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We propose an entanglement-based algorithm of the tensor-network strong-disorder renormaliza-
tion group (tSDRG) method for quantum spin systems with quenched randomness. In contrast to
the previous tSDRG algorithm based on the energy spectrum of renormalized block Hamiltonians,
we directly utilizes the entanglement structure associated with the blocks to be renormalized. We
examine accuracy of the new algorithm for the random antiferromagnetic Heisenberg models on the
one-dimensional, triangular, and square lattices. We then find that the entanglement-based tSDRG
achieves better accuracy than the previous one for the square lattice model with weak randomness,
while it is less efficient for the one-dimensional and triangular lattice models particularly in the
strong randomness region. The theoretical background and possible improvements of the algorithm
are also discussed.

I. INTRODUCTION

The tensor network has been under intensive stud-
ies in the fields of condensed-matter physics and quan-
tum information for the last decades. Several numer-
ical algorithms based on the tensor-network formalism
have been developed and widely applied to quantum
many-body systems to efficiently extract their low-energy
states. The most successful example is the density-matrix
renormalization group (DMRG) method[1, 2], which can
be viewed as a variational method based on the matrix-
product state[3, 4] and has achieved extremely accurate
calculations for one-dimensional (1D) quantum many-
body systems. The tensor-product state[5] and the pro-
jected entangled-pair state[6, 7] also provide powerful nu-
merical algorithms in exploring quantum many-body sys-
tems in two or higher dimensions. The multiscale entan-
glement renormalization ansatz[8, 9] has also succeeded
in efficiently describing the quantum criticality in one di-
mension.

The focus of this work is on how to develop a
tensor-network approach to quantum spin systems with
quenched randomness. In 1D random quantum sys-
tems, the interplay of quantum fluctuation and random-
ness often leads to such an exotic state as random-
singlet state[10]. It has been also revealed by recent
studies[11–23] that when random spin systems contain
strongly frustrating interactions, a novel state, sometimes
called “frustrated random-singlet state”, may emerge not
only in 1D but also higher-dimensional systems. How-
ever, practical numerical studies of the exotic states in
frustrated random systems are limited in the level of
small size clusters so far; The quantum Monte-Carlo
(QMC) simulation is basically not applicable to frus-
trated systems due to the minus-sign problem. The
DMRG method is less efficient for higher-dimensional
systems and often suffers from quasi-degenerate ground
states in random systems[23]. Then, a promising nu-
merical approach is the tensor-network strong-disorder
renormalization group (tSDRG) method[24, 25]. The
tSDRG was introduced as an extension of the pertur-

FIG. 1. Schematic picture of the tree-tensor network con-
structed in the tSDRG. Circles on the bottom and triangles
in the middle layers respectively represent the original spins
and the renormalization matrices V or U . The semicircle at
the top represents the ground-state wave function in the trun-
cated basis at the final step of tSDRG. See the text in Sec. II
for the details.

bative strong-disorder renormalization group (SDRG)
method[26, 27] and has proven to be efficient for realizing
accurate numerical calculations of 1D random quantum
spin systems[24, 25, 28, 29]. In the context of tensor
network, the tSDRG is based on the tree-tensor network
(TTN), as depicted in Fig. 1; As tSDRG iterations pro-
ceed, the spins in the system are renormalized to form
blocks of spins from bottom to top, eventually yielding
the TTN representing the ground-state wavefunction of
the whole system.
In the tSDRG previously developed, the Hamiltonian is

renormalized into the effective one expressed in the trun-
cated basis by the renormalization group (RG) transfor-
mation based on the low-energy spectrum and the corre-
sponding eigenstates of intra- and inter-block Hamiltoni-
ans. We thus obtain the low-energy effective Hamiltonian
that gives an approximated ground state. The idea of this
Hamiltonian-based tSDRG (H-tSDRG) is faithful to the
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strategy of the conventional real-space RG, where succes-
sive RG transformations result in the fixed-point Hamil-
tonian. From the perspective of the variational method
based on the TTN, nevertheless, there can be an alterna-
tive strategy; For generating an optimal TTN approxi-
mating the true ground state, one may construct the RG
transformation based not on the low-energy spectrum of
block Hamiltonians but on the entanglement structure
between blocks in the ground state of the whole system.
The aim of this study is to develop this entanglement-

based tSDRG (E-tSDRG) algorithm.
In this paper, we develop a new algorithm of the E-

tSDRG and then apply it to the S = 1/2 antiferro-
magnetic (AF) Heisenberg models with random exchange
couplings defined on 1D chain, triangular, and square lat-
tices. The model Hamiltonian is formally written as

H =
∑

i,j

Ji,jSi · Sj, (1)

where Si is the spin-1/2 operator at the ith site. Here,
the exchange constant Ji,j for the nearest-neighboring
pairs (i, j) takes a nonzero random value obeying the
uniform distribution between [1− δ, 1 + δ],

P (Ji,j) =
1

2δ
Θ(Ji,j − 1 + δ)Θ(1 + δ − Ji,j), (2)

where 0 < δ ≤ 1 and Θ(x) is the Heaviside step function.
For the pairs (i, j) that are not on the nearest neigh-
bor, we set Ji,j = 0. We apply the E-tSDRG algorithm
to finite-size clusters of the model (1) and then com-
pare its accuracy with that of the H-tSDRG. We thereby
show that the E-tSDRG can be more precise than the
H-tSDRG for the square lattice model with small ran-
domness, while the E-tSDRG is basically accurate but
less efficient for the 1D and triangular-lattice models.
The rest of the paper is organized as follows. In Sec.

II.1 a brief review of the H-tSDRG algorithm is pre-
sented, while in Sec. II.2 the new E-tSDRG algorithm
is introduced. The numerical results are presented in
Sec. III. Section IV is devoted to the summary and dis-
cussions.

II. ALGORITHM

II.1. H-tSDRG algorithm

Let us begin with a brief review of the H-tSDRG algo-
rithm based on the energy spectrum of the block Hamil-
tonians, before proceeding to details of the E-tSDRG al-
gorithm. In the tSDRG, the system is generally treated
as an assembly of blocks consisting of original spins. (See
Fig. 2.) The Hamiltonian of the whole system is written
as

H =
∑

r

HB
r +

∑

r,r′

HI
r,r′ , (3)

FIG. 2. (a) The system after a certain number of H-tSDRG
iterations and (b) the corresponding block representation of
the system. Here, we suppose that the link between the blocks
(R,R′) = (5, 7) is the “strongest” (i.e., has the largest gap
∆) so that the (5,7) blocks are renormalized in this H-tSDRG
step. The system after the renormalization process is depicted
in (c) and (d).

where

HB
r =

∑

i,j∈r

Ji,jSi · Sj (4)

is the intrablock Hamiltonian for rth block and

HI
r,r′ =

∑

i∈r,j∈r′

Ji,jSi · Sj (5)

is the interblock Hamiltonian between rth and r′th
blocks. We assume that the Hilbert space of each block is
spanned by χ-dimensional bases, after certain renormal-
ization iterations. Therefore, the intrablock Hamiltonian
HB

r and the original spin operator Sα
i (α = x, y, z) are

represented by χ×χmatrices, while the interblock Hamil-
tonian HI

r,r′ is a χ2 × χ2 matrix [30].
The H-tSDRG algorithm consists of the following two

processes. The first process is to identify the block pair
that is connected by the “strongest” link. The second
process is to renormalize the block pair into a new single
block represented with truncated bases. In the first pro-
cess, the strength of link is evaluated by an appropriate
energy gap ∆r,r′ in the energy spectrum of the interblock
Hamiltonian HI

r,r′ or the block-pair Hamiltonian defined
as

HP
r,r′ = HB

r +HB
r′ +HI

r,r′ . (6)

Then, the strongest link is determined as the link with
the largest ∆r,r′ among all the links of the nonzero in-
terblock Hamiltonians. Here, note that there are several
options for the definition of the energy gap ∆r,r′ , which
affect resulting accuracy. In Sec. III, we adopt two types
of energy gaps, ∆I

max and ∆P
gs, which respectively denote
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the largest level spacing in the energy spectrum of HI
r,r′

and the gap between the ground-state and first-excited
multiplets of HP

r,r′ . It has turned out that the former and
the latter respectively yield accurate results for strong-
and weak-randomness regimes. We refer the readers to
Ref. [31] for the detailed definition of ∆I

max and ∆P
gs.

Let the block pair (R,R′) be the one connected by the
strongest link. In the second process, we renormalize the
pair into a new single block. The Hilbert space of the
block pair before the renormalization is spanned by χ2

bases, and we truncate it into the χ-dimensional space
spanned by the χ-lowest energy eigenvectors of the pair-
block Hamiltonian HP

R,R′ [30]. The block Hamiltonian of

the new block R + R′ and the spin operators belonging
to the new block are thus obtained as

H̃B
R+R′ = V †HP

R,R′V, (7)

S̃α
i = V † (Sα

i ⊗ IR′) V, (8)

S̃α
j = V †

(

IR ⊗ Sα
j

)

V, (9)

where i ∈ R, j ∈ R′, and IR (IR′) is the identity matrix
for the block R (R′). The renormalization matrix V is
composed of the χ-lowest-energy eigenvectors of HP

R,R′ .

The interblock Hamiltonian between the new blockR+R′

and the block R′′ connected to R + R′ via a nonzero
interblock Hamiltonian is also renormalized as

H̃I
R+R′,R′′ = V †

(

HI
R,R′′ ⊗ IR′ + IR ⊗HI

R′,R′′

)

V.(10)

As a result of the above RG processes, the number of
blocks in the whole system is reduced by one. We con-
tinue H-tSDRG iterations until the system is represented
by three blocks, where the Hamiltonian of the whole sys-
tem can be exactly diagonalized within the truncated ba-
sis. As shown in Fig 1, the resulting ground-state wave-
function is represented as a TTN, in which the isome-
tries corresponding to the renormalization matrices are
connected via the χ-dimensional bonds. Using this TTN,
one can straightforwardly calculate the ground-state ex-
pectation values of observables. The algorithm of the
H-tSDRG is summarized in Tab. I. We note that the
H-tSDRG and the E-tSDRG discussed in the following
section become exact if χ reaches the dimension of the
total Hilbert space of the system with no cutoff.

II.2. E-tSDRG algorithm

As discussed in the preceding section, the H-tSDRG
can be formulated as a variational method using the TTN
wavefunction, where its accuracy depends on both the
network structure and the quality of isometries. In the
TTN, a branch and the rest of the tree are generally
connected by a single bond with a finite dimension χ,
which can carry an entanglement entropy of up to lnχ.
This fact naturally provides the guiding principle that
the block pair having the smallest entanglement with its
environment should be renormalized first.

TABLE I. Algorithm of the H-tSDRG.

1. Calculate the energy gap ∆r,r′ for all block pairs

connected by nonzero interblock Hamiltonians.

2. Identify the block pair (R,R′) with the largest ∆r,r′ .

3. Diagonalize the block-pair Hamiltonian HP
R,R′ to obtain

the renormalization matrix V .

4. Using V , renormalize HP
R,R′ and Sα

i (i ∈ R or R′) to

obtain the new-block Hamiltonian HB
R+R′ and the spin

operators Sα
i in the new block R+R′. Renormalize also

the interblock Hamiltonians H̃I
R+R′,R′′ between the new

block R +R′ and a block R′′ linked to the new block via

nonzero interblock Hamiltonians.

5. Diagonalize the new interblock or block-pair Hamiltonians

to renew the list of the energy gap ∆r,r′ .

6. Back to 2.

In the H-tSDRG, the block pair connected by the
“strongest” link is renormalized first, referring to the ex-
citation gap in the spectrum of HI or HP. This is ba-
sically consistent with the above guiding principle, from
the monogamy of entanglement stating that two blocks
coupled strongly with each other have a small entan-
glement with their environment. However, this scheme
based on the energy spectrum is quite indirect to see
entanglement structures around the block pairs. Also,
the isometries in the H-tSDRG are constructed from the
low-energy eigenstates of HP

R,R′ , where the entanglement
effect from the environment around the block pair may
not be included sufficiently. Thus, a tSDRG algorithm
based on more direct use of the entanglement distribu-
tion around the blocks should be examined particularly
for random spin systems.
Let us consider the reduced density matrix (rDM) for a

block pair (r, r′) in the ground state of the whole system,

ρr,r′ = Trr,r′ |Ψg〉〈Ψg|, (11)

where |Ψg〉 is the ground state of the whole system and
Trr,r′ denotes the trace with respect to the degrees of

freedom complemental to the rth and r′th blocks. From
ρr,r′ , one can extract the entanglement entropy between
the block pair (r, r′) and the rest of the system, which
can be used for identifying the block pair (R,R′) to be
renormalized. Also, the eigenvectors of ρR,R′ with the
χ-largest eigenvalues provide the isometry that takes ac-
count of the entanglement between the block pair and
the environment. Of course, it is generally difficult to
obtain the exact rDM of Eq. (11) a priori and thus we
should introduce an appropriate approximation.
Here, we propose the following way of approximating

the rDM of Eq. (11). Let (r, r′) be the indices for the
block pair and r′′ be the index for the blocks linked to
the (r, r′) blocks via a nonzero interblock Hamiltonian.



4

FIG. 3. The blocks involved in the rDM ρr,r′(r
′′) [Eq.

(13)] with (r, r′) = (5, 7) and r′′ = 8. The calculation
of ρ̃r,r′ [Eq. (14)] for (r, r′) = (5, 7) requires ρ5,7(r

′′) with
r′′ = 1, 2, 3, 4, 6, 8, 9, 10.

(See Fig. 3.) The three-block Hamiltonian for the blocks
(r, r′, r′′) is given by

H(3)
r,r′,r′′ = HP

r,r′ +HB
r′′ +HI

r,r′′ +HI
r′,r′′ . (12)

Using the ground-state wavefunction of the three-block
Hamiltonian, |ϕg〉r,r′,r′′ , we calculate the rDM for the
blocks (r, r′) in the three-block ground state as

ρr,r′(r
′′) = Trr′′ |ϕg〉r,r′,r′′ r,r′,r′′〈ϕg|, (13)

where the trace Trr′′ is taken for the Hilbert space of the
r′′th block. Then, we perform calculations of ρr,r′(r

′′) for
all blocks r′′ connected to the (r, r′) blocks and obtain
their mixed-state rDM,

ρ̃r,r′ =
1

Dr,r′

∑

r′′

ρr,r′(r
′′), (14)

which can be used as an approximation of Eq. (11). Here,
Dr,r′ denotes the number of the blocks r′′ linked to the
block pair (r, r′) via a nonzero interblock Hamiltonian.
We note that in the mixed-state rDM ρ̃r,r′, the weight
for ρr,r′(r

′′) is assumed to be equally 1/Dr,r′ for all r′′.
This is because detailes of the weight are not relevant to
ρ̃r,r′ as long as the decay of the eigenvalue spectrum of
each ρr,r′(r

′′) is not too slow.
Using Eq. (14), we evaluate the entanglement entropy

between the block pair (r, r′) and the rest of the system
as

Sr,r′ = −Trr,r′ ρ̃r,r′ ln ρ̃r,r′. (15)

We calculate Eq. (15) for all the pairs of (r, r′) linked via
nonzero interblock Hamiltonians, and then determine the
block pair (R,R′) to be renormalized as the one having
the minimum Sr,r′ . Besides, we employ the eigenvectors
corresponding to the χ-largest eigenvalues of the rDM
ρ̃R,R′ as the bases {u1, ...,uχ} for the new renormalized
block.
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FIG. 4. Schematic graph of the new-block bases in the
E-tSDRG algorithm; (a) n ≥ χ (usual case) and (b) n <
χ (the case of the small-rank problem). Solid lines (black)
represent the eigenstates of the mixed-state rDM ρ̃R,R′ and
the dotted lines (red) represent the eigenstates of the block-
pair Hamiltonian in the projected space, P †HP

R,R′P . Dashed
line (blue) denotes the cutoff line.

We note an additional treatment for the construction
of the new block bases, which is required for maintain-
ing the accuracy of practical computations. For a precise
argument, let us write the rank of the mixed-state rDM
ρ̃R,R′ as n below. We may usually expect that n ≫ χ for
the block pair (R,R′) whose Hilbert space is much larger
than χ. However, we sometimes encounter the situation
where n < χ, despite that the block pair (R,R′) has a suf-
ficiently large Hilbert space. This is because the matrix
rank of the rDM ρr,r′(r

′′) [Eq. (13)] is generally bounded
not only by the dimension of the Hilbert space of the
block pair (r, r′) but also by that of the block r′′. Conse-
quently, when the block pair (R,R′) is surrounded only
by a small number of blocks with small Hilbert spaces,
the rank n can be smaller than χ, even if the block pair
(R,R′) has a Hilbert space with a dimension larger than
χ. Note that the dimension of the Hilbert space for the
block r′′ can be smaller than χ when the block r′′ con-
tains only a small number of spins. If this “small-rank
problem” is the case, we can prepare only n(< χ) bases
for the Hilbert space of the new block. In this case, the
entanglement in the mixed-state rDM ρ̃R,R′ [Eq. (14)]
can be indeed maintained within the n bases. However,
if one keeps only those n bases, some essential entan-
glements between the block pair (R,R′) and its distant
blocks, that are not involved in ρ̃R,R′ , may be missed,
resulting in loss of computational accuracy. To fix the
problem, we examine the following additional treatment.
Let {η1, · · · ,ηξ} be the orthonormal eigenvectors of

ρ̃R,R′ . Here, ξ is the dimension of the Hilbert space
for the block pair (R,R′). We then assume that
{η1, · · · ,ηn} belong to the n nonzero eigenvalues of
ρ̃R,R′ , while {ηn+1, · · · ,ηξ} corresponds to the eigenvec-
tors of (ξ − n) number of the zero eigenvalue. We first
adopt the eigenvectors {η1, · · · ,ηn} as the n bases of



5

the new block, {u1, · · · ,un}. Next, using the projec-
tion matrix P constructed from {ηn+1, · · · ,ηξ}, we calcu-
late the block-pair Hamiltonian P †HP

R,R′P restricted in

the reduced Hilbert space orthogonal to {u1, · · · ,un}(=
{η1, · · · ,ηn}). Diagonalizing P †HP

R,R′P , we then gen-

erate the (χ − n) eigenvectors with the (χ − n)-lowest
eigenenergies. We adopt these eigenvectors as the sup-
plementary bases {un+1, · · · ,uχ} to obtain the new block
bases {u1, · · · ,uχ}. (See Fig. 4.) Using the reinforced
bases, we can construct the Hilbert space of the new block
without accidental reduction of its dimension. Of course,
this is an ad-hoc approach and the augmented bases of
the (χ − n)-lowest-energy eigenstates of P †HP

R,R′P may
not be the optimal ones to retain the entanglement be-
tween the block pair (R,R′) and its distant blocks. How-
ever, we will see in Sec. III that this procedure actually
improves the accuracy of the algorithm.
Now we present the algorithm of E-tSDRG as follows.

Suppose that, at a certain iteration step of E-tSDRG, the
entanglement entropy Sr,r′ [Eq. (15)] is obtained for all
the pairs of (r, r′) linked via a nonzero interblock Hamil-
tonianHI

r,r′ . Using the list of the entanglement entropies,

we select the block pair (R,R′) having the smallest entan-
glement entropy as the pair to be renormalized. For the
bases of the new block, we employ the eigenvectors of the
χ-largest eigenvalues of the rDM ρ̃R,R′ [30]. If the small-
rank problem occurs, the additional treatment above is
invoked. The intrablock Hamiltonian and spin operators
involved in the new block as well as the interblock Hamil-
tonians including the new block are then renormalized as

H̃B
R+R′ = U †HP

R,R′U, (16)

S̃α
i = U † (Sα

i ⊗ IR′ )U, (17)

S̃α
j = U †

(

IR ⊗ Sα
j

)

U, (18)

H̃I
R+R′,R′′ = U †

(

HI
R,R′′ ⊗ IR′ + IR ⊗HI

R′,R′′

)

U,(19)

where U is the (complemented) RG transformation ma-
trix composed of the basis vectors {u1, · · · ,uχ}. Finally,
we calculate the rDM ρ̃R+R′,R′′ for all the block pairs
consisting of the new block R+R′ and a block R′′ linked
to the new block, and then, update the list of the en-
tanglement entropies. We iterate the calculation until
the number of blocks becomes small enough so that the
Hamiltonian of the whole system in the truncated bases
is diagonalizable. Using the TTN constructed from the
set of U , we can calculate the expectation values of ob-
servables. The algorithm is summarized in Tab. II.
Before closing this section, we mention the compu-

tational cost of the E-tSDRG. The most costly part in
the E-tSDRG algorithm is the process to update the list
of the entanglement entropy after the renormalization.
The process requires calculations of the mixed-state rDM
ρ̃R+R′,R′′ for all the block pairs (R+R′, R′′) composed of
the new renormalized block R+R′ and a block R′′ linked
to it. Thus, its total computational cost is proportional
to the construction and diagonalization of ρR+R′,R′′(r′′)
for three-block clusters (R+R′, R′′, r′′) with two running
indices R′′ and r′′ [see Eq. (14)]. Note that the process

TABLE II. Algorithm of the E-tSDRG.

1. Calculate the entanglement entropy Sr,r′ between a

block pair (r, r′) and its environment for all block pairs

connected via the nonzero interblock Hamiltonian HI
r,r′ .

2. Identify the block pair (R,R′) with the smallest

entanglement entropy Sr,r′ .

3. Calculate and diagonalize the rDM ρ̃R,R′ [Eq. (14)] to

obtain the renormalization matrix U . (Adopt the

additional treatment for the small-rank problem, if

necessary.)

4. Using U , renormalize HP
R,R′ and Sα

i (i ∈ R or R′) to

obtain the intrablock Hamiltonian HB
R+R′ and the spin

operators Sα
i in the new block R +R′. Renormalize also

the interblock Hamiltonians H̃I
R+R′,R′′ between the new

block R +R′ and a block R′′ linked to the new block via

nonzero interblock Hamiltonians.

5. Calculate the rDM and entanglement entropy for the

block pairs containing the new block and update

the list of the entanglement entropy Sr,r′ .

6. Back to 2.

in the H-tSDRG corresponding to this part is the update
of the list of the energy gap ∆R+R′,R′′ including only a
single running index R′′. Accordingly, the E-tSDRG cal-
culation in each iteration step is heavier than that of the
H-tSDRG by about a factor ofD, the average of the block
coordination number Dr,r′ . Meanwhile, in both the E-
and H-tSDRGs, the maximum memory array is equally
bounded by the full diagonalization of χ2 × χ2 matrices,
ρ̃r,r′ , HI

r,r′ , or HP
r,r′ . Therefore, the maximum value of

χ taken in a practical calculation would be more or less
the same in the E- and H-tSDRGs.

III. NUMERICAL RESULTS

In this section, we discuss the numerical accuracy
of the E-tSDRG algorithm applied to the random AF
Heisenberg models defined on the 1D chain, the triangu-
lar lattice, and the square lattice. We particularly com-
pare benchmark results of the E-tSDRG for finite-size
clusters with those of the H-tSDRG. More precisely, we
treat the 1D chains with N = 24 spins, the triangular-
lattice systems with N = 24 and 36 spins (the shape
of the N = 24 cluster is as in Ref. [19] and that of
N = 36 is 6 × 6), and the square-lattice systems with
N = 36 (6 × 6) spins. The periodic boundary condi-
tions are imposed in the all cases. The number of ran-
dom samples Ns is Ns = 1000 for the 1D chain and
Ns = 500 for the triangular and square lattices. We have
confirmed that the error due to the random sampling is
small enough for the following arguments. The bond di-
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mension used in tSDRG calculations is up to χ = 80.
For the above-mentioned finite-size clusters except for
the triangular-lattice system with N = 36, we exam-
ine the deviation of the E-tSDRG and H-tSDRG results
from the exact (or pseudo-exact) ones obtained by the
exact diagonalization (ED) and QMC simulation[32, 33].
For the N = 36 triangular-lattice cluster, the exact data
are not available and thus we directly compare the E-
tSDRG and H-tSDRG results. The numerical data of
the ED, QMC, and H-tSDRG calculations are equivalent
to those presented in Ref. [31][34]. We note that the
QMC simulation was done for a temperature low enough
to describe the ground state[35]. In addition, the data of
the H-tSDRG were obtained by the algorithm with ∆I

max

and ∆P
gs, which provided accurate results respectively in

strong and weak randomness regimes[31].
Let us start with the random average of the errors of

the ground-state energy per spin defined by

δe ≡ 1

NsN

Ns
∑

ν=1

(Eν − Eex
ν ) , (20)

where Eν and Eex
ν indicate respectively the tSDRG and

exact results of the ground-state energy of the νth sam-
ple. Figure 5 shows δ-dependences of δe at χ = 80. In
the figure, it is verified that the accuracy of the E-tSDRG
results is actually improved by the additional treatment
for the small-rank problem of the rDM described in Sec.
II.2, suggesting that the small-rank problem has a certain
relevance to the numerical accuracy of the E-tSDRG. It is
also found that the improvement by the additional treat-
ment in the calculation of the 1D chain is more significant
than that of the two-dimensional lattices. [Note that the
data in Fig. 5(a) are presented in a logarithmic scale.]
Indeed, we have confirmed that for the 1D chain, the re-
duction of the number of the bases due to the small-rank
problem manifests itself in the middle and late stages of
the E-tSDRG iterations. This may be because in the 1D
chain, the block coordination number Dr,r′ is always two
and the possibility that the mixed-state rDM ρ̃r,r′ has
a small rank is relatively high. For the two-dimensional
lattices, on the other hand, the small-rank problem of
the rDM is prominent only in the very late stage of the
E-tSDRG, where the number of remaining blocks is small
and Dr,r′ becomes also small.
Next, we discuss the comparison between the results of

the E-tSDRG (with the additional treatment) and those
of the H-tSDRG. It is found in Fig. 5 (a) that for the 1D
chain, the H-tSDRG with ∆I

max is much more accurate
than the E-tSDRG, although the E-tSDRG achieves the
accuracy of the order of three digits. From Figs. 5 (b)
and (c), on the other hand, it is basically concluded that
for the two-dimensional lattices, the E-tSDRG achieves
the same order of accuracy as the H-tSDRG. In partic-
ular, the E-tSDRG for the square lattice turns out to
be the best in the small δ region. The reason why such
a qualitative difference of the E-tSDRG occurs depend-
ing on the systems is associated with the nature of the
approximated rDM ρ̃r,r′ , where we take account of the
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FIG. 5. Random averages of the errors of the ground-state
energy per spin, δe, as functions of δ for (a) 1D chain with
N = 24 spins, (b) triangular lattice with N = 24 spins, and
(c) square lattice with N = 36 spins. Solid squares and circles
represent respectively the results of E-tSDRG with and with-
out the additional treatment for the small-rank problem (see
text in Sec. II.2). Open triangles and diamonds show the re-
sults of the H-tSDRG using ∆I

max and ∆P
gs, respectively. The

bond dimension used in the calculations is χ = 80. The data
in (a) are plotted in a logarithmic scale while the data in (b)
and (c) are in a linear scale.
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FIG. 6. Random averaged ground-state energy per spin, E,
as functions of δ for the triangular lattice with N = 36 spins.
Solid squares and circles represent respectively the results of
E-tSDRG with and without the additional treatment for the
small-rank problem (see text in Sec. II.2). Open triangles and
diamonds show the results of the H-tSDRG using ∆I

max and
∆P

gs, respectively. The bond dimension used in the calcula-
tions is χ = 80. Inset shows the energy gain compared to the
data of the H-tSDRG with ∆P

gs, ∆E = E − E∆P
gs
.

entanglements between a target block pair and its envi-
ronment up to the neighboring blocks. This implies that
the short-range entanglements from the adjacent blocks
are overestimated in the rDM, while the entanglements
between distant blocks are omitted. As a result, the rDM
fails in capturing the effect of distant singlet pairs em-
bedded in the random-singlet state realized in the 1D
chain, which results in the relatively poor accuracy. For
the square and triangular lattices, meanwhile, the block
pairs are usually surrounded by several blocks, and thus,
the entanglements from the adjacent blocks are relatively
significant. This supports that the E-tSDRG becomes ef-
ficient in the small δ regime of the triangular and square
lattices, where the short-range entanglement due to the
magnetic ordering has a certain relevance.
In order to examine the E-tSDRG for the system sizes

beyond the ED level, we further calculate the random
averaged ground-state energy per spin defined as

E ≡ 1

NsN

Ns
∑

ν=1

Eν , (21)

for the triangular lattice with N = 36 (6× 6) spins. Fig-
ure 6 shows the comparison of the E-tSDRG and H-
tSDRG results. We find that the data exhibit essentially
the same tendency as that for the N = 24 triangular lat-
tice; The accuracy of the E-tSDRG in the scale of Fig.
6 is comparable to the H-tSDRG. Moreover, the precise
comparison in the inset of Fig. 6 illustrates that the E-
tSDRG provides slightly lower energy for small δ, while

the H-tSDRG algorithm with ∆I
max is better for large

δ. This suggests that the E-tSDRG can also treat the
larger system size beyond ED, complementarily to the
H-tSDRG.
We also explore the random average of the errors of

the ground-state correlation functions,

δg ≡ 1

Ns

Ns
∑

ν=1

√

√

√

√

2

N(N − 1)

∑

i

∑

j( 6=i)

[gν(i, j)− gexν (i, j)]2,

(22)

with gν(i, j) ≡ 〈Si ·Sj〉ν and gexν (i, j) ≡ 〈Si ·Sj〉exν . Here,
〈· · ·〉ν and 〈· · ·〉exν represent the ground-state expectation
values respectively calculated by the tSDRGs and exact
(ED or QMC) methods. The δ-dependence of δg with
χ = 80 is shown in Fig. 7. The data indicate that δg
also exhibits the same tendency as that of δe; For the
1D chain, the accuracy of the E-tSDRG is of the order of
four digits, although the H-tSDRG with ∆I

max achieves
much better accuracy than the E-tSDRG. For the two-
dimensional lattices, however, the accuracy of E-tSDRG
turns out to be comparable to that of H-tSDRGs. In
particular, the E-tSDRG becomes the best for the square
lattice in the small δ region.
In order to confirm if the E-tSDRG captures qualita-

tive features of the systems correctly, we compute the
random-averaged static spin structure factor,

S(q) ≡ 1

Ns

Ns
∑

ν=1

〈

∣

∣

∣

∣

∣

∣

1√
N

∑

j

Sje
iq·rj

∣

∣

∣

∣

∣

∣

2
〉

ν

=
1

NsN

Ns
∑

ν=1

∑

i,j

gν(i, j) cos [q · (ri − rj)] , (23)

where rj is the position vector of the jth spin, for the
triangular and square lattices. Figure 8 shows the results
for those lattices with δ = 0.25 and 1.00. In the all cases,
the results correctly reproduce qualitative features such
as broad peaks at K points for the triangular-lattice case
and sharp peaks at q = (π, π) for the square-lattice case.

IV. CONCLUDING REMARKS

In summary, we have proposed an entanglement-based
tSDRG (E-tSDRG) algorithm for the random AF Heisen-
berg models, in comparison with the previous version of
tSDRG (H-tSDRG) algorithms based on the energy spec-
trum of block Hamiltonians. A key point is that we have
directly evaluated the rDM [Eqs. (13) and (14)] of the
block pair to be renormalized, by taking account of up to
the blocks directly linked to the block pair. On the basis
of the entanglement entropy for the rDM, we then con-
struct the E-tSDRG algorithm generating a TTN with
a slightly different structure than the H-tSDRG. In or-
der to evaluate the accuracy of the E-tSDRG, we have
applied the method to finite-size clusters of the random
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AF Heisenberg model up to N = 36 sites. We have then
demonstrated that the E-tSDRG achieves better accu-
racy than the H-tSDRG for the square lattice model in
the small randomness region, while it is pretty good but
less efficient for the 1D chain and the triangular lattice
models.

The tendency of the accuracy of the E-tSDRG can be
understood also from the viewpoint of the TTN. The E-
tSDRG is an one-way algorithm constructing the TTN
in Fig. 1 from the bottom to top by looking ahead the
upper branch in the TTN through the rDM of the block
pairs. In the present construction of the rDM, then, the
entanglement among distant blocks is missed and thus
the short-range correlation is overestimated. Actually,
the E-tSDRG is relatively poor for the random-singlet
state of the 1D chain where singlet pairs between dis-
tant spins are important[10]. This is also the case for the
model (1) with large δ in the triangular lattice, where
the frustrated random-singlet ground state containing a
certain amount of long-distance singlet pairs is expected
to emerge[11, 12, 20]. Meanwhile, the E-tSDRG can
achieve good accuracy for the square-lattice model where
the short-range entanglement associated with the Néel-
ordered ground state becomes relevant[36]. How to im-
prove the TTN structure by taking account of the entan-
glement between distant blocks without the increase of
the computational cost is an essential problem for the
E-tSDRG, which is left for future studies. From the
technical viewpoint, a parallelization of the process of
the update of the list of entanglement entropy Sr,r′ in
E-tSDRG or energy gap ∆r,r′ in H-tSDRG may be re-
warding. In addition, it is effective to implement the

variational optimization of the tensors by up-and-down
sweeps of the tensor network with integrating unitary
disentanglers[37, 38].
While our focus in this paper was on the benchmark of

the tSDRG algorithms within the finite-cluster level, it
is another important problem to explore how the nature
and ability of the tSDRGs change as the system size is
asymptotically larger. For instance, it is an intriguing
question what types of fixed point can be realized in the
tSDRGs. Since the H-tSDRG is a straightforward ex-
tension of the perturbative SDRG[26, 27], it is expected
that the H-tSDRG and also the E-tSDRG are capable of
realizing the random-singlet fixed point[10], which is es-
tablished to be asymptotically exact in the framework of
the perturbative SDRG. On the other hand, the present
results could not give a clear answer for whether or not
the E-tSDRG algorithm can properly describe the fixed
points of magnetically-ordered states[36] and the frus-
trated random-singlet state[11–15, 20, 21, 23]. It is also
an essential issue to determine the asymptotic scaling
form of key quantities, including the distribution of the
entanglement entropy {Sr,r′}, the energy gap {∆r,r′},
and the block coordination number {Dr,r′}, as functions
of the iteration number in the tSDRG calculations. We
hope that the present work also stimulates further studies
for understanding such exotic states induced by random-
ness.
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Phys. Rev. B 73, 060403 (2006).

[37] L. Tagliacozzo, G. Evenbly, and G. Vidal,
Phys. Rev. B 80, 235127 (2009).

[38] A. M. Goldsborough and G. Evenbly,
Phys. Rev. B 96, 155136 (2017).

https://arxiv.org/abs/2004.02128
https://arxiv.org/abs/2009.08630
https://doi.org/10.1103/PhysRevB.60.12116
https://doi.org/10.1103/PhysRevB.89.214203
https://doi.org/10.1103/PhysRevLett.43.1434
https://doi.org/10.1103/PhysRevB.22.1305
https://doi.org/10.1103/PhysRevB.96.064427
https://doi.org/10.1140/epjb/e2020-100585-8
https://doi.org/10.1103/PhysRevB.102.144439
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1143/JPSJ.73.1379
https://arxiv.org/abs/https://doi.org/10.1143/JPSJ.73.1379
https://doi.org/10.1103/PhysRevB.73.060403
https://doi.org/10.1103/PhysRevB.80.235127
https://doi.org/10.1103/PhysRevB.96.155136


10

0.4 0.6 0.8 1
10

�6

10
�4

10
�2

0.4 0.6 0.8 1
0

0.005

0.01

0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

FIG. 7. Random averages of the errors of the ground-state
correlation functions, δg, as functions of δ for (a) 1D chain
with N = 24 spins, (b) triangular lattice with N = 24 spins,
and (c) square lattice with N = 36 spins. Solid squares and
circles represent respectively the results of E-tSDRG with and
without the additional treatment for the small-rank problem
(see text in Sec. II.2). Open triangles and diamonds show the
results of the H-tSDRG using ∆I

max and ∆P
gs, respectively.

The bond dimension used in the calculations is χ = 80. The
data in (a) are plotted in a logarithmic scale while the data
in (b) and (c) are in a linear scale.
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FIG. 8. Random-averaged static spin structure factors ob-
tained by the E-tSDRG (with the additional treatment) with
χ = 80 for (a) triangular lattice with N = 24 and δ = 0.25,
(b) triangular lattice with N = 24 and δ = 1.00, (c) square
lattice with N = 36 and δ = 0.25, and (d) square lattice with
N = 36 and δ = 1.00.


