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Connectivity and reachability on temporal networks, which can describe the spreading of a disease,
decimation of information or the accessibility of a public transport system over time, have been
among the main contemporary areas of study in complex systems for the last decade. However,
while isotropic percolation theory successfully describes connectivity in static networks, a similar
description has not been yet developed for temporal networks. Here address this problem and
formalize a mapping of the concept of temporal network reachability to percolation theory. We
show that the limited-waiting-time reachability, a generic notion of constrained connectivity in
temporal networks, displays directed percolation phase transition in connectivity. Consequently,
the critical percolation properties of spreading processes on temporal networks can be estimated
by a set of known exponents characterising the directed percolation universality class. This result
is robust across a diverse set of temporal network models with different temporal and topological
heterogeneities, while by using our methodology we uncover similar reachability phase transitions
in real temporal networks too. These findings open up an avenue to apply theory, concepts and
methodology from the well-developed directed percolation literature to temporal networks.

Many dynamical processes evolving on networks are
related to the problem of reachability. Reachability de-
scribes the existence of a possible path of connections be-
tween two nodes, denoting the possibility and the extent
that one node can affect, cause a change or communi-
cate to the others based on interactions represented in
the network. The conception and formalism of reacha-
bility, however, changes dramatically if one considers the
time-varying nature of connections between nodes [1] as
opposed to the classic static network modeling of systems
where connections are considered constant. Time induces
an inherent direction of connectivity, as it restricts the di-
rection of influence or information flow. This in turn has
an impact on many dynamical processes evolving on such
networks, such as spreading [2–4], social contagion [5, 6]
ad-hoc message passing by mobile agents [7] or routing
dynamics [8]. In these processes, interacting entities may
have limited memory, thereby only building up paths con-
strained by limited waiting-times, further restricting the
eligible temporal structure for their global emergence.

Directed percolation (DP) is a paradigmatic example
to characterize connectivity in temporal systems. This
process exhibits dynamical phase transitions into absorb-
ing states with a well-defined set of universal critical ex-
ponents [9–12]. Since its introduction [13] and during its
further development [14], directed percolation attracted
considerable attention in the literature. It has applica-
tions in reaction-diffusion systems [15], star formation in
galaxies [16], conduction in strong electric fields in semi-
conductors [17], and biological evolution [18]. While it
is straightforward to define idealized models governed by
directed percolation, such as lattice models [19–25], its
features are more difficult to realize in nature [12, 26],
allowing only a few recent experimental realizations of
directed percolation [27–29]. Nevertheless, this descrip-

tion is advantageous in providing an understanding of the
connectivity of temporal structures to describe ongoing
dynamical processes [30–40].
There is a thorough theoretical understanding of static

network connectivity with several concepts borrowed
from percolation theory, such as phase transitions, gi-
ant components and susceptibility. These concepts, orig-
inally developed for lattices and random networks, are
routinely used to analyze real-world networks and pro-
cesses, e.g., disease spreading [41–45]. Connectivity is
also a central property of temporal networks, with several
recent techniques to characterize it, e.g., using limited-
waiting-time reachability [46–50].
A mapping between temporal reachability phase tran-

sition and directed percolation has been anticipated be-
fore. This is a straightforward intuition as directed per-
colation accounts for the time-induced inherent direction-
ality that characterizes temporal networks. For the spe-
cial cases of contact (SIS) and SIRS processes, this map-
ping has been shown over a regular lattice structure with
the assumption that the contact between nodes follows a
Poisson point process [9, 12, 51]. This mapping has been
shown for a particular class of temporal dynamical sys-
tems, involving deterministic walks and discrete temporal
layers [40]. For a more general class of temporal networks
Ref. [52] conjectured the mapping with directed percola-
tion based on semantic similarities between the two sys-
tems and some empirical evidence. However, these stud-
ies could not provide conclusive evidence for this mapping
for a broader set of temporal networks. In this work, we
aim to show analytically that limited-waiting-time reach-
ability on temporal networks, under a mean-field assump-
tion of connectivity, has a phase transition in the directed
percolation universality class. Combined with the exper-
imental results of Ref. [53], we conclude that the same
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is true for a diverse subset of temporal networks, with
a wider range of temporal and spatial connectivity com-
pared to the mean-field assumption. Lastly, we illustrate
how the directed percolation methodology, formalism and
the introduced characteristic quantities can be used to
analyze real-world temporal networks, for example, in
detecting the onset of reachability phase transitions.

Modelling approach. A temporal network G =
(V, E , T ) is defined as a set of nodes V connected through
events e = (u, v, tstart, tend) ∈ E , each of which repre-
sents an interaction of two nodes u, v ∈ V starting at
time tstart and ending at time tend observed during an
observation period T (i.e., tstart, tend ∈ T ∀e ∈ E and
tstart < tend). The connectivity of events is characterized
by time-respecting paths [34, 54], defined as sequences of
adjacent events. Here we call two distinct events e, e′ ∈ E
adjacent, and denote this by e → e′, if they follow each
other in time (t′start > tend) and share at least one node
in common ({v, u} ∩ {v′, u′} ̸= ∅) as demonstrated in
Fig. 1a. For simplicity, we assume that temporal net-
work events are instantaneous (tstart = tend), but all of
our notations can be easily extended to directed events
and to temporal hypergraphs [47, 55].

While time-respecting paths encode the possible routes
of information, some dynamical processes have further
restrictions on the duration they can propagate further
after reaching a node. For example, in disease spreading,
infected nodes may recover after some time, becoming
unable to infect other nodes unless re-infected. In our
definition, we define limited-waiting-times in temporal
paths by allowing adjacent events e = (u, v, tstart, tend)
and e′ = (u′, v′, t′start, t

′
end) to be connected (δt-adjacent)

only if there is less than δt time between them (i.e.,
t′start − tend < δt). In contrast to the control parameters
based on node or event occupation probabilities, which
could be used to adjust the overall activity level of the
network, changing δt modifies the behavior of the spread-
ing itself. Additionally, processes unconstrained by wait-
ing time can be modeled as a special case of the limited
waiting-time process, with an infinitely large value of δt.

A compact way of describing the problem of reachabil-
ity on temporal networks is provided by weighted event
graph representation D = (E , ED,∆t(e, e′)), a static di-
rected acyclic representation of temporal networks [52].
In this description events act as nodes and two events e
and e′ are connected through a directed, weighted link
if they are adjacent with weights defined as ∆t(e, e′) =
t′start − tend, i.e., ED = {(e, e′) ∈ E × E | e → e′}.
The event graph contains a superposition of all temporal
paths [56] and retains the arrow of time even after turning
the temporal structure into a static one (Fig. 1b). Event
graph representation of temporal networks has proven to
be suitable for studying properties of temporal networks
such as occurrences of motifs [57], decomposition of the
temporal network into smaller components [58] and pro-
viding a lower-dimensional embedding of the temporal
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FIG. 1. Different representations of an instantaneous, undi-
rected temporal network. (a) Vertices vi are connected via
dyadic instantaneous events ej . (b) In a weighted tempo-
ral event graph, adjacent events are connected via links di-
rected by time and weighted with the time difference ∆t be-
tween them. Paths in an event graph are equivalent to time-
respecting paths [56]. (c) Waiting-time constrained event
graphs with links of weights ∆t ≤ δt removed contain all
δt-limited paths. (d) Reduced event graph in which locally
redundant links are removed (see main text). The highlighted
line represents a time respecting path (a) and its equivalent
path over event graph (b,c) and reduced event graph (d).

network that can be consumed by many machine learn-
ing method [59]. For our use case, a superposition of
all δt limited-time temporal paths (Dδt) of the tempo-
ral network can be achieved by constructing the event
graph of the temporal network and removing all the
event graph links with weights larger than δt, in other
words, Dδt is a directed graph with the same set of ver-
tices and the same weight function as D and set of edges
{(e, e′) ∈ ED | ∆t(e, e′) ≤ δt} (see Fig. 1c).
Furthermore, we define the reduced temporal event

graph D̂ and its waiting-time constrained variation D̂δt,
where only the first adjacency relationships per tempo-
ral network node for each event are retained. D̂ and D̂δt

nodes have a maximum in- and out-degree of two, yet
they contain all the reachability relationships of the origi-
nal event graph [60]. That is, the reduced event graph ex-
actly retains the reachability of the original event graph
by removing redundant connections (feed-forward loops)
between events. The reduction allows interpretation of
the three possible out-degrees using the terminology of
directed percolation as annihilation (0), diffusion (1), and
decoagulation (2) in the case the out-neighbors are not al-
ready reachable through some longer loop. Note that this
upper bound on in- and out-degrees is valid if the prob-
ability of simultaneous occurrence of adjacent events is
negligible. See Supplementary Materials (SM) for more
details.
Order parameters and other characteristics. Com-

pared to static structures, temporal networks incorpo-
rate time as an additional degree of freedom, which in-
troduces an extra dimension to the characterization of
their structural phase-transition of connectivity around
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a critical point. This is similar to directed percola-
tion where dimensions are related to space and time
with associated independent critical exponents [61, 62].
We measure the expected δt-limited waiting-time reach-
ability starting from a random event e. Of interest is
the number of unique reachable nodes Ve→ ⊆ V, the
time duration of the longest path (i.e., its lifetime [52])
Te→ ⊆ T , and the total number of reachable events
Me→ ⊆ E . The expected values of these are analo-
gous to mean spatial volume V = ⟨|Ve→|⟩, mean sur-
vival time T = ⟨max Te→ −min Te→⟩, and mean cluster
mass M = ⟨|Me→|⟩ in the directed percolation formal-
ism (respectively) [9, 12]. Further, in parallel to directed
percolation, we define the survival probability P (t) as the
probability that there is a path from a randomly selected
initial source event at t0 to an event after time t0+t. The
ultimate survival probability P∞ = limt→∞ P (t) is then
the survival probability at large values of t. Note that
when defining these quantities we opted for simplicity
(see SM for discussion).

Using the maximum waiting-time δt as a control pa-
rameter is a natural choice as it has a clear physical in-
terpretation. However, unlike occupation probabilities
that are typically used as control parameters in directed
percolation, the scale of δt depends on the timescales of
the system. Further, although it is related to the local
connectivity, this relationship is indirect and might de-
pend on, e.g., the temporal inhomogeneities in interac-
tion sequences. For this reason, we define another control
parameter that directly measures the local connectivity
of the system. We use the local effective connectivity
q̂out(δt), which is the average excess out-degree of the
reduced event graph D̂δt. This is a monotonically in-
creasing function of δt, which normalizes the changes in
connectivity given by the changes in the maximum al-
lowed waiting-time δt. We then centralise this quantity
by subtracting its value from its phase-transition critical
point q̂outc , and denote the resulting control parameter as
τ = q̂out − q̂outc .

In addition to the single-source scenario, where the
component starts from a single node in Dδt, we inves-
tigated the fully-occupied homogeneous initial condition,
where we compute paths starting from all nodes in Dδt

with time t < t0. Analogous to directed percolation,
we define particle density ρ(t) as the fraction of infected
nodes in Dδt at time t, while stationary density ρstat(τ),
the order parameter, is defined as the particle density
after the system reached a stationary state. We can in-
corporate the effects of an external field h to this scenario:
in continuous-time, this would be equivalent to the spon-
taneous emergence of sources of infection, i.e. occupa-
tion, of nodes in Dδt (events in G) through an indepen-
dent Poisson point process with rate h. Susceptibility
χ(τ, h) = ∂

∂hρstat(τ, h) can then be measured through
observing the effect of changing the external field [12].
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FIG. 2. finite-size scaled (a,c) Mean cluster mass M , (b,d)

volume V and (e) survival probability P̂ (t) for single-source
spreading scenarios. (f) Particle density ρ(t), (g) static den-
sity ρstat and (h) susceptibility χ(δt, 0) as a function of δt
for the homogeneous initial condition. Measurements are av-
eraged over at least 256 (up to 4096) realisations of tem-
poral network constructed from random 9-regular networks
(N ∈ {28, . . . , 217}) and Poisson point process activations
λ = 1 of links. All functions of time are measured at
δt = δtc = 0.08808. d is set to directed percolation upper
critical dimension dc = 4.

Critical behavior in random systems. Next, we derive
a mean-field approximation for the above-defined mea-
sures and identify the critical point. We model tempo-
ral networks with an underlying static structure, where
events are induced via links activating by independent
and identical continuous-time stochastic processes. In
order to do so, we need to first derive the degree distri-
bution of the reduced event graph D̂δt, i.e. probabilities
that one can reach zero, one, or two events from a ran-
domly chosen event in the temporal network. Given the
excess degrees l and r of the two temporal network nodes
inG incident to the link corresponding to the event e ∈ E ,
we can compute the probability of a zero out-degree for
a node in D̂δt (i.e., an event in original temporal net-
work G) as p̂out0 = ΠδtΠ̂

l+r
δt . Here Πδt is the cumulative

inter-event time distribution induced by a link activation
process for a given δt, and Π̂δt is the corresponding cu-
mulative residual inter-event time distribution. Similarly,
for out-degree 2, we can compute

p̂out2 =

∫ ∞

0

(1− Π̂l
min δt,t)(1− Π̂r

min δt,t)πtdt, (1)
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where πt is the inter-event time distribution. Given that
the maximum out-degree of events in the reduced event
graph is 2, the p̂out1 can be derived as p̂out1 = 1−p̂out0 −p̂out2 .
In-degree probabilities can be derived similarly.

The joint in- and out-degree distribution of the event
graph can be computed from the excess degree distribu-
tion qk of the underlying static network. If the degrees
are independent, this becomes p̂in,outi,o =

∑
l,r p̂

in
i p̂outo qlqr.

We will denote the generating function of the joint de-
gree distribution as G0(zin, zout) and the corresponding
out excess degree distribution as Gout

1 (zout). We con-
struct the mean-field rate equation for occupation den-
sity ρ(t) in homogeneous occupation initial condition us-
ing the excess out-degree distribution of the event graph

q̂outk = dk

k!dzkG
out
1 (z)|z=0. The excess out-degree of nodes

in the event graph D̂ gives the change in the number of
further nodes we can reach from an already reached node:
nodes with out-degree 2 increase the number of reached
nodes by one, nodes with out-degree 1 do not affect on
the number of reached nodes, and out-degree 0 nodes re-
duces by one the number of reached nodes. The total
change, therefore, is q̂out2 − q̂out0 . In addition, some nodes
we can reach are already reachable through other paths.
In total we reach on expectation q̂out1 +2q̂out2 nodes where
each node is already reached with probability ρ(t). The
rate equation becomes

∂tρ(t) = [q̂out2 − q̂out0 ]ρ(t)− [q̂out1 + 2q̂out2 ]ρ2(t) . (2)

In this equation the values of q̂outk are constants in time.
Noting the critical point for this equation as q̂out2 − q̂out0 =
0, and that the expected value is by definition q̂out =
q̂out1 +2q̂out2 , and that q̂out2 − q̂out0 = q̂out−1, we can write
Eq. (2) as ∂tρ(t) = τρ(t)− q̂outρ2(t).

Equation (2) follows the same form as the directed per-
colation mean-field equation for a d+ 1-dimensional lat-
tice [12] and can be solved explicitly (see SM). It has the
critical point at τ = 0, while it indicates that ρ → τ/q̂out

for τ > 0. Asymptotically it provides the critical ex-
ponents as ρ(t) ∼ t−α at τ = 0 and ρstat(τ) ∼ τβ when
τ > 0 and t → ∞ with values α = β = 1, where α = β/ν∥
and ν∥ is the temporal correlation length exponent, in
accordance with the corresponding mean-field directed
percolation critical exponents [12].

The expected out-component size, i.e. mean cluster
mass M , can be computed from the joint degree distri-
bution of the event graph D̂δt by assuming that it is
a random directed graph with the same joint in- and
out-degree distribution as D̂δt. The out-component size
distribution probability-generating function H0 can be
derived from

H0(zout) = zoutG0(1, H1(zout))

H1(zout) = zoutGout
1 (H1(zout)),

(3)

and the mean out-component size can be written as M =
∂H0(zout)

∂zout
|zout=1 [63]. These equations, when τ → 0−,

lead to M ∼ −τ−γ with γ = 1 (see SM). Here γ =
ν∥ + dν⊥ − β − β′, matching the mean-field exponent of
mean cluster mass in directed percolation [12]. Here, ν⊥
indicates the spatial temporal correlation exponent.

The component survival probability, P (t), is measured
by the out-component time-span of nodes in the event
graph and the occupation density, ρ(t), is calculated by
the in-component sizes of all possibly reachable nodes,
implying that these two quantities are equal ρ(t) = P (t)
(see SM). Consequently, given the control parameter τ ,
ρstat(τ) = P∞(τ) as long as the time-reversed event
graph has the same probability of being generated as the
original one (e.g., if ∀i,o pin,outi,o = pin,outo,i ). This leads
us to the rapidity-reversal symmetry for event graphs
similarly characterizing directed percolation [64] where
β = β′ and P∞(τ) ∼ τβ

′
. Note that while the condition

above holds for a variety of random temporal network
models, for real-world systems intuition might suggest
e.g. a higher probability of pin,out1,2 as compared to pin,out2,1

due to over-representation of causal motifs [57]. In prac-
tice, however, we observed no deviations from the above
condition in two large real-world system (see SM).

Finite-size scaling in random systems. The critical
exponents can be empirically verified through finite-size
scaling of the system close to its percolation critical point,
where its large-scale properties become invariant under
scale transformations. We simulate random temporal
networks of varying size and perform efficient reachabil-
ity estimations [47] from single-source and homogeneous
fully-occupied initial conditions. We expect that curves
of macroscopic quantities collapse when using the correct
critical exponents of β, ν∥ and ν⊥ corresponding to the
mean-field values of directed percolation. The results
confirm that the directed percolation mean-field expo-
nents characterize the percolation phase transition of ran-
dom temporal networks. This is demonstrated in Fig. 2a-
f for temporal networks induced on a 9-regular network
with links activated via independent Poisson processes.
These results are robust in the presence of several types
of temporal and spatial heterogeneities [53].

Directed percolation measures in real-world temporal
networks. We measure the same macroscopic quantities
as before for four different real-world systems, concen-
trating on temporal networks describing air transporta-
tion, public transportation, Twitter mentions, and mo-
bile phone calls (Fig. 3a-d respectively). In these net-
works, an event represents respectively: a flight between
two airports in the United States, a public transport ve-
hicle transiting between two consecutive stations on a
typical Monday in Helsinki, a user mentioning another
user in a tweet on Twitter and a mobile phone subscriber
calling another subscriber of a major European carrier.
For details on the data sets, see Tab. I and SM. In each
system, there is clear evidence of an absorbing to active
phase transition in terms of M , V , and ρstat. Note that
the scales of these quantities are not directly compara-
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FIG. 3. Mean cluster mass M , mean cluster volume V , static
density ρstat and susceptibility χ(δt, 0) as a function of δt for
four real-world networks: (a) Air transport [65], (b) Helsinki
public transportation [66], (c) Twitter mentions [67] and (d)
mobile phone calls [68] display an absorbing to active phase
transition around 470 seconds, 670 seconds, 25 minutes and
7.5 hours respectively, as indicated by change from very small
values for M , V and ρstat to values comparable to the size of
the system and a peak in susceptibility χ(δt, 0). Mobile and
Twitter networks show a second peak in susceptibility around
1.5 hours and 22 hours, respectively, and Twitter data shows
a third peak around 14 hours. The trajectories are re-scaled
to the range [0, 1]. δtc is estimated using the analytical solu-
tion from Ref. [53] by approximating the network to temporal
network with a random regular static base and Poisson point
process activation. This estimates the threshold respectively
at 500 seconds, 488 seconds, 119.1 hours and 22.5 hours, dis-
played using solid vertical lines on a-d. The temporal reach-
ability profiles display relative cluster volumes for each event
as a function of the event time for δt ≈ δtc for (e) air trans-
port, (f) Helsinki public transportation, (g) Twitter mentions
and (h) mobile phone call networks. The reachability profiles
for random 9-regular network of size 1024 with Poisson point
process λ = 1 and (i) δt = 0.088 ≈ δtc and (j) δt = 0.092.

ble, highlighting the fact that distinguishing between the
different notions of connectivity is important in practical
terms. Further, multiple peaks in susceptibility indicate
multiple connectivity time scales.

TABLE I. The composition of the real-world temporal net-
works studied. Note that the Air and Public transport net-
works are directed temporal networks with non-instantaneous
events, meaning that each event (a flight or a trip between
consecutive stations) has a different start time and end time
(tstart < tend) corresponding to departure and arrival time
of the vehicle. On the other hand, the Twitter and Mobile
datasets were constructed as undirected, instantaneous tem-
poral networks to model bi-directional information flow be-
tween the users/subscribers.

Dataset Nodes Events

Air Transport [65] 279 airports 180 112 flights

Public Transport [66] 6858 stations 664 138 trips

Twitter [67] 17 313 552 users 266 179 671 mentions

Mobile [68] 5 193 086 users 324 576 400 calls

The reachability phase transition can be better under-
stood by investigating temporal connectivity profiles rep-
resented by cluster volumes of individual events. Struc-
tures similar to those of random networks (see SM) can
be observed for Air Transport and Twitter (Fig. 3e,g).
However, in Air Transport, the structure is regular, fol-
lowing the diurnal pattern of flights. In Twitter, the
components do not reach most nodes due to the greater
separation of temporal components, and their structure
reflects the rare emergence of possible macroscopic cas-
cades. Public Transport (one day) and Mobile networks
display a single wing-like structure (Fig. 3f,h). This is
induced by early components that can reach a significant
fraction of nodes, which are then joined by other compo-
nents reaching smaller subsets. This is also indicated by
the horizontal structures under the wings.

Conclusion. The connectivity of a network is an im-
portant measure of its resilience and an underlying con-
cept for any dynamical process running on it. It encodes
the possible transportation routes or paths of information
diffusion and determines how misinformation or diseases
spread in real-world settings. The connectivity of static
networks and related dynamical processes are routinely
analyzed within the framework of (isotropic) percolation
theory [30, 31, 41] with methods borrowed from criti-
cal phenomena [9, 69]. Furthermore, many natural or
synthetic networks, ranging from the brain [70, 71] or
artificial neural networks [72] to geological phenomena
[73] and urban systems [74] tend to self-organize their
medium or their parameters or be optimized by outside
intervention towards criticality [75, 76]. Therefore, it
is of great utility to locate the onset of critical phase-
transitions points and predict the behavior of the system
in that vicinity.
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While connectivity transitions and the critical be-
haviour of the system are understood in static networks
by means of isotropic percolation theory, temporal net-
works, by and large, have been out of reach of a similar
methodology. This has practical implications as connec-
tivity is a limiting factor of any dynamical processes and
at the same time temporal interactions have been shown
to have dramatic effects on the speed and volume of any
ongoing dynamical process [2–4]. For example, disease
spreading in static networks can be mapped to a per-
colation process leading to a theoretical understanding
of the epidemic threshold as a consequence of connec-
tivity phase transition [41]. This connection has been
extensively exploited to use the mathematical machinery
of network percolation to derive various theoretical and
practical results on static networks [31, 77]. In temporal
networks, such analysis is typically based on theoreti-
cal results on sequences of static networks [78] or case
studies based purely on simulations [68, 79]. The concise
theory of temporal network connectivity provided here
shows that the reachability phase transition in temporal
networks belongs to the directed percolation universality
class, which is a necessary step forward from the limited
description provided by the theory of static networks. It
also indicates that directed percolation may have many
counterparts in reality with the expected scaling rela-
tions.

The mapping presented in this paper allows for pre-
dicting the critical thresholds and the connectivity be-
haviors of a diverse set of systems that can be modeled as
temporal networks. Now, similar to static network con-
nectivity, not only we have theoretically grounded sum-
mary statistics of the component size distribution (the
order parameters and cluster mass, volume and lifetime),
but also we know ways to find their transitions even in
finite-size systems. Moreover, we now possess a theory
to predict the behavior of such random systems and find
transition points accurately. Real networks are often ap-
proximated with random graphs, and the random models
are used as reference points: deviations from the minimal
random models expose important structural features of
the real systems, and conversely, agreement with these
models tells that the structures, correlations, and inho-
mogeneities present in the data do not have a measur-
able effect on the connectivity. Although introduction of
heterogeneities might shift the critical threshold of con-
nectivity in temporal networks, the directed percolation
phase transition is surprisingly robust to several types
of temporal and topological heterogeneities [53]. Conse-
quently further research is required to find the bound-
aries and extremities of application of this framework on
theoretical and real-world networks.
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IMPLEMENTATION

The implementation, along with two of the real-world
temporal networks used, namely US air transport and
Helsinki public transport, are made available online [1].
Please refer to Supplementary Material for [2] for a more
detailed usage information.

GENERATING SYNTHETIC TEMPORAL
NETWORKS AND THE EVENT GRAPH

The synthetic temporal networks are created with
some continuous-time stochastic process based on an un-
derlying static network with a degree distribution of pk
and excess degree distribution of qk. The event graph,
directed acyclic graph of adjacency relationships between
pairs events, can then be produced by iterating through
all events e and connecting it to all other events when
e happens less that δt time before that event and they
share at least one node.

Reachability on the event graph will be preserved by
removing some of the links so that the in/out-degree
varies between 0 to 2 for every node [3] as long as the
probability of adjacent events happening at exactly the
same time is negligible. Practically, for every event e in
the event graph, we can remove directed links to all but
the very first events for each of the two nodes involved in
e. This preserves connectivity in the event graph since
all the events on the other end of the removed adjacency
relationships would still be connected through one of the
remaining links out-bound from e as they share at least
one node and the time difference is less than or equal to
the original event. Note that if more than one adjacent
events are happening at the same time and no other ad-
jacent events happen before them, we would have to keep
all of them to preserve connectivity.

Note that in practice it is often not necessary to explic-
itly generate the event graph to measure the quantities.
It is possible to store the list of associated events for each
node in the network sorted by time and generate adja-
cency relationships on the fly. This can also be combined
with other techniques such as using probabilistic data
structures for estimating out-component sizes to allow
processing of temporal networks much larger than what
is possible with the explicit solution [4].
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FIG. 1. Considering the case of an event between nodes l
and r happening at time t0, where each node has ql and qr
neighbours other than each other respectively. Assuming link
l−r was selected uniformly at random from the set of all the
links in the base network, the values ql and qr are both real-
isations of the excess degree distribution of the base network
Pq. Out-degree of the event e0 = (l, r, t0) is between zero and
two depending on the order and timing of events between l,
r and their neighbours. If the l−r link activates before any
of the other links incident to l and r (panel a) or only links
incident to l (or only r) other than l−r fire before l−r (panel
b) at a time t1 > t0, event e0 would have an out degree of zero
if t1 − t0 ≥ δt or one if t1 − t0 < δt. All other edges coming
out of e0 would necessarily get pruned out as shown by the
crossed-out links. The only case for e0 having a degree two
happens when at least one event at t1 < δt only involving l
and not r and one at t2 < δt only involving r and not l both
happen before l−r fires again.

Degree distribution of the reduced event graph

Let’s assume a vertex on the event graph, an event e,
that involves two nodes called l and r which just acti-
vated at time t0 (Fig 1). The two nodes l and r have
respectively ql and qr neighbor nodes, other than each
other, over the static network.

Let’s also define Pr(tres < δt) as the probability that a
process with inter-event time distribution T can activate
at least once in time δt after a random point in time.
This can correspond to probability of one of the links in
the underlying network activating within a time period
of δt. Random variable tres is distributed according to
the residual inter-event time distribution R. Similarly,
Pr(tiet < δt) is the probability that a process with inter-
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event time distribution T can activate at least once in
time δt right after activation.

Probability of an event having out-degree of zero in the
event graph can be calculated as:

Pout(0|ql, qr) = Pr(tres > δt)ql+qrPr(tiet > δt) (1)

where ql and qr are the number of neighbours each of the
nodes participating in the event has except for the con-
nection between two nodes of the event in question, tiet
is a realisation of the inter-event time distribution of the
network T and tres is a realisation of the residual inter-
event time distribution R. Out-degree of an event is zero
if and only if none of the ql + qr adjacent links on the
underlying network have an event within δt and the two
nodes participating in the original event also don’t have
any events between them within δt. The second term
corresponds to the probability of the same link not acti-
vating and the first is the probability of all of the other
incident links except for the original link not activating
in δt.

The only case that an event on the event graph can
have an out-degree equal to 2 (as shown on Fig. 1c)
is that at least one of the ql neighbours of l and one
of the qr neighbours of r activate before δt and before
reactivation of the link between l and r. Activation of
the link between l and r before at least one of the links
on each side is activated (Fig. 1a and 1b) would result in
out-degree equal to zero or one depending on the value
of δt and timing of the events.

Probability of having an out-degree equal to 2 can be
calculated this way:

Pout(2|ql, qr) =
∫ ∞

0

(1− Pr(tres > δt ∨ tres > t)ql)

(1− Pr(tres > δt ∨ tres > t)qr )

Pr(t ∼ T ) dt

(2)

where tres, T , ql and qr are defined as above. An event
has an out-degree equal to 2 if and only if two mutually
non-adjacent links adjacent to the link corresponding to
the original event activated within δt and before the link
corresponding to the original event is activated.

Pout(1|ql, qr) = 1− (Pout(0|ql, qr) + Pout(2|ql, qr)) (3)

Based on these equations, it is trivial to construct joint
in- and out-degree distribution

P (in, out) =
∞∑

ql,qr=1

Pin(in|ql, qr)Pout(out|ql, qr)

Pq(ql)Pq(qr)

(4)

where Pq(i) is the probability mass function of excess
degree for the static aggregate base network.

It is possible to construct the joint degree distribution
generating function G using the joint degree distribution
itself

G(x, y) =
2∑

in,out=0

P (in, out)xinyout (5)

and in- and out-degree and excess degree distribution
generating functions

Gin
0 (x) = G(x, 1)

Gout
0 (y) = G(1, y)

Gin
1 (x) =

1

z

∂G(x, y)
∂y

∣∣∣∣
y=1

Gout
1 (y) =

1

z

∂G(x, y)
∂x

∣∣∣∣
x=1

(6)

where z is the mean in- and out-degree derived from

z =
∂G(x, y)

∂x

∣∣∣∣
x=y=1

=
∂G(x, y)

∂y

∣∣∣∣
x=y=1

. (7)

Note that the in- and out-excess degree distribution
generating functions we just derived (Gin

1 (x) and Gout
1 (x))

refer to excess in- and out-degree distribution of a ran-
dom event in the event graph.

DETAILS OF ANALYTICAL DERIVATION OF
CRITICAL EXPONENTS

To study properties of the event graph, we approxi-
mate it by a random directed graph with the same in-
and out-degree distribution. The following sections are
all based on this assumption. The validity of this assump-
tion and the following results can be verified explicitly by
empirically constructing temporal networks of different
topologies and temporal dynamics and measuring scal-
ing of quantities such as ρ(t), P (t), M , V or ρstat(τ) [2].

Control Parameter τ

The mean-field rate equation for occupation density
in homogeneous occupation initial condition can be con-
structed as

∂tρ(t) = [Qout(2)−Qout(0)]ρ(t)−[Qout(1)+2Qout(2)]ρ
2(t)
(8)

where Qout(i) = ∂i

i!∂yiG
out
1 (y) is the excess out-degree

distribution of events in the event graph. Using excess
degree distribution captures the fact that in the ran-
dom temporal model we are using, in- and out-degrees of
events in the event graph are correlated and both are a
function of degree of the event’s constituting nodes in the
static base network. By defining τ = Qout(2) − Qout(0)
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and g = Qout(1) + 2Qout(2), Eq. 8 turns into ∂tρ(t) =
τρ(t) − gρ2(t) with stationary solutions at ρ = 0, which
represents the absorbing phase, and τ = 0, which corre-
sponds to the mean-field critical point.

An event graph can be presented, without any change
in reachability of any event, so that no event has an in- or
out-degree larger than two (as discussed in the beginning
of this section) τ and g can be written as τ = ⟨Qout⟩ − 1
and g = ⟨Qout⟩.

The phase transition at τ = 0 also complies with
the previously know result of phase transition in ran-
dom directed graphs with arbitrary degree distribution
at ∂

∂yG
out
1 (y)|y=1 = 1 [5].

Density scaling exponents α = β = 1

For large t, Eq. 8 has one solution for active and ab-
sorbing phases and the critical threshold τ = 0

ρ(t) =





− τ

(
g − τ

ρ0

)−1

eτt, if τ < 0

(
ρ−1
0 + gt

)−1
, if τ = 0

τ

g
+

τ

g2

(
g − τ

ρ0

)
e−τt, if τ > 0

(9)

where as t grows, ρ approaches zero for τ ≤ 0 and ρ →
τ/g for the τ > 0, i.e. asymptotically

ρ(t) ∝ t−1, if τ = 0 (10)

and

ρstat(τ) ∝ τ1, if τ > 0. (11)

which leads to

α = β = 1. (12)

Rapidity-reversal symmetry β′ = β

The fact that survival of a component is measured
using out-component of events in the event graph
while occupation density is calculated by measuring in-
component of all possibly infected nodes, hints at a sym-
metry in the system under time reversal. Consider δt-
constrained event graph representation of temporal net-
work T (V, E) and two sets events in bands of time δt
units of time wide, namely E0 = {e ∈ E | 0 ≤ te < δt}
and Et = {e ∈ E | t ≤ te < t + δt} where te is time
of activation of event e. Assuming St ⊆ Et where each
member of St appears in the out-component of at least
one of the members of E0 and S0 ⊆ E0 where each mem-
ber of S0 appears in the in-component of at least one of
the members of Et (which is to say, one of the members

of St). Probability of survival at time t can be estimates
as the fraction of nodes in E0 that can reach at least a
node in Et, P (t) ≈ |S0|/|E0|. Similarly, since in the ho-
mogeneous fully occupied case all the events in E0 are
occupied, the occupation density at time t can be esti-
mated as ρ(t) ≈ |St|/|Et|.
Under reversal of time te → (t+ δt)− te the direction

of the links in the event graph will revert which in turn
causes switching of in- and out-component set of each
node. In this scenario, occupation density is estimated
by ρ(t) ≈ |S0|/|E0| which is the same as probability of
survival in the original case. Conversely, probability of
survival is estimated by P (t) ≈ |St|/|Et| which is the
same as occupation density in the original case. If the
time-reverted event graph has the same likelihood as the
original event graph, e.g. if Gout

0 = Gin
0 , this leads to the

identity

P (t) = ρ(t), (13)

which in turn, for models belonging to the DP class, leads
to the celebrated rapidity-reversal symmetry:

β = β′. (14)

Mean component mass exponent γ = 1

The generating function for distribution of out-
component sizes H0(y) is the solution to the system

H0(y) = yGout
0 (H1(y))

H1(y) = yGout
1 (H1(y))

(15)

and mean out-component size can be calculated as

M =
∂H0(y)

∂y

∣∣∣∣
y=1

= 1 + G′out
0 (1)H ′

1(1) . (16)

For tau < 0 where H1(1) = 1 this results in a solution in
form of

H ′
1(1) = 1 + G′out

1 (1)H ′
1(1) = (1− G′out

1 (1))−1

→ M = 1 + G′out
0 (1)(1− G′out

1 (1))−1 .
(17)

Keeping in mind the definition of control parameter
τ = ⟨Qout⟩−1 = G′out

1 (1)−1 and that ∂
∂yGout

0 (y)|y=1 = z

(see Eq. 7), we can re-write M as

M = 1 + z(−τ)−1 =
z − τ

−τ
, (18)

For the special case of random k-regular networks we
can prove that z − τ = 1 which give the result M =
(−τ)−1. More generally, to find exponent of a power-law
asymptote of the form (−τ)−γ as τ → 0− for any random
graph we can find the solution to

−γ = lim
τ→0−

lnM

ln−τ
= lim

τ→0−

ln(z − τ)− ln−τ

ln−τ

= lim
τ→0−

ln(z − τ)

−τ
− 1 = −1 if 0 < z < ∞ .

(19)
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Under the condition that 0 < z < ∞, the limit term is
equal to zero, resulting in γ = 1. Given the fact that, as-
suming probability of co-occurrence of adjacent events is
negligible, the maximum out-degree of the event graph is
2, if the mean out-degree is above zero at τ = 0, a power
relation with exponent γ = 1 estimates mean component
mass.

ALTERNATIVE ANALOGUE FOR MEAN
CLUSTER MASS

In classic DP, mean cluster mass M is defined as the
integration of the pair-connectedness function across all
nodes and time. Based on how we established parallels
between spatial dimensions and the base networks and
a the possibility of defining pair-connectedness function
as existence of a δt-limited time-respecting path between
a pair of nodes at different times, this might translates
more directly to the sum of time-length of all infections
started from a random event, or in other words total
duration of sickness for all people. This would also imply
that the spreading processes start at random nodes and
times, as opposed to starting at random events as we
use in the manuscript. Values for mean cluster mass
M , as well as mean cluster volume V and mean cluster
lifetime T for random 9-regular networks with Poisson
lik activations are plotted in Fig. 2 for different values of
δt.

DESCRIPTION OF THE REAL-WORLD
TEMPORAL NETWORK DATA SETS

Four real-world temporal networks were used for
demonstrating the measurement of the quantities and
phase transition. These are the same datasets used previ-
ously for developing the algorithmic method which form
the backbone of the more empirical parts of the current
manuscript [4].

The air transportation network dataset is a record-
ing of 180 112 flights between 279 airports in the United
States, gathered from the website of the The Department
of Transportation’s Bureau of Transportation Statistics
website in 2017 [6]. The public transportation network
is the set of all 664 138 trips during a typical Monday in
Helsinki in 2018, where a trip is one public transportation
vehicle moving from one of the 6 858 bus, metro and ferry
stations to the next [7]. The twitter dataset is a set of
266 179 671 mentions (counting replies) of 17 313 552 user
handles [8]. Finally, the mobile phone call dataset is set
of 324 576 400 phone calls between over 5 193 086 mobile
phone subscribers [9]. A few thousand events were re-
moved from the beginning of the twitter dataset to elim-
inate a weeks-wide gap in the gathered data.

The first two networks, air and public transportation

networks, were processed as directed, delayed temporal
networks where each event has a duration as well as a
starting time e = (v1, v2, t, d) where two events are adja-
cent if the second event starts after the duration of the
event is finished and the tail node of the second event is
the same as the head node of the first event, e.g. the first
plane lands in the destination airport before the second
one takes off from that airport. The waiting time δt then
refers to the time between end of the first event to the
beginning of the second one.

There is an argument for measuring waiting time in de-
layed temporal networks from the beginning of the first
event for some processes such as disease spreading. For
example, a disease that gets healed less than an hour
after infecting someone has a very low chance of spread-
ing through air travel where most trips take longer than
that. That method was not used in this manuscript. The
second pair of networks, twitter and mobile networks,
were treated like undirected, instantaneous temporal net-
works.

The real-world networks show high degrees of tempo-
ral heterogeneity, daily/weekly patterns, peaks at spa-
cial hours of the day or at special days of the year or
local or global outages. Measuring representative values
for static density ρstat and susceptibility χ for real-world
networks would need special consideration. Our current
method for measuring these quantities in the homoge-
neous, fully-occupied initial condition is dependent on
the level of activity of the initial time t0 of the dataset as
well as existence of unlikely periods of very low or very
high activity as a result of natural disasters, real-world
happenings or simply failure of the measurement appa-
ratus or the measured system. To average out any such
outliers we split the original data into 64 equal time win-
dows of time T/2 (for air and public transport) and T/16
(for mobile and twitter) where T is the time window of
the original dataset, each starting at a random point in
time.

Distribution of mass, volume and lifetime for each
event in the event graph can be seen Figs. 3, 4, 5 and
6 for Helsinki public transport, Air transport, Twitter
and Mobile datasets respectively.

JOINT DEGREE DISTRIBUTION IN
REAL-WORLD TEMPORAL NETWORK EVENT

GRAPHS

Symmetry of the joint in- and out-degree distribution
of the event graph (∀i,o pin,outi,o = pin,outo,i ) was discussed
as a condition for β = β′ under a mean-field assumption
of connectivity. While real-world networks often have
correlations and inhomogeneities that affect connectivity,
it is still interesting to verify the validity of this condition
in real-world networks.

Observation of joint in- and out-degree of 100 000 ran-
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FIG. 2. Out-component size estimates of all events of a 9-regular network with Poisson process link activations λ = 1 for (a)
δt = 0.07, (b) δt = 0.08, (c) δt = 0.08802, (d) δt = 0.092 and (e) δt = 0.1.

dom events of the event graphs for the Mobile and Twit-
ter networks, the two largest real-world systems studied,
show degree distributions (degrees 0 to 2) estimated at:

pin,out =



0.11063 0.16668 0.02007
0.16263 0.37322 0.05916
0.02028 0.05570 0.02359


 (20)

and

pin,out =



0.30426 0.10793 0.02340
0.11109 0.20426 0.05220
0.02082 0.04992 0.03393


 (21)

respectively at δt = 7.5 hours and δt = 25 minutes.
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FIG. 3. Helsinki public transport network out-component size estimates for (a) δt = 300, (b) δt = 500, (c) δt = δtc = 670, (d)
δt = 800 and (e) δt = 1000 seconds.
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FIG. 4. Air transport network out-component size estimates for (a) δt = 300, (b) δt = 400, (c) δt = δtc = 470, (d) δt = 600
and (e) δt = 800 seconds.
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FIG. 5. Twitter mention network out-component size estimates for (a) δt = 200, (b) δt = 1200, (c) δt = 3600, (d) δt = δtc =
4800 and (e) δt = 12000 seconds.
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FIG. 6. Mobile call network out-component size estimates for (a) δt = 2, (b) δt = 4, (c) δt = δtc = 7.5, (d) δt = 9 and (e)
δt = 14 hours.


