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On attractor’s dimensions of the
modified Leray-alpha equation

PHAM Truong Xuan1 &NGUYEN Thi Van Anh2

Abstract

The primary objective of this paper is to investigate the modified Leray-alpha equa-

tion on the two-dimensional sphere S
2, the square torus T

2 and the three-torus T
3. In

the strategy, we prove the existence and the uniqueness of the weak solutions and also

the existence of the global attractor for the equation. Then we establish the upper and

lower bounds of the Hausdorff and fractal dimensions of the global attractor on both

S
2 and T

2. Our method is based on the estimates for the vorticity scalar equations and

the stationary solutions around the invariant manifold that are constructed by using

the Kolmogorov flows. Finally, we will use the results on T
2 to study the lower bound

for attractor’s dimensions on the case of T3.
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1 Introduction

The study about the solutions and their asymptotic behaviours of the models of turbu-
lence theory plays an important role to analyse the dynamics of the homogeneous imcom-
pressible fluid flows and many pratical applications. In particular, there is a lot of interest
on the three averaged turbulence equations: the Navier-Stokes-alpha, the modified Leray-
alpha and the Bardina equations which convergence to the Navier-Stokes equation when the
parameter α tends to zero. The existence and uniqueness of weak solutions were established
in [3, 8, 11, 19, 22]. The existence of the global attractor and the upper and lower of attrac-
tor’s Hausdorff and fractal dimensions were studied in [7, 6, 17, 18, 19]. The existence of
the inertial manifold for these equations were obtained recently in[9, 10, 12]. The algebraic
decays in time were given for the Navier-Stokes-alpha equation in [2].

Beside, there are some other works for the equations with damp coeficients such as 2-D
damped-driven Navier-Stokes equations and damped 2-D and 3-D Euler-Bardina equations
[17, 20, 21]. In these works, the authors established the well-posedness of the weak solutions
and derived the upper and lower bounds of the global attractor’s dimensions.

The premilinary method used to study the upper bound of the attractor’s dimension is to
combine the fundamental theorem about the relation between the Lyapunov exponents and
the Hausdorff (fractal) dimension of attractor (see [4, 5, 24]) and the Leib-Sobolev-Thirring
inequality. The lower bound of the dimensions of the global attractor has been studied by
using the Kolomogorov flow to construct the family of stationary solution that was given
initially for the Navier-Stokes equation in [13]. Then this method is developed for the other
turbulence equation in [17, 26] and the equations with damp coefficients in [20, 21].

Concerning the study of Navier-Stokes and averaged turbulence equations on the compact
manifolds, there are some works on the attractor’s dimensions of the Navier-Stokes and the
turbulence equations on the 2-D closed manifolds such as the sphere S2 and the square torus
T2. The authors have treated the Navier-Stokes equation in [15, 16], the Navier-Stokes-alpha
equation in [17] and the simplified Bardina equation in [26].

In the present paper we study the modified Leray-alpha equation on the 2-D closed
manifold M:





vt − ν∆v + v · ∇u = −∇p + f,

∇ · v = 0,

v = u− α2∆u,

(1.1)

where ν is viscous constant, the velocity v and the filtered function u are unknown which
are belong to TM, p is the pressure and f is external force.
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We recall that the 2-D modified Leray-alpha equation in R
2 with periodic boundary

condition was studied in [9] for the well-posedness and the existence of an inertial manifold.
The 3-D modified Leray-alpha equation in R3 with periodic boundary condition was studied
in [19]. The authors established the well-posedness of the weak solution and derivered a
upper bound of the dimensions of the global attractor by using the Leib-Sobolev-Thirring
in R

3. Recently, the existence of the inertial manifold for the 3-D equation has established
fully in [10, 12].

We will extend and apply the recent work for the simplified Bardina equation of one of
the authors [26] to consider the modified Leray-alpha equations on 2-D closed manifold M

detailized by the sphere S2 and the square torus T2. We will establish the well-posedness of
the weak solution by the Galerkin approximation method (see Section 3). Then, we derive
a upper bound of the Hausdorff and fractal dimensions of the global attractor in both the
sphere S2 and tourus T2 by using the vorticity scalar form of the equation (1.1) and the
generalized theorem of the dimension of attractor on the uniform Lyapunov exponents (see
Section 4.2.1). The lower bound of the dimension in the case of the torus T2 is obtained
by using the Kolomogorov flows to construct the stationary solutions around the invariant
manifold (see Section 4.2.1). In presicely, we will prove in this paper that the upper and
lower bounds of the attractor’s dimensions are coincided to the ones of the 2-D simplified
Bardina equation and they are improved in comparing with the case of 2-D Navier-Stokes
equation. Finally, we will extend and apply the recent work of Ilyin, Zelik and Kostiano [21]
to establish the upper bound of the attractor’s dimensions in the 3-D torus (see Section 5).
The method uses the Squire’s transformation to transform the 3-D equation to the 2-D case,
then apply the results of the lower bound obtained in 2-D case. Our results with the one
obtained in [19] complete the two-side estimates of the global attractor’s dimensions for the
modified Leray-alpha equation in 3-D case.

This paper is organized as follows: Section 2 gives some basic formulas and the setting of
the modified Leray-alpha equation, Section 3 discuss the well-posedness of the weak solutions
of the equation on the sphere and torus, Section 4 gives the upper and lower bounds of the
attractor’s dimensions on T2 and Section 5 relies on the lower bound on T3.

2 Geometrical and analytical setting

2.1 Geometric formula and functional spaces

We recall some geometric formulas on the 2-dimensional closed manifold (M, g) embedded
in R3 with trivial harnomic forms detailized by the two sphere S2 and the square torus T2

(see for details [14, 15]). We denote by TM the set of tangent vector fields on M and by
(TM)⊥ the set of normal vector fields. We have the definitions of the following operators

Curln : TM → (TM)⊥ andCurl : (TM)⊥ → TM

in a neighbourhood of M in R3 as follows:
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Definition 2.1. Let u be a smooth vector field on M with values in TM, and let ~ψ be a
smooth vector field on M with values in (TM)⊥, i.e. ~ψ = ψ~n, where ~n is the outward unit

normal vector to M and ψ is a smooth scalar function. We then identify the vector field ~ψ
with the scalar function ψ. Let û and ψ̂ be smooth extensions of u and ψ into a neighbourhood
of M in R3 such that û|M = u and ψ̂|M = ψ. For x ∈ M and y ∈ R3, we define

Curlnu(x) = (Curlû(y) · ~n(y))~n(y)|y=x,

Curl~ψ(x) = Curlψ(x) = Curlψ̂(y)|y=x,

where the operator Curl that appears on the right hand sides is the classical Curl operator in
R3.

The above definitions of Curlnu and Curlψ are independent of the choice of the neigh-
bourhood of M in R3. Moreover, the following formulas hold

Curlnu = −~ndiv(~n× u), Curlψ = −~n×∇ψ, (2.1)

v · ∇u+ u · ∇vT = ∇(v · u)− v × Curlnu, (2.2)

∆u = ∇divu− CurlCurlnu, (2.3)

where × is the outer vector product in R3, ∇ψ is gradient of the scalar function, ∇vu is
covariant derivative along the vector field, ∆ is Laplace-de Rham operator defined on the
vector fields (see the definition and formula of ∆ in [14]) and (v ·uT )i :=

∑
j vj∂iuj in a local

basic frame (x1, x2) of (M, g).
Let Lp(M) and Lp(TM) be the Lp-spaces of the scalar functions and the tangent vector

fields on M respectively. Let Hp(M) and Hp(TM) be the corresponding Sobolev spaces of
scalar functions and vector fields. The inner product on L2(M) and L2(TM) are given by

〈u, v〉L2(M) =

∫

M

uv̄dVolM, for u, v ∈ L2(M),

〈u, v〉L2(TM) =

∫

M

u · v̄dVolM, foru, v ∈ L2(TM).

The following integration by parts formulas will be used frequently

〈∇h, v〉L2(TM) = −〈h, divv〉L2(M) ,

〈
Curl~ψ, v

〉
L2(TM)

=
〈
~ψ,Curlnv

〉
L2(M)

.

By using Hodge decomposition we have

C∞(TM) = {∇ψ : ψ ∈ C∞(M)} ⊕ {Curlψ : ψ ∈ C∞(M)}

Putting

V = {Curlψ : ψ ∈ C∞(M)} , H = VL2(TM)
, V = VH1(TM)

,
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with the norms on H and V are

‖u‖2H = 〈u, u〉 , ‖u‖2V = 〈Au, u〉 = 〈Curlnu,Curlnu〉 .

Since divu = 0, we have the Poincaré inequality

‖u‖H 6 λ
−1/2
1 (‖u‖V + ‖divu‖H) = λ

−1/2
1 ‖u‖V (2.4)

where λ1 is the first eigenvalue of the Stokes operator A = CurlCurln. We know that

‖u‖H1(TM) = ‖u‖2L2(TM) + ‖divu‖2L2(M) + ‖Curlnu‖2L2(M) . (2.5)

From the inequalities (2.4), (2.5) and since divu = 0 on V , the norms on H1 and V are
equivalent for all u ∈ V . In the rest of this paper, we denote ‖.‖L2 := |.|, ‖.‖V := ‖.‖ and
‖.‖H1 := ‖.‖1.

2.2 The modified Leray-alpha equation on 2-D closed manifolds

The modified Leray-alpha equation on M have the following form





vt − ν∆v + v · ∇u+∇p = f,

∇ · u = ∇ · v = 0,

v = (I − α2∆)u,

(2.6)

where ν is the viscous coefficient, p is the pressure, f is the external force and the unknown
functions u, v ∈ TM.

Using (2.3) we re-write Equation (2.6) as





vt + νCurlCurlnv + v · ∇u+∇p = f,

∇ · u = ∇ · v = 0,

v = (I − α2∆)u,

(2.7)

By using Hodge projection P on the space H = VL2(TM)
the first equation becomes





vt + νAv +B(v, u) = f, ,

∇ · u = ∇ · v = 0,

v = (I + α2A)u,

(2.8)

where B(v, u) = P(v · ∇u).
On the other hand, if we put u = −Curlψ and take Curln the first equation in (2.6) then

we obtain the following vorticity scalar form

(∆ψt − α2∆2ψt)− ν∆(∆ψ − α2∆2ψ) + J((I − α2∆)ψ,∆ψ) = Curlnf. (2.9)
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Putting ϕ = ∆ψ we get

(ϕt − α2∆ϕt)− ν∆(ϕ− α2∆ϕ) + J((∆−1(I − α2∆)ϕ, ϕ) = Curlnf. (2.10)

Therefore

ϕt − ν∆ϕ+ (I − α2∆)−1J((∆−1(I − α2∆)ϕ, ϕ) = (I − α2∆)−1Curlnf. (2.11)

The properties of Jacobian operator J(a, b) = n × ∇a · ∇b are given in the following
proposition:

Proposition 2.2. On the two-dimensional closed manifold M we have

J(a, b) = −J(b, a),
∫

M

J(a, b) dVolM =

∫

M

J(a, b)b dVolM = 0

and ∫

M

J(a, b)c dVolM =

∫

M

J(b, c)a dVolM.

3 Well-posedness and the existence of global attractor

We consider the existence and uniqueness of the weak solution of the modified Leray-
alpha equation under the vectorial form (2.8). The basic method is Galerkin approximation
scheme and then passing to the limit using the appropriate Aubin compactness theorems.
Since the well-posedness of the 2-D equation in R2 with periodic boundary condition was
established in [9] and of the 3-D equation in R3 with periodic boundary conditon was treated
in [19]. Here, we can do by the same way as in [19, 9] by establish the H1- and H2-estimates
with noting that

〈B(v, u), u〉 = 0.

in H1-estimate and the term 〈B(v, u), Au〉 appeared in H2-estimate can be controled by
using Young’s inequality as

|〈B(v, u), Au〉|D(A)′ 6 c|v| ‖v‖1/2 |A3/2u| ‖u‖
6 c(λ−1

1 + α2)|Au|1/2|A3/2u|3/2 ‖u‖

6 c(λ−1
1 + α2)4

‖u‖4 |Au|2
(να2)3

+
3να2

4
|A3/2u|2.

Therefore, we can get the H1- and H2-estimates as follows (in details see [19]):

|u(t)|2 + α2 ‖u(t)‖2 6 e−νλ1t(|u(0)|2 + α2 ‖u(0)‖2) + K1

νλ1
(1− e−νλ1t). (3.1)

t(‖u(t)‖2 + α2|Au(t)|2) 6 1

ν
(tK1 + k1) + t2K2 + (λ−1

1 + α2)4
2ck21

(να2)4α4

(
t2K1

2
+ tk1

)
. (3.2)

Therefore, we can derive the well-posedness of the weak solution of (2.8) as in the following
theorem.
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Theorem 3.1. Let f ∈ H, then for any T > 0, Equation (2.8) with the initial data u(0) ∈ V
has a unique regular solution u in [0, T ). Furthermore, this solution depends continuously
on the initial data as a map from V to C([0, T ], V ).

Proof. The proof is done by using H1-, H2-estimates and the Galerkin approximation scheme
in the same way of [19, Theorem 3].

Since the well-posedness, we get a semigroup of solution operators, denoted as {S(t)}t>0,
which associates, with each u0 = u(0) ∈ V , the semi-flow for time t > 0 : S(t)u0 = u(t) is
unique weak solution of (2.8).

Using the H1-estimate (3.1) we can prove the existence of a bounded absorbing ball
BV (0) in V . The compactness of the semigroup {S(t)}t>0 and the existence of bounded
absorbing ball BV guarantee the existence of the nonempty compact global attractor A.

Theorem 3.2. There is a compact global attractor A ⊂ V for Equation (2.8).

Proof. Following Rellich lemma St : V −→ D(A) ⋐ V , for t > 0, is a compact semigroup

from V into itself. Since S(t)BV (0) ⊂ BV (0), then the set Cs := ∪t>sS(t)BV (0)
V

is nonempty
and compact in V . By the monotonic property of Cs for s > 0 and by the finite intersection
property of compact sets, the set

A = ∩s>0Cs ⊂ V

is a nonempty compact set, and also the unique global attractor in V .

4 Dimensions of global attractor on 2-D closed manifolds

4.1 Fundamental theorem on the attractor’s dimension

Let H be a Hilbert space, X be a compact set in H and St the nonlinear continuous
semigroup generated by the evolution equation

∂tu = F (u), u(0) = u0,

and suppose that
StX = X for t > 0.

The Hausdorff and fractal dimensions of X are estimated by using the uniform Lyapunov
exponents (see [4, 5]).

Definition 4.1. The semigroup St is uniformly quasi-differentiable on X for each t if for
all u, v ∈ X there exists a linear operator DSt(u) such that

‖St(u)− St(v)−DSt(u)(u− v)‖ 6 h(r) ‖u− v‖ ,

where ‖u− v‖ 6 r, h(r) → 0 as r → 0 and supt∈[0, 1] supu∈X ‖DSt(u)‖L (H,H) <∞.
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The following result is establised in [4, Theorem 2.1].

Theorem 4.2. We assume that the mapping u → Stu0 is uniformly quasi-differentiable in
H and its quasi-differentiation is a linear operator L(t, u0) : ζ ∈ H → U(t) ∈ H, where U(t)
is the solution of the first variation equation

∂tU = L (t, u0)U, U(0) = ζ. (4.1)

We assume, in addition, that for a fixed t the operator L(t, u0) = DSt(u) is compact and
norm-continuous with respect to u ∈ X.

For N > 1, n ∈ N, we define qN by

qN = lim sup
t→∞

sup
u0∈X

sup
ζi∈H,‖ζi‖61,i=1,...,N

(
1

t

∫ t

0

TrL (τ, u0) ◦QN(τ)dτ

)
, (4.2)

where QN(τ) is the orthogonal projection in H into Span
{
U1(τ)...UN (τ)

}
, and U i(t) is the

solution of (4.1) with U i(0) = ζi.
Suppose qN 6 f(N), where f is concave. The Hausdorff and fractal dimensions of X

have the same upper bound
dimH X 6 dimF X 6 N∗,

where N∗ > 1 is such that f(N∗) = 0.

The concave condition of f can be replaced by the condition that the quasi-differential
DSt(u) contracts N∗-dimensional volumes uniformly for u ∈ X (see [5, Theorem 2.1]).

4.2 Estimate of the attractor’s dimensions

4.2.1 Upper bound

As the previous sections we denote M for both S2 and T2. The upper bound of the
Hausdorff and fractal dimensions of the global attractor of the 3-D modified Leray-alpha
equation with periodic boundary condition were establised in [19] by using the Leib-Sobolev-
Thirring inequality. However, we will derive the upper bound of the 2-D equation on M by
another method based on the vorticity scalar equation in this section.

We multiply (2.10) by ϕ in L2(M) we obtain that

1

2

d

dt

(
|ϕ|2 + |∇ϕ|2

)
+ ν(|∇ϕ|2 + α2|∆ϕ|2) = 〈Curlnf, ϕ〉 = 〈f,Curlnϕ〉 .

Therefore,
d

dt
(|ϕ|2 + α2|∇ϕ|2) + 2ν(|∇ϕ|2 + α2|∆ϕ|2) 6 |f |2

ν
+ ν|∇ϕ|2.

Using the Poincaré and Gronwall inequalities and integrating with respect to t yield

lim sup
t→∞

|ϕ(t)|2 6 |f |2
λ1ν2

(4.3)
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and

lim sup
t→∞

1

t

∫ t

0

|∇ϕ(τ)|2dτ 6
|f |2
ν2

. (4.4)

We consider the variational equation corresponding to (2.11):

Φt = ∆Φ− (I − α2∆)−1J((∆−1(I − α2∆)Φ, ϕ)− (I − α2∆)−1J((∆−1(I − α2∆)ϕ,Φ), (4.5)

where Φ(0) = ζ .
It is standard to show that this equation has a unique solution denoted by

L(t, ϕ(0))ζ := Φ(t).

Using the general theorems in [25] we can show that the semigroup St is uniformly quasi-
differentiable on the attractor A of the modified Leray-alpha equation.

Now we establish the Hausdorff and fractal dimensions of the attractor using (4.5) in the
following theorem:

Theorem 4.3. The Hausdorff and fractal dimension of the attractor A of the modified
Leray-alpha equation on M are finite and satisfy

dimH A 6 dimF A 6 G2/3

(
(4 + ǫG)

3

3L(1 + α2λ1)
(logG− 1

2
log

L

2
)

)1/3

, (4.6)

dimH A 6 dimF A 6

(
12√

L(1 + α2λ1)

)2/3

G2/3

(
logG+

1

2
+ log

3
√
2√

L(1 + α2λ1)

)1/3

,

(4.7)

where G =
|f |
ν2λ1

is the Grashof number and ǫG → 0, when G → ∞. In particular, the

constant L = π in the case of the sphere S2.

Proof. Let

H = L2(M) ∩
{
ϕ :

∫

M

ϕdVolM = 0

}
and H

1 = H1(M) ∩H.

Putting
〈〈x, y〉〉 = 〈x, y〉 − α2 〈x,∆y〉 .

In the space QN (τ)(H) we take an orthonormal basis {θi}Ni=1 ⊂ H1 with norm 〈〈., .〉〉. Now
we have

TrL (τ, ϕ0) ◦QN (τ) =

N∑

i=1

〈〈L (τ, ϕ0)θi, θi〉〉

= −ν
N∑

i=1

〈〈∆θi, θi〉〉
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−
N∑

i=1

〈〈
(I − α2∆)−1J(∆−1(I − α2∆)θi, ϕ) + (I − α2∆)−1J(∆−1(I − α2∆)ϕ, θi), θi

〉〉

= −ν
N∑

i=1

(|∇θi|2 + |∆θi|2)−
N∑

i=1

〈
J(∆−1(I − α2∆)θi, ϕ) + J(∆−1(I − α2∆)ϕ, θi), θi

〉

= −ν
N∑

i=1

(|∇θi|2 + |∆θi|2)−
N∑

i=1

〈
J(∆−1θ − α2θi, ϕ), θi

〉

6 −ν
N∑

i=1

(|∇θi|2 + |∆θi|2)−
∫

M

N∑

i=1

θi(n×∇(I − α2∆)−1θi) · ∇ϕdx

+α2

n∑

i=1

〈J(θi, ϕ), θi〉

6 −ν
N∑

i=1

(|∇θi|2 + |∆θi|2) +
∫

M

(
N∑

i=1

θ2i

)1/2( N∑

i=1

|vi|2
)1/2

|∇ϕ|dx

+α2
n∑

i=1

〈J(ϕ, θi), θi〉

6 −ν
N∑

i=1

(|∇θi|2 + |∆θi|2) + ‖ρ‖1/2∞

(
N∑

i=1

|θi|2
)1/2

|∇ϕ| (due to

∫

M

J(ϕ, θi)θidVolM = 0)

6 −ν
N∑

i=1

(|∇θi|2 + |∆θi|2) + ‖ρ‖1/2∞ N1/2|∇ϕ|, (4.8)

where

ρ(s) =

N∑

i=1

|vi(s)|2 =
n∑

i=1

|n×∇(∆− α2∆2)−1θi|2.

The following estimate of the function ρ on the 2-D closed manifold M is valid (for details
see [26, Appendix]).

2
√
L(1 + α2λ1) ‖ρ‖1/2∞ 6 (2 log(k + 1) + 1)1/2 +

√
2(k + 1)−1

(
λ−1
1

N∑

i=1

|∇θi|2
)1/2

6 (2 log(k + 1) + 1)1/2 +
√
2(k + 1)−1

(
λ−1
1

N∑

i=1

(|∇θi|2 + α2|∆θi|2)
)1/2

, (4.9)

where k is a positive integer and L is a positive constant (L = π in the case of S2).
Since on the S2 the eigenvalues of ∆ are λn = n(n+1) of multiplicity 2n+1 for n = 1, 2, ...,

we have

T (t, ϕ0) :=

N∑

i=1

(|∇θi|2 + α2|∆θi|2) >
N∑

i=1

λi >
λ1
4
N2.
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Hence
N 6 2((λ1)

−1T )1/2.

Equation (4.8) implies now,

TrL (τ, ϕ0) ◦QN (τ) 6 −νλ1(λ−1
1 T )

+L−1/2(1 + α2λ1)
−1/2

(
(2 log(k + 1) + 1)1/2 +

√
2(k + 1)−1(λ−1

1 T )
)
(λ−1

1 T )1/4|∇ϕ|2.

Since we obtain the same bounded function of TrL (τ, ϕ0) ◦ QN (τ) such as the one of the
simplified Bardina equation, the rest of the proof can be done by the same way in [26,
Theorem 4.4] and we get the upper bounds (4.6) and (4.7) in our theorem.

Remark 4.4. In the above theorem we prove that the upper bound of the Hausdorff and
fractal dimensions of the global attractor is coincided to the ones of the simplified Bardina
equation obtained in [26]. In particular, as α tends to zero we get the same upper bound of the
Haussdorff and fractal dimensions of the global attractor for the Navier-Stokes equation on
S2 (see [15, 16]). Our theorem can be also extended to the two dimensional closed manifolds
which have the non trivial harmonic forms as well as [26, Theorem 4.6].

4.2.2 Lower bound

Since a global attractor is a maximal strictly invariant compact set, it follows that the
attractor contains the unstable manifolds of stationary points, that is the invariant manifolds
along which the solutions convergence exponentially to the stationary points as t tends to
infinity. From this point we can establish the lower bound of the attractor’s dimension on
the square torus T2 = [0; 2π]× [0; 2π] by constructing a family of stationary solutions arising
from the family of Kolmogorov flows. Recall that the scalar vorticity form of the equation is

(ϕt − α2∆ϕt)− ν∆(ϕ− α2∆ϕ) + J(∆−1(I − α2∆)ϕ, ϕ) = Curlnf.

Putting ψ = ϕ− α2∆ϕ, then

ψt − ν∆ψ + J(∆−1ψ, (I − α2∆)−1ψ) = Curlnf. (4.10)

We consider the following family of forces depending on the integer parameter s:

f = fs =

{
f1 =

1√
2π
ν2λs2 sin sx2,

f2 = 0,

where we choose the parameter λ := λ(s) later. Then, we have

|f | = ν2λs2, G = λs2

and

Curlnfs = Fs = − 1√
2π
ν2λs3 cos sx2, |Curlnf | = ν2λs3. (4.11)

11



Corresponding to the family (4.11) is the family of stationary solutions

ψs = − 1√
2π
νλs cos sx2

of Equation (4.10) due to ψs depends only on x2, the nonlinear term vanishes

J(∆−1ψs, (I − α2∆)−1ψs) = 0

and the equality −ν∆ψs = Fs is verified directly.
We linearize (4.10) about the stationary solution (4.11) and consider the eigenvalue prob-

lem

Lsψ : = J(∆−1ψs, (I − α2∆)−1ψ)
+J(∆−1ψ, (I − α2∆)−1ψs)− ν∆ψ = −σψ. (4.12)

We use the orthonormal basis of trigonometric functions, which are the eigenfunctions of the
Laplacian on the two-dimensional torus,

{
1√
2π

sin kx,
1√
2π

cos kx

}
, kx = k1x1 + k2x2,

k ∈ Z
2
+ =

{
k ∈ Z

2
0|k1 > 0, k2 > 0

}
∪
{
k ∈ Z

2
0|k1 > 1, k2 6 0

}

and we rewrite ψ as a Fourier series

ψ =
1√
2π

∑

k∈Z2
+

ak cos kx+ bk sin kx.

Since J(a, b) = −J(b, a), we have

J(∆−1 cos sx2, (I − α2∆)−1 cos kx) + J(∆−1 cos kx, (I − α2∆)−1 cos sx2)

=
νλs√
2π

(
1

s2
1

1 + α2k2
− 1

k2
1

1 + α2s2

)
J(cos sx2, akcoskx+ bk sin kx)

=
νλs√
2π

k2 − s2

(s2 + α2s4)(k2 + α2k4)
J(cos sx2, akcoskx+ bk sin kx).

Plugging this into (4.12) we obtain that

λs√
2π(s2 + α2s4)

∑

k∈Z2
+

(
k2 − s2

k2 + α2k4

)
J(cos sx2, ak cos kx+ bk sin kx)+

+
∑

k∈Z2
+

(k2 + σ̂)(ak cos kx+ bk sin kx) = 0, (4.13)

where σ̂ = σ/ν.

12



We can calculate that

J(cos sx2, cos(k1x1 + k2x2)) = −k1s sin sx2 sin(k1x1 + k2x2)

=
k1s

2
(cos(k1x1 + (k2 + s)x2))− cos(k1x1 + (k2 − s)x2)

and

J(cos sx2, sin(k1x1 + k2x2)) = k1s sin sx2 cos(k1x1 + k2x2)

=
k1s

2
(sin(k1x1 + (k2 + s)x2))− sin(k1x1 + (k2 − s)x2).

Substituting these equalities into (4.13) and regroup the terms with cos(k1x1+k2x2), we get
the following equation for the coefficients ak1,k2

−Λ(s)k1

(
k21 + (k2 + s)2 − s2

k21 + (k2 + s)2 + α2(k21 + (k2 + s)2)2

)
ak1k2+s

+Λ(s)k1

(
k21 + (k2 − s)2 − s2

k21 + (k2 − s)2 + α2(k21 + (k2 − s)2)2

)
ak1k2−s + (k2 + σ̂)ak1k2 = 0,

where

Λ = Λ(s) :=
s2λ

2
√
2π(s2 + α2s4)

=
λ

2
√
2π(1 + α2s2)

. (4.14)

Similarly the equation for bk1,k2 has also this form.
We put

ak1k2

(
k2 − s2

k2 + α2k4

)
=: ck1k2.

and
k1 = t, k2 = sn + r, and ct sn+r = en,

t = 1, 2, ..., r ∈ Z, rmin < r < rmax,

where the numbers rmin and rmax satisfy that rmax − rmin < s and will be specified below we
obtain for each t and r the following three term recurrence relation:

dnen + en−1 − en+1 = 0, n = 0,±1,±2, ..., (4.15)

where

dn =
(t2 + (sn+ r)2 + α2(t2 + (sn+ r)2)2)(t2 + (sn+ r)2 + σ̂)

Λt(t2 + (sn+ r)2 − s2)
. (4.16)

We look for non-trivial decaying solutions {en} of (4.15) and (4.16). Each nontrivial decaying
solution with Re(σ̂) > 0 produces an unstable eigenfunction ψ of the eigenvalue problem
(4.12).

13



Theorem 4.5. Given an integer s > 0 let a pair of integers t, r belong to a bounded region
A(δ) given by

t2 + r2 < s2/3, t2 + (−s+ r)2 > s2, t2 + (s+ r)2 > s2, t > δs,

rmin < r < rmax, rmin = −s/6, rmax = s/6, 0 < δ < 1/
√
3. (4.17)

For any Λ = λ
2
√
2π(1+α2s2)

> 0 there exists a unique real eigenvalue σ̂ = σ̂(Λ), which increases

monotonically as Λ → ∞ and satisfies the following inequality

c1(α, t, r, s)Λ < σ̂ < c2(α, t, r, s)Λ. (4.18)

The unique Λ0 = Λ0(s) solving the equation

σ̂(Λ0) = 0

satisfes the two-sided estimates

1√
2
δ2s(1 + α2s2) < Λ <

55
√
5

63
√
2

s(1 + α2s2)

δ2
for α > 0,

1√
2
δ2s < Λ <

5

3
√
3

s

δ2
for α = 0. (4.19)

In the term of λ these inequalities are

2πδ2s(1 + α2s2)2 < λ <
110

√
5π

63

s(1 + α2s2)2

δ2
for α > 0,

2πδ2s < λ <
20π

3
√
6

s

δ2
for α = 0.

Proof. The proof is done similarly [26, Theorem 4.8] and we obmit.

In the rest we give the lower bound of the attractor’s dimension by using the above
theorem. Since

Λ =
λ

2
√
2π(1 + α2s2)

,

we rewrite (4.19) in the term of λ(s) to see that for

λα>0 =
110

√
5π

63
sδ−2(1 + α2s2)2,

λα=0 =
20π

3
√
6
sδ−2,

each point in (t, r)-plane satisfying (4.17) produces an unstable (positive) eigenvalue σ̂ > 0
of multiplicity two (the equation for the coefficients bk is the same). Denoting by d(s) the
number of points of the integer lattice inside the region A(δ) we obviously have

d(s) := ♯
{
(t, r) ∈ D(s) = Z

2 ∩ A(δ)
}
≃ a(δ)s2 as s→ ∞, (4.20)
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where a(δ)s2 = |A(δ)| is the area of the region A(δ). Therefore the dimension of the unstable
manifold around the stationary solution ψs is at least 2a(δ)s2 and we obtain that

dimA > 2d(s) ≃ 2a(δ)s2. (4.21)

It is reasonable to consider two case:
The case α = 0.

We have

G = λα=0s
2 =

20π

3
√
6
s3δ−2

and writing the estimate (4.21) in terms of the Grashof number G we obtain

dimA > 2a(δ)s2 ≃ 2

(
3
√
6

20π

)2/3

a(δ)δ4/3G2/3

dimA > 2

(
3
√
6

20π

)2/3

( max
0<δ<1/

√
3
a(δ)δ4/3)G2/3 = 0, 006G2/3,

where max0<δ<1/
√
3 a(δ)δ

4/3 = 0, 012. This is exact the same lower bound obtained for the
global attractor’s dimensions of the Navier-Stokes equation (see [13, 18]).
The case 0 < α≪ 1.

Here we can obtain the following lower bound for G ∼ (1/α)3. Let 0 < s < 1/α. Then
1 + α2s2 < 2 and

G 6
440

√
5π

63
s3δ−2

and by the same way as above we obtain that

dimA > 2

(
63

440
√
5π

)2/3

( max
0<δ<1/

√
3
a(δ)δ4/3)G2/3 = 0, 0018G2/3.

In particular, setting s ≃ 1/α we can obtain in term of γ that

C1
1

α2
6 dimA 6 C2

1

α2

(
log

1

α

)1/3

.

5 The lower bound of global attractor on T
3

In this section we will develop the method of Ilyin, Zelik and Kostiano in a recent work
[21] to give the lower bound of the global attractor for the modified Leray-alpha equation on
T
3 = [0, 2π]3. The method uses the Squire’s transformation to transform the 3-D instability

analysis to the instability analysis of the transformed 2-D problem which has obtained in
the previous section. To avoid the confusion we denote the unknowns by ~u, the components
by u and the covariant derivative by ∇x.

15



5.1 The stationary solutions

Now we consider the modified Leray-alpha equation (2.6) on T3 with the right hand sides
are given by

f = fs =





f1 =
1√
2π
ν2λs2 sin sx3,

f2 = 0,

f3 = 0,

(5.1)

where λ = λ(s) is chosen latter. Then, we have

|f | = ν2λs2, G = λs2

and

Curlnfs = Fs = − 1√
2π
ν2λs3 cos sx3, |Curlnf | = ν2λs3.

The family of stationary solutions of(2.6) corresponding to (5.1) are

~v0(x3) =





v0(x3) =
1√
2π
νλ sin sx3,

0,

0

(5.2)

Moreover, ~u = (I − α2∆x)
−1~v0 = (u0, 0, 0)

T depends only on x3 hence ~v0 · ∇x~u0 = 0.
We derive the linearized equation of (2.6) on the stationary solutions (5.2) as follows

{
∂tω + u0

∂ω̄
∂x1

+ ω̄3
∂u0

∂x3
e1 −∆xω +∇xq = 0,

divω = 0,
(5.3)

where e1 = (1, 0, 0)T and ω̄ = (I − α2∆x)
−1ω with the assumption

∫

T3

ω(x, t)dx = 0.

We consider the solution of (5.3) in the following form

ω(x, t) = (ω1(x3), ω2(x3), ω3(x3))
T ei(ax1+bx2−act) and q(t) = q(x3)e

i(ax1+bx2−act), (5.4)

where a, b ∈ Z satisfied that ω and q are 2π-periodic in each xi.
If there exist a solution (5.4) of Equation (5.3), then at t = 0 we have that

ω(x, 0) = (ω1(x3), ω2(x3), ω3(x3))
T ei(ax1+bx2)

is a vector-valued eigenfunction of the stationary operator

L3(~v0)ω = u0
∂ω̄

∂x1
+ ω̄3

∂u0
∂x3

e1 −∆xω +∇xq (5.5)
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and iac is the corresponding eigenvalue. If ℜ(iac) < 0, then the corresponding mode is
unstable.

Plugging (5.4) into (5.3) we obtaint that





∆xω1 − ia(u0ω̄1 − cω1) = iaq + ω̄3u
′
0,

∆xω2 − ia(u0ω̄2 − cω2) = ibq,

∆xω3 − ia(u0ω̄3 − cω3) = q′,

iaω1 + ibω2 + ω′
3 = 0,

(5.6)

where we denote ′ := ∂/∂x3.

Lemma 5.1. There are no unstable solutions of equation (5.3) which can be written by (5.4)
at a = 0.

Proof. The proof is a slightly modification of [21, Lemma 5.1] for replacing −γ by ∆. Let
a = 0 we have that

ω(x, t) = (ω1(x3), ω2(x3), ω3(x3))
T eibx2 and q(t) = q(x3)e

ibx2

is solution of (5.3). Moreover, Equation (5.6) becomes





∆xω1 + iacω1 = iaq + ω̄3u
′
0,

∆xω2 + iacω2 = ibq,

∆xω3 + iacω3 = q′,

ibω2 + ω′
3 = 0,

The final equation leads to ω2 = −ω
′
3

ib
. Plugging this into the second equation we get

ω′′′
3 + iacω′

3 = b2q.

Differentiating the third with respect to x3 we obtain

ω′′′
3 + iacω′

3 = q′′.

Therefore, we have that q′′ = b2q, hence q = 0 due to q is periodic.
Since we considering for unstable solutions, it follows that ℜ(ic) < 0. This leads to

KerL2(∆ + ic) = {0}. This gives that ω2 = ω3 = 0, and, finally, ω1 = 0.
If a = b = 0, then ω′

3 = 0, then ω2 = 0 by periodicity and zero mean condition. This
shows that q = 0 and ω1 = ω2 = 0. Our proof is completed.
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5.2 Transform from T
3 to T

2

Now we use the Squire’s transformation to transform the eigenfunctions of L3(~v0) on T3

to the ones of L2(~v0) on the 2-D torus. The idea and detailized techniques are given in [21].
Since Lemma (5.1), we assume that a 6= 0 in (5.6). Multiplying the first equation in (5.6)

by a and the second by b a adding up the obtained results we get




∆̂xω1 − iâ(u0 ¯̂ω1 − ĉω̂1) = iâq̂ + ¯̂ω3u
′
0,

∆̂xω3 − iâ(u0 ¯̂ω3 − ĉω̂3) = q̂′,

iâω̂1 + ω̂′
3 = 0,

(5.7)

where

â2 = a2 + b2, ω̂1 =
aω1 + bω2

â
, ω̂3 = ω3,

∆̂ =
â

a
∆, q̂ = q

â

a
, ĉ = c. (5.8)

The solutions of the problem (5.7) on the 2-D torus

T̂
2
a = {(x1, x3) ∈ [0, 2π/|â|]× [0, 2π]}

have the following form

ω̂(x1, x3, t) = (ω̂1(x3), ω̂3(x3))
T ei(âx1−âĉt), q̂(x1, x3, t) = q(x3)e

i(âx1−âĉt). (5.9)

Observe that if Equation (5.7) has the solutions (5.9), then the vector function

ω̂(x1, x3, 0) = (ω̂1(x3), ω̂3(x3))
T eiâx1 (5.10)

is a vector-valued eigenfunction with eigenvalue iâĉ of the stationary operator

L2(~v0)ω̂ = −∆̂ω̂ + u0
∂ ¯̂ω

∂x1
+ ¯̂ω3

∂u0
∂x3

e1 +∇xq̂, divω̂ = 0 (5.11)

on T̂2
a, where u0 = (I − α2∆x)

−1v0. The stationary solution and the generating right-hand
side are

~v0(x3) =

{
v0(x3) =

1√
2π
νλ sin sx3

0
(5.12)

and

f̃s(x3) = ∆̂xv0(x3) =

{
f1(x3) =

â
a
√
2π
ν2λs2 sin sx3

0
(5.13)

We suppose that â > 0. The result on the Squire’s reduction of the 3-D instability analysis
to the 2-D case is given in the following lemma.
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Lemma 5.2. Let ω̂ in (5.10) be an unstable eigenfunction of the operator (5.11) on the 2-D

torus T̂
2
a = [0, 2π/â]× [0, 2π]. Then for any pair of integers a, b ∈ Z with

a2 + b2 = â2

there exist an unstable solution of system (5.6) on three-torus T3 = [0, 2π]3.

Proof. By using the relations (5.8) we can find q, ω3, c. Observe that the second equation
in (5.6) is

(∆x + iac)ω2 − iau0(I − α2∆)−1ω2 = ibq.

This is equivalent to

− [∆x + iac− iau0(I − α2∆)−1]ω2 = −ibq. (5.14)

Considering the following sesquilinear form A on H1
0 ([0, 2π],M)×H1

0 ([0, 2π],M):

A(x, y) = −[∆x + iac− iau0(I − α2∆)−1x, y].

Clearly, |A(x, y)| is bounded by ‖x‖H1
0

‖y‖H1
0

. Moreover, we have that

|A(ω2, ω2)| > ‖∇xω2‖2L2 − ℜ(iac) ‖ω2‖2L2 .

Since ω̂ is unstable, we have ℜ(iac) < 0. Therefore, the linear operator A is coercive. By
using Lax-Milgram theorem (in complex) (see [1, Theorem 7]), there exists a bounded and

inverted operator Ã : H1
0 ([0, 2π],M) → H−1([0, 2π],M) such that

A(x, y) =
〈
Ãx, y

〉
.

Therefore, Equation (5.14) becomes Ãω2 = −ibq and it has a unique solution ω2 = Ã−1(−ibq) ∈
H1

0 ([0, 2π],M). Finally, we obtain that

ω1 =
âω̂1 − bω2

a
.

5.3 Lower bound on T3

In this section we apply the lower bound of the global attractor obtained on 2-D torus
T2 to establish the one on T3. We denote the second coordinate by x3, so that x1, x3 are
the coordinates on T

2. The linearized stationary operator is (5.11) with the family of the
forcing terms are (5.13), and the corresponding stationary solutions are (5.12).

Applying Curl to (5.11) we obtain the equivalent scalar operator in terms of the vorticity
in the previous Section 4.2.2 on T2:

Lsω : = J(∆−1ωs, (I − α2∆)−1ω)
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+J(∆−1ω, (I − α2∆)−1ωs)− ν∆ω = −σω. (5.15)

where

ωs = Curln~v0 = − 1√
2π
νλs cos sx3 and ω = ω̂.

In Section 4.2.2 we have also proved that the eigenfunctions of Ls are

ω1(x1, x3) =

∞∑

−∞
at,sn+r cos(tx1 + (sn+ r)x3)

ω2(x1, x3) =
∞∑

−∞
at,sn+r sin(tx1 + (sn+ r)x3). (5.16)

Hence,

ω1(x1, x3) + iω2(x1, x3) = eitx1

∞∑

n=−∞
at,sn+re

i(sn+r)x3 .

We can find an unstable vector valued eigenfunction of the operator L2(~v0) in the form (5.10)
by applying the operator Curln∆

−1
x to the above equation and get that

ω(x1, x3) = (ω1(x3), ω3(x3))
T eitx1 .

For the 3-D instability analysis we need to repeat the construction of an unstable eigen-
mode on the torus T̂

2
a = [0, 2π/|â|]× [0, 2π]. For this purpose we apply Theorem 4.5 on T̂

2
a

to obtain that

Proposition 5.3. Let r and t′ := t|â| belong to region A(δ):

t′2 + r2 < s2/3, t′2 + (−s+ r)2 > s2, t′2 + (s+ r)2 > s2, t′ > δs. (5.17)

Taking f̃s and ~v0 in two dimension context as

f̃s(x3) = (− â

a
√
2π
ν2λs2 sin sx3, 0)

T , ~v(x3) = (
1√
2π
νλ sin sx3, 0)

T .

Then there exists an unstable solution

ω(x1, x3) = (ω1(x3), ω3(x3))
T eitεx1 where x ∈ T̂

2
a (5.18)

under the form (5.10) of the operator (5.11) on T̂2
a.

Proof. The proof is a consequence of Theorem 4.5 by substituting t′ := |â|t.

It is convenient to single out a small rectangle D in the (t′, r)-plane inside the region
given by (5.17):

|r| 6 c2s, 0 < c3s 6 t′ 6 c4s. (5.19)

Here δ = δ∗ ∈ (0, 1/
√
3) is fixed, and all the constants ci are absolute constants, whose

explicit values can be specified.
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Theorem 5.4. We consider the linearized equation (5.3) on the 3-torus T
3 = [0, 2π]3 with

right-hand side fs and stationary solution ~v0 given by (5.1) and (5.2), where

λ = λ3(s) =
√
2λ2(s) =

√
2c1s(1 + α2s2)2. (5.20)

(where λ2(s) is given in Theorem 4.5). Then for each triple of integers a, b, r satisfying

c3s 6 â =
√
a2 + b2 6 c4s, |r| 6 c2s, |b| 6 a, (5.21)

there exists an unstable solution of the linearized operator (5.5). The number of integers
(a, b, r) satisfied (5.21) is of order c5s

3, where

c5 =
1

4
πc2(c

2
4 − c23).

Proof. The proof is a slightly modification of [21, Theorem 5.5] for replacing γ by ∆. We
fix a, b and r satisfy (5.21). Since the first two inequalities in (5.21), we have the pair
(t′, r) ∈ D ⊂ A(δ), where t′ = â.1 (therefore, we set here t = 1). Applying Squire’s

transformation we obtain a 2-D linearized problem on the torus T̂2
a of the form (5.11) with

∆̂ =
â

a
∆. Using the third inequality in (5.21) we have

λ =
√
2λ2(s,∆) =

√
2
a

â

â

a
λ2(s) > λ2(s, ∆̂).

Since Proposition 5.3, we have that the 2-D linearized problem (5.11) has an unstable eigen-
value. By using Lemma 5.2 this deduces that the 3-D linearized problem (5.5) has also
unstable eigenvalue on the standard torus T3 = [0, 2π]3. Our proof is completed.

Now we give the lower bound of the attractor’s dimensions of the modified Leray-alpha
equation (2.6) on the 3-D torus T3 = [0, 2π]3 in the following theorem.

Theorem 5.5. Let the right-hand side in (2.6) be (5.1). The dimension of the corresponding
attractor A = As of (2.6) satisfies the lower bound

dimFA > c6
Gγ

α3(1−γ)
,

where G = |f |/ν2 is Grashof number and 0 < α≪ 1, 0 ≪ γ < 1.

Proof. We consider only the case 0 < α ≪ 1. Since s is at our disposal we take s = 1/α.
Therefore, we obtain for λ in (5.20), hence fs that

λ = c6
1

α
, ‖fs‖2L2 =

ν4

α6
.

Finally, we have

dimFA > c6s
3 = c6

1

α3
.
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Putting G = |f |/ν2 = α−3, we establish that

dimFA > c6
Gγ

α3(1−γ)
(0 ≪ γ < 1).

Remark 5.6. By combining with the upper bound of the attractor’s dimension for 3-D
modified Leray-alpha equation obtained in [19, Theorem 6]:

dimFA 6 c7

(
G′

α

)3/2

,

where G′ = G/λ
3/4
1 ≃ G. We obtain the two-side estimate of the attractor’s dimension

c5
Gγ

α3(1−γ)
6 dimFA 6 c8

(
G

α

)3/2

(0 ≪ γ < 1).

Therefore, the sharp upper bound of dimFA must equivalent to Gκ with the power 1 < κ <
3

2
.
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