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We use a two-level simulation method to analyse the critical point associated with demixing of
binary hard sphere mixtures. The method exploits an accurate coarse-grained model with two-
body and three-body effective interactions. Using this model within the two-level methodology
allows computation of properties of the full (fine-grained) mixture. The critical point is located
by computing the probability distribution for the number of large particles in the grand canonical
ensemble, and matching to the universal form for the 3d Ising universality class. The results have
a strong and unexpected dependence on the size ratio between large and small particles, which is
related to three-body effective interactions, and the geometry of the underlying hard sphere packings.

Hard sphere systems are central to our understanding
of many physical systems and phenomena, including the
structure of the liquid state [1]; the behaviour of colloidal
suspensions [2–4]; jamming and glass transitions [5, 6];
and packing problems [7, 8]. In equilibrium statistical
mechanics, hard-particle systems are simple and elegant,
because every allowed configuration has the same statis-
tical weight. Despite this simplicity, these systems are
of practical importance: they are amenable to experi-
ments [2, 4, 5, 9]; and they support complex behaviour
including a variety of phase transitions [10–15], which
continue to challenge theoretical and computer simula-
tion methods. We focus here on mixtures of large and
small hard spheres, which are predicted to undergo fluid-
fluid phase separation (de-mixing), if the size disparity
and the concentrations are large enough [16–19]. The
phase where the large particles predominate corresponds
to a (metastable) colloidal liquid [20]. Contrary to the
usual intuition that liquids are stabilised by attractive
forces, this phase appears in an equilibrium system with
additive mixing rules and without any attractive forces
between particles. This illustrates the depletion mecha-
nism for de-mixing [20–22], which is one of the prototyp-
ical mechanisms for fluid-fluid phase separation.

Given its status as a theoretical benchmark, it may
be surprising that this fluid-fluid phase separation of
hard spheres has never been accurately characterized.
Buhot and Krauth [23] showed that large particles clus-
ter together strongly, in small systems at moderate over-
all volume fractions; Dijkstra, van Roij and Evans [24]
analysed fluid-solid and solid-solid de-mixing. These nu-
merical studies confirm that depletion leads to strong
effective interactions in these systems [23], whose be-
haviour is captured semi-quantitatively by theoretical
arguments [16–18]. However, the critical point for de-
mixing has never been observed directly, nor have the
coexisting fluid phases.

The reason for this state of affairs is that de-mixing
involves collective behaviour of the large particles, which

can only be observed if their number is great enough.
Additionally, a depletion effect that is strong enough to
produce demixing requires a large disparity in size be-
tween the particles, and a large concentration of the small
particles. Hence one must analyse configurations with
very many small particles, and there is also a huge dis-
parity between the time scales on which the two species
relax. Fig. 1 illustrates the severe challenges that this
poses for computer simulation: the systems are extremely
crowded, and they include many particles of disparate
sizes, with significant interparticle correlations. This
complexity also means that exact theoretical computa-
tions are out of reach, so efficient numerical methods are
necessary for accurate results.

This work uses a two-level numerical method [25] to
characterise the critical point for fluid-fluid phase sep-
aration in hard sphere mixtures. The first level of the
method relies on an accurate coarse-grained (CG) model
where the small particles are integrated out, providing
an effective theory for the large ones. Then, the sec-
ond level restores the small particles, providing (numeri-
cally) exact results for the full mixture. The method was

(a) (b)

FIG. 1. (a) Snapshot of a binary hard sphere system at size ra-

tio 11:1, near criticality (ηrS = 0.302). The box size is L̃ = 44,
there are N = 50 large particles. (b) The same configuration
with the small particles removed: this is a configuration of
the CG model.
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previously validated for the Asakura-Oosawa model [21],
which is a much simpler example of de-mixing, for which
an exact CG model is available. The results presented
here show that the method is viable in complex systems,
finally allowing direct observation of the phase transi-
tion in the hard sphere system. The results also reveal
new physics, in that the packing of the hard particles
influences the phase transition via three-body depletion
interactions, which have been neglected in previous theo-
ries [16–19, 26, 27]. As such, our results confirm the qual-
itative picture proposed in [16–18], so that arguments
against fluid-fluid demixing are not correct [28, 29]. But
they also highlight that the standard two-body depletion
theories are not adequate for accurate characterisation of
this important phase transition [30].

We analyse a binary mixture of hard spheres whose di-
ameters are σS (small particles) and σB = `σS (big par-
ticles, so ` > 1). We use a cubic simulation box of linear
size L with periodic boundaries, in the grand canonical
ensemble. The relevant dimensionless parameters are the
size ratio `, the system size L̃ = L/σS and the chemical
potentials µB, µS (measured relative to kBT ). We param-
eterise µS in terms of the (reservoir) small-particle vol-
ume fraction ηr

S, using an accurate equation of state [31],
see Appendix A. A configuration of the system has N
large particles with positions R1, . . . ,RN and n small
particles with positions r1, . . . , rn.

Fig. 2(c) illustrates the phase diagram proposed in [17,
18]. As a signature of demixing, we seek the critical point.
Define p(N) as the probability that the system contains
N large particles. For large systems in a single-phase
regime, p(N) is unimodal and Gaussian. As one ap-
proaches the critical point (µ∗B, η

r∗
S ),the distribution p(N)

broadens; at the critical point the large particles form a
fractal structure, and p(N) has a characteristic (univer-
sal) scaling form [32, 33]. For ηr

S > ηr∗
S one expects a

phase coexistence line in the (µB, η
r
S) plane, where p(N)

is bimodal.

We locate the critical point by matching the observed
p(N) to its universal scaling form [33, 34], corresponding
to the 3d Ising universality class. Since N (or equiva-

lently the concentration N/L̃3) is the natural order pa-
rameter for the de-mixing transition, it is natural to work
in the grand canonical ensemble, where the finite-size
scaling of the critical fluctuations is well understood [33].

Sampling p(N) is not tractable by standard methods –
it requires that large particles are inserted and removed
from the system, which is almost impossible in crowded
environments like that shown in Fig. 1. This problem
is avoided by the two-level method. We outline the ap-
proach, see [25] and Appendix A for details. The critical
points of interest generically occur for parameters where
the fluid phase is metastable with respect to crystallisa-
tion of the large particles [18] (recall Fig. 2c), in fact the
two-level method helps to control for crystallisation (see
Appendix C).

The method relies on a coarse-grained (CG) model,
where the small particles are integrated out, leaving only

the large ones. It involves an effective interaction among
the large particles, the corresponding energy is

ECG(C) = N∆µ+
∑

1≤i<j≤N

V2(Rij)

+
∑

1≤i<j<k≤N

V3(Rij , Rik, Rjk) (1)

where Rij = |Ri −Rj | is the distance between particles
i and j; also V2 and V3 are two- and three-body effec-
tive interactions, and the term N∆µ ensures that the
chemical potentials coincide between FG and CG models.
The ∆µ, V2, V3 are obtained by grand-canonical Monte
Carlo (GCMC) simulation of small particles in systems
which contain a few fixed large particles, see [25] and
Appendix B.

The resulting CG model is highly accurate but it is
not a perfect description of the large-particle behavior.
Hence the second step of the method, which computes
the difference between the CG result and the result for
the full (fine grained, FG) model. Recalling that p(N) is
the probability that the FG model has N large particles,
define pCG(N) as the corresponding quantity for the CG
model. Then

p(N) = pCG(N) + ∆p(N) (2)

where ∆p(N) is the coarse-graining error.
The distribution pCG is computed by GCMC simu-

lation of the coarse model and the correction ∆p is
calculated following [25], using a free energy estimate
based on Jarzynski’s equality [35–38]. The computation
of ∆p(N) distinguishes our approach from traditional
coarse-graining methods [39–43] in which the main con-
cern is that the CG model is as accurate as possible,
but its error is not usually quantified. In practice, our
CG model is accurate enough that the correction ∆p will
turn out to be small. (Computation of this correction
has similarities with free energy perturbation theory [44],
as recently exploited to correct coarse-graining errors for
machine-learned potentials [45].)

Fig. 2 shows results for ` = 11. For a tractable analysis,
we considered relatively small system sizes L̃ = 34, 44,
which are between 3 and 4 times the diameter of a large
particle. The behavior of pCG(N) is shown in Fig. 2(a,d).
By adjusting ηr

S and µB, we obtained estimates of the
critical point, where the distribution pCG matches its uni-
versal critical form (black dashed line), which has been
scaled to give the correct mean and variance. The sys-
tems are small but the fit to the universal form is good.
The agreement with the universal distribution ensures
that cumulant ratios [46] are also in agreement with their
universal values at criticality.

Turning to the FG model, we estimate the correction
∆p , and hence the distribution p(N) for the binary mix-
ture. The method requires M configurations of the CG
model which we denote as C1, C2, . . . , CM , obtained by
GCMC simulation. (Specifically, we take M = 1280.)
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FIG. 2. Results for ` = 11. Histograms for the number of large particles for CG model (a,d) and FG models (b,e), with

ηrS = 0.3020, 0.3010 for L̃ = 34, 44, respectively. The universal critical form [32] is shown by dashed lines. The underlying data
are shown as points and the solid lines are Gaussian kernel density estimates with width parameters h as shown. (c) Schematic
phase diagram, following [18], as a function of ρB = N/L3 and ηrS. The critical point for de-mixing is indicated, together with
the coexistence region (shaded). The demixed state is metastable with respect to crystallization of the large particles (the
coexistence region between a fluid mixture and a crystal is labelled as FM+C). The region of coexistence between two crystal

phases is omitted for simplicity, see [18]. (f) Finite-size scaling collapse for CG data at L̃ = 34, 44, 55, results for L̃ = 55 have
ηrS = 0.3006.

For each coarse configuration, we then perform a GCMC
simulation for the small particles, with the large ones
held fixed. This yields a reweighting factor ω̂α (see Ap-
pendix A) then ∆p(N) is estimated as

∆p̂(N) =

M∑
α=1

(ω̂α − 1) IN (Cα) (3)

where IN (Cα) = 1 if Cα contains N large particles, and
IN (Cα) = 0 otherwise.

Results for p(N) are shown in Fig. 2(b,e), including in-
dividual estimates of p(N), and (smoothed) kernel den-
sity estimates of p, based on the same data. The resulting
distributions match the universal scaling form, indicat-
ing that the FG model is indeed very close to its critical
point, see also [33, 47]. For a finite-size scaling analy-
sis, we recenter and scale the particle number N to zero
mean and unit variance:

X =
N − 〈N〉

∆N
, ∆N =

√
〈N2〉 − 〈N〉2 . (4)

Fig. 2(f) shows additional finite-size scaling results for the
CG model at ` = 11, including results at a larger system
size L̃ = 55. These results are consistent with behavior
in the Ising universality class, although the systems are

small enough that corrections to scaling are significant,
see [33] and Appendix C.

It can be shown that the estimates of p(N) are asymp-
totically unbiased [25], but they do suffer from large vari-
ance if either (i) the CG model is not sufficiently accu-
rate or (ii) the free-energy computations are performed
too quickly [48]. These effects can lead to fat-tailed dis-
tributions of reweighting factors ω̂α, so that the estimate
∆p̂ starts to be dominated by a few (non-typical) config-
urations Cα. This can be easily checked from the numer-
ical data, providing a consistency check on the method.
In fact efficient performance with moderate M (as used
here) requires a typical coarse-graining error significantly
less than kBT in the total energy ECG. The behaviour
of the weights ω̂α is discussed in Appendix C showing
that this condition holds. We also note the FG data
points in Fig. 2 are scattered around the kernel density
estimate, this indicates the size of the numerical errors
(which would be very large variance if the CG model was
not accurate)

In contrast to the results for ` = 11, the behavior of the
CG system for ` = 10 is shown in Fig. 3(a), for a small
system L = 3σB. The distributions of X in Fig. 3(a)
are “less bimodal” than the (universal) critical form, in-
dicating that if this system has a critical point, it has
ηr∗

S & 0.35. For such high volume fractions, any com-
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FIG. 3. Distributions of the order parameter X in the CG
model at ` = 10. The system size is L = 3σB (so L̃ = 30),
dashed lines indicate the universal critical form. (a) Results
for increasing ηrS, indicating that η∗S & 0.348 (the results at
this largest ηrS appear close to criticality, but demixing has not
yet occurred). (b) Comparison of the CG model (1) [labelled
as (2 + 3)-body] and a 2-body CG model (V3 = 0), both at
ηrS = 0.348. The three-body interaction suppresses de-mixing.

putations involving small particles become challenging,
including accurate estimation of the CG potential, so we
have not explored further into this regime. In the range
shown, the three-body effective interactions for ` = 10
are repulsive, especially for larger ηr

S, see Appendix C. To
illustrate their effect, Fig. 3(b) compares the CG model
with a similar (2-body CG) model without any three-
body interactions (V3 = 0). For the two-body CG model,
it is clear that ηr∗

S < 0.348, but the three-body interac-
tion drives the critical point to larger ηr

S.
To summarize: Fig. 2 demonstrates a de-mixing crit-

ical point in CG and FG models of binary hard spheres
with ` = 11 and ηr∗

S ≈ 0.30, but Fig. 3 shows that for
` = 10 the corresponding critical point is beyond the
reach of our numerics, ηr∗

S & 0.35. For ` = 10, previ-
ous estimates of ηr∗

S [16–19, 26] were smaller (0.29–0.32),
but such treatments assumed that 2-body CG models
are accurate. Fig. 3(b) shows explicitly that three-body
effective interactions suppress de-mixing at ` = 10, ex-
plaining the difference in ηr∗

S . By contrast, for ` = 11 the
two-body CG model is more accurate; indeed the Noro-
Frenkel criterion [49] holds quite accurately at the critical
point (see Appendix C).

For a physical explanation of these substantial differ-
ences between ` = 10, 11, note that de-mixing is favoured
if the colloidal liquid (large-N) phase supports efficient
packing. The depletion effect makes it likely that large
particles are very close to each other, so it matters
whether the small particles pack efficiently into the gaps
between them. Planar configurations similar to Fig. 4(a)
are efficient for packing, but it can be shown that they
are only possible for ` ≥ 5 +

√
24 ≈ 9.9. Hence, such

configurations are very rare for ` = 10 (which is close to
the marginal case), but they are much more common for
` = 11. To show this explicitly, we used GCMC simula-
tion for small particles to compute a (normalised) num-
ber density φin in the shaded grey region of Fig. 4(a),

8 9 10 11
`

0.05

0.06

0.07

0.08

0.09

¡
in

(a) (b)(b)

FIG. 4. Packing of large and small particles. (a) Planar
configuration with three large particles touching each other
and three small particles in the (grey shaded) space between
them. (b) Measure of packing efficiency φin as defined in main
text, for ηrS = 0.32. This quantity increases sharply between
` = 10 and ` = 11.

which we interpret as a measure of packing efficiency,
see Appendix C. For the representative volume fraction
ηr

S = 0.32, Fig. 4(b) shows that the packing efficiency φin

increases sharply between ` = 10 and ` = 11, which ex-
plains the enhanced de-mixing in the latter case. (Other
signatures of more efficient packing at ` = 11 are shown
in Appendix C including a discussion of three-body ef-
fective interactions.)

We note that two-body CG models are widely used
in soft matter [50], and such models are generally ex-
pected to be accurate in hard sphere mixtures with large
` [17, 18]. Since three-body interactions turn out to be
relevant even in this case, our results indicate that cau-
tion is advisable when applying two-body CG models in
soft matter [30].

We close with a few comments on the two-level
method [25]. To characterise the critical point to high
accuracy, we use GCMC simulation and match p(N) to
its critical form. In this setting, the two-level method
sidesteps the problem of inserting large particles into
the crowded environment shown in Fig. 1, because par-
ticle insertion is performed at the CG level, while the
small particles only appear in the second (FG) level.
The method requires a very accurate CG model [25] and
considerable computational effort, but this is mitigated
by the fact that the FG level is trivial to parallelise.
This method falls into the general class of multi-level
approaches [51–56]; the results presented here are fur-
ther evidence that multi-level coarse-graining methods
have useful application in the physical sciences [25, 57–
59] (see also [60–62]), especially if it can be combined
with machine-learned effective potentials [63–66], similar
to [45]. We look forward to future work in this direction.

We thank Daan Frenkel and Bob Evans for helpful
discussions. This project was supported by the Lever-
hulme Trust (grant RPG-2017-203). RLJ and HK are
also grateful to the EPSRC for support in the later part
of the project (grant EP/T031247/1).
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Appendix A: Theory

1. FG model (binary mixture)

We define the relevant properties of the binary hard
sphere system (BHS) and the corresponding CG model.
Following [25], we denote the large-particle (coarse) de-
grees of freedom by

C = (N,R1, . . . ,RN ) , (A1)

and the small-particle (fine) degrees of freedom by

F = (n, r1, . . . , rn) . (A2)

Define a function eBHS(C,F) such that eBHS = 1 if none
of the hard spheres overlap each other, and eBHS = 0 oth-
erwise. Then the Boltzmann weight for any configuration
of the BHS system is

wBHS(C,F) = eBHS(C,F)
exp(µBN + µSn)

N !n!
(A3)

and the probability density for configurations in the
grand canonical ensemble is

pBHS(C,F) =
wBHS(C,F)

σ3N
B σ3n

S Ξ
, (A4)

where the normalization constant Ξ is the grand-
canonical partition function. Specifically

Ξ =
∑
N,n

∫
dR1 . . . dRN dr1 . . . drn

wBHS(C,F)

σ3N
B σ3n

S

(A5)

where each particle position is integrated over the simu-
lation box (which is a cube of size L). Hence Ξ depends

on `, µB, µS, L̃.
Averages in the FG/CG models are denoted by

〈·〉FG/CG. Specifically, if A is an observable quantity in
the FG model then

〈A(C,F)〉FG =
∑
N,n

∫
dRN drnA(C,F)pBHS(C,F)

(A6)
where the integrals are over all particle positions, within
the simulation box.

Here and in the following, note that weight functions
like wBHS are dimensionless (and not normalised as prob-
ability distributions), but p indicates a normalised prob-
ability density.

It is natural to define the small-particle volume fraction
as

ηS =
π

6L̃3
〈n〉FG. (A7)

The reservoir volume fraction ηr
S is the value of ηS that

one obtains in a system with no large particles at all, as
L̃→∞. This only depends on µS and can be estimated
very accurately using the equation of state of (30). This
ηr

S depends monotonically on µS; it is used to parame-
terise the dependence of the results on µS (whose value
is not particularly intuitive) in terms of the more natural
parameter ηr

S.

2. CG model

The coarse degrees of freedom C from (A1) describe
configurations of the CG model. Define eHS(C) = 1 if
none of the large particles overlap with each other and
eHS(C) = 0 otherwise, analogous to eBHS above. The
Boltzmann weight for the CG model is

wCG(C) = eHS(C)exp[µBN − ECG(C)]
N !

(A8)

where the effective interaction energy ECG is given in
Eq. (1) of the main text. Similar to the FG case define

pCG(C) =
wCG(C)
σ3N

B ΞCG
,

ΞCG =
∑
N

∫
dR1 . . . dRN

wCG(C)
σ3N

B

. (A9)

If A is an observable quantity in the CG model then its
average is

〈A(C)〉CG =
∑
N

∫
dR1 . . . dRNA(C)pCG(C) (A10)

3. Transformation between models, and
computation of ∆p

To connect the CG and FG models, we (formally) in-
tegrate out the small particles from the FG model. The
result is an effective Boltzmann weight for the large par-
ticles alone, which is

weff(C) =

∞∑
n=0

∫
dr1 . . . drn

wBHS(C,F)

σ3n
S

. (A11)

Now define Φ(C) as the grand-canonical free energy of
the small particles, evaluated for a fixed large-particle
configuration C:

Φ(C) = − log

∞∑
n=0

∫
dr1 . . . drn

eBHS(C,F) exp(µSn)

σ3n
S n!

.

(A12)
[This quantity is finite as long as the large particles do not
overlap, eHS(C) = 1. If eHS(C) = 0 then eBHS(C,F) = 0
also, so weff(C) = 0.] Comparing the integrals in the two
preceding equations and using (A3), we find

weff(C) = eHS(C)exp[µBN − Φ(C)]
N !

. (A13)

A perfect CG model would have wCG(C) = weff(C)/Ξ0

for some constant Ξ0 (independent of C): in this case the
CG model would exactly reproduce the behavior of the
large particles in the FG model. Comparing (A8) with
(A13), this amounts to ECG(C) = Φ(C) + log Ξ0. How-
ever, in the absence of an exact coarse-graining compu-
tation, such a perfect CG model is not available.
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Still, one can make progress if the CG model provides
a good approximation to weff , because averages in the
FG and CG models are related. Let A be an observ-
able quantity that depends only on the large particles.
Combining the ingredients gathered above one finds

〈A(C)〉FG =
1

Z

〈
A(C) weff(C)

wCG(C)

〉
CG

,

Z =

〈
weff(C)
wCG(C)

〉
CG

. (A14)

Now define IN (C) to be equal to unity if the system
contains N large particles and zero otherwise. Hence
p(N) = 〈IN (C)〉FG so using Eq. 3 with Eqs. A8,A13,A14
yields

∆p(N) =

〈
IN (C)

[
W (C)
Z
− 1

]〉
CG

. (A15)

with

W (C) = exp [ECG(C)− Φ(C)] (A16)

[Similarly, one may write Z = 〈W (C)〉CG.] This means
that if Φ can be computed (or estimated) then so can
∆p, and hence also p. Moreover, (A15) is an average in
the CG model, which is computationally tractable. The
same idea is used in free-energy perturbation theory [44],
to relate complicated models to simpler (more tractable)
ones.

4. Estimation of small-particle free energy Φ

To make use of (A15) in practice, we require a com-
putational estimate of W (C). The object ∆p̂ in (3) is
an estimator for (A15), with ω̂α in (3) corresponding to
the ratio W (C)/Z in (A15). We estimate e−Φ(C) using a
method based on Jarzynski’s equality [35], as described
in [25]. We give a short outline here. It is important that
Φ(C) depends on the small-particle chemical potential µS,
via wBHS. First select a very small chemical potential
µS = µ0, in which case the integral can be estimated
directly from a grand canonical simulation. Denote the
corresponding value of Φ(C) by Φ0(C). Then, starting
from an equilibrated system at chemical potential µ0,
perform an GCMC simulation during which the small
particle chemical potential increases in K steps from µ0

to µS. Then compute

I(C) =

K∑
j=1

nj∆µj (A17)

where ∆µj is the change in µ on the jth step and nj is the
number of small particles in the system when that step
takes place. Since this quantity is the work done to insert
the small particles, it follows from Crooks’ theorem [36]

that eI(C)−Φ0(C) is an unbiased estimate of e−Φ(C). That
is, 〈

eI(C)−Φ0(C)
〉

MC
= e−Φ(C) (A18)

where the average is over many realisations of the ran-
dom MC algorithm (always with the same large particle
configuration C). Hence

Ŵ (C) = eECG(C)+I(C)−Φ0(C) (A19)

is an unbiased estimate of W (C). Note that this result
does not depend on the parameters of the GCMC simula-
tion that was used to compute I. However, the variance
of the estimate Ŵ does depend strongly on these param-
eters, which must be chosen judiciously for the method
to be effective.

In practice, each step in (A17) corresponds to

one Monte Carlo sweep (corresponding to L̃3 inser-
tion/deletion attempts). The ∆µj are adjusted so that
one expects a typical change of δnj in the average num-
ber of small particles on step j, for a bulk system of small
particles alone. The value of δnj depends on the over-
all volume fraction and on the accuracy required: Smaller
values of δn lead to more accurate results (slower anneal-
ing during the integration of I), but the computational
expense is higher. Very small δn is required at large ηr

S,
because of significant MC rejection rates in these crowded
systems. Further details are given in the relevant sec-
tions, below.

Appendix B: Computational Details

1. Computation of CG potentials

As a first application of this theory, we explain the deriva-
tion of V2 and V3 (and ∆µ) in the CG model.

For the two-body potential V2, consider a configuration
Cr that contains exactly two particles (N = 2), separated
by a distance r. The exact two-body effective potential
is (by definition)

V exact
2 (r) = Φ(Cr)− Φ(C∞) (B1)

Since Φ(Cr) can be estimated from (A18), this quantity
can be estimated. If one also considers the configuration
C(0) which has no large particles at all, and the config-
uration C(1) with exactly one large particle, the exact
one-body term in the CG model is

∆µexact = Φ(C(0))− Φ(C(1)) (B2)

which allows ∆µ to be estimated by (A18). One may
also fix Φ(C∞) = 2Φ(C(1))− Φ(C(0)).

This procedure provides point estimates of V2 at
equally-spaced values of r; a smoothed estimate of V2

is obtained by fitting to a continuous function, and then
tabulated for use in simulations of the CG model. (See
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Fig. 5(a), discussed below in Appendix C.) A similar
method enables computation of the three-body interac-
tion potential V3, using systems with three large parti-
cles.

So far the method is identical to [25]. However, two
aspects of the three-body potential are different from
that work. Firstly, we set V3(r12, r23, r13) = 0 unless
σB < rij < σB + 0.8σS for all pairs of particles. (It is
expensive to estimate this function to high accuracy, so it
is convenient to set it to zero in regions of space where its
value is not much larger than the numerical error. Small
errors in V3 will be corrected by the two-level method in
any case.) We tabulate V3(x, y, z) for x, y, z on a cubic
grid with spacing σS/10, and we use linear interpolation
to estimate its value for generic arguments.

The second difference from [25] is that we compute V3

based on a deterministically chosen set of large-particle
configurations (a random sample was used in [25]). These
samples correspond to the points of the cubic grid de-
scribed above, and the symmetry of V3 under interchange
of all arguments is ensured by ordering the arguments by
increasing size.

We require high accuracy in these free energy esti-
mates.so we use small values for the parameter δn that is
used in the estimate of (A17). For V2 we take δn = 10−3

for ηr
S ≤ 0.2, also δn = 5× 10−4 for 0.2 < ηr

S ≤ 0.3, and
δn = 6.25 × 10−5 for 0.3 < ηr

S ≤ 0.35. For computation
of the three-body potential, larger systems are required
(hence more expensive computations) but less accuracy
is needed, so we increase δn by a factor of 2.5.

2. Computation of ∆p̂

In order to estimate ∆p using (3), we take M rep-
resentative configurations of the CG model, denoted by
C1, . . . , CM , obtained by GCMC simulation of the CG
model. For each sample, we compute Ŵ (Cα). Then de-
fine a normalised reweighting factor

ω̂α =
Ŵ (Cα)

1
M

∑M
β=1 Ŵ (Cβ)

. (B3)

With this choice, it is shown in [25] that (3) is an ap-
propriate estimate of ∆p, in the sense that its mean con-
verges for large M to the true ∆p, and its variance con-
verges to zero [25]. We emphasise that this property
holds even if the CG model is not accurate, although
very large M may be required in that case.

We note that each estimate of Ŵ (Cα) requires a GCMC
simulation for the small particles that may take several
days on a single CPU core. However, all the Ŵ com-
putations are independent, allowing efficient use of high-
performance (parallel) computing resources. In practice,

we make four independent estimates of the weight Ŵ for
each coarse configuration; the average of these estimated
weights is used as an unbiased estimate of the true weight.

For the results of the main text we take M = 1280.
When computing the reweighting factors ωα in the two-
level method we take δn = 10−2 for ηr

S ≤ 0.2, also δn =
5 × 10−3 for 0.2 < ηr

S ≤ 0.3, and δn = 6.25 × 10−4 for
0.3 < ηr

S ≤ 0.35. (This is a suitable compromise between
accuracy and computational time.)

Appendix C: Supplementary Results

1. Coarse-grained model

Fig. 5 illustrates the behavior of the effective interactions
in the CG model. We give a brief description of its main
properties.

Fig. 5(a) shows the two-body effective interaction,
which has the form of a depletion potential. There is
a strong effective attraction between the particles, whose
range is comparable with σS. Also, the layering of the
small particles around the large ones means that the po-
tential has oscillations, with both attractive and repulsive
parts. We show results for parameters close to the critical
point of the model, which are compared with the poten-
tial proposed by Roth, Evans and Dietrich (RED) [19].
As previously noted in [23], the RED potential is close
to the true V2, but there are significant differences in the
repulsive parts of these potentials. The error bars on
V2 are no larger than symbol sizes, hence the depletion
potential is accurate.

Fig. 5(b) shows how the strength of the depletion in-
teraction depends on the size ratio ` and on ηr

S. This is
quantified by the value of the depletion potential at con-
tact. As expected, the potential gets stronger as ` and
ηr

S increase.
By contrast, Fig. 5(c) indicates the strength of the

three-body potential, for the specific case where all three
particles are touching each other. (The strong two-body
attraction means that this arrangement is the most com-
mon, so it is suitable for illustrative purposes.) The
three-body potential is smaller in absolute value than
V2, and it may be either attractive (V3 < 0) or repulsive
(V3 > 0). Note also that there is no clear trend for the
dependence on ηr

S and `: the potential may increase or
decrease.

2. Three-body interactions and definition of φin

As discussed in the main text, the dependence of V3 on
model parameters is related to the packing of the small
particles around the large ones. The quantity φin is de-
fined by fixing three large particles in mutual contact
(as in Fig. 4) and simulating the small particles in the
grand canonical ensemble. Let n4 be average number
of small particles within the shaded grey area of Fig. 4
(specifically, in a three-dimensional region that extends
above and below the plane of the Figure by a distance
δz/2 in each direction). The area of the shaded region is
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FIG. 5. CG model. (a) Tabulated two-body interaction V2(r) for parameters ηrS = 0.302 and ` = 11 (close to the critical
point). This is shown together with the data from which it is estimated. The RED potential [19] is shown for comparison, it
is mostly consistent with the data, but it underestimates the repulsive part of the potential. (b) The strength of the two-body
interaction is illustrated using the value of the potential V2 when the particles are touching. The strength increases (that is,
the potential becomes more negative) on increasing ηrS and `. Dashed lines are a comparison with the RED potential. (c) The
strength of the three-body interaction is illustrated using the value of V3 when all three particles are touching. The dependence
on the model parameters more complicated in this case, as discussed in the main text. Dotted lines are guides to the eye.

A4 = (2
√

3− π)σ2
B/8 and

φin =
σ3

S

δzA4
n4 (C1)

is the number density in the relevant volume (in units of
σ−3

S ). This quantity depends on the small-particle vol-
ume fraction, the comparison in Fig. 4 is at ηr

S = 0.32
and we take δz ∼ σS. For very large ` then φin tends to
the bulk number density but its behaviour for moderate
` is subtle, because of the complexity of the underlying
sphere packings.

Fig. 6 presents additional information to allow the be-
havior of V3 to be rationalized. It shows the density of
small particles in the vicinity of three large ones, which
have fixed positions, all touching each other. For ` = 11,
three particles can fit into the (approximately) triangu-
lar region between the particles, while for ` ≤ 10, this
does not occur. (Exactly at ` = 10, three small parti-
cles can just fit in the planar arrangement of Fig. 6 but
their positions are tightly constrained and the associated
phase-space volume is extremely small.) As a result, the
packing for ` = 11 is much more efficient than for ` = 10,
and the corresponding V3 is smaller. By contrast, for
` = 8, putting a single small particle into this region cor-
responds to a relatively efficient packing and a smaller
V3, at least compared with ` = 9, 10.

These three-body effects have many subtle features.
For the purposes of this work, two aspects are impor-
tant. First, the potential at contact has values that are
smaller than unity, but these are certainly not negligi-
ble contributions to the energy. Second, the sign of the
interaction (and its dependence on ηr

S) has a non-trivial
dependence on `. Specifically, the three-body effect for
` = 10 is significantly repulsive (and increasingly so at
large ηr

S), while the corresponding effect for ` = 11 is

weakly repulsive for ηr
S ≈ 0.3 but becomes attractive at

larger ηr
S.

3. Discussion and further results for FG model

Reweighting factors and accuracy of CG model:
As a consistency check between the CG and FG models,
Fig. 7 shows the distribution of ω̂α. This distribution has
〈ω̂〉 = 1 by construction, but its variance has a significant
impact on the results of the two-level method. In partic-
ular, if the CG model is not accurate (or the Jarzysnki
integration has large variance) then there will be some
configurations with very large ωα: these tend to domi-
nate the estimate Eq. 3, resulting in a large statistical
uncertainty in ∆p̂. (An example of this effect was shown
in [25].)

Both histograms in Fig. 7 show a few samples with ω̂ ≈
10, which have some impact on the FG results in Fig. 2.
In particular, the data for L̃ = 44 are somewhat scattered
in that Figure. Still, the kernel density estimate for p(N)
reduces the uncertainty by averaging over several values
of N , and appears to yield reliable estimates.

Recalling that a perfect coarse-grained model would
have energy function Eex

CG(C) = Φ(C) (up to an additive
constant), it is useful to define the Kullback-Leibler di-
vergence between the Boltzmann distributions of our CG
model and the exact one, which is

DCG
KL =

∑
N

∫
dR1 . . . dRN pCG(C) log[Z/W (C)] (C2)

with W (C) as in (A16). This DCG
KL is non-negative and

measures how different is the CG model from the exact
one. It is zero if (and only if) the CG model is exact.
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FIG. 6. (a) Illustration of the packing of small particles in the vicinity of three large ones. This (planar) configuration is
possible for size ratios ` ≥ 5 +

√
24 = 9.90. (b) Local density of small particles in the vicinity of three (fixed) large ones for

ηrS = 0.32 and ` = 8, 9, 10, 11. In the case ` = 11, three particles fit the gap, visible as three local peaks in the density. Scale
bars are 3σS.

This may be observed by writing it in the form

DCG
KL = 〈Eex

CG(C)− ECG(C)〉CG + log〈eECG(C)−Eex
CG(C)〉CG

(C3)
which shows that it can be interpreted as the average
coarse-graining error in ECG.

In a free-energy perturbation theory computation [44],
this quantity could be computed. In the method used
here, the W (C) are not available but we do have their

(unbiased) estimates Ŵ (C). Consider the quantity

D̂ = − 1

M

∑
α

log ω̂α (C4)

with ω̂ as in (B3), and recall that the configurations
Cα are representative samples from the CG model.
Since Ŵ (C) is an unbiased estimate of W (C), we have

〈Ŵ (Cα)〉J = W (Cα) where 〈·〉J is the expectation value

with respect to the stochastic computation of Ŵ , see also
[25]. By (B3) we have

〈D̂〉J = − 1

M

∑
α

〈
log Ŵ (Cα)

〉
J

+

〈
log

1

M

∑
α

Ŵ (Cα)

〉
J

(C5)

For large M then 1
M

∑
α Ŵ (Cα) ≈ 〈W 〉CG = Z (be-

cause the Cα are representative CG configurations).

Also, Jensen’s inequality means that 〈log Ŵ (Cα)〉J ≤
log〈Ŵ (Cα)〉J = log Ŵ (Cα). Using these facts we obtain

〈D̂〉J & − 1

M

∑
α

log Ŵ (Cα) + logZ (C6)

Finally using again that the Cα are representative coarse
configurations we have

〈D̂〉J & 〈log[Z/Ŵ (C)]〉CG (C7)

The right hand side is the KL divergence as in (C2) so
we finally obtain

DCG
KL . 〈D̂〉J (C8)

That is, the computable quantity D̂ is an estimated upper
bound for the error DCG

KL of the CG model.

From the distributions of Fig. 7, we estimate D̂ ≈ 0.32
for L̃ = 34 and D̂ ≈ 0.37 for L̃ = 44. Hence, the error of
the (total) energy of a configuration in the CG model is
less than 0.4 (in units of kBT , relative to an exact coarse-
grained model). Since these are total energies for systems
with significant numbers of particles, this indicates that
the two- and three-body interactions are indeed accurate.

The role of crystallisation:
An additional advantage of the two-level method arises
because the critical point in binary hard sphere systems
is metastable to crystallization. In our study, crystallisa-
tion of the large particles was sometimes observed during
simulation of the CG model. Since this CG model is rel-
atively easy to simulate, we take the simple approach of
discarding those CG simulation runs where crystalliza-
tion occurs; this still allows generation of sufficient data,
at manageable cost. In any method that requires full
simulation of the FG model, crystallisation events are
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FG models of Fig. 2. The important feature is that large
reweighting factors (above ω = 10 for example) are rare.

disastrous because they require large quantities of costly
data to be discarded. (Such effects might be mitigated by
automated methods for avoiding crystallisation, but this
is not simple to achieve, without biasing the sampling of
fluid states.)

Finite size effects and field mixing in p(N):
The systems considered in this work are relatively small,
compared to the diameter of the large particles, which
does affect the results. However, the finite-size scaling
theory of the critical point is well-developed [33], which
allows these effects to be rationalised. In particular, one
sees from Fig. 2(a,d) that the probability p(0) is not com-
pletely negligible, so the system may contain no large
particles at all. The universal form is relevant for large
N – it does not account for the fact that this number is
an integer, nor that it must be non-negative. Hence one
cannot expect an exact match to this form in small sys-
tems. So-called field-mixing effects arising from the lack
of symmetry between the fluid phases [33] can also lead
to asymmetry in p(N), resulting in deviations from the
(symmetric) scaling form for finite-sized systems. Larger
systems would allow a more detailed analysis of these
effects, as well as estimation of critical exponents. How-
ever, given the various types of corrections to scaling that
should be expected, the close agreement observed here
between the numerical data and the universal form is re-
markable, and represents strong evidence for a de-mixing
critical point.

Extended law of corresponding states:
Noro and Frenkel [49] proposed that critical points for
systems with short-ranged attractive (two-body) poten-
tials can be estimated by a criterion based on the re-

duced second virial coefficient, which in this context is
B∗2 = (3/σ3

B)
∫∞

0
[1− e−V2(r)]r2dr. (The factor of 3 is in-

cluded so that B∗2 = 1 for a hard sphere potential.) They
defined

τ =
1

4(1−B∗2)
(C9)

so that small positive τ corresponds to strong attractive
interactions. For short-ranged attractive systems, they
found that critical points generically occur for τ ≈ 0.1.
For adhesive hard sphere (AHS) models (corresponding
to very short-ranged attractive attractions), it was later
estimated [67]that τ ≈ 0.113 at criticality. This can
be interpreted as an (extended) law of corresponding
states [49].

For the potentials studied here, we find for the critical
parameters ` = 11 and ηr

S ≈ 0.30 that τ = 0.11. The
three-body effect is weak at this state point: if we revert
to a two-body CG model with the same parameters, the
system is close to criticality. For ` = 10, Fig. 3(b) in-
dicates that the two-body CG system is critical for ηr

S
slightly below 0.348, corresponding again to τ ' 0.1,
similar to [23]. These results are consistent with the ex-
tended law of corresponding states.

Behavior for very large `:
We offer a few comments on the limit of large `, corre-
sponding to very extreme size ratio. This limit ` → ∞
is quite subtle [18]. It is convenient to fix σB and take
σS → 0. This can be done in three different ways: (i)
keeping the concentration of small particles constant [68];
(ii) keeping the volume fraction of small particles con-
stant [69]; (iii) keeping the second virial coefficient B∗2
constant, for the effective interactions [70].

There is obviously no demixing in case (i) [[68]], and
crystallisation tends to dominate in case (ii) [18]. As
noted in [67], the relevant case for fluid-fluid demixing is
(iii). In this case one expects [18] that ηr

S ∼ (1/`) log `,
which tends to zero ` → ∞. For very small ηr

S, inter-
actions among the small particles can be neglected and
we expect the system to behave similarly to an Asakura-
Oosawa model, with a short-ranged two-body attraction,
and negligible three-body and higher contributions. The
qualitative behavior that we find for ` = 11 is consistent
with this physical picture: that two-body interactions
dominate for very large ` and fluid-fluid demixing should
occur. However, it is not clear how large ` should be in
general, for three-body interactions to have a negligible
effect.
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