment. The
wealth of literature on optomechanical systems can be
used straightforwardly due to the similar form of the
Hamiltonian. However, there are a few issues that are
important for magnomechanics specifically.

The relevant magnitude of the eigenfrequencies and
dissipation rates of the magnon and mechanical system
affect the possible measurements. As mentioned in the
derivation of the magnomechanical Hamiltonian, we as-
sume that the mechanical frequency is much smaller than
the FMR frequency, ωm � ωK . These systems are also
assumed underdamped, meaning that for each system the
eigenfrequency is larger than the dissipation rate, ωm > γ
and ωK > κ. The only question left is thus whether the
mechanical eigenfrequency ωm is larger than the FMR
linewidth κ or not. The case ωm > κ is called the re-
solved sideband regime which, in optomechanics, has al-
lowed for ground state cooling of the mechanical oscilla-
tor [2, 3, 44] and amplification of microwave signals at
the quantum limit [45]. This is also the regime of ex-
periments in Refs. 19 and 22 performed with microwave
cavities and YIG spheres. However, for many other fer-
romagnetic materials, it may be expected that ωm < κ.
Although the analysis could proceed either way, we focus
on results in this non-resolved sideband regime where the
FMR linewidth κ dominates.

Next, we describe in detail an amplification scheme for
microwave signals in the non-resolved sideband regime

which is both theoretically known [46] and experimen-
tally observed [47] in optomechanical systems. Espe-
cially, we focus on the aspect that is not present in op-
tomechanics: the tunability of the magnomechanical cou-
pling as well as the magnon eigenfrequency with respect
to the external static field H0.

The derivation of the reflection coefficient, often called
S11, follows the lines of Ref. 46. First, we assume a
strong drive on the magnon system at a frequency ωd
and focus on the deviations around the driven system.

That is, we replace l̂ → (
√
n + l̂)e−iωdt, where we iden-

tify n as the number of magnons, in the Hamiltonians
of Eqs. (21), (26), and (27), using the transformation in
Eq. (25). Note that the Holstein-Primakoff transforma-
tion gives an upper limit to the strength of the drive,
given by MS � ~γn/(LA). Then, we may neglect the
second order terms of the deviations as well as the terms
that rotate at frequency ωd or faster. The dynamical part
of the Hamiltonian then reads in the diagonalized frame

ĤS/~ = ωK l̂
† l̂ +

∑
j

ωj b̂
†
j b̂j +

∑
j

Gj x̂lx̂b,j , (33)

where x̂b,j = (b̂j + b̂†j)/
√

2 and the effective coupling con-

stant follows from Eq. (28) by Gj = 2
√
ngm,j , that is,

Gj = 4
√
n

[(
gme
j − gdm

j

)(
c cos2 θ +

1

c
cos 2θ

)
− cgdm

j

]
.

(34)
The effective magnomechanical coupling is thus enhanced
by the number n of magnons and is tunable by the exter-
nal field H0, as it determines the direction of the mag-
netization θ and the squeezing factor c.

The response matrix of the magnomechanical system
is obtained by utilizing the input-output equations in
the Fourier space and the transformation between the

bosonic operators l̂ and b̂j and their respective quadra-
tures. For simplicity, let us focus on a single flexural
mode j and denote ωj = ωm while dropping the other
subscripts. We find now the linear response

l̂(ω)

l̂†(ω)

b̂(ω)

b̂†(ω)

 = T


l̂in(ω)

l̂†in(ω)

b̂in(ω)

b̂†in(ω)

 , (35)

where all elements of the matrix T may be non-zero (fur-
ther details given in Appendix C). Here, it should be

noted that l̂ is now defined in a frame that corotates
with the drive so the frequencies are defined with respect

to the drive frequency ωd. For example, l̂in(ωp) corre-

sponds to an input at frequency ωd + ωp whereas l̂†in(ωp)
corresponds to ωd − ωp.

The output fields are readily obtained from the rela-

tions l̂out = l̂in +
√
κe l̂ and b̂out = b̂in +

√
γeb̂. Espe-

cially, we can define now the reflection coefficients for
the magnon and mechanical systems as Sl11 = 1+

√
κeT11
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and Sb11 = 1 +
√
γeT33. Likewise, the transduction coeffi-

cients may be defined as Slb =
√
κeT13 (from mechanics

to magnons) and Sbl =
√
γeT31 (vice versa).

The amplification of the probe signals may be observed
by calculating the reflection coefficient. Assuming that
the magnon dissipation rate κ is large compared to ωm
and γ, we obtain for ωd = ωK and ω = ±ωm

Sl11 = 1− 2
κe
κ

(
1± G2

κγ

)
(36)

for high quality vibrations ωm � γ. Thus, if the cou-
pling G is large enough, we find |Sl11| � 1. At the same
time, the mechanical response is sharply peaked at ap-
proximately ω̃m ≈ ωm − Re Λ where

Λ =
iωm∆G2

[i(ω̃m + ωm)− γ
2 ][∆2 + (iω̃m − κ

2 )2]
(37)

and ∆ = ωK−ωd. This change in the resonant frequency
corresponds to the optical spring effect of optomechanics.
At this frequency, the reflection coefficient for the force
driving the mechanics is given by Sb11 = 1−γe/(γ2 +Im Λ).
Thus, the current through the beam may be modified by
the magnomechanical coupling.

The reflection coefficients for different angles φ of the
external field H0 are graphed in Fig. 5. With the chosen
parameters, the effective coupling constant (34) vanishes
at φ ≈ 43◦ (see also the orange line in Fig. 3) and, thus,
the responses match those of the uncoupled systems (blue
line). It would be possible to obtain larger values of the
coupling constant with values φ ≈ 0 but, as discussed
in Sec. III, this would not be commensurate with the
magnetomotive scheme for which the input and output
amplitudes depend on sinφ.

V. EXPERIMENT ON A MAGNETIC BEAM

Already in some experiments, magnetic beams and
cantilevers have been considered [48–50]. Here we
demonstrate successful fabrication and characterization
of a magnetic beam made out of CoFeB, which exhibits
a large magnetostriction, and is promising for the up-
coming magnomechanics experiments. The beam is a bi-
layer system, consisting of non-magnetic aluminium and
the CoFeB layer. Using a combination of electron-beam
lithography, evaporation, DC sputtering and a lift-off-
based process, we first fabricated the beam structures
over a silicon substrate. Subsequently, using reactive
ion etching, we created the suspended bridge structures.
The final fabricated bridges had a length of 50 µm and
a width of 10 µm. The aluminium layer had a thickness
of 100 nm while the CoFeB layer was 50 nm thick (with
a Ta capping layer of 3 nm). Consequent to the fabri-
cation steps, an asymmetric deformation is observed in
the bridge at room temperature as seen in Fig. 6. This
deformation may be attributed to a compressive stress

a)

b)

FIG. 5. Reflection coefficients of the magnon a) and flex-
ural b) systems for three different angles φ while the mag-
nitude of the external field H0 = 5Hc ≈ 0.1MS is fixed.
In a), we set ∆ = 0 whereas in b) ∆ = −ωm for all an-
gles. The magnitude of the effective coupling rate is given by
2
√
ngdmj = 0.8ωm, and the dissipation rates are κ = 15ωm,

γ = 0.1ωm, κe/κ = 0.1, and γe/γ = 0.01. We choose here
relatively low quality vibrations for visual clarity. Otherwise,
the parameters match those of Fig. 3 so that the orange line
there characterizes the angular dependence of the magnome-
chanical coupling constant.

owing to a mismatch of the elastic constants in the dif-
ferent layers. Since the thermal expansion coefficients
of these layers are also different, it is expected that the
compressive stresses observed at room temperature may
be changed at cryogenic temperatures. Nevertheless, as
pointed out in the above sections, the presence of the
asymmetric deformation is necessary for providing a siz-
able magnomechanical coupling.

We also characterized the magnetic hysteresis of the
suspended beam and found the low-temperature switch-
ing field Hsw = 30 mT in the presence of a field in the y
direction, i.e., perpendicular to the wire. This hence cor-
responds to the case considered in Fig. 3. Using the sat-
uration magnetization of CoFeB, MS ≈ 1200 emu/cm3

corresponding to µ0MS ≈ 1.5 T or γµ0MS ≈ 42 GHz,

this Hsw would be obtained with ε̄
(0)
zz [1 +B1/(µ0M

2
S)] =

0.01 assuming that |B1| � µ0M
2
S . This corresponds to

the maximum deformation um ≈ 0.06L, quite well in
line with what is seen in Fig. 6. It should, however, be
noted that the magnetoelastic constant B1 does not only
depend on the material but also on the details of fabrica-
tion [33, 51]. To our knowledge, there are no accurate es-
timates available in the literature that would correspond
to our system.

The mechanical eigenfrequency may be estimated by
using the solved dimensionless eigenfrequencies in Fig. 7
(see Appendix A) and, for simplicity, by using the char-
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FIG. 6. Scanning electron micrograph of a doubly clamped
beam fabricated in our laboratory (see main text for further
details). A close inspection of the beam or bridge segment
reveals that the beam is deformed but its structure differs
slightly from the idealized beam in Fig. 1. The process of
reactive ion etching during the fabrication also leads to the
formation of an undercut, further contributing to the asym-
metry.

acteristic values for a beam fully made of aluminum,
ρ = 2.7 g/cm3 and E = 70 GPa. Since um/h ≈ 20
according to the analysis based on the switching field,
we find that the eigenfrequency of the first mode is
ω1/(2π) ≈ 1 MHz. This corresponds to the zero-point
motion amplitude xZPM

1 ≈ 6× 10−15 m. In contrast, if
um/h = 10, we would find the eigenfrequency 0.5 MHz as
the conversion from Fig. 7 is given by ωn ≈ (88 kHz)×ω̄n.

Finally, let us estimate the expected size of the mag-
nomechanical coupling for this setup. Using um/h ≈ 20,
which gives the mechanical mode parameter β̄1 ≈ 3, we
get gdm

1 ≈ 50 mHz. This is the scale used in Figs. 3 and
4 and depending on the precise magnetic field the ac-
tual magnomechanical coupling may be somewhat larger.
Due to the non-linear nature of the Euler-Bernoulli equa-
tion used, if the static deformation was half as large,
um/h = 10, we would find gdm

1 ≈ 0.15 Hz. These cou-
plings are comparable to what was found for the mag-
nomechanical coupling in [19, 22] for YIG spheres and
somewhat smaller than the optomechanical coupling in
our setups (e.g., g ∼ 100 Hz in [8]).

Experimental preparations on realizing the magnome-
chanical physics are currently ongoing in our laboratory.

VI. CONCLUSIONS

We present a detailed analysis of magnetoelastic inter-
actions in suspended micromechanical beams made out
of ferromagnetic materials. We find the mechanical vi-
brations of the beam, and its ferromagnetic resonance,
exhibit nonlinear interactions reminiscent of radiation-
pressure coupling in cavity optomechanics or in mi-
crowave optomechanics. The interaction, however, is
more versatile and easily configurable. Part of the in-
teraction arises via magnetoelasticity, where the vibra-

tions modulate the frequency of the magnetic resonance.
The dominant coupling under typical conditions, how-
ever, is due to demagnetizing field of the beam, which
is affected by the instantaneous shape of the vibrating
beam. The predicted radiation-pressure coupling rates
are smaller than in microwave optomechanics, but still
sizable enough that optomechanical physics such as cool-
ing, amplification and lasing are within experimental
reach. In comparison to optomechanics, our system has
the assets of a small footprint, a reconfigurable interac-
tion, and a high power tolerance of the magnon reso-
nance.
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Appendix A: Beam dynamics

From the non-linear Euler-Bernoulli equation (2) one
can find a beam configuration that has a static defor-
mation as well as the eigenmodes in which the beam
vibrates [28]. These eigenmodes depend directly on the
static deformation which is caused in our description by a
negative tension T0. That is, there is a constant compres-
sive stress or ”load” which we denote by P = −T0 > 0.

For the following analysis, it is useful to make Eq. (2)
dimensionless by introducing the relations

ū =

√
A

Ix
u, z̄ =

z

L
, t̄ =

√
EIx
ρAL4

t, (A1a)

T̄0 =
L2

EIx
T0, f̄ =

A1/2L4

EI
3/2
x

f, (A1b)

where f = f(z) is the external force per unit length on
the beam. The dimensionless non-linear Euler-Bernoulli
equation reads (P̄ = −T̄0)

∂2ū

∂t̄2
+
∂4ū

∂z̄4
+

[
P̄ − 1

2

∫ 1

0

dz̄

(
∂ū

∂z̄

)2
]
∂2ū

∂z̄2
= f̄ . (A2)
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We set the force to vanish, f̄ = 0, as we are interested in
the static deformation and the eigenmodes of vibrations
around it.

Let us now assume ū(z̄, t̄) = ū0(z̄) + ū1(z̄, t̄) where
ū0 � ū1 as in the main text. Using this assumption, we
may insert the relation for ū(z̄, t̄) to Eq. (A2) and sep-
arate the resulting equation into two by considering the
zeroth and first power of ū1. We find that the static de-
formation ū0 is determined by the zeroth order equation
which reads

∂z̄z̄z̄z̄ū0 + ᾱ2 ∂z̄z̄ū0 = 0, ᾱ2 = P̄ − 1

2

∫ 1

0

dz̄ (∂z̄ū0)
2
.

(A3)
A static deformation is possible only if ᾱ2 > 0; otherwise
ū0 = 0 is the only solution. This is known as the buckling
transition.

We may begin solving Eq. (A3) by assuming that ᾱ2

is independent of u0. If indeed ᾱ2 > 0, one can provide
a general solution of the differential equation in terms of
trigonometric and linear functions. However, the bound-
ary conditions (4) fixes ᾱ = 2π for a single anti-node
solution which reads

ū0(z̄) = ūm
1− cos(ᾱz̄)

2
. (A4)

Here, the parameter ūm = ±4
√

P̄
ᾱ2 − 1 is fixed self-

consistently by inserting the solution to the definition
of ᾱ2. It also describes the value ū0 of deformation in
the middle of the beam z̄ = 1/2. Note that P̄ may be
removed in favour of ūm if the condition for buckling
P̄ > ᾱ2 = 4π2 holds true.

In the first order of ū1, its dynamics is described by

∂t̄t̄u1 + ∂z̄z̄z̄z̄ū1 + ᾱ2 ∂z̄z̄ū1 − β̄ ∂z̄z̄ū0 = 0, (A5a)

β̄ =

∫ 1

0

dz̄ (∂z̄ū0) (∂z̄ū1) . (A5b)

We can now find the flexural eigenmodes by Fourier
transforming ū1(z̄, t̄) = ū1(z̄) e−i ω̄ t̄ which gives

∂z̄z̄z̄z̄ū1 + ᾱ2∂z̄z̄ū1 − ω̄2 ū1 = β̄ ∂z̄z̄ū0. (A6)

Here the dimensionless frequency ω̄ is related to the phys-

ical one with ω =
√

E Ix
ρAL4 ω̄. The differential equa-

tion (A6) is written so that the left hand side is the ho-
mogeneous equation while the right hand side provides
the non-homogeneous term. It is straightforward to check
that setting ū1 ∝ ∂z̄z̄ū0 gives a particular solution. Thus,
the general solution may be written as

ū1(z̄) = C1 cos(δ+z̄) + C2 sin(δ+z̄) + C3 cosh(δ−z̄)

+ C4 sinh(δ−z̄) + C5
ᾱ2ūm

2
cos ᾱz̄, (A7)

where

δ± =

√√
ᾱ4 + 4ω̄2 ± ᾱ2

√
2

. (A8)

FIG. 7. The dimensionless eigenfrequencies of the dynamical
mode ū1.

Here, the terms with C1 . . . C4 specify the solution of the
homogeneous equation.

The constants C = (C1, C2, C3, C4, C5) may be fixed
in the following manner: The boundary conditions for
ū1 give in total four equations. The last equation is ob-
tained by inserting the full general solution into Eq. (A6)
where we use the definition (A5b) for β̄. This set of equa-
tions can be rearranged into a linear equation MnlC = 0,
where the matrix Mnl depends on frequency ω̄. One can
then solve the equation numerically in many ways: we use
the singular value decomposition to minimize the small-
est singular value and use the corresponding vector C
belonging into the null space of Mnl. We then normalize
the found solution for ū1 so that it corresponds to the

eigenmode χn, that is,
∫ 1

0
dz̄χ2

n = 1.

We note that it would be possible to remove C5 by
setting C5 = −β̄/ω̄2 which gives the correct particular
solution and, then, self-consistently solve for β̄. How-
ever, the division by the unknown frequency is numeri-
cally problematic since values ω̄ ≈ 0 are needed. Even
with finite frequencies, this method did not produce or-
thogonal modes. With the method described above, we
find the eigenmodes χn to be orthonormal to a reasonable

numerical accuracy, meaning that
∫ 1

0
dz̄χnχm ≈ δnm.

In Fig. 7 we have plotted the five first eigenfrequencies.
The structure of eigenfrequencies as a function of the
static deformation um is that of crossings and avoided
crossings. We find, as in Ref. 28, that the antisymmetric
modes with n = 2, 4 . . . do not depend on the static
deformation. This is because the static deformation is
symmetric and, thus, β̄ = 0 for these modes. As um
increases, there is a crossing in eigenfrequencies between
the symmetric and antisymmetric mode, followed by an
avoided crossing with the next symmetric mode.

A few examples of the eigenmodes χn for different
static deformations um are plotted in Fig. 8. In general,
we note that the eigenmodes χn with odd n are changed
by the static deformation while χn with even n remain
the same. More specifically, the first mode χ1 is plotted
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a) b)

c) d)

FIG. 8. Eigenmodes χn for a) n = 1, b) n = 2, c) n = 3,
and d) n = 5. Here, um/h are chosen from approximately
{0.5, 19, 37, 55, 73, 91}.

in Fig. 8a). After the crossing in eigenfrequencies ω1 and
ω2 around um/h ≈ 14 the eigenmode χ1 starts to resem-
ble the third mode at small um: it has three anti-nodes.
The same can be observed for χ3 in Fig. 8c) where the
eigenmodes have either three or five anti-nodes. On the
other hand, the eigenmode χ2 remains independent of
um/h as can be seen in Fig. 8b).

Appendix B: Magnetic dynamics

1. Magnetic hysteresis

The static component of the magnetization M0 can be
determined for a given external field H0, knowing the sat-
uration magnetization MS , the magnetoelastic constant

B1 and the static strain ε̄
(0)
zz .

For simplicity, we assume that the static component
of the magnetic field is parallel to the yz-plane: H0 =
H0(cosφ ẑ+ sinφ ŷ) with H0 > 0. In this case, the static
magnetization M0 is obtained by minimizing the mag-
netic free energy, proportional to Eq. (17) with H = H0

and M = M0, which is up to a constant

F0 =−µ0H0 ·M0 + µ0

(
1

2
− ε̄(0)

zz

)
M2
x

+µ0

(
B1

µ0M2
S

+ 1

)
ε̄(0)
zzM

2
z . (B1)

In the validity range of the Euler-Bernoulli theory

∂zu(z)� 1 and ε̄
(0)
zz � 1, we must have M0x = 0. Thus,

FIG. 9. The static magnetic free energy derived in Eq. (B2)
for B1 > −µ0M

2
S (corresponding to a hard z-axis) as a func-

tion of the angle θ, as the magnitude H0 of the external
field pointing at φ = 45◦ is increased (orange arrows). The
blue line corresponds to H0 = 0. As H0 is increased, the
metastable local minimum of F0 disappears and the global
minimum approaches φ.

we can make the ansatz M0 = MS(cos θ ẑ+sin θ ŷ) where
the angle θ is obtained by minimizing

F0

µ0MSH0
= − cos(θ − φ) +

(
B1

µ0M2
S

+ 1

)
MS

H0
ε̄(0)
zz cos2 θ.

(B2)
Since, in general, the magnetoelastic constant B1 can be
positive or negative, the solution of θ depends on this
choice. More precisely, the sign of B1/(µ0M

2
S) + 1 deter-

mines the behavior of the magnetic free energy F0 when

H0 and ε̄
(0)
zz are fixed and non-zero. In either case, the

competition between the external magnetic field, the de-
magnetizing field, and the magnetoelastic field gives rise
to hysteresis that is similar to the Stoner–Wohlfarth hys-
teresis [30, 52].

If B1 > −µ0M
2
S , the prefactor of cos2 θ term in

Eq. (B2) is positive and, therefore, the z axis is a hard
axis of the magnetic system. The magnetic free energy
in this situation is depicted in Fig. 9 as a function of θ.
Without any external field (blue line), the minima are
found at θ = ±90◦. When the external field magnitude
H0 is increased, at first, one of the minima becomes a
global minimum and, eventually, the second metastable
local minimum disappears. At the same time, the mag-
netization angle θ corresponding to a global minimum
approaches φ = 45◦.

The case with B1 < −µ0M
2
S corresponds to an easy

z axis, as the sign of B1/(µ0M
2
S) + 1 is negative. Mathe-

matically, this case can be mapped exactly to the pre-
vious hard z axis case with the transformations θ →
θ + 180◦ and F0 → −F0. Thus, comparing to Fig. 9,
the maxima correspond to the minima after a shift in θ
in this case.

For φ = 90◦, i.e., magnetic field perpendicular to
the beam, the problem can be solved analytically. For
low fields, the (meta)stable magnetization directions de-
pend on the sign of the anisotropy term, i.e., the sign of
B1/(µ0M

2
S) + 1, because when this term is positive, the
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a)

b)

FIG. 10. The magnetization angle θ as a function of φ. In
a) B1 < −µ0M

2
S and in b) B1 > −µ0M

2
S corresponding to

the z axis being a hard and easy axis, respectively. The dot-
ted lines represent the metastable free energy minimum. For
H0 > Hc, the metastable minimum disappears, and for large
H0 we find θ ≈ φ as expected.

beam axis is a hard axis and the magnetization prefers to
lie along the magnetic field. For the opposite sign of the
anisotropy, the static magnetization is along the beam for
low fields and along the field for high fields. The coercive
field, i.e., the size of the magnetic field where the second
relative minimum disappear is however in both cases

Hc = 2

∣∣∣∣ B1

µ0M2
S

+ 1

∣∣∣∣ ε̄(0)
zzMS . (B3)

This field can be accessed in magnetic hysteresis mea-
surements, but it is also related with the size of the mag-
nomechanical coupling.

In Fig. 10 we show the solution of θ as a function of φ
for different external field magnitudes H0. The magne-
tization angle θ is fully characterized by φ and H0/Hc if
the z axis being a hard or easy axis is given (the sign of
B1/(µ0M

2
S) + 1).

2. Magnetic Hamiltonian

The magnetization dynamics is given by the Landau-
Lifshitz equation that can be written in the Hamiltonian
formalism [53]

ȧ = i
∂Hmg

∂a∗
, ȧ∗ = −i ∂Hmg

∂a
, (B4)

where

Mz′ = MS −
γ

LA
a∗a, (B5a)

M+′ =

√
2γMS

LA

√
1− γ

2MSLA
a∗a a, (B5b)

M−′ =

√
2γMS

LA
a∗
√

1− γ

2MSLA
a∗a, (B5c)

Hmg = LAF , M±′ = Mx′ ± iMy′ (B5d)

and the conjugate variables are a = (q + ip)/
√

2, a =

(q − ip)/
√

2. The quantization can be achieved with
[â, â†] = i ~ {a, a∗} = ~, where the braces represent
the Poisson brackets. This corresponds to the Holstein-
Primakoff bosonization, where m̂† =: â†/

√
~ creates a

boson.
If we assume M0 = MS ẑ

′ and H0 � h, we can obtain
the linearized Landau-Lifshitz equation by retaining only
the quadratic terms in a, a∗ in Eq. (B5). After a linear
transformation a→ ã, having the same form as Eq. (25),

the Hamiltonian readsHmg = ωK ã
∗ã−(h̃∗ã+h̃ã∗), where

h̃ = µ0

√
γMSLA

2
[hx′ (ζ+ − ζ−) + ihy′ (ζ+ + ζ−)] (B6)

and ωK , ζ± are defined in the main text in Eqs. (24)
and (25). Then, by Fourier transforming ã → e−iωtã,
hx′,y′ → e−iωthx′,y′ , the dynamic equations for the mag-
netization (B4) are(

h̃∗

h̃

)
=

(
ωK − ω 0

0 ωK − ω

)(
ã∗

ã

)
(B7)

from which we can see that ωK is the FMR resonance
frequency.

Appendix C: Derivation of the linear response

As in the main text, let us focus on the case of a single
flexural mode. Using the input-output equations given in
Eqs. (29) and (32) with the Hamiltonian (33), we obtain
a system of equations

˙̂xl
˙̂pl
˙̂xb
˙̂pb

 = M

x̂lp̂lx̂b
p̂b

− C
x̂l,inp̂l,in
x̂b,in
p̂b,in

 , (C1)

where C = diag(
√
κe,
√
κe,
√
γe,
√
γe) is a diagonal ma-

trix containing the external coupling rates and

M =

−κ/2 ∆ 0 0
−∆ −κ/2 G 0

0 0 −γ/2 ωm
G 0 −ωm −γ/2

 , (C2)



15

where ∆ = ωK − ωd. The quadrature operators are con-
nected to their bosonic counterparts by a unitary trans-
formation. Let us now denote this transformation by U
and define it such that

x̂lp̂lx̂b
p̂b

 = U


l̂

l̂†

b̂

b̂†

 , U =
1√
2

 1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

 . (C3)

The same relation holds for the input operators. Now,
we can apply the Fourier transformation x̂(†)(ω) =∫
x̂(†)(t)eiωtdt to Eq. (C1) and use the transforma-

tion (C3) to express the linear response matrix T as

T (ω) = U−1(iωI +M)−1CU, (C4)

where I is the 4× 4 identity matrix. Due to the complex
structure of the response matrix T , there are only six

independent components which read

T11 = −
i
√
κe
D

[ωm
2
G2 + iχγ(−ωm)χγ(ωm)χκ(−∆)

]
,

(C5a)

T12 = −
i
√
κe
D

ωm
2
G2, (C5b)

T13 = −
i
√
γe

D

G

2
χγ(−ωm)χκ(−∆), (C5c)

T14 = −
i
√
γe

D

G

2
χγ(ωm)χκ(−∆), (C5d)

T33 = −
i
√
γe

D

[
∆

2
G2 + iχγ(−ωm)χκ(∆)χκ(−∆)

]
,

(C5e)

T34 = −
i
√
γe

D

∆

2
G2, (C5f)

where χη(ω0) = i(ω − ω0)− η/2 and

D = χγ(ωm)χγ(−ωm)χκ(∆)χκ(−∆)−∆ωmG
2 (C6)

is the determinant of the matrix iωI+M . The full linear
response matrix T may now be written as

T =


T11(ω) T12(ω) T13(ω) T14(ω)
T ∗12(ω) T ∗11(−ω) T ∗14(ω) T ∗13(−ω)√
κe

γe
T13(ω)

√
κe

γe
T14(ω) T33(ω) T34(ω)√

κe

γe
T ∗14(ω)

√
κe

γe
T ∗13(−ω) T ∗34(ω) T ∗33(−ω)

 .

(C7)

That is, the other elements are obtained by conjugation,

multiplying by a prefactor
√

κe

γe
, and setting ω → −ω.
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crowave amplification with nanomechanical resonators,
Nature 480, 351 (2011).

[46] T. Botter, D. W. C. Brooks, N. Brahms, S. Schreppler,
and D. M. Stamper-Kurn, Linear amplifier model for op-
tomechanical systems, Phys. Rev. A 85, 013812 (2012).

[47] M. A. Cohen, D. Bothner, Y. M. Blanter, and G. A.
Steele, Optomechanical microwave amplification without
mechanical amplification, Phys. Rev. Appl. 13, 014028
(2020).

[48] J. Losby, J. A. J. Burgess, C. M. B. Holt, J. N. Westwood,
D. Mitlin, W. K. Hiebert, and M. R. Freeman, Nanome-

https://doi.org/10.1103/PhysRevX.11.031053
https://doi.org/10.1103/PhysRev.73.155
https://doi.org/10.1103/RevModPhys.21.541
https://doi.org/10.1103/RevModPhys.21.541
https://books.google.fi/books?id=tpY-VkwCkAIC
https://books.google.fi/books?id=tpY-VkwCkAIC
https://gitlab.jyu.fi/jyucmt/suspended-beam-magnomechanics
https://gitlab.jyu.fi/jyucmt/suspended-beam-magnomechanics
https://books.google.fi/books?id=zHtgvgAACAAJ
https://books.google.fi/books?id=zHtgvgAACAAJ
https://doi.org/10.1103/PhysRevB.101.014416
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1103/PhysRevB.99.140414
https://doi.org/10.1103/PhysRevB.99.140414
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevA.85.013812
https://doi.org/10.1103/PhysRevApplied.13.014028
https://doi.org/10.1103/PhysRevApplied.13.014028


17

chanical torque magnetometry of permalloy cantilevers,
J. Appl. Phys. 108, 123910 (2010).

[49] H. Arisawa, S. Daimon, Y. Oikawa, Y.-J. Seo, K. Harii,
K. Oyanagi, and E. Saitoh, Magnetomechanical sensing
based on delta-E effect in Y3Fe5O12 micro bridge, Appl.
Phys. Lett. 114, 122402 (2019).

[50] F. Heyroth, C. Hauser, P. Trempler, P. Geyer, F. Sy-
rowatka, R. Dreyer, S. Ebbinghaus, G. Wolters-
dorf, and G. Schmidt, Monocrystalline freestanding
three-dimensional yttrium-iron-garnet magnon nanores-

onators, Phys. Rev. Appl. 12, 054031 (2019).
[51] P. G. Gowtham, G. M. Stiehl, D. C. Ralph, and

R. A. Buhrman, Thickness-dependent magnetoelasticity
and its effects on perpendicular magnetic anisotropy in
ta/cofeb/mgo thin films, Phys. Rev. B 93, 024404 (2016).

[52] E. P. Wohlfarth, Relations between different modes of ac-
quisition of the remanent magnetization of ferromagnetic
particles, J. Appl. Phys. 29, 595 (1958).

[53] D. Stancil and A. Prabhakar, Spin Waves: Theory and
Applications (Springer US, 2009).

https://doi.org/10.1103/PhysRevB.93.024404
https://books.google.fi/books?id=ehN6-ubvKwoC
https://books.google.fi/books?id=ehN6-ubvKwoC

	Magnomechanics in suspended magnetic beams
	Abstract
	I Introduction
	II Magnomechanical Hamiltonian
	A Mechanical dynamics
	B Ferromagnetic resonance
	C Magnomechanical coupling

	III Driving individual resonances
	IV Magnomechanics
	V Experiment on a magnetic beam
	VI Conclusions
	 Acknowledgments
	A Beam dynamics
	B Magnetic dynamics
	1 Magnetic hysteresis
	2 Magnetic Hamiltonian

	C Derivation of the linear response
	 References


