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Connectivity transitions in static networks are well described by percolation theory, yet the cor-
responding description is not developed for temporal networks. We map the connectivity problem
of temporal networks to directed percolation and show that the reachability phase transition in ran-
dom temporal network models, as induced by any limited-waiting-time process, appears with the
mean-field exponents of directed percolation. Furthermore, we measure the central thermodynamic
quantities adapted to large-scale real temporal networks to uncover reachability transitions in their

global connectedness.

Many dynamical processes evolving on networks are
related to the problem of reachability, determining the
ability of a structure to maintain a global phenomenon.
Reachability changes radically if one considers the time-
varying nature of connections between network nodes [1],
instead of deeming them static. Time induces an inher-
ent direction of connectivity, as it restricts the direction
of influence or information flow in the structure. This
in turn has an impact on dynamical processes evolving
on such networks, such as spreading [2-4], social conta-
gion [5, 6] ad-hoc message passing by mobile agents [7]
or routing dynamics [8]. In all these processes interact-
ing entities may have limited memory thus can only use
paths constrained by limited waiting times, further re-
stricting the eligible temporal structure for their global
emergence.

Directed percolation (DP) is a paradigmatic example
to characterise connectivity in temporal systems. This
process exhibits dynamical phase transitions into absorb-
ing states with a well-defined set of universal critical ex-
ponents [9-12]. Originally introduced in 1957 [13] and
further developed later [14], DP has attracted a consid-
erable amount of work in the physics literature. It has ap-
plications in reaction-diffusion systems [15], star forma-
tion in galaxies [16], conduction in strong electric fields in
semiconductors [17], and biological evolution [18]. While
it is straightforward to define idealised models governed
by DP, such as lattice models [19-25], its features are
more difficult to realize in nature [12, 26], allowing only a
few recent experimental realisations of DP [27, 28]. Nev-
ertheless, this description is advantageous in providing an
understanding of the connectivity of temporal structures
to describe ongoing dynamical processes [29-39].

There is a thorough theoretical understanding of static
network connectivity with several analytic and computa-
tional concepts borrowed from percolation theory. Con-
cepts such as phase transitions, giant components, and
susceptibility, which were developed formally for large
lattices and random networks, are extremely useful and
routinely used to analyse real-world networks and pro-
cesses, for example, disease spreading [40-43]. Connec-

tivity is a central property of temporal networks too, with
several recent techniques to characterise it, e.g. by us-
ing limited waiting time reachability [44-48]. However,
previous works on the theory of temporal connectivity
[39, 49, 50] fundamentally rely on different notions of
connectivity of structure, such as static connectivity, de-
terministic walks, or networks consisting of discrete tem-
poral layers. Here we take a step back from this position
to study the problem of reachability in temporal net-
works as a directed percolation process, which is a natu-
ral choice to consider the inherent directionality induced
by time in these constructs.

A temporal network G = (V, €, T) is defined as a set, of
nodes V connected through events e = (u, v, tstart, tend) €
&, each of which represents an interaction of two sub-
sets of nodes u,v C V between times of tgtart, tena € T
(tstart < lend) during an observation period 7. The con-
nectivity of events is characterised by time-respecting
paths [33, 51], defined as sequences of adjacent events
e — €¢/. Here we call two events e,e/ € £ adjacent if
they follow each other in time (¢, > tend) and share
at least one ending node in common (v Nu’' # ) as
schematically demonstrated in Fig. la. For simplicity,
we assume that temporal network events are instanta-
neous (tstart = tena) and represent undirected interac-
tions between single nodes (u = v = {4, j} wherei,j € V
and i # j), if we do not mention otherwise. All of our
notations can be easily extended for directed events with
duration.

While time-respecting paths code the possible routes
of information or influence spreading on a temporal net-
work, some dynamical processes have further restrictions
on the time during which they can propagate further af-
ter reaching a node. An example of such limited local
lifetime processes is the spreading of a disease, where
infected nodes may recover after some time, thus be-
coming unable to further infect any other node, unless
re-infected. In our definition, we define limited waiting-
times in temporal paths by allowing adjacent events to be
connected if they are not separated temporally by more

than a tf;,. — tena < 0t time window. This quantity con-



trols the connectivity of the temporal network. In con-
trast to the control parameters based on node or event
occupation probabilities, which could be used to adjust
the overall activity level of the network, changing ¢t mod-
ifies the behaviour of the spreading itself. A compact
way of describing this problem is provided by weighted
event graphs D = (&, Ep, At(e, €’)), a higher-order static
directed acyclic graph representation of temporal net-
works [50]. In this description events act as nodes and
two events are connected through a directed, weighted
link if they are adjacent, i.e. Ep = {(e,€') | e — €’} with
weights defined as At(e,e’) = tl;, .+ — tend, the time be-
tween the two adjacent events. The event graph contains
a superposition of all temporal paths [52] and retains the
arrow of time even after turning the temporal structure
into a static, directed one (Fig. 1b). Superposition of
all §t limited-time temporal paths can be achieved by
constructing the event graph of a temporal network and
removing all the event graph links with weights larger
than o0t (see Fig. 1c).

Furthermore, we define the reduced temporal event
graph D, where only the first adjacency relationships
per node are preserved for each node in D. It has a
maximum of two incoming and two outgoing links for
each node yet it contains all the reachability relation-
ships of the original temporal network [53]. That is, the
reduced event graph exactly retains the reachability of
the temporal network for a given value of §t by removing
redundant adjacency relationships (feed-forward loops)
between events. The reduction allows one to interpret
the three possible out-degrees using the terminology of
DP as annihilation (0), diffusion (1), and decoagulation
(2) in the case the out-neighbours are not already reach-
able through some longer loop. This upper bound on
in- and out-degrees after reduction is valid for any tem-
poral network where the probability of adjacent events
happening at exactly the same time is negligible. See
Supplementary Materials (SM) for more details on the
reduction of event graphs.

Order parameters and other characteristics. Com-
pared to static structures, temporal networks incorporate
time as an additional degree of freedom, which intro-
duces an extra dimension to the characterisation of their
structural phase-transition of connectivity around a crit-
ical point. This is similar to DP where dimensions are
related to space and time with associated independent
critical exponents [54, 55]. To observe connectivity, we
measure the expected dt-limited waiting-time reachabil-
ity of a spreading process starting from a random event.
We are interested in the number of unique nodes V' C V,
that are reachable from the source of spreading, the time
duration of the longest path (i.e. its lifetime [50]) T C T,
and the total number of reachable events M C £, in this
component. These are analogous to mean spatial vol-
ume, mean survival time, and mean cluster mass in the
DP formalism (respectively) [9, 12]. Further, in paral-
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FIG. 1. Different representations of an instantaneous, undi-
rected temporal network. (a) Vertices v; are connected via
dyadic instantaneous events e;. (b) Weighted temporal event
graph is a directed acyclic graph where adjacent events are
connected via links directed by time. Link weights are de-
fined as the time difference At between connected events.
Paths in an event graph are equivalent to time-respecting
paths [52]. (c) Waiting-time constrained event graphs with
links of weights At < §t removed contain all §¢-limited paths.
(d) Reduced event graph in which locally redundant links are
removed (see main text). The highlighted line represents a
time respecting path (a) and its equivalent path over event
graph (b,c) and reduced event graph (d).

lel to DP, we define the survival probability P(t) as the
probability that there is a path from a randomly selected
initial source event to an event after time ¢. The ultimate
survival probability Py, = limy_, o, P(t) is then the sur-
vival probability at large values of . Note, that when we
defined these quantities we have opted for simplicity (see
SM for discussion) but one could define them in slightly
different ways depending on the physical question.
Using the maximum waiting time Jt as a control pa-
rameter is a natural choice as it has a clear physical inter-
pretation. However, it is a quantity, which scale depends
on the timescales of the system, unlike occupation prob-
abilities that are typically used as control parameters in
DP. Further, although it is related to the local connectiv-
ity, this relationship is indirect and might depend e.g. on
the temporal inhomogeneities in interaction sequences.
For this reason, we define another control parameter that
directly measures the local connectivity of the system.
We use the local effective connectivity §°"*(dt), which is
the average excess out-degree of the reduced event graph
D(5t). This is a monotonically increasing function of &t,
which normalizes the changes in connectivity given by
the changes in the maximum allowed waiting time dt.
We then centralise this quantity by subtracting its value

from its phase-transition critical point U, and denote
the resulting control parameter as 7 = ¢°"* — gout.

In addition to the single-source scenario where we as-
sume the component to start from a single node in D,
we investigate a fully occupied homogeneous initial con-
dition, where we compute paths starting from all nodes
at an initial time ty. Analogous to DP, we define par-



ticle density p(t) as the fraction of infected nodes in
D at time ¢, while stationary density pstat(7), the or-
der parameter, is defined as the particle density after
the system reached a stationary state. We can also add
the effects of an external field h to this scenario. In
continuous-time, this would be equivalent to the spon-
taneous emergence of sources of infection, and thus oc-
cupation of nodes in D (events in G) through an inde-
pendent Poisson point process with a rate of h. Sus-
ceptibility x(7,h) = 2 pstat(7, h) can then be measured
by the rate of change in stationary density as the ex-
ternal field changes [12]. Note that unlike percolation
in static networks, where it is possible to estimate sus-
ceptibility e.g. by computing the second moment of the
cluster size distribution, such methods are not directly
applicable here.

Critical behavior in random systems. Next, we de-
rive a mean-field approximation for the above defined-
measures and identify the critical point. For simplic-
ity, we focus on temporal networks based on an under-
lying static structure, where events are induced via links
activated by independent and identical continuous-time
stochastic processes. In the reduced event graph D of
this induced temporal network GG, we can write the prob-
ability of observing a node (i.e., an event in G) with a
given out-degree. Given the excess degrees [ and r of the
two temporal network nodes in G incident to the link
corresponding to the event e € £, we can compute the
probability of a zero out-degree for a node in D as Pt =
H(;tf[f;{’". Here Ilg; is the cumulative inter-event time dis-
tribution induced by a link activation process for a given
ot, and Il is the corresponding cumulative residual wait-
ing time distribution. Similarly, for out-degree 2, we can

compute pgut = fooo(l—f[fnin 5t7t)(1—1:[fnin 5t7t)7rtdt, where
m; is the inter-event time distribution. Given that the
maximum out-degree of events in the reduced event graph
is 2, the p{"* can be derived as p"* = 1 — pgut — pgut.
Note that these probabilities can be similarly derived for

in-degrees by reversing the direction of time.

The joint in- and out-degree distribution of the event
graph can be computed from the excess degree distribu-
tion g of the underlying static network. If the degrees
are independent, this becomes ﬁf}’éom =2, PPt g g,
We will denote the generating function of the joint de-
gree distribution as Go(2in, Zout) and the corresponding
out excess degree distribution as G"*(zou;). We con-
struct the mean-field rate equation for occupation den-
sity p(t) in homogeneous occupation initial condition us-
ing the excess out-degree distribution of the event graph

N k
@ = 7 G9"*(2)|.=0. The excess out-degree of nodes

in the event graph D gives the change in the number of
further nodes we can reach from an already reached node:
nodes with out-degree 2 increase the number of reached
nodes by one, nodes with out-degree 1 do not have any
effect on the number of reached nodes, and out-degree
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FIG. 2. (a) Mean cluster mass M, (b) volume V and (c) sur-
vival probability P(t) for single source spreading scenarios,
after finite-size scaling. (a inset) Mean cluster mass and (b
inset) volume from a single source as a function of time from
beginning of the spreading process after finite-size scaling. (d)
Particle density p(t), (e) static density pstat and (f) suscepti-
bility x(dt,0) as a function of §t for the homogeneous initial
condition. Measurements are averaged over at least 256 (up
to 4096) realisations of temporal network constructed from
random 9-regular networks (N € {2%,2°,...,2'7}) and Pois-
son point process activations A = 1 of links. All functions
of time (a and b insets and panels ¢ and d) are measured
at 0t = dt. = 0.08808. d is set to DP upper critical dimen-
sion d. = 4. Observing temporal connectivity profiles (i.e.,
relative cluster volumes for each event, see main text) for a
single realisation of 9-regular network with Poisson process
(N =1024, A =1, 0 < t < 64) for before (6t = 0.07, panel
g) and after the critical ¢ = 0.092 (panel h) shows that for
&t > dt. components grow to a size comparable the network.

0 nodes reduces by one the number of reached nodes.
That is, the total change is ¢5"* — ¢g"*. In addition, some
nodes we can reach are already reachable through some
other paths. In total we reach on expectation ¢t + 243"t
nodes and each of them have probability of p(t) of being



already reached. The rate equation becomes

Qep(t) = [38" — G5™1p(t) — [@" + 243" 107 (1) . (1)

In this equation the values of §P"* are constants in time.

Noting the critical point for this equation as §§"* —ggut =

0, and that the expected value is by definition ¢°%* =
G +2¢5"*, and that g5t — gg"t = ¢°"* — 1, we can write
Eq. (1) as dip(t) = 7p(t) — GOt p%(t).

The Eq. (1) follows the same form as the DP mean-
field equation for a d + 1-dimensional lattice [12] and it
can be solved explicitly (see SM). It has the critical point
at 7 = 0, while it indicates that p — 7/¢°% for 7 > 0.
Asymptotically it provides the critical exponents as

p(t) ~ 7, i =0

Pstat(7)~7’87 if7T>0and t— o

(2)

with values a = 3 = 1, where a = /) and v is the
temporal correlation length exponent, in accordance with
the corresponding mean-field DP critical exponents [12].

The expected out-component size, i.e. the mean cluster
mass M, can be computed from the joint degree distribu-
tion of the event graph D by assuming that it is a random
directed graph with the same joint in- and out-degree
distribution as D. The out-component size distribu-
tion can be derived from Ho(2zout) = ZoutGo(1, H1(Zout)),

Hi(Zouwt) = 2outG?“*(H1(20ut)), and the mean out-
component size can be written as M = Mb =1
Zout out

[56]. These equations, when 7 — 07, lead to M ~ —777
with v = 1 (see SM). Here v = v +dv, — - ', match-
ing the mean-field exponent of mean cluster mass in DP
[12]. Here v, indicates the spatial temporal correlation
exponent.

The survival probability of a component, P(t), is mea-
sured by the out-component sizes of nodes in the event
graph and the occupation density, p(t), is calculated by
the in-component sizes of all possibly reachable nodes,
which means that these two quantities are equal p(t) =
P(t) (see SM). Consequently, given the control parame-
ter T, pstat(7) = Poo(T) as long as the time-reversed event
graph has the same probability of being generated as the
original one (e.g. ifV; , p?o’out = pffi’om). This leads us to
the rapidity-reversal symmetry for event graphs similarly
characterizing DP [57] where 8 = 8" and Pa(7) ~ 77"

Finite-size scaling in random systems. The previous
mean-field solutions were obtained by approximating the
event graph of a random temporal network with a ran-
dom directed graph with the same joint in- and out-
degree distribution. Alternatively, the same critical ex-
ponents can be empirically verified by using finite-size
scaling of the system close to its percolation critical point,
where its large-scale properties become invariant under
scale transformations. To do so we simulate random
temporal networks of varying size and perform computa-
tionally efficient reachability estimations [45] from single-
seed and homogeneous fully occupied initial conditions to

compute the macroscopic scaling quantities. We expect
that data points would collapse when using the correct
critical exponents of 3, v and v, corresponding to the
mean-field values approximated for directed percolation.
Note since there is no metric in space, so v, is simply
defined using the characteristic volume of the cluster, V.

Our finite-size scaling analysis confirms the validity of
all these DP mean-field exponents to characterise the
percolation phase transition of random temporal net-
works. This is demonstrated in Fig. 2a-f for temporal
networks induced on a 9-regular network with links ac-
tivated via independent Poisson processes. These results
are robust in the presence of several types of tempo-
ral and spatial heterogeneities, as similar data collapse
can be seen in a multitude of combinations of static
network topologies (including one- to four-dimensional
square lattices and random d-regular networks in addi-
tion to Erdés—Rényi random networks) and temporal dy-
namics (including bursty heavy-tail inter-event time pro-
cesses and self-exciting dynamics in addition to Poisson
dynamics) as we demonstrate in Ref. [58].

DP measures in real-world temporal networks. To
quantify the time scales related to the reachability transi-
tions in real settings, we measure the same macroscopic
quantities as before for single source and homogeneous
initial conditions for four different real-world systems
(Fig. 3a-d). We concentrate on temporal networks de-
scribing an air transportation system (Fig. 3a), the pub-
lic transportation of Helsinki (Fig. 3b), a large Twitter
mention network (Fig. 3c), and a mobile phone call net-
work of millions of individuals (Fig. 3d). For details on
the data sets and pre-processing, see SM. In each system,
there is clear evidence of an absorbing to active phase
transition in terms of M, V, and pgat. Note that even
though these quantities describe the same transition pro-
cess as a function of the control parameter, their scales
are not directly comparable. In some systems, some of
these quantities can be re-scaled in a way that they follow
each other (for example, V and M in the transportation
network shown in Fig.3b), but in general the curves rep-
resenting the various ways of measuring component sizes
behave in different ways after the phase transition. This
highlights the fact that distinguishing between the differ-
ent notions of connectivity in temporal networks can be
important in practical terms. Further, contrary to the
simple theoretical models, we see multiple peaks in the
susceptibility curves of the public transport and Twitter
networks, which indicates the existence of multiple time
scales relative to the connectivity of the data.

The reachability phase transition behaviour can be
better understood by investigating temporal connectivity
profiles represented by cluster volumes. This is measured
as the time evolution of the number of unique tempo-
ral network nodes in the out-component of a spreading
process starting initiated from each event. For random
networks below the critical point (see Fig. 2g) only small
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FIG. 3. Mean cluster mass M, mean cluster volume V, static
density pstat and susceptibility x(dt, 0) as a function of dt for
four real-world networks: (a) Air transport [59], (b) Helsinki
public transportation [60], (¢) Twitter mentions [61] and (d)
mobile phone calls [62] display an absorbing to active phase
transition around 470 seconds, 670 seconds, 25 minutes and
7.5 hours respectively, as indicated by change from very small
values for M, V and pstat to values comparable to the size of
the system and a peak in susceptibility x(dt,0). Mobile and
Twitter networks show a second peak in susceptibility around
1.5 hours and 22 hours respectively and twitter data shows
a third peak around 14 hours. The temporal reachability
profiles display relative cluster volumes for each event as a
function of the event time. They are shown close to dt. for (e)
air transport, (f) Helsinki public transportation, (g) Twitter
mentions and (h) mobile phone call networks.

components appear. However, around the critical point
(Fig. 2h), multiple large components evolve representing
structures where spreading from some events can reach a
significant fraction of nodes although these components
do not overlap in time as they span only a short period
of the whole timeline. A similar column structure can be
observed for the air transport network and the Twitter
network (Fig. 3e,g) too. However, in the air transporta-
tion network, the column structure is regular, following
the daily pattern of flights. In the Twitter network, the
components never reach all the nodes in the temporal

network due to the larger separation of temporal compo-
nents, and their structure reflects the rare emergence of
possible macroscopic cascades in this system. The public
transport network (spanning a single day) and the mo-
bile phone network display a single wing-like structure
(Fig. 3f,h). This structure is induced by early compo-
nents that can reach a significant fraction of the net-
work, which are then joined by other components reach-
ing smaller subsets of nodes. This is also indicated by
the long horizontal line structures under the wings. The
temporal reachability profiles provide a useful tool for un-
derstanding how the connectivity transition takes place
at the system level, and they serve as a starting point for
a more detailed analysis of the individual systems and
their inhomogeneities.

Conclusion. Connectivity of complex networks is one
of their most important global property as it codes the
possible routes of information and in turn determines dis-
ease spreading, transportation routes, and information
diffusion in real settings. This is a major challenge as
time-varying interactions induce time-dependent connec-
tivity and can have dramatic effects on the speed and
volume of any ongoing dynamical process [2-4]. A con-
cise theory of temporal connectedness is a necessary step
forward from the limited description that static networks
provide. Our results map the temporal network connec-
tivity problem to directed percolation, this way opening
the door for detailed and well-established descriptions
of the critical phase transitions characterising limited
waiting-time processes on temporal networks. Further,
our framework provides a crucial tool for characterising
and more precise modelling of spreading and diffusion
phenomena, even in real-world settings.
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GENERATING SYNTHETIC TEMPORAL
NETWORKS AND THE EVENT GRAPH

The synthetic temporal networks are created with
some continuous-time stochastic process based on an un-
derlying static network with a degree distribution of py
and excess degree distribution of q;. The event graph,
directed acyclic graph of adjacency relationships between
pairs events, can then be produced by iterating through
all events e and connecting it to all other events when
e happens less that 6t time before that event and they
share at least one node.

Reachability on the event graph will be preserved by
removing some of the links so that the in/out-degree
varies between 0 to 2 for every node [1] as long as the
probability of adjacent events happening at exactly the
same time is negligible. Practically, for every event e in
the event graph, we can remove directed links to all but
the very first events for each of the two nodes involved in
e. This preserves connectivity in the event graph since
all the events on the other end of the removed adjacency
relationships would still be connected through one of the
remaining links out-bound from e as they share at least
one node and the time difference is less than or equal to
the original event. Note that if more than one adjacent
events are happening at the same time and no other ad-
jacent events happen before them, we would have to keep
all of them to preserve connectivity.

Note that in practice it is often not necessary to explic-
itly generate the event graph to measure the quantities.
It is possible to store the list of associated events for each
node in the network sorted by time and generate adja-
cency relationships on the fly. This can also be combined
with other techniques such as using probabilistic data
structures for estimating out-component sizes to allow
processing of temporal networks much larger than what
is possible with the explicit solution [2].

Degree distribution of the reduced event graph

Let’s assume a vertex on the event graph, an event e,
that involves two nodes called [ and r which just acti-
vated at time ¢y (Fig 1). The two nodes [ and r have
respectively ¢; and ¢, neighbor nodes, other than each
other, over the static network.

Let’s also define Pr(t,.s < 0t) as the probability that a

(a)

é

to b

Underlying Network t X, t, t

FIG. 1. Considering the case of an event between nodes [
and 7 happening at time ¢y, where each node has ¢; and g,
neighbours other than each other respectively. Assuming link
[ —r was selected uniformly at random from the set of all the
links in the base network, the values ¢; and ¢, are both real-
isations of the excess degree distribution of the base network
P,. Out-degree of the event eg = (I, r,t0) is between zero and
two depending on the order and timing of events between [,
r and their neighbours. If the [ —r link activates before any
of the other links incident to [ and r (panel a) or only links
incident to [ (or only r) other than { —r fire before | —r (panel
b) at a time t1 > to, event ep would have an out degree of zero
if t1 — to > dt or one if t; — to < 6t. All other edges coming
out of eg would necessarily get pruned out as shown by the
crossed-out links. The only case for ep having a degree two
happens when at least one event at t1 < dt only involving [
and not r and one at t2 < 0t only involving r and not [ both
happen before [ —r fires again.

process with inter-event time distribution 7 can activate
at least once in time ¢ after a random point in time.
This can correspond to probability of one of the links in
the underlying network activating within a time period
of §t. Random variable t,.s is distributed according to
the residual inter-event time distribution R. Similarly,
Pr(t;et < 6t) is the probability that a process with inter-
event time distribution 7 can activate at least once in
time 0t right after activation.

Probability of an event having out-degree of zero in the
event graph can be calculated as:

Pout(0lqr, qr) = Pr(tres > 0t) 119 Pr(tie > 0t) (1)

where ¢; and ¢, are the number of neighbours each of the
nodes participating in the event has except for the con-
nection between two nodes of the event in question, ;.



is a realisation of the inter-event time distribution of the
network 7 and t,.s is a realisation of the residual inter-
event time distribution R. Out-degree of an event is zero
if and only if none of the ¢; + ¢ adjacent links on the
underlying network have an event within ¢ and the two
nodes participating in the original event also don’t have
any events between them within §¢. The second term
corresponds to the probability of the same link not acti-
vating and the first is the probability of all of the other
incident links except for the original link not activating
in dt.

The only case that an event on the event graph can
have an out-degree equal to 2 (as shown on Fig. 1¢)
is that at least one of the ¢; neighbours of | and one
of the ¢, neighbours of r activate before dt and before
reactivation of the link between [ and r. Activation of
the link between [ and r before at least one of the links
on each side is activated (Fig. 1la and 1b) would result in
out-degree equal to zero or one depending on the value
of 4t and timing of the events.

Probability of having an out-degree equal to 2 can be
calculated this way:

Pout (2@, gr) = / (L= Pr(tres > 0t Vipes > )%)
0

(1 = Pr(tres > 0t Vitpes > 1)97) (
Pr(t~T)dt

2)

where t,.s, T, q; and ¢, are defined as above. An event
has an out-degree equal to 2 if and only if two mutually
non-adjacent links adjacent to the link corresponding to
the original event activated within §¢ and before the link
corresponding to the original event is activated.

Pout(1|ql; qr) =1- (Pout(o‘qla QT) + Pout(2|ql; qr)) (3)

Based on these equations, it is trivial to construct joint
in- and out-degree distribution

P(in,out) = > Pin(inlq, ¢r) Pout(outlq, )
q1,9r=1
Pola) Py(qr)

where P,(7) is the probability mass function of excess
degree for the static aggregate base network.

It is possible to construct the joint degree distribution
generating function G using the joint degree distribution
itself

2

G(z,y) = Z P(in, out)x™y°"* (5)

in,out=0

and in- and out-degree and excess degree distribution

generating functions

Go"(x) = G(x,1)

G5 (y) = G(1,y)
@ =50 (6)
out _ 1 Gg(x, y)
1 (y) - - or o1

where z is the mean in- and out-degree derived from

G (z,v) G (x,y)

or oy (7)

r=y=1 r=y=1

Note that the in- and out-excess degree distribution
generating functions we just derived (Gi"(x) and G¢%(x))
refer to excess in- and out-degree distribution of a ran-
dom event in the event graph.

DETAILS OF ANALYTICAL DERIVATION OF
CRITICAL EXPONENTS

To study properties of the event graph, we approxi-
mate it by a random directed graph with the same in-
and out-degree distribution. The following sections are
all based on this assumption. The validity of this assump-
tion and the following results can be verified explicitly by
empirically constructing temporal networks of different
topologies and temporal dynamics and measuring scal-
ing of quantities such as p(t), P(t), M, V or pstat(7) [3].

Control Parameter 7

The mean-field rate equation for occupation density
in homogeneous occupation initial condition can be con-
structed as

atp(t) = [Qout(2)_Qout(O)]p(t)_[Qout(1)+2Qout(2)]p2(<t))
8

where Qout(i) = %Gf{“t(y) is the excess out-degree
distribution of events in the event graph. Using excess
degree distribution captures the fact that in the ran-
dom temporal model we are using, in- and out-degrees of
events in the event graph are correlated and both are a
function of degree of the event’s constituting nodes in the
static base network. By defining 7 = Qout(2) — Qout(0)
and ¢ = Qout(1) + 2Qout(2), Eq. 8 turns into d¢p(t) =
7p(t) — gp?(t) with stationary solutions at p = 0, which
represents the absorbing phase, and 7 = 0, which corre-
sponds to the mean-field critical point.

An event graph can be presented, without any change
in reachability of any event, so that no event has an in- or
out-degree larger than two (as discussed in the beginning



of this section) 7 and g can be written as 7 = (Qout) — 1

and g = (Qout)-
The phase transition at 7 = 0 also complies with

the previously know result of phase transition in ran-

dom directed graphs with arbitrary degree distribution
)

at 2 G ()1 = 1 [4].

Density scaling exponents a = =1

For large t, Eq. 8 has one solution for active and ab-
sorbing phases and the critical threshold 7 =0

-1
—T(g—T> e™, ifr<0
Po
p) =19 (oo +gt) ",

T

+7—2(g—7->e_”, if7>0
g g Po

where as t grows, p approaches zero for 7 < 0 and p —
7/g for the 7 > 0, i.e. asymptotically

ifr=0 9)

p(t) < t™Hif 7 =0 (10)
and
pstar(T) o< THif 7> 0. (11)
which leads to
a=p8=1. (12)

Rapidity-reversal symmetry 3 = 3

The fact that survival of a component is measured
using out-component of events in the event graph
while occupation density is calculated by measuring in-
component of all possibly infected nodes, hints at a sym-
metry in the system under time reversal. Consider §t-
constrained event graph representation of temporal net-
work T'(V,€) and two sets events in bands of time 0t
units of time wide, namely Ey = {e € £ | 0 < t, < §t}
and E, = {e € £ |t < t. < t+ t} where t. is time
of activation of event e. Assuming S; C E; where each
member of S; appears in the out-component of at least
one of the members of Ey and Sy C Ej where each mem-
ber of Sy appears in the in-component of at least one of
the members of E; (which is to say, one of the members
of S¢). Probability of survival at time ¢ can be estimates
as the fraction of nodes in F; that can reach at least a
node in E;, P(t) ~ |So|/|Eo|. Similarly, since in the ho-
mogeneous fully occupied case all the events in Fy are
occupied, the occupation density at time ¢ can be esti-
mated as p(t) = |St|/|Et|.

Under reversal of time t, — (t 4 dt) — ¢, the direction
of the links in the event graph will revert which in turn

causes switching of in- and out-component set of each
node. In this scenario, occupation density is estimated
by p(t) ~ |So|/|Fo| which is the same as probability of
survival in the original case. Conversely, probability of
survival is estimated by P(t) =~ |S:|/|E:| which is the
same as occupation density in the original case. If the
time-reverted event graph has the same likelihood as the
original event graph, e.g. if G§*' = G{", this leads to the
identity

P(t) = p(t), (13)

which in turn, for models belonging to the DP class, leads
to the celebrated rapidity-reversal symmetry:

B=p. (14)

Mean component mass exponent v =1

The generating function for distribution of out-
component sizes Hy(y) is the solution to the system

Ho(y) = yG5"" (H1(y))
Hi(y) = yG7* (Hi(y))
and mean out-component size can be calculated as

_ OHy(y)
M = ay

(15)

=1+G M (D)H(1).  (16)

y=1

For tau < 0 where H;(1) =1 this results in a solution in

form of
H() =1+ 6™ RO = A=)~
= M =1+G7(1)(1 -G, (1) "

Keeping in mind the definition of control parameter
T ={Qout) —1 = G,°"*(1) — 1 and that a@yggut(yﬂy:l =z
(see Eq. 7), we can re-write M as

z—T

M=1+z-7)""= : (18)

-7

For the special case of random k-regular networks we
can prove that z — 7 = 1 which give the result M =
(—7)~1. More generally, to find exponent of a power-law
asymptote of the form (—7)~7 as 7 — 0~ for any random
graph we can find the solution to

. InM In(z—7)—Iln—7
—v = lim = lim
r—0- In—7  r—0- In—71
In(z —7) (19)
= lim ———= —-1=-1if0 < z < 0.
T—=0~ —T

Under the condition that 0 < z < oo, the limit term is
equal to zero, resulting in v = 1. Given the fact that, as-
suming probability of co-occurrence of adjacent events is
negligible, the maximum out-degree of the event graph is
2, if the mean out-degree is above zero at 7 = 0, a power
relation with exponent v = 1 estimates mean component
mass.



ALTERNATIVE ANALOGUE FOR MEAN
CLUSTER MASS

In classic DP, mean cluster mass M is defined as the
integration of the pair-connectedness function across all
nodes and time. Based on how we established parallels
between spatial dimensions and the base networks and
a the possibility of defining pair-connectedness function
as existence of a dt-limited time-respecting path between
a pair of nodes at different times, this might translates
more directly to the sum of time-length of all infections
started from a random event, or in other words total
duration of sickness for all people. This would also imply
that the spreading processes start at random nodes and
times, as opposed to starting at random events as we use
in the manuscript.

DESCRIPTION OF THE REAL-WORLD
TEMPORAL NETWORK DATA SETS

Four real-world temporal networks were used for
demonstrating the measurement of the quantities and
phase transition. These are the same datasets used previ-
ously for developing the algorithmic method which form
the backbone of the more empirical parts of the current
manuscript [2].

The air transportation network dataset is a record-
ing of 180112 flights between 279 airports in the United
States, gathered from the website of the The Department
of Transportation’s Bureau of Transportation Statistics
website in 2017 [5]. The public transportation network
is the set of all 664 138 trips during a typical Monday in
Helsinki in 2018, where a trip is one public transporta-
tion vehicle moving from one of the 6858 bus, metro
and ferry stations to the next [6]. The twitter dataset
is a set of 258 million mentions (counting replies) of 12
million user handles [7]. Finally, the mobile phone call
dataset is set of 325 million phone calls between over 5
million mobile phone subscribers [8]. A few thousand
events were removed from the beginning of the twitter
dataset to eliminate a weeks-wide gap in the gathered
data.

The first two networks, air and public transportation
networks, were processed as directed, delayed temporal
networks where each event has a duration as well as a
starting time e = (v1, va,t, d) where two events are adja-
cent if the second event starts after the duration of the
event is finished and the tail node of the second event is
the same as the head node of the first event, e.g. the first
plane lands in the destination airport before the second
one takes off from that airport. The waiting time ¢ then
refers to the time between end of the first event to the
beginning of the second one.

There is an argument for measuring waiting time in de-
layed temporal networks from the beginning of the first

event for some processes such as disease spreading. For
example, a disease that gets healed less than an hour
after infecting someone has a very low chance of spread-
ing through air travel where most trips take longer than
that. That method was not used in this manuscript. The
second pair of networks, twitter and mobile networks,
were treated like undirected, instantaneous temporal net-
works.

The real-world networks show high degrees of tempo-
ral heterogeneity, daily/weekly patterns, peaks at spa-
cial hours of the day or at special days of the year or
local or global outages. Measuring representative values
for static density pstat and susceptibility x for real-world
networks would need special consideration. Our current
method for measuring these quantities in the homoge-
neous, fully-occupied initial condition is dependent on
the level of activity of the initial time ¢ of the dataset as
well as existence of unlikely periods of very low or very
high activity as a result of natural disasters, real-world
happenings or simply failure of the measurement appa-
ratus or the measured system. To average out any such
outliers we split the original data into 64 equal time win-
dows of time T'/2 (for air and public transport) and 7/16
(for mobile and twitter) where T is the time window of
the original dataset, each starting at a random point in
time.

Distribution of mass, volume and lifetime for each
event in the event graph can be seen Figs. 2, 3, 4 and
5 for Helsinki public transport, Air transport, Twitter
and Mobile datasets respectively.
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ot = 800 and (e) 6t = 1000 seconds.
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FIG. 3. Air transport network out-component size estimates for (a) d¢ = 300, (b) dt = 400, (c) 6t = §t. = 470, (d) ot = 600

and (e) 6t = 800 seconds.
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FIG. 4. Twitter mention network out-component size estimates for (a) 6t = 200, (b) ot = 1200, (c) ot = 3600, (d) ot = ot. =
4800 and (e) 6t = 12000 seconds.
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FIG. 5. Mobile call network out-component size estimates for (a) ot = 2, (b) 6t = 4, (c¢) dt = dt. = 7.5, (d) 6t = 9 and (e)
0t = 14 hours.



