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The non-equilibrium dynamics of stochastic light in a coherently-driven nonlinear cavity resem-
bles the equilibrium dynamics of a Brownian particle in a scalar potential. This resemblance has
been known for decades, but the correspondence between the two systems has never been prop-
erly assessed. Here we demonstrate that this correspondence can be exact, approximate, or break
down, depending on the cavity nonlinear response and driving frequency. For weak on-resonance
driving, the nonlinearity vanishes and the correspondence is exact: The cavity dissipation and driv-
ing amplitude define a scalar potential, the noise variance defines an effective temperature, and
the intra-cavity field satisfies Boltzmann statistics. For moderately strong non-resonant driving, the
correspondence is approximate: We introduce a potential that approximately captures the nonlinear
dynamics of the intra-cavity field, and we quantify the accuracy of this approximation via deviations
from Boltzmann statistics. For very strong non-resonant driving, the correspondence breaks down:
The intra-cavity field dynamics is governed by non-conservative forces which preclude a descrip-
tion based on a scalar potential only. We furthermore show that this breakdown is accompanied
by a phase transition for the intra-cavity field fluctuations, reminiscent of a non-Hermitian phase
transition. Our work establishes clear connections between optical and stochastic thermodynamic
systems, and suggests that many fundamental results for overdamped Langevin oscillators may be
used to understand and improve resonant optical technologies.

I. INTRODUCTION

Many advances in optical physics have resulted from
identifying a correspondence between non-equilibrium
behavior of light and equilibrium behavior of matter.
For instance, Haken realized that the onset of lasing
corresponds to a second order phase transition in equi-
librium [1]. He furthermore identified deep connections
between optics and Ginzburg-Landau theory [1, 2], and
thereby pioneered research on phase transitions of pho-
tons. This research has flourished recently, resulting for
example in the discovery of novel dissipative phase transi-
tions [3–9] and applications to quantum technologies [10–
13]. A more recent example is due to Foss-Feig and co-
workers, who realized that an array of bistable optical
resonators admits an effective equilibrium description in
terms of a classical Ising model [14]. This correspon-
dence is promising for solving non-deterministic polyno-
mial time (NP)-hard problems [15, 16], for which no effi-
cient algorithm exists [17].

In the 1980’s, Risken and co-workers made an interest-
ing analogy between a bistable optical cavity and a Brow-
nian particle in a double well potential [18–20]. They
associated bistable optical states with the minima of the
potential, and fluctuations of the intra-cavity light field
with the thermal motion of the particle. Despite the long
history of this analogy, its exact or approximate validity
has never been properly assessed. Recently, Andersen
and co-workers defined a metapotential for a bistable res-
onator [21]. Using this metapotential and the equilibrium
theory of Kramers [22], they approximately reproduced
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the system’s dynamics in certain parameter regimes. In
other regimes, inconsistencies with quantum theory were
attributed to quantum effects rather than to the ques-
tionable validity of the metapotential. This prompts the
questions: Can a scalar potential be defined for an opti-
cal resonator? And how far does the correspondence to
equilibrium physics go? Figure 1 illustrates the essence of
these questions, which are the motivation for this work.

Here we demonstrate that the correspondence between
stochastic light in a coherently-driven cavity and a Brow-
nian particle in a scalar potential can be exact, approx-
imate, or break down, depending on the parameters of
the optical system. In Section II we introduce the model
for an optical cavity, and show that the complex intra-
cavity light field is mathematically equivalent to two
overdamped Langevin oscillators. In Section III we show
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FIG. 1. Left: The transmission of a coherently-driven non-
linear optical cavity switches between two states due to the
influence of noise. Right: A Brownian particle in a scalar
double well potential. The figure, overall, illustrates the main
question motivating this manuscript: Is stochastic light in a
coherently-driven cavity a Brownian particle in a scalar po-
tential?
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that if (and only if) the cavity is linear and driven on
resonance, the two Langevin oscillators decouple and a
scalar potential fully captures the light field dynamics.
For arbitrarily strong and non-resonant driving, the os-
cillators exert non-conservative forces upon each other.
This precludes describing the optical cavity in terms of a
scalar potential only. Nonetheless, in Section IV we show
that an approximate potential can still be defined in cer-
tain parameter regimes. We then quantify the validity
of this potential as a function of the driving conditions
in Section V, and reveal how the stability of the fixed
points determines the validity of our potential in Sec-
tion VI. The two models we relate — the overdamped
Langevin oscillator and a single-mode coherently-driven
cavity — are cornerstones of stochastic thermodynam-
ics on one hand and resonant optics on the other hand.
While connections between classical (deterministic) ther-
modynamics and optics have been known for decades, our
work points to a new frontier of physics at the intersec-
tion of stochastic thermodynamics [23–26] and resonant
optics. Section VII presents our perspective towards that
frontier and a summary of our results.

II. THE MODEL

Consider a coherently-driven single-mode cavity with
Kerr nonlinearity. Within the truncated Wigner approx-
imation and in a frame rotating at the driving frequency
ω, the intra-cavity light field α satisfies the following
equation of motion [27]:

iα̇ =

(
−∆− iΓ

2
+ U |α|2

)
α+ i

√
κLA+Dζ(t). (1)

∆ = ω − ω0 is the detuning of the resonance frequency
ω0 from ω. Γ = γa + κL + κR is the total loss rate, with
γa the absorption rate and κL,R the input-output rate
through the left or right mirror. U is the Kerr nonlinear-
ity strength. A is the amplitude of the coherent driving
field. ζ(t) = ζR(t) + iζI(t) provides Gaussian white noise
in the real and imaginary parts of the light field. ζR,I
each have zero mean (〈ζR(t)〉 = 〈ζI(t)〉 = 0), and are
delta-correlated (〈ζR(t′)ζR(t)〉 = 〈ζI(t′)ζI(t)〉 = δ(t′−t)).
Moreover, ζR and ζI are mutually uncorrelated. The
standard deviation of each noise field is D.

We begin our analysis by decomposing Equation 1 into
real and imaginary parts. Defining α = αR + iαI and
Ω = UN −∆ with N = |α|2 the photon number, we get(
α̇R
α̇I

)
=

(
−Γ

2 Ω
−Ω −Γ

2

)(
αR
αI

)
+

(√
κLA
0

)
︸ ︷︷ ︸

F

+D

(
ζR(t)
ζI(t)

)
.

(2)

The decomposition reveals that a single stochastic Kerr-
nonlinear cavity is mathematically equivalent to two cou-
pled overdamped Langevin oscillators. The real and

imaginary parts of the light field, αR,I , represent the
displacement from equilibrium of the oscillators. The
oscillators evolve under the influence of a deterministic
force F and a stochastic force Dζ. The oscillators are
coupled by the off-diagonal elements of the first matrix
in the right hand side of Equation 2.

To determine if a scalar potential V = −
∫
~Fd~α can be

defined for our cavity, recall that F must be conservative
and irrotational for V to exist. The magnitude of the
curl of F for our cavity is∣∣∣~∇× ~F

∣∣∣ =

∣∣∣∣( ∂α̇I∂αR
− ∂α̇R
∂αI

)∣∣∣∣ = 2Ω. (3)

Hence, if an only if Ω = 0, ~F is irrotational and V exists.

Our analysis can be generalized to systems of coupled
oscillators (cavities) using a classic result of graph theory:
For V to exist, the adjacency matrix A must be symmet-
ric [28, 29]. For our single-mode cavity, the adjacency
matrix is

A =

(
0 Ω
−Ω 0

)
, (4)

which is anti-symmetric whenever Ω 6= 0. Therefore, we
can only expect to fully capture the dynamics of light
in an optical cavity with a scalar potential V when the
response is linear (U = 0) and the driving is on resonance
(∆ = 0), such that Ω = 0.

III. EXACT POTENTIAL FOR A LINEAR
CAVITY DRIVEN ON RESONANCE

Let us assume that the optical cavity is strictly lin-
ear (U = 0) and driven on resonance (∆ = 0). In this
case, Ω = 0, the two oscillators decouple, and the non-
conservative force vanishes. Neglecting noise (D = 0),
Fig. 2(a) shows the phase portrait of the system. We
plot the local time-evolution of the field ~v = (α̇R, α̇I) as
black arrows, and its magnitude |~v| in color. In general,
~v represents the total deterministic force locally experi-
enced by light in the αRαI -plane. Notice in Fig. 2(a) that
the vectors ~v are perpendicular to contours of constant
force |~v| and directed towards the minimum in |~v|. This
is the typical behavior of a gradient flow system. Indeed,
for Ω = 0, Equation 2 reduces to a set of two decoupled
overdamped oscillators each subject to a gradient (con-
servative) force. If we now allow D 6= 0, the equations of
motion for these decoupled oscillators are:

α̇R,I = −∂VR,I
∂αR,I

+DζR,I . (5)

The potential functions in Eq. 5 are
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FIG. 2. (a) Phase portrait of a linear cavity driven on res-
onance. αR and αI are the real and imaginary parts of the
intra-cavity field α, respectively. ~v = (α̇R, α̇I) is the force act-
ing on the intra-cavity field. Arrows and color represent the
direction and magnitude of the force, respectively. The white
dot is the sole stable fixed point. (b) PDF of αR for three
values of the standard deviation of the noise D relative to the
dissipation Γ. Solid curves are results from numerical simula-
tions using Equation 1. Dashed white curves are Boltzmann
distributions. The potential VR for the Boltzmann distribu-
tions is defined along the green line in (a), where α̇I = 0. The
effective temperature is given by T = D2/2kB , with kB the
Boltzmann constant.

VR =
Γ

4
α2
R −
√
κLAαR, (6a)

VI =
Γ

4
α2
I . (6b)

Equations 5 and 6 show that the potential for both over-
damped oscillators is harmonic. The only difference be-
tween the oscillators is that the equilibrium position for
αR is displaced from zero in proportion to

√
κLA, which

is the laser amplitude entering the cavity.
Next we illustrate the statistical properties of stochas-

tic light in the cavity. For this purpose, we performed
stochastic calculations of Equation 1 using the xSPDE
Matlab toolbox [30]. Figure 2(b) shows the probability

density function for αR, P (αR), for three values of D/
√

Γ
as curves of different color. Figure 2(b) also shows, as
white dashed curves, the equilibrium Boltzmann distri-
bution obtained for a Brownian particle in the scalar po-
tential VR. Concretely, we plot

P (αR) = N e−VR/kbT , (7)

with kb the Boltzmann constant and N a normalization
constant. The temperature T is fixed by the noise vari-
ance D2 according to T = D2/2kB . Notice in Fig. 2(b)

how P (αR) spreads as D/
√

Γ increases, in perfect agree-
ment with the Boltzmann distribution for a gas with in-
creasing temperature. We stress that the Boltzmann dis-
tributions P (αR) in Fig. 2(b) are first-principles calcula-
tions and not fits to the numerical data. We inserted the
potential VR from Eq. 6a into Eq. 7 to calculate P (αR).
VI can be neglected because αI is decoupled from αR,
and the driving field acts on αR only.

The preceding analysis demonstrates that a linear op-
tical cavity driven on resonance is mathematically equiv-
alent to an overdamped Langevin oscillator in equilib-
rium. Through this powerful correspondence, we can use
the theoretical framework of statistical physics for un-
derstanding and optimizing resonant optical systems. A
critical question remains: What is the meaning of the
‘temperature’ of the light field in the cavity? Clearly,
that effective temperature is unrelated to the tempera-
ture of the medium inside the cavity. In fact, the effective
temperature of the light field can be externally controlled
by imprinting noise on the driving laser using modula-
tors [31, 32] and without changing the cavity dissipation.
We therefore propose that the effective temperature of
the light field should be understood from the perspective
of the kinetic theory of gases. From that perspective,
the temperature of an ideal gas is related to the average
kinetic energy of the particles. Simply put, temperature
is motion. Indeed, a higher temperature increases the
probability of finding a particle away from its equilib-
rium position at zero temperature. This is exactly what
noise in the laser amplitude and phase does to the intra-
cavity light field: it increases the probability of finding
field amplitudes and phases away from the equilibrium
value at zero noise. In the remainder of this manuscript,
we avoid further discussions about the ‘meaning’ of the
exact mathematical correspondence discussed above. In-
stead, we introduce and assess an approximate potential
for a nonlinear cavity driven out of resonance.

IV. APPROXIMATE POTENTIAL FOR A
NONLINEAR CAVITY

We have previously shown that the distribution P (αR)
perfectly agrees with the Boltzmann distribution when
the cavity response is strictly linear (i.e., U = 0) and the
driving is on resonance (i.e., ∆ = 0). A similar agreement
is expected for U 6= 0 when the driving amplitude A is
arbitrarily small. Such a weak driving amplitude ensures
that UN � Γ and the oscillators αR and αI effectively
decouple, provided that ∆ = 0. In this and the following
sections, we pursue an understanding of the physics when
U and A are sufficiently large for UN to be commensu-
rate with Γ. We set U/Γ = 0.01 for all calculations in
the remaining of the manuscript, and vary A and ∆.

In Fig. 3(a) we illustrate how a finite nonlinearity af-
fects the spectrum of a deterministic (D = 0) cavity as
the driving amplitude A increases. For weak driving, the
red curve shows an approximately Lorentzian resonance
lineshape. For strong driving, the green and gray curves
correspond to stable and unstable states. The resonance
lineshape bends towards positive ∆ because U > 0, and
a region of bistability emerges.

Figure 3(b) depicts as white and gray areas the param-
eter range for which one can observe respectively one or
two stable steady states. Figures 3(c,d) show probabil-
ity density functions (PDFs) for the complex intra-cavity
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FIG. 3. (a) Number of photons N as a function of the detun-
ing ∆ referenced to the dissipation Γ, for two different driv-
ing amplitudes A. A/

√
Γ = 1.4 for the red curve, where all

states are stable. A/
√

Γ = 9.71 for the green and gray curves,
which correspond to stable and unstable states, respectively.
Dashed and dashed-dotted lines indicate the detunings con-
sidered in (c) and (d), respectively. (b) Phase diagram of a
Kerr-nonlinear cavity, indicating the number of stable steady
states versus driving parameters. White and gray areas corre-
spond to one and two stable states, respectively. Entering the
bistability along the dashed line corresponds to a supercritical
pitchfork bifurcation. The inset zooms into the vicinity of the
critical point, and indicates the driving conditions considered
in Fig. 4. (c,d) PDF for the intra-cavity field obtained by
numerically solving Equation 1. The green curves indicate
the path ` where α̇I = 0 and the potential Vapp is defined.

light field α at two distinct driving conditions. These
PDFs were calculated based on stochastic trajectories of
α(t). We calculated 8 trajectories with different realiza-
tion of the noise ζ(t), all with a large duration Γt = 106

and a standard deviation of the noise D/
√

Γ = 1. Fig-

ure 3(c) was obtained for A/
√

Γ = 1.4 and ∆/Γ = 0,
which probes the state at the intersection of the red curve
and the dashed line in Fig. 3(a). The slightly larger
uncertainty of the state along αR than along αI is a
mild squeezing effect due to the nonlinearity. Figure 3(d)

(a)

(b)

(c)

(d)

(e)

(f)
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-11.18

-8.25

-8.50

p
p

p

FIG. 4. (a-f) Red curves are the potential Vapp. Shaded

areas are PDFs for the field amplitude
√
N . (a-c): Driving

conditions are along the dashed line in Fig. 3(b). The PDF

and Vapp are reshaped as A/
√

Γ and ∆/Γ increase and the
system undergoes a supercritical pitchfork bifurcation. (d-
f): Driving conditions are indicated by the orange dots in
Fig. 3(b). The PDF and Vapp tilt due to a change in ∆/Γ.

shows the PDF for A/
√

Γ = 9.71 and ∆/Γ = 1.5, which
probes the states at the intersections of the green curves
and the dash-dotted line in Fig. 3(a). The observed bi-
modal distribution indicates bistability.

Strictly speaking, the dynamics of a nonlinear cavity
cannot be fully described by a scalar potential. This is
due to the fact that Ω 6= 0, which means that the two
oscillators αR,I are coupled and exert a non-conservative
force upon each other. However, for sufficiently weak cou-
pling, i.e., Ω� Γ, the dynamics of the undriven oscillator
may be disregarded. In that case, an approximate poten-
tial Vapp may capture the essential dynamics of the full
system. To test this idea, we plot the values of (αR, αI)
for which α̇I = 0 as green curves in Figs. 3(c,d). Along
this one-dimensional path `, the deterministic force on
the undriven oscillator is zero. Notice how the path `
passes through the main features of the PDF even in
the nonlinear regime. Remarkably, ` closely follows the
most probable path between the two bistable states in
Fig. 3(d), as evidenced by the region of maximum prob-
ability connecting the two peaks in the PDF. Based on
this observation, we propose defining Vapp along `.
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Along the path `, the time evolution of the driven os-
cillator acts as a local force approximately capturing the
full system’s dynamics:

Fapp = α̇R

∣∣∣∣
α̇I=0

=
√
κLA−

Γ

2αR
(α2
I + α2

R). (8)

The approximate potential Vapp on this path is obtained
by integrating Fapp along `:

Vapp(αR, αI) = −
∫
`

Fappd
√
N, (9)

with
√
N =

√
(α2
I + α2

R) the variable of integration. We

take
√
N (instead of N) as the variable of integration

for two reasons. First, this choice ensures Vapp has units

of energy, since Fappd
√
N can be understood as a force

times displacement, which has units of energy. Second,
our choice ensures Vapp has the same units as VR, since
Vapp → VR for Ω→ 0.

Figure 4 shows Vapp(
√
N) as red curves for different

driving conditions. Figures 4(a,b,c) are evaluated along
the dashed line in Fig. 3(b), crossing the critical point

{∆c, Ac} = {Γ
√

3/2,Γ3/23−3/4/
√
κLU} [14]. The ob-

served transformation of Vapp from single well to dou-
ble well corresponds to a system undergoing a super-
critical pitchfork bifurcation. To demonstrate how Vapp

captures the full system dynamics, the shaded areas in
Fig. 4 show PDFs obtained from stochastic simulations
of Equation 1. Notice the good agreement between the
peaks in the PDF and and the dips in Vapp for the var-
ious parameter values. A more quantitative comparison
is reserved for the next section.

Figures 4(d,e,f) show that Vapp approximately captures
the distribution of light in the cavity also when ∆/Γ is

varied while A/
√

Γ is constant. In particular, we plot
Vapp at the driving conditions indicated by the orange
dots in Fig. 3(b). Figures 4(d,e,f) show how Vapp tilts
from one side to another as ∆/Γ is varied. Correspond-
ingly, the numerically calculated PDFs for the full sys-
tem (Equation 1) show the same tilting behavior. This
evidences that Vapp successfully captures the essential
physics, at least qualitatively.

V. DEVIATIONS FROM BOLTZMANN
STATISTICS

In this section we quantitatively compare predictions
based on Vapp to numerical simulations of the full system.
One one hand, we calculate distributions of field ampli-
tudes

√
N for the full system along the path `. We call

those distributions Pfull(
√
N). We obtained Pfull(

√
N)

by numerically solving Eq. 1 with U/Γ = 0.01 and

D/
√

Γ = 1/2. We evolved the system for a time Γt = 106

and ran simulations for 16 different realizations of the
noise ζ(t). The resultant Pfull(

√
N) are shown in Fig. 5

FIG. 5. (a) PDF of the field amplitude
√
N for 6 values

of the driving amplitude A/
√

Γ and the detuning ∆/Γ, ref-
erenced to the dissipation Γ. Colored areas are obtained by
solving Equation 1. Black curves are Boltzmann distributions
for the potential Vapp. Inset: Phase diagram of the Kerr-
nonlinear cavity, with colored dots indicating the values of
A/

√
Γ and ∆/Γ considered in the main panel. (b) Deviation

ε from Boltzmann statistics as defined by Eq. 10, for the same
values of A/

√
Γ and ∆/Γ considered in (a). D/

√
Γ = 1/2 in

the main panel of (a) and in (b). (c) Ratio of off-diagonal
to diagonal parts of the first matrix in the right hand side of
Eq. 2. This ratio quantifies the mutual coupling between the
field components αR and αI , and also the relative strength
of non-conservative and conservative forces. The two gray
curves correspond to the two states in the bistability. The
black curve is the mean ratio. The orange cross marks the
boundary between weak and strong coupling between αR and
αI . (d) Same as in (b) but for two additional standard devi-
ations of the noise D.

as areas of different color for different driving conditions
(A/
√

Γ,∆/Γ). On the other hand, we calculate Boltz-
mann distributions by inserting the approximate poten-
tial Vapp and the effective temperature T = D2/2kB in
Equation 7. The Boltzmann distributions, which we call
PBol(

√
N), are shown as black curves on top of Pfull(

√
N)

in Fig. 5.

For small A/
√

Γ and ∆/Γ, meaning small Ω, Pfull(
√
N)

is in very good agreement with PBol(
√
N). This is ex-

pected based on the results in Fig. 2(b), where Ω = 0.

However, as Ω increases, Pfull(
√
N) increasingly deviates

from PBol(
√
N). We quantify the difference between the
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two distributions via the overlap integral

ε =
1

2

∫
|Pfull − PBol|d

√
N. (10)

ε is 0 when Pfull(
√
N) exactly matches PBol(

√
N), and it

is 1 when there is zero overlap between the two distribu-
tions.

Figure 5(b) shows that ε is a non-monotonic function
of the distance to the critical point, controlled via the
value of ∆/Γ. A large ε is presumably the result of non-
conservative forces, which are absent in the Boltzmann
distribution taking into account Vapp only. We tested this
hypothesis by calculating the ratio of |Ω|2 to Γ2/4. As
Eq. 2 evidences, this ratio is proportional to the ratio of
non-gradient (i.e., non-conservative) to gradient forces.
The calculation was done for driving conditions along
the dashed line in Fig. 3(b), crossing the critical point.
The result is shown in Fig. 5(c). We focus on the ‘mean’
ratio [black curve in Fig. 5(c)] because there are two dis-
tinct values of |Ω|2 [dashed gray curves in Fig. 5(c)] in

the bistable regime, and the distributions Pfull(
√
N) re-

flect both values. Remarkably, the mean ratio 4|Ω|2/Γ2

displays a very similar dependence on ∆/Γ as ε. This
indicates that deviations from Boltzmann statistics are
indeed associated with the non-gradient force, which is
proportional to the mutual coupling Ω between the field
components αR and αI .

Next we assess whether the noise strength affects the
overlap between Pfull(

√
N) and PBol(

√
N). In Fig. 5(d)

we compare ε as a function of ∆/Γ for three different

values of D/
√

Γ. For small ∆/Γ, ε is roughly indepen-

dent of D/
√

Γ. In that regime, the non-gradient force
is relatively weak, so the insensitivity of ε to D is not
so surprising. Interestingly, for ∆/Γ & 0.9 we observe

very significant differences in ε for the three D/
√

Γ. For
example, for ∆/Γ = 0.97, ε is ∼ 5 times larger for

D/
√

Γ = 1/2 than for D/
√

Γ = 1. For a larger ∆/Γ,

ε is further reduced as D/
√

Γ increases. This suggests
that the stochastic force effectively suppresses the effects
of the non-gradient force. Thus, the distribution of light
in the bistable cavity resembles more the Boltzmann dis-
tribution of an equilibrium system in a scalar double well
potential for strong noise. Typically, the correspondence
between non-equilibrium and equilibrium systems hinges
on the similarity (or equivalence) of the deterministic
equations of motion governing the behavior of the two
systems. Here, in contrast, we have found that the ac-
curacy of the correspondence also depends on the noise
strength.

While Pfull(
√
N) strongly deviates from PBol(

√
N)

deep in the bistability regime, the deviation is quite small
close to the critical point. Recall that the critical point
is at ∆/Γ =

√
3/2 ≈ 0.87, and notice in Fig. 5(d) that

ε ≈ 0.05 around ∆/Γ = 0.9. The small (∼ 5%) deviation
from equilibrium behavior justifies our claim that Vapp

approximately captures the dynamics of the full system.
This is an important and convenient result because most

of the interesting physics occurs near the critical point.
Our results therefore indicate that stochastic light in a
bistable optical cavity close to criticality can be consid-
ered approximately equivalent to a Brownian particle in
a double well potential.

VI. PHASE TRANSITION FOR THE
FLUCTUATIONS

We have previously shown that the transition from
Boltzmann to non-Boltzmann statistics of light in the
nonlinear cavity is associated with an increased coupling
between the field components αR,I . Here we show that
αR,I actually transition from weak to strong coupling
concomitantly with a phase transition for the fluctua-
tions. This phase transition conveys qualitative changes
to the phase portrait of the system, enabling us to un-
derstand the approximate validity of the potential Vapp

within a restricted parameter regime.
Consider the effect of adding a small fluctuation δα =

δαR+ iδαI to the light field, i.e., let α→ α+δα in Eq. 1.
By only retaining terms that are linear in the fluctua-
tions, we get the following matrix equation of motion for
the fluctuations:

(
δα̇R
δα̇I

)
=

(
−Γ

2 + 2UαRαI U(α2
R + 3α2

I)−∆
∆− U(3α2

R + α2
I) −Γ

2 − 2UαRαI

)(
δαR
δαI

)
.

(11)

Equation 11 has solutions of the form

~δα = ~ηeλt (12)

where ~η are the eigenvectors and λ the eigenvalues of the
2× 2 matrix in Eq. 11. The eigenvalues

λ± = −Γ/2±
√
G(U,∆, N) (13)

comprise the spectrum of the fluctuations. The function
G = −(∆ − UN)(∆ − 3UN) determines the stability of
the fixed points, and the validity range of the potential
Vapp as explained next.

Figure 6 shows how the force field ~v = (α̇R, α̇I) expe-
rienced by light in the nonlinear cavity is shaped by the
function G. Figures 6(a) and 6(b) correspond to positive
and negative G, respectively. Figure 6(a) was obtained

for A/
√

Γ = 6.95 and ∆/Γ = 1, which places the cav-
ity within the bistability regime and close to the critical
point [see Fig. 3(b) or Fig. 7(a)]. Stable and unstable
fixed points are represented by white and red dots, re-
spectively. Note that the unstable fixed point has purely
real eigenvalues with opposite sign, and it is therefore
always a saddle point. The green curve is the path `
(where α̇I = 0) along which we evaluated Vapp. Notice
how the vectors ~v all point to the path `, which connects
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FIG. 6. (a,b) Phase portrait of the Kerr-nonlinear cavity
evaluated at the driving amplitudes and detunings indicated
in Fig. 7(a). Arrows and color have the same meaning as in
Fig. 2(a). White dots are stable fixed points, red dots are
unstable fixed points. Green curves indicate the path ` where
α̇I = 0 and the potential Vapp is defined. Vapp works well in
(a) where there is approximate gradient flow behavior, but
not in (b) where non-conservative forces dominate and lead
to spiraling orbits around the stable fixed points.

the unstable (saddle) point and stable fixed points. If
the system is taken away from ` by the stochastic force,
the deterministic force will ensure that it returns to `.
Therefore, the system almost behaves as a gradient flow
system in one dimension. This elucidates why the one-
dimensional potential Vapp approximately captures the
full system’s dynamics close to the critical point. We
can also understand this behavior based on the spectrum
of fluctuations. For driving conditions giving G > 0,
the eigenvalues λ± turn out to be real negative num-
bers. This makes the fluctuations overdamped and the
stable fixed points are sinks. Consequently, we observe
gradient-flow-like behavior and the bistable cavity ap-
proximately behaves like an overdamped oscillator in a
one-dimensional scalar potential.

The physics is different for G < 0. For example,
Fig. 6(b) shows the phase portrait for A/

√
Γ = 9 and

∆/Γ = 1.38, which places the cavity within the bistabil-
ity regime but further away from the critical point than
in Fig. 6(a). The change of parameters has transformed
the stable sinks into stable foci. Each stable focus is
evidenced by a spiraling force field around a white dot
in Fig. 6(b). The spiraling force field implies that a
fluctuation in one field component (αR or αI) couples
to the other component. When this coupling is strong,
the non-gradient force dominates, the fluctuations are no
longer overdamped, and any perturbation causes the field
to stabilize at a new orbit in the two-dimensional force
field. Clearly, a one-dimensional potential cannot faith-
fully capture the full system’s dynamics in this regime.

The behavior deduced from the phase portraits in
Figs. 6(a,b) can be further elucidated by considering the
spectrum of fluctuations. For this purpose, we calculated
the eigenvalues λ± in Equation 13, focusing on the pa-
rameter range resulting in bistability. Based on these
results, we distinguish three regimes depending on the
driving conditions. These regimes are illustrated as ar-
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FIG. 7. (a) Phase diagram of a Kerr resonator, as in Fig. 3(b)
but for a reduced range of driving amplitude A and detuning
∆ both referenced to the dissipation Γ. The orange region
close to the critical point is where the eigenvalues λ± in Eq. 13
are purely real, the field components αR and αI are weakly
coupled, and there is a saddle-sink connection between the
fixed points. This is the region where Vapp works well. The
green region is where both eigenvalues of both states have a
non-zero imaginary part. In the gray region, one of the two
states has eigenvalues with non-zero imaginary part. Vapp

fails to properly capture system’s dynamics in the gray and
green regions. (b) and (c) are real and imaginary parts of the
eigenvalues of the low-density state along the dashed line in
(a). Orange and green regions have the same meaning as in
(a). Real and imaginary parts of the eigenvalues coalesce at
∆/Γ = 1.06, which resembles an exceptional point.

eas of different colors in Fig. 7(a). In the orange region,
all eigenvalues λ± are purely real and negative for both
bistable states. Consequently, the fluctuations are over-
damped and there is a saddle-sink connection between
the fixed points. In that regime, ` (defined by α̇I = 0)
closely follows the most probable path between the stable
fixed points, and the dynamics is approximately captured
by the one-dimensional potential Vapp defined along `. In
contrast, the dynamics in the gray and the green regions
cannot be described in terms of Vapp only. This is be-
cause the eigenvalues are imaginary (oscillating fluctua-
tions) for one of the steady states in the gray region, and
for both states in the green region.

In Fig. 7(b) and 7(c) we plot the real and imagi-
nary parts of λ±, respectively, for the low photon den-
sity bistable state. We plot the eigenvalues as a function
of ∆/Γ while also varying A/

√
Γ, thereby keeping the

system along the dashed line in Fig. 7(a). The orange
region indicates the parameter range for which the fluc-
tuations are overdamped and effectively decoupled. The
green region indicates the parameter range for which the
fluctuations are oscillatory and strongly coupled. Inter-
estingly, real and imaginary parts of both eigenvalues co-
alesce at the boundary between these two regions. To the
left (resp. right) side of this coalescence point, the real
(resp. imaginary) parts of λ split while the imaginary
(resp. real) parts cross. This is the typical behavior of
the eigenvalues of a non-Hermitian Hamiltonian describ-
ing two linearly-coupled linear modes [33–37]. Thus, the
degeneracy point at ∆/Γ = 1.06 acts as an exceptional
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point for the fluctuations.

The exceptional point for the fluctuations separates
the regimes in which a bistable cavity can or cannot be
approximately described by the potential Vapp. This is
an interesting analogy to the non-Hermitian physics of
coupled modes. There, the exceptional point defines the
boundary between weak and strong coupling between the
two modes [35]. The similarity is even more striking
when we consider that ∆/Γ = 1.06 also corresponds to
point at which the mutual coupling between field compo-
nents αR,I transitions from weak to strong. Indeed, for
∆/Γ = 1.06 we have 4|Ω|2 ≈ Γ2, which corresponds to
the boundary between weak and strong coupling between
the field components αR,I . The point 4|Ω|2 = Γ2 is indi-
cated by an orange cross in Fig. 5(c). The large values
of ε above this point in Fig. 5(c) indicate that the large
deviation from Boltzmann statistics is indeed related to
a phase transition for the fluctuations occurring at the
exceptional point.

VII. CONCLUSIONS AND PERSPECTIVES

To summarize, we have shown that stochastic light in a
coherently-driven nonlinear optical cavity is mathemat-
ically equivalent to two coupled overdamped Langevin
oscillators. Whether a scalar potential can fully capture
the system’s dynamics or not depends on the driving am-
plitude and frequency. These parameters determine the
mutual coupling between the Langevin oscillators com-
prising the complex light field. For weak on-resonance
driving, there is an exact correspondence: The dissipa-

tion and the driving amplitude define a scalar poten-
tial, the noise variance defines an effective temperature,
and the distribution of light in the cavity satisfies Boltz-
mann statistics. This effective equilibrium behavior is
approximately valid for moderately strong non-resonant
driving in the bistable regime, but breaks down deep
in the bistability regime. The relevance of these results
stems from the fact that the overdamped Langevin oscil-
lator is a cornerstone of statistical physics and stochas-
tic thermodynamics [23–26]. Numerous important re-
sults about fluctuations of thermodynamic quantities,
the efficiency of stochastic engines, and the precision
of information-processing systems, have emerged from
understanding Langevin dynamics in the overdamped
limit [23, 25, 26, 38, 39]. By defining an effective temper-
ature and a potential for light in an optical cavity, our
work provides a first step towards understanding reso-
nant optical systems within the framework of stochastic
thermodynamics. Thermodynamic quantities like heat
and work still need to be defined, and we view that as an
important future research direction. We foresee exciting
discoveries in that direction, enabled by the ability to ex-
actly or approximately describe resonant optical systems
as Brownian particles in scalar potentials.
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